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1 Introduction

1.1 Broad Motivation

Over the last three decades (symbolic) production system and (sub-symbolic) connectionist approaches have dominated computational research on cognitive modelling.  In spite of extraordinary technical progress across a broad range of theoretical domains, a substantial body of influential theory recruits the computational metaphor but preferentially specifies particular theoretical constructs and reasoning in more abstract form. The interactions between processing stages, types of processes or “mental modules” are still frequently represented in terms of relatively simple “box and arrow” diagrams. Although lacking computational realisation, such models enable theorists to capture hypothesised interdependencies in sufficient detail to guide empirical investigations under circumstances where they are either unable or reluctant to commit themselves to all of the detailed assumptions that would be required to make a simulation run. In many domains of enquiry, such as explorations of motivational or emotional influences on patterns of human cognition, it is widely acknowledged that the theoretical picture must be highly complex (e.g. (Leventhal 1979) (Teasdale and Barnard 1993)). Not only are multiple influences at play which require many different “modules,” but variation across individuals lies at the heart of understanding conditions such as vulnerability to anxiety or depression. Such considerations are currently not readily amenable to either connectionist or production system modelling.

In recent years the continuing development of parallel computing and large scale networking of computers typified by the world wide web, has presented computer scientists with similar technical problems in modelling interactions among the components of complex and distributed information processing systems. Their response has been to develop both a body of mathematical formalisms and associated tooling for modelling such interactions. We would argue that such formalisms and tools operate at a level of abstraction comparable to that of box and arrow diagrams in psychological domains of enquiry.  These tools enable key constraints on the behaviour of complex mental architectures to be given either an abstract formal mathematical specification (Duke, Barnard et al. 1998) or enable the specification to “run” rather like a conventional simulation (Bowman and Faconti 1999).

The idea that abstract specification of cognitive models can both enhance our understanding of the deeper properties of cognitive architectures, and enable the development of tool-based assistance for the implementation of such models, has also emerged in the context of more traditional production system methodologies for cognitive modelling (Cooper, Fox et al. 1996). In this paper, we extend this general orientation by exploring the potential of a class of modelling techniques called process algebra (Milner 1989), developed by computer scientists, to provide a computationally explicit model of the executive control of human attention in cognitive-affective settings. It is well known that our attention is limited (Broadbent 1958). We pay attention to information that matters either as a result of the cognitive task we are required to perform (e.g. see (Duncan 2000)), as a function of that information’s personal salience (Moray 1959), or as some function of our motivational and emotional states. Anxious people may preferentially pay attention to external threat (e.g. (MacLeod, Mathews et al. 1986)), while over more extended periods, depressed people may focus their internal attention on negative self-related thoughts (e.g. (Beck 1976)). In all these settings the key questions concern the dynamic deployment and redeployment of attentional resources over time.  Several empirical paradigms such as the psychological refractory period (Pashler and Johnston 1998), repetition blindness, the attentional blink paradigm (Raymond, Shapiro et al. 1992) or task shifting effects (e.g. (Allport, Styles et al. 1994)) illustrate a range of restrictions on our ability to shift our attention in the very short term.  Of these, we focus on the attentional blink because it has recently been shown to be subject to the influence of emotional factors. 

The particular model presented here is also guided by a specific cognitive architecture, Interacting Cognitive Subsystems (Barnard 1985) that has been developed to address the effects of mood on cognition (Teasdale and Barnard 1993). This particular architecture assumes that executive control is not centralised but distributed over subsystems. In particular, it assumes that executive control emerges as a function of interactions between two subsystems that process qualitatively distinct forms of meaning, one of which is classically “rational,” being based upon propositional representations and the other being based upon a more abstract encoding of meaning. This latter type of meaning incorporates the products of processing sensory information, including body states, and is called “implicational” meaning. (Teasdale and Barnard 1993) refer not to a “central executive” but to a “central engine” of mentation because control emerges from processing exchanges between a propositional level of representation and what is termed an implicational level of representation. What we present here is a is a computational model that can generate the patterns of data found in both cognitive and cognitive-affective variants of the attentional blink. Furthermore this model has been built using concepts from the central-engine of (Teasdale and Barnard 1993) and could, we would argue, be used to build a computationally explicit representation of that model.

