
New Implementations of the Spectral TestTim HopkinsComputing Laboratory, University of KentCanterbury, Kent CT2 7NF, UKJuly 20, 1997AbstractWe present three versions of the revised spectral test for the analysis of liner congruential randomnumber generators. One is a Fortran 90 version of the code presented in [6] which extends the rangeof integer arithmetic operations by performing the arithmetic using
oating-point numbers. Therange of modulus values which may be analyzed is determined by the length of the mantissa. Theother two implementations use the multiple precision arithmetic facilities provided by the Fortran90 package, mpfun [2] and the Unix program bc (a version of this program is freely availablefrom GNU). Both these allow arbitrary values of the modulus to be analyzed notwithstanding theunderlying integer and
oating-point hardware.1 IntroductionThe spectral test (see [5] for details) analyzes liner congruential random number generators of theform xn+1 = (axn + c) mod m; n � 0Where c; x0 > 0; 0 < a < m and a is relatively prime to m. For most useful generators the valuesof m will be chosen close to the maximum integer value that is storable by the machine. Theimplementation of the spectral test requires exact integer arithmetic on values up to 4m2 whichrestricts a straightforward Fortran integer implementation to the analysis ofm less than the squareroot of such values. Even careful use of double precision variables to store larger integers, as in[6], does not, in general, provide an adequate range of m values.Some Fortran 77 compilers allow 16 byte
oating-point arithmetic (REAL�16 or quadrupleprecision) although this facility does not appear to have been extensively propagated to Fortran90 compilers. Table 1 indicates the maximum values of m which may be safely analyzed using anumber of the most commonly available integer and
oating-point representations. Note that, ingenerating Table 1 we have erred on the side of caution and taken mmax to be � 12n=8 where � isthe base of the arithmetic and n base-� digits are available for storing the integer data.Arithmetic Mmax32-bit integer 213IEEE double precision 223IBM real �16 253Cray double precision 244In x3 we describe a Fortran 90 version of the code which appeared in [6]. This code has anumber of advantages over the earlier version; the better control structures available provide more1

readable code, all the required intrinsic functions are available and the supplementary routineVPROD may be replaced by the new DOT PRODUCT intrinsic function. Finally, the precision of the
oating-point arithmetic used may be changed merely by de�ning the appropriate KIND value andrecompiling.We then present two implementations using multiple precision arithmetic to ensure that allthe integer arithmetic involved is performed exactly for arbitrarily large values of m. The �rst,described in x4, uses the Fortran 90 mpfun package [2]. The second, see x5, is written in bc, awidely available facility on Unix machine; a portable version of bc is freely available as a GNUpackage.In x6 we present some results and compare the execution speed of the codes. Finally in x7 wegive details of how the described codes may be obtained.2 Assessing the Results of the Spectral TestDetails of the theory of the spectral test may be found in [4], [7] and [5]; the latter also containsa detailed derivation of the algorithm.For given values of a, m and T the codes presented here determine the values off
t; �t and log2 (
t)gTt=2such that1.
t = min8<:vuut tXi=1 S2i ����� tXi=1 ai�1Si � 0 (mod m)9=;where the fSigti=1 are integers in the range [0;m) and (S1 : : : St) 6= (0 : : : 0).2. �t = � t2
tt� t2�!m; where � t2�! = � t2�� t2 � 1� � � ��12�p� for t oddA multiplier amay be considered adequate if the values f�tg6t=2 all exceed 0.1. For an exceptionallygood multiplier, these values will all be greater than unity. Although high values of the �t indicatean unusually good multiplier, a, for a given m, in order to ensure that the random numbersgenerated are also of a high standard it is necessary1. to check that the values of
t are also suitably large. As a guide [5] (p.101) suggestslog2 (
t) � 30t , 2 � t � 6; and2. to subject the generator to a number of the empirical tests detailed in [5] (pp.38{71).Upper bounds on the values of f�tg6t=2 are given in [5] (pp.103, 105).It should be noted that the spectral test may also be applied to multiplicative congruentialgenerators provided that1. m is prime and a has been chosen to produce a period of length m� 1; or2. m = 2e and a is such that a mod 8 = 5.For (i) the test is applied to a andm as given, whereas for (ii) the test is applied to a andm = 2e�2(and in this case a must be less than 2e�2) 2

