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Abstract

We present three versions of the revised spectral test for the analysis of liner congruential random
number generators. One is a Fortran 90 version of the code presented in [6] which extends the range
of integer arithmetic operations by performing the arithmetic using floating-point numbers. The
range of modulus values which may be analyzed is determined by the length of the mantissa. The
other two implementations use the multiple precision arithmetic facilities provided by the Fortran
90 package, mpfun [2] and the Unix program bc (a version of this program is freely available
from GNU). Both these allow arbitrary values of the modulus to be analyzed notwithstanding the
underlying integer and floating-point hardware.

1 Introduction

The spectral test (see [5] for details) analyzes liner congruential random number generators of the
form

ZTnt1 = (az, + ¢) mod m, n>0

Where ¢, 29 > 0; 0 < a < m and a is relatively prime to m. For most useful generators the values
of m will be chosen close to the maximum integer value that is storable by the machine. The
implementation of the spectral test requires exact integer arithmetic on values up to 4m? which
restricts a straightforward Fortran integer implementation to the analysis of m less than the square
root of such values. Even careful use of double precision variables to store larger integers, as in
[6], does not, in general, provide an adequate range of m values.

Some Fortran 77 compilers allow 16 byte floating-point arithmetic (REAL%16 or quadruple
precision) although this facility does not appear to have been extensively propagated to Fortran
90 compilers. Table 1 indicates the maximum values of m which may be safely analyzed using a
number of the most commonly available integer and floating-point representations. Note that, in
generating Table 1 we have erred on the side of caution and taken mpy,x to be ﬂ%”/8 where (3 is
the base of the arithmetic and n base-3 digits are available for storing the integer data.

Arithmetic Mmax
32-bit integer 213
IEEE double precision | 223
IBM real *16 253
Cray double precision | 244

In §3 we describe a Fortran 90 version of the code which appeared in [6]. This code has a
number of advantages over the earlier version; the better control structures available provide more



readable code, all the required intrinsic functions are available and the supplementary routine
VPROD may be replaced by the new DOT_PRODUCT intrinsic function. Finally, the precision of the
floating-point arithmetic used may be changed merely by defining the appropriate KIND value and
recompiling.

We then present two implementations using multiple precision arithmetic to ensure that all
the integer arithmetic involved is performed exactly for arbitrarily large values of m. The first,
described in §4, uses the Fortran 90 mpfun package [2]. The second, see §5, is written in be, a
widely available facility on Unix machine; a portable version of bc is freely available as a GNU
package.

In §6 we present some results and compare the execution speed of the codes. Finally in §7 we
give details of how the described codes may be obtained.

2 Assessing the Results of the Spectral Test

Details of the theory of the spectral test may be found in [4], [7] and [5]; the latter also contains
a detailed derivation of the algorithm.
For given values of a, m and T the codes presented here determine the values of

{7e, e and log, (Vt)}?:2

such that
1.

where the {Si}’;:] are integers in the range [0,m) and (S;...S:) # (0...0).
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A multiplier a may be considered adequate if the values {Ht}fzz all exceed 0.1. For an exceptionally
good multiplier, these values will all be greater than unity. Although high values of the p; indicate
an unusually good multiplier, a, for a given m, in order to ensure that the random numbers
generated are also of a high standard it is necessary

1. to check that the values of v; are also suitably large. As a guide [5] (p.101) suggests
log, () > 22,2 <t < 6; and

2. to subject the generator to a number of the empirical tests detailed in [5] (pp.38 71).

Upper bounds on the values of {,ut}f:2 are given in [5] (pp.103, 105).
It should be noted that the spectral test may also be applied to multiplicative congruential
generators provided that

1. m is prime and a has been chosen to produce a period of length m — 1; or

2. m = 2¢ and a is such that a mod 8 = 5.

For (i) the test is applied to a and m as given, whereas for (ii) the test is applied to a and m = 2¢72
(and in this case a must be less than 2¢~?)



3 Fortran 90 Floating-point Version

The only major difference between the Fortran implementation given here and the description of
the algorithm given in [5] is that the arrays U and V are transposed. This has been done to make
the calculation of the inner products required throughout the routine more efficient.

A call to the routine is of the form

CALL spect (a, m, outvals, ifault)
where

a (real, kind = wp), intent (in)
Defines the multiplier of the lcg

m (real, kind = wp), intent(in)
Defines the modulus of the lcg.

outvals (array of type out_vals with range (2..T)), intent (out)

Contains the values of 77,log, 7 and p; for t = 2...T. The routine determines the
value of T required from the upper bound of this array.

The type out_vals is defined as

TYPE out_vals
REAL (kind=wp): nu, log_nu, mu
END TYPE out_vals

ifault (integer), intent (out)

Indicates the error status of the routine on exit

0 routine executed without error

1 lower bound of outvals > 2 or upper bound < 2
2 — a>mora<0orm<20

3 - m > Mmax

4 - a and m not relatively prime

5 intermediate result > m?

The following example driver program shows the routine being used to analyze the generator
defined by a = 137 and m = 256 ([5], p.102 line 5).