1.2 Concurrency and Distributed Control

A substantial number of theories now assume that many mental modules, or their neural substrates, are processing different facets of information at one and the same time. Any realistic architecture or computational model of the mind must thus, at some level, be concurrent. However there is now also a body of opinion that not only is concurrency required, but that distributed control is also essential. That is, cognition should be viewed as the behaviour that emerges from the evolution of and interaction amongst a set of independently evolving modules
. When moving from concurrency to distribution, the central issue is whether one accepts the principle of a centralised focus of computational control
. Advocates of distribution firmly believe that control must be decentralised and that, at no point in time does any thread of control have access to a complete view of the state of the system.

A centralised focus of control played a key role in the development first of information processing psychology (Broadbent 1958) and subsequently computational models (Newell and Simon 1972). Such a notion fitted well with phenomena linked to our restricted capacity to attend to information, to memorise it or deal with more than one mental task at a time (Broadbent 1958). One reason for supporting a more “distributed systems” approach is the now substantial body of neuropsychological evidence that brain damage selectively impairs particular information processing capabilities, while leaving others intact. Even under circumstances where “executive” functions are impaired, complex behaviours can still be co-ordinated (see, for example, (Shallice 1988)
). This suggests that in order for such data to be reflected in computational models, distribution of executive control should be embraced.

As a reflection of these observations, there is now an increasing number of architectures based on the distributed control hypothesis, some of which focus on interactions between motivation, affect and cognition. For example, the component process theory of emotion (Scherer 2000) explores interactions among five subsystems: cognitive, autonomic, motor, motivational and a monitor subsystem. According to this view, interactions among subsystems determine behaviour and non-linear dynamic systems theory provides the perspective on self-organising patterns of control. The systems-level theory of brain function proposed by Bond (Bond 1999) has also been used to model motivational and social aspects of primate behaviour. In this case social behaviour emerges as a function of computationally realised interactions among modules with no locus of central control. Yet other approaches, most notably that of Carver & Scheier (Carver and Scheier 1998) also appeal to concepts of self-regulation, but emphasising the hierarchical organisation of control mechanisms. The ICS architecture on which we base our computational model contrasts with these other approaches by assuming that all modules process information according to the same fundamental principles, but that subsystems differ only in the way the information they process is encoded. In this case hierarchy is implicit in the abstraction of higher order regularities in information patterns (Teasdale and Barnard 1993).

In addition to these theories that are quite explicit in their commitment to the concept of distributed control, we would argue that this view of control is also implicit in many of the box and arrow diagrams that psychologists have used to elucidate their theories (an example of such a theory is the Working Memory model of Baddeley and Hitch (Baddeley and G.J. 1974) (Baddeley 2000)). Generally speaking, the interpretation that psychologists have in mind when drawing such diagrams is that boxes represent modules, evolving independently and concurrently with one another, subject to interaction between modules, as indicated by arrows. Furthermore, although such “boxology” has a long history of being criticised by the computational modelling community, its prevalence of use suggests that it reflects a level of abstraction at which psychologists wish to theorise about the mind.

A further element that is essential for the sort of “distributed systems” modelling that we are advocating is that of hierarchy. In particular, a “flat” model, with one level of concurrently evolving modules, is not sufficient. This is because, not only is it parsimonious to view modules as themselves being composed of modules, but the same arguments we have used concerning decentralised control of the mind as a whole can be applied to individual modules. This combination of distributed control and hierarchical decomposition is reflected in current theories. For example, the subsystems in Barnard’s ICS architecture are themselves systematically decomposed into components with distinct internal functions, such as an array representing the input data, an image record, and processes that transform data from one type of mental representation to another. Such hierarchy is also found in other box and arrow theories. Not only is Baddeley and Hitch’s working memory model (Baddeley and G.J. 1974) (Baddeley 2000) decomposed at a top-level, into phonological system, visual-spatial system, a central executive etc, these modules are themselves decomposed, e.g. the phonological system contains a phonological store and the phonological loop. Even at the level of the brain, coarse divisions can be subdivided. Schneider (Schneider 1999) presents a computational model that reflects such a hierarchy. Thus, it is natural when adopting a modular theory that the behaviour of individual modules should itself emerge from a set of interacting (sub-)modules, yielding a hierarchical component structure. Furthermore, no restriction should be made on the depth of this hierarchy, since any such restriction would clearly be arbitrary.