3 Fortran 90 Floating-point VersionThe only major di�erence between the Fortran implementation given here and the description ofthe algorithm given in [5] is that the arrays U and V are transposed. This has been done to makethe calculation of the inner products required throughout the routine more e�cient.A call to the routine is of the formCALL spect (a, m, outvals, ifault)wherea (real, kind = wp), intent (in)De�nes the multiplier of the lcgm (real, kind = wp), intent(in)De�nes the modulus of the lcg.outvals (array of type out vals with range (2..T)), intent (out)Contains the values of
2t ; log2
t and �t for t = 2 : : : T . The routine determines thevalue of T required from the upper bound of this array.The type out vals is de�ned asTYPE out_valsREAL (kind=wp): nu, log_nu, muEND TYPE out_valsifault (integer), intent (out)Indicates the error status of the routine on exit0 { routine executed without error1 { lower bound of outvals > 2 or upper bound < 22 { a � m or a � 0 or m � 03 { m > mmax4 { a and m not relatively prime5 { intermediate result > m2maxThe following example driver program shows the routine being used to analyze the generatorde�ned by a = 137 and m = 256 ([5], p.102 line 5).PROGRAM testUSE spectral_test, ONLY : wp, spect, out_valsINTEGER bigt, outchPARAMETER (bigt=6,outch=6)REAL (wp) :: a, mTYPE (out_vals) :: outvals(bigt)INTEGER ifault, i!!..Example program illustrating the use of subroutine spect!..to rate linear congruential generators of the form!.. X(I+1) = (A*X(I) + C) MOD M!..for a=137; m=256; Knuth p102 no 5! WRITE (outch,"(' **** example program for spect ****')")WRITE (outch,"(/' Knuth page 102 number 5')")a = 137D0 3

m = 256D0WRITE (outch, &"(/' Multiplier= ',f12.0,12x,'modulus= ',f12.0/)") a, mCALL spect(a,m,outvals,ifault)IF (ifault==0) THEN! OUTPUT RESULTSWRITE (outch,"(' t',8x,'nusq(i)',3x,'lognu(i)', &5x,'mu(i)')")DO i = 2, bigtWRITE (outch,"(1X,I2,2X,F12.0,4X,F6.2,6X,F5.2)") &i, outvals(i)%nusq, outvals(i)%lognu, outvals(i)%muEND DOELSECALL moan(ifault,outch)END IFENDSUBROUTINE moan(ifault,outch)INTEGER ifault, outch! FAULT INDICATOR ROUTINESELECT CASE (ifault)CASE(1)WRITE (outch, &"(' Outvals: Upper bound <2 or lower bound >2 on entry')")CASE(2)WRITE (outch, &"(' a.ge.m or a.le.0 or m.lt.0 on entry')")CASE(3)WRITE (outch,"(' m.gt.mmax on entry')")CASE(4)WRITE (outch,"(' a and m are not relatively prime')")CASE(5)WRITE (outch, &"(' internally produced value .gt. mmax, please report')")END SELECTENDThe USE spectral test statement is required to make available the kind value of the
oating-point arithmetic being used to perform the integer calculations and the de�nition of the typeout vals.The following output is produced**** example program for spect ****Knuth page 102 number 5Multiplier= 137. modulus= 256.t nusq(i) lognu(i) mu(i)2 274. 4.05 3.363 30. 2.45 2.694 14. 1.90 3.785 6. 1.29 1.816 4. 1.00 1.29
4