PROGRAM test
USE spectral_test, ONLY : wp, spect, out_vals
INTEGER bigt, outch
PARAMETER (bigt=6,outch=6)
REAL (wp) :: a, m
TYPE (out_vals) :: outvals(bigt)
INTEGER ifault, i

. .Example program illustrating the use of subroutine spect
..to rate linear congruential generators of the form

. X(I+1) = (A*X(I) + C) MOD M

..for a=137; m=256; Knuth p102 no 5

WRITE (outch,"(’ *x*x example program for spect **x*’)")
WRITE (outch,"(/’ Knuth page 102 number 5°)")
a = 137D0



m = 256D0
WRITE (outch, &
"(/’ Multiplier= ’,f12.0,12x,’modulus= ’,f12.0/)") a, m
CALL spect(a,m,outvals,ifault)
IF (ifault==0) THEN
! OUTPUT RESULTS
WRITE (outch,"(’ +t’,8x,’nusq(i)’,3x,’lognu(i)’, &
5x,’mu(i)’)")
DO i = 2, bigt
WRITE (outch,"(1X,I2,2X,F12.0,4X,F6.2,6X,F5.2)") &
i, outvals(i)%nusq, outvals(i)%lognu, outvals(i)’%mu
END DO
ELSE
CALL moan(ifault,outch)
END IF
END
SUBROUTINE moan(ifault,outch)
INTEGER ifault, outch
! FAULT INDICATOR ROUTINE
SELECT CASE (ifault)
CASE (1)
WRITE (outch, &
"(’ Outvals: Upper bound <2 or lower bound >2 on entry’)")
CASE (2)
WRITE (outch, &
"(’ a.ge.m or a.le.0 or m.1t.0 on entry’)")

CASE(3)

WRITE (outch,"(’ m.gt.mmax on entry’)")
CASE(4)

WRITE (outch,"(’ a and m are not relatively prime’)")
CASE(5)

WRITE (outch, &
"(’ internally produced value .gt. mmax, please report’)")
END SELECT
END

The USE spectral_test statement is required to make available the kind value of the floating-
point arithmetic being used to perform the integer calculations and the definition of the type

out_vals.
The following output is produced

***x*% example program for spect *k*x

Knuth page 102 number 5

Multiplier= 137. modulus= 256.
t nusq (i) lognu(i) mu (i)
2 274 . 4.05 3.36
3 30. 2.45 2.69
4 14. 1.90 3.78
5 6. 1.29 1.81
6 4. 1.00 1.29



4 Fortran 90 Multiple Precision Version

The Fortran 90 multiple precision version uses the mpfun library [2] of routines. The library
implements the basic arithmetic operations on multiple precision integers and reals by overloading
the existing operators; it also provides a number of the more commonly used intrinsic functions.
Use of this package results in code that is far more readable than that resulting from the use of
earlier libraries (for example, [1] and [3]) where each arithmetic operation requires a function call.
All calculations, except the computation of the u; and log, (vt ), are performed using mp_integer
data. The use of the INT intrinsic function is unnecessary since the floor function is obtained
through integer division.
A call to the routine is of the form

CALL mp_spect (mp_a, mp_m, mp_outvals, ifault)

where
mp-a (mp_integer), intent(in)
Defines the multiplier of the lcg.
mpm (mp_integer), intent(in)
Defines the modulus of the lcg

mp_outvals (array of type mp_out_vals with range 2..T') ), intent (out)

Contains the values of 77,1log, v; and u; for t = 2...T. The routine determines the
value of T required from the upper bound of this array.

The type mp_out_vals is defined as

TYPE mp_out_vals
TYPE (mp_integer) nusq
REAL (wp) mu, lognu
END TYPE mp_out_vals

ifault (integer), intent (out)

Indicates the error status of the routine on exit

routine executed without error

lower bound of mp_outvals > 2 or upper bound < 2

— a>mora<Qorm<0

a and m not relatively prime

— unable to allocate internal workspace

unable to deallocate internal workspace

(this is a warning message; the returned results are correct).
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The following example program illustrates the routine being called to analyze the generator defined
by a = 137 and m = 256 ([5], p.102 line 5).

PROGRAM test
USE mpmodule
USE mp_spectral_test
INTEGER bigt, outch
PARAMETER (bigt=6,outch=6)
TYPE (mp_out_vals) :: outvals(bigt)
TYPE (mp_integer) a, m
INTEGER ifault, i



!'. .Example program illustrating the use of subroutine mp_spect
!'..to rate linear congruential generators of the form
.. X(I+1) = (A*X(I) + C) MOD M

!'..for a=137; m=256; Knuth p102 no 5

CALL mpinit

WRITE (outch,"(’ *x*x Example program for spect ***’)")
WRITE (outch,"(/’Knuth page 102 number 5°)")

a = 137

m = 256

WRITE (outch,"(’ Multiplier’)")

CALL mpwrite(outch,a)

WRITE (outch,"(’ Modulus’)")

CALL mpwrite(outch,m)

WRITE (outch,"()")