1.3 Computational Modelling

As previously discussed, there are two main approaches to computational modelling of the mind: (i) AI approaches based on production systems (e.g. SOAR (Newell 1990), ACT-R (Anderson 1993) and EPIC (Kieras and Meyer 1997)) and (ii) connectionism (Rumelhart, McClelland et al. 1986) (O'Reilly and Munakata 2000). The benefits and drawbacks of both these approaches have been widely aired throughout the course of their early development and subsequent extensions. Along the way, both classes of technique have made profound contributions to our understanding of how mental representations and processes might be realised. Mechanisms of distributed control and hierarchy can of course be realised in some form in either connectionist or production system frameworks. However, neither fully satisfy the requirements we regard as important to address when modelling complex concurrent systems with distributed control.

In traditional AI approaches, concurrency can be generated by allowing multiple productions to fire on each cycle – effectively partitioning the working memory into functional sub-components (Kieras, Meyer et al. 1999). However, (and we will return to this issue in section 2.2) control remains centralised, being focussed on the working memory. Thus, if one accepts (and it is very difficult not to) that the brain is best viewed as a system with distributed control, a structure realigning mapping from the production systems architecture to lower level module structures needs to be postulated. Although such an approach is certainly illuminating, we feel it is not optimal. One reason for which, is that it is not straightforward to relate neuropsychological lesion studies to such centralised computational architectures (see for example, the earlier footnote 3). A second reason is that, as discussed earlier, a large proportion of the psychological theories available are themselves distributed, being expressed in terms of independently evolving interacting modules (e.g. in box and arrow diagrams). Thus, structure re-aligning maps need to be postulated both when relating “upwards” from production systems architectures to high-level psychological theories and when relating “downwards” to low-level brain models. Bond (Bond 1999) has also made similar arguments.

In the case of connectionism, although it may seem that such techniques get closer to our needs and indeed the term distributed is often associated with them, we still believe that a purely connectionist approach would not yield the style of “coarser grain” distributed control that we seek. There are really two issues here, (i) the need for hierarchy and (ii) the level of abstraction of the resulting model. Firstly, to focus on the issue of hierarchy, a level of compositionality is obtained in connectionism through the interconnection of layers, each of which can be viewed as a module. However, there is only one level of composition. In particular, the primitive elements of neural networks are neuron-like nodes, not neural networks. Hence it is not possible to nest interacting components within interacting components. In other words, the component structure of neural networks is flat. This lack of hierarchical structure is also intimately tied to the problem of obtaining combinatorial representations from neural networks (Fodor and Pylyshyn 1988). Central to combinatorial construction of representations is recursion and recursion classically arises through hierarchical nesting of components.

It is also revealing to note that almost all the uses of connectionism in cognitive modelling have been specialised in nature. That is, neural networks have been enormously effective in elucidating computational explanations of specific cognitive phenomena, e.g. the Stroop effect (Cohen, Dunbar et al. 1990), negative priming (Houghton and Tipper 1994), word reading (Plaut 1998), serial order recall (Page and Norris 1998) and many others. However, in extrapolating from these specific phenomena to the big “architectural” picture, they have done less well. This is in no small part due to the fact that it is very hard to construct large architectural models (of the kind required to address the subtleties of interaction between cognition and affect) without hierarchical structuring.

Our second reason for not using connectionism concerns abstraction. Modelling based on neural networks is, in certain respects, very low-level in character. In particular, one has to work hard in order to obtain what are “primitive” constructs and data structures in higher-level computational notations. An illustration of this is the intricacy of the debate concerning the representation of serial order in connectionism
 (Houghton 1990) (Page and Norris 1998) (Burgess and Hitch 1999). However, for a large amount of modelling work, such debates are peripheral in importance. Rather, one would simply like to have data structures and operations available to perform such functions, without having to work hard at their construction. Clearly, the point we are making here is related to the controversy concerning whether symbols (and indeed combinatorial symbol systems) should be taken as given in computational modelling. However, unlike those embroiled in this debate whose motivation is philosophical (e.g. (Fodor and Pylyshyn 1988)), our motivation is largely pragmatic – for the variety of psychological level computational modelling we are undertaking, it is advantageous to be able to postulate symbol systems and standard data structuring mechanisms. Furthermore, the variety of psychological theories we are considering are typically couched in terms of items of representation being transmitted between components and such “passing” of data items is characteristic of symbolic computational paradigms, rather than neural networks.

In fact, we will return to the issue of the level of modelling abstraction in section 2.3, since we would argue that the modelling notations we advocate are in this respect particularly appropriate for psychological level modelling.

In order then to obtain models that directly reflect distribution of control and which are at the level of abstraction appropriate for the modelling we have in mind, we have turned to a new class of modelling technique called process algebras (Hoare 1985) (Milner 1989). These originated in theoretical computer science, being developed to specify and analyse distributed computer systems. A process algebra specification contains a set of top-level modules (called processes in the computing literature) that are connected by a set of (predefined) communication channels. Modules interact by exchanging messages along channels. Furthermore, process algebra components can be arbitrarily nested within one another, i.e. they allow hierarchical description in the manner desired. It is also worth emphasising that there is no cost in expressiveness associated with including module structuring and interaction, since process algebra are Turing complete and can thus compute any computable function (Milner 1989). In fact, as we will discuss in section 2.1, it has been argued that the move to distributed interacting systems enlarges upon the class of computable functions.

1.4 The Attentional Blink

As previously suggested, in illustrating the use of process algebras in psychological level modelling of cognition, we provide computational explanations of the time course of (semantic-level) attentional processes and how motivational and emotional states modulate these processes. Our models reproduce recent experimental results on the attentional blink. Specifically, we consider a variant of the familiar “letter based” attentional blink (Raymond, Shapiro et al. 1992). In the standard attentional blink, two letter targets are located within a rapid serial visual presentation and detection of the second target is poor if it appears within a certain time interval of the first. In contrast, in the word based blink (Barnard, Scott et al. 2001) which will be the focus of our modelling effort, a rapid serial visual presentation is also made, however, now the presented items are words and the subject’s task is to report words from a particular category, e.g. job words. All but two of the words presented are irrelevant to the task demands, being background words, e.g. nature words. However, in addition to the target word, a distractor word is presented. This is a non-background word, which although not satisfying the task demands, is semantically related to the target word category, e.g. it could be an unpaid human activity such as father. Critically, depending upon the serial position in which the target word follows the distractor, subjects can miss the target.

Thus, the attentional blink throws considerable light on the time period that attentional resources are occupied in processing words for meaning. In addition, further empirical work has shown how emotional states, in particular, anxiety and depression, affect the time course of this blink.

There have been two main influences on our computational model of the attentional blink. Firstly, as previously stated, an explanation of the blink in terms of the Interactive Cognitive Subsystems architecture (Barnard 1999) (Teasdale and Barnard 1993) would centre on interaction between two modules – an implicational and a propositional subsystem. One dealing with “propositional meaning” and one dealing with a more abstract type of meaning that incorporates the products of processing sensory information, including body states. This more abstract encoding of meaning is called “implicational” meaning. The second influence on our model has been a computational explanation of the perceptual attentional blink, formulated in terms of two qualitatively distinct states of interaction between modules, see for example (Chun and Potter 1995). The first of these stages performs an initial categorical assessment of the incoming items, while the second stage consolidates the results of the first stage in order to arrive at a full (reportable) identification of the item (we give a more detailed description of these ideas in section 3). Combining these ideas we have developed a process algebra simulation of the (word-level) attentional blink. Specifically, Chun and Potter’s first stage is related to our implicational module that extracts a first level of generic meaning from a word and the second stage is related to our propositional module, which completes the semantic analysis. The blink arises when interpretation of the salience of the distractor word causes attention to be passed to the propositional module, thus preventing the implicational salience of the target from being assessed.

Using our process algebra simulation we have been able to reproduce the shape of the blink observed from human empirical data and we have identified predictions that can be fed back into further empirical studies. Critically, though our computational account of the time course of high level attention has been made purely in terms of the interaction between psychological level modules, without recourse being made to centralised control processes. 

Paper Plan. In section 2 we give a broad discussion of computational modelling and the role of distributed control within it. Then section 3 introduces the attentional blink and section 4 describes our model of it. Section 6 places our work into the context of architectural models of the mind and finally, section 7 presents our conclusions.

2 Computational Modelling

2.1 Distinguishing Concurrency and Distribution

Concurrency and distribution need to be distinguished. The term concurrent characterises a very broad class of systems, in which multiple threads of computation evolve simultaneously. In contrast, the key element of a distributed system is that there is no central locus of the data state of the system. Thus, the system is composed of a set of computational entities (modules, in our terms), which each have a local data state and local processing capabilities. Furthermore, these modules evolve independently subject to interaction / communication between modules. Thus, a key element of distributed systems is that there is a distinction between the local and the global view of the system state; individual modules only having direct access to their local state.

Some concurrent systems are, in terms of distribution, degenerate. Consider for example a system that is configured as shown in Figure 1, in which processors can indeed “compute” simultaneously. However, they interact via a shared memory, which, at any instant, provides a global view of the state of the system.


Figure 1: A Shared Memory Configuration


Figure 2: A Distributed Memory Configuration

In computer science, such a system would be called a multiprocessor and would be distinguished from say a distributed memory machine, which (in the four unit case) might be configured as shown in Figure 2. In this figure inter-unit arrows denote communication paths and each unit is an arbitrarily powerful computational entity with its own local data state
.

Units such as these serve as a good intuition for what we have been and will continue to call modules. In addition, the move towards system structuring in which entities have their own local (and private) state is ostensibly what one gets with the currently very popular object-oriented paradigm
; the potential value in cognitive modelling of which has previously been highlighted by a number of authors (Mather 2001) (Cooper 1995).

[image: image1.wmf]
Figure 3: The EPIC Architecture (based upon (Kieras, Meyer et al. 1999) page 187)

It is also worth noting that although it remains a controversial view, it has been argued that the interactive aspects of such distributed systems takes them outside the class of Turing complete systems (Wegner 1986). The argument rests on the fact that Turing computability is focussed on transformational systems, i.e. systems that map inputs to outputs
. In contrast, interaction based systems
 (such as we are discussing here) characterise (potentially infinite) sequences of interactions and cannot simply be viewed as input to output transformers. Peter Wegner is the main champion of this position, see (Wegner 1997) (Wegner 1998). However, with regard to the discussion here, and the fact that Turing computability has played such a large role in information processing psychology, it should be observed that (closed) shared memory concurrency does not yield a larger computational class than serial Turing machines. For example, “concurrent” multitape Turing machines in which multiple heads evolve concurrently, but there is a finite control, can be simulated by a standard one tape Turing machine (see the proof on page 161 of (Hopcroft and Ullman 1979)). Thus, if we accept Wegner’s position, it is specifically the move to distributed control and interaction between systems and their environment, which places us outside the class of systems that can be computed by a Turing machine.

Furthermore, if we briefly take a computer science perspective, we can see that while shared-memory concurrent systems were much investigated and indeed championed in the 1980’s, the dominant computational paradigm throughout the 1990s and to the current time, has been distribution. To take a familiar example, the internet only works because control is distributed – any central locus of control would clearly become a bottleneck. Furthermore, the currently dominant programming and computational models emphasise autonomous components and decentralised state, e.g. (as previously discussed) object-oriented techniques, agent based paradigms, (object-based) Middleware (such as Corba) (Corba 1997) and process algebra (Milner 1989). However, within the psychology domain, coarse grain distribution (in the sense that we are advocating here) has had little influence on computational modelling.