4 Fortran 90 Multiple Precision VersionThe Fortran 90 multiple precision version uses the mpfun library [2] of routines. The libraryimplements the basic arithmetic operations on multiple precision integers and reals by overloadingthe existing operators; it also provides a number of the more commonly used intrinsic functions.Use of this package results in code that is far more readable than that resulting from the use ofearlier libraries (for example, [1] and [3]) where each arithmetic operation requires a function call.All calculations, except the computation of the �t and log2(
t), are performed using mp integerdata. The use of the INT intrinsic function is unnecessary since the
oor function is obtainedthrough integer division.A call to the routine is of the formCALL mp_spect (mp_a, mp_m, mp_outvals, ifault)wheremp a (mp integer), intent(in)De�nes the multiplier of the lcg.mp m (mp integer), intent(in)De�nes the modulus of the lcgmp outvals (array of type mp out vals with range 2::T)), intent (out)Contains the values of
2t ; log2
t and �t for t = 2 : : : T . The routine determines thevalue of T required from the upper bound of this array.The type mp out vals is de�ned asTYPE mp_out_valsTYPE (mp_integer) nusqREAL (wp) mu, lognuEND TYPE mp_out_valsifault (integer), intent (out)Indicates the error status of the routine on exit0 { routine executed without error1 { lower bound of mp outvals > 2 or upper bound < 22 { a � m or a � 0 or m � 03 { a and m not relatively prime4 { unable to allocate internal workspace5 { unable to deallocate internal workspace(this is a warning message; the returned results are correct).The following example program illustrates the routine being called to analyze the generator de�nedby a = 137 and m = 256 ([5], p.102 line 5).PROGRAM testUSE mpmoduleUSE mp_spectral_testINTEGER bigt, outchPARAMETER (bigt=6,outch=6)TYPE (mp_out_vals) :: outvals(bigt)TYPE (mp_integer) a, mINTEGER ifault, i! 5

!..Example program illustrating the use of subroutine mp_spect!..to rate linear congruential generators of the form!.. X(I+1) = (A*X(I) + C) MOD M!..!..for a=137; m=256; Knuth p102 no 5! CALL mpinitWRITE (outch,"(' **** Example program for spect ****')")WRITE (outch,"(/'Knuth page 102 number 5')")a = 137m = 256WRITE (outch,"(' Multiplier')")CALL mpwrite(outch,a)WRITE (outch,"(' Modulus')")CALL mpwrite(outch,m)WRITE (outch,"()")CALL mp_spect(a,m,outvals,ifault)IF (ifault==0) THEN!..Output resultsWRITE (outch,"(' t lognu(t) mu(t)')")DO i = 2, bigtWRITE (outch,"(1X,I2,4X,F6.2,6X,F5.2)") &i, outvals(i) %lognu, outvals(i) %muEND DOWRITE (outch,"(1X,/'Nusq values')")DO i = 2, bigtCALL mpwrite(outch,outvals(i)%nusq)END DOELSECALL moan(ifault,outch)END IFENDSUBROUTINE moan(ifault,outch)INTEGER ifault, outch!..Fault indicator routineSELECT CASE (ifault)CASE(1)WRITE (outch, &"(' Outvals: Upper bound <2 or lower bound >2 on entry')")CASE(2)WRITE (outch,"(' a.ge.m or a.le.0 or m.lt.0 on entry')")CASE(3)WRITE (outch,"(' a and m are not relatively prime')")CASE(4)WRITE (outch,"(' Unable to allocate internal workspace')")END SELECTENDNotes1. The USE mpmodule statement is required to make the de�nitions of the type mp integervisible to the calling program.2. The USE mp spectral test statement makes the de�nition of mp outvals visible to thecalling program.3. The call to the routine mpinit is needed to initialize the mpfun package.6