CALL mp_spect(a,m,outvals,ifault)
IF (ifault==0) THEN
!'..Output results
WRITE (outch,"(’ t lognu(t) mu(t)’)")
DO i = 2, bigt
WRITE (outch,"(1X,I2,4X,F6.2,6X,F5.2)") &
i, outvals(i) %lognu, outvals(i) %mu
END DO
WRITE (outch,"(1X,/’Nusq values’)")
DO i = 2, bigt
CALL mpwrite(outch,outvals(i)’%nusq)
END DO
ELSE
CALL moan(ifault,outch)
END IF
END
SUBROUTINE moan(ifault,outch)
INTEGER ifault, outch
!'..Fault indicator routine
SELECT CASE (ifault)
CASE(1)
WRITE (outch, &
"(’ Outvals: Upper bound <2 or lower bound >2 on entry’)")
CASE(2)
WRITE (outch,"(’ a.ge.m or a.le.0 or m.1t.0 on entry’)")
CASE(3)
WRITE (outch,"(’ a and m are not relatively prime’)")
CASE(4)
WRITE (outch,"(’ Unable to allocate internal workspace’)")
END SELECT
END

Notes

1. The USE mpmodule statement is required to make the definitions of the type mp_integer
visible to the calling program.

2. The USE mp_spectral_test statement makes the definition of mp_outvals visible to the
calling program.

3. The call to the routine mpinit is needed to initialize the mpfun package.



4. There is little control available over the format of the output multiple precision values.

The following output is produced

**x*x*% Example program for spect *kxx

Knuth page 102 number 5

Multiplier

10 - 2x 1.37,
Modulus

10 = 2 x 2.56,
t lognu(t) mu (t)
2 4.05 3.36
3 2.45 2.69
4 1.90 3.78
5 1.29 1.81
6 1.00 1.29

Nusq values

10 ~ 2x 2.74,
10 ~ 1x 3.,
10 ~ 1x 1.4,
10 ~ 0x 6.,
10 ~ 0x 4.

5 bc Implementation

bc is an interactive program. The spectral test needs to be preloaded before the spectral test
function k, may be called. A call is of the form k(a,m,t) where ¢ is the maximum value to ¢
required. Assuming that the bc version of the spectral test has been placed in the file spect.b the
example linear congruential generator @ = 137 and , = 256 ([5], p.102 line 5) may be analyzed
using

% bc spect.b
k(137,256,6)

which gives

a= 137

m= 256

i= 2

mul[i]= 3.36248588704532557557
nusq[il= 274

i= 3

mul[i]= 2.68862681697444208212
nusq[i]= 30

i= 4

mul[i]= 3.77820793479202009634
nusqlil= 14

i= 5

mul[i]= 1.81316210593470716753
nusq[il= 6



i= 6
mulil= 1.29192819501249250735
nusql[il= 4

6 Results

The codes have been tested on a wide range of examples. Included with the distribution are
data and results files for both the multiple precision codes which generate all the example values
given in the table on pp.101 102 of [5]. Because of the restrictions placed on muy,ax by the double
precision version of the code only a relatively small number of generators have been tested.

In running all the example in the table in [5] the gnu version of bc ran approximately twice as
fast as the version bundled with SunOS (141 seconds as against 282 seconds on a SUN LX running
SunOS 4.3). The implementation using the mpfun library takes 82 seconds using the Edinburgh
Portable Compilers (EPC) Fortran 90 compiler; this timing was achieved with unoptimized code,
bugs in the optimizer preclude its use on the mpfun package. All times include I/0.

7 Obtaining the Code

A compressed, tar file containing

e the three versions of the spectral test described in this paper along with example programs,
stringent test drivers and data,

e the version of the mpfun library used,
may be obtained via anonymous ftp from unix.hensa.ac.uk from the file
/pub/misc/trh/spectral/test.tar.gz
Once retrived the file should be uncompressed using
%tar xvf test.tar
The gnu version of bc may be obtained via anonymous ftp from either wu.net in the file
ftp://ftp.uu.net/systems/gnu/bc-1.03.tar.gz
or from uniz.hensa.ac.uk in the file
ftp://unix.hensa.ac.uk/mirrors/gnu/bc-1.03.tar.gz
A maketile is included that will

e compile and run the example Fortran 90 double precision version
(make test_f90)

e compile the mpfun library and check the implementation
(make test_mpfun),

e compile and run the example and stringent test drivers for the multiple precision version
(make test_mpspec and make test_mpknuth).

The makefile is very crude. Since all current Fortran 90 systems seem to have their own idiosyn-
cratic means of linking precompiled modules with driver programs, we just compile all the required
source files each time. It would obviously be far more efficient to precompile the multiple precision
arithmetic library and link this with each of the test drivers.

The gnu version version of bc is a complete rewrite and allows a number of extensions to the
standard version (for example, longer than a single character identifier names). None of these
extensions have been used in the code provided. The gnu version is also substantially faster than
its standard counterparts.

Please report any problems, bugs or possible improvements to trh@Qukc.ac.uk
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