2.2 Traditional AI

The great contribution of traditional AI approaches, such as SOAR (Newell 1990), ACT-R (Anderson 1993) and EPIC (Kieras and Meyer 1997), has been to postulate a computationally concrete architectural account of the mind. The approach has endeavoured to bring all available evidence and constraints to bear on a single model – a “unified” architecture of the mind
. Consequently, the scope of such modelling has been extremely broad. Newell’s book “Unified Theories of Cognition” is a classic illustration of this (Newell 1990) and in (Kieras, Meyer et al. 1999) (page 185) the designers of EPIC state that their architecture,

“… synthesizes multiple basic concepts, subsuming a variety of `micro` models and mechanisms into a single coherent whole.”

However, this strength is also, in other respects, a weakness of traditional AI techniques, since architectural unification has tended to imply prescription. In particular, traditional AI architectures are prescriptive about the structural decomposition of the mind and any psychologist wishing to model their theory using such an approach must (at least implicitly) accept these structural assumptions. Many psychologists are not willing to do this.

We would argue that most significant amongst these assumptions is that of a centralised focus of control. In this sense, traditional AI techniques still reflect the roots that they have in the Von Neumann computer architecture, which so dominated the early years of computer science and was such a powerful metaphor for information processing psychology. For example, we can see a number of elements of the EPIC architecture which have Von Neumann analogues, e.g. its Production Rule Interpreter is a focus of “instruction” execution in a similar manner to the Von Neumann Central Processing Unit and EPIC cognitive-processor cycles have their roots in the Von Neumann “fetch-and-execute” cycles. In addition, EPIC’s working memory subsumes the role of CPU registers and random access memory in Von Neumann computers.

Of course these AI techniques also diverge in many respects from pure Von Neumann architectures, as motivated by their desire to model the mind. For example, focussing again on EPIC, there are divisions between a number of psychologically distinct classes of memory, e.g. working memory and long-term declarative and procedural (production) memory. Furthermore, unlike its precursor AI approaches, EPIC supports concurrency – multiple productions can fire simultaneously (Kieras, Meyer et al. 1999). However, as just discussed, this does not resolve the problem of centralised control, which resides firmly in the EPIC cognitive processor and the (shared) working memory. In this sense, we would argue that EPIC is in the tradition of shared memory parallel systems (multiprocessors), rather than distributed systems. The peripheral sensory systems, such as the auditory and visual processors, are more loosely coupled. However, our main focus here is distribution of central executive function and this is certainly not supported in EPIC.

In fact, the memory situation in EPIC is somewhat more sophisticated than we have so far indicated. There are many sub-memories. For example, working memory is partitioned into a number of modal working memories – auditory, visual etc and there are production system stores – control and tag store. It is important though to note that such memory partitions do not yield distributed control – a “global” view of the state of the system can be obtained by looking across these memory partitions. Thus there is still a shared memory that parallel threads of execution – productions – can access. In contrast, with distributed systems, processing and storage capabilities are co-located in each unit, are private to that unit and consequently no unit can access a complete view of the state of the system at any instant. Thus, we would argue that production systems reflect an old computing tradition – centralised memory and algorithmic computation, as opposed to distributed control and interaction based computation (Wegner 1997) (Wegner 1998).

The standard argument for Von Neumann-like architectures, with their inherent bottleneck and seriality, is the evidence that there are indeed capacity limitations and seriality constraints on high-level cognition, e.g. short-term memory limitations (Miller 1956), the predominantly serial nature of attention (Broadbent 1958), of planning, reasoning and indeed phenomenological experience (Dennett 1991)
. This argument has been used as a justification for the centralisation and seriality of AI cognitive processors. However, the tide seems to be turning against this opinion (and this is reflected by EPIC’s incorporation of parallel firing of productions). In particular, seriality of high-level cognition can indeed be realised by employing a centralised Von Neumann architecture, however, this is certainly not the only architecture from which seriality can arise. Just because Von Neumann machines are serial and seriality arises in the mind, it does not follow that the mind is a Von Neumann machine!

Increasingly it is being argued that Von Neumann assumptions are too rigid and that in order to reproduce the available behavioural and neuropsychological data, seriality should be realised as an emergent rather