4. There is little control available over the format of the output multiple precision values.The following output is produced**** Example program for spect ****Knuth page 102 number 5Multiplier10 ^ 2 x 1.37,Modulus10 ^ 2 x 2.56,t lognu(t) mu(t)2 4.05 3.363 2.45 2.694 1.90 3.785 1.29 1.816 1.00 1.29Nusq values10 ^ 2 x 2.74,10 ^ 1 x 3.,10 ^ 1 x 1.4,10 ^ 0 x 6.,10 ^ 0 x 4.,5 bc Implementationbc is an interactive program. The spectral test needs to be preloaded before the spectral testfunction k, may be called. A call is of the form k(a;m; t) where t is the maximum value to trequired. Assuming that the bc version of the spectral test has been placed in the �le spect.b theexample linear congruential generator a = 137 and ;= 256 ([5], p.102 line 5) may be analyzedusing % bc spect.bk(137,256,6)which givesa= 137m= 256i= 2mu[i]= 3.36248588704532557557nusq[i]= 274i= 3mu[i]= 2.68862681697444208212nusq[i]= 30i= 4mu[i]= 3.77820793479202009634nusq[i]= 14i= 5mu[i]= 1.81316210593470716753nusq[i]= 6 7

i= 6mu[i]= 1.29192819501249250735nusq[i]= 46 ResultsThe codes have been tested on a wide range of examples. Included with the distribution aredata and results �les for both the multiple precision codes which generate all the example valuesgiven in the table on pp.101{102 of [5]. Because of the restrictions placed on mmax by the doubleprecision version of the code only a relatively small number of generators have been tested.In running all the example in the table in [5] the gnu version of bc ran approximately twice asfast as the version bundled with SunOS (141 seconds as against 282 seconds on a SUN LX runningSunOS 4.3). The implementation using the mpfun library takes 82 seconds using the EdinburghPortable Compilers (EPC) Fortran 90 compiler; this timing was achieved with unoptimized code,bugs in the optimizer preclude its use on the mpfun package. All times include I/O.7 Obtaining the CodeA compressed, tar �le containing� the three versions of the spectral test described in this paper along with example programs,stringent test drivers and data,� the version of the mpfun library used,may be obtained via anonymous ftp from unix.hensa.ac.uk from the �le/pub/misc/trh/spectral/test.tar.gzOnce retrived the �le should be uncompressed using%tar xvf test.tarThe gnu version of bc may be obtained via anonymous ftp from either uu.net in the �leftp://ftp.uu.net/systems/gnu/bc-1.03.tar.gzor from unix.hensa.ac.uk in the �leftp://unix.hensa.ac.uk/mirrors/gnu/bc-1.03.tar.gzA make�le is included that will� compile and run the example Fortran 90 double precision version(make test f90),� compile the mpfun library and check the implementation(make test mpfun),� compile and run the example and stringent test drivers for the multiple precision version(make test mpspec and make test mpknuth).The make�le is very crude. Since all current Fortran 90 systems seem to have their own idiosyn-cratic means of linking precompiled modules with driver programs, we just compile all the requiredsource �les each time. It would obviously be far more e�cient to precompile the multiple precisionarithmetic library and link this with each of the test drivers.The gnu version version of bc is a complete rewrite and allows a number of extensions to thestandard version (for example, longer than a single character identi�er names). None of theseextensions have been used in the code provided. The gnu version is also substantially faster thanits standard counterparts.Please report any problems, bugs or possible improvements to trh@ukc.ac.uk8

References[1] D.H. Bailey. Multiprecision translation and execution of Fortran programs. ACM Trans. Math.Softw., 19(3):288{319, Sep 1993.[2] D.H. Bailey. A Fortran 90-based multiprecision system. ACM Trans. Math. Softw., 21(4):379{387, Dec 1995.[3] R.P. Brent. MP: a Fortran multiple-precision arithmetic package. ACM Trans. Math. Softw,4(1):71{81, Mar 1978.[4] R.R. Coveyou and R.D. MacPherson. Fourier analysis of uniform random generators. J. Ass.Comput. Mach., 14:100{119, 1967.[5] D.E.Knuth. The Art of Computer Programming Volume 2: Seminumerical Algorithms.Addison-Wesley, Reading, Mass., 2nd edition, 1981.[6] Tim Hopkins. Algorithm as 183: A revised algorithm for the spectral test. Applied Statistics,32(3):328{335, 1983.[7] G. Marsaglia. Random numbers fall mainly in the planes. Proc. Nat. Acad. Sci. USA, 61:25{28,1968.

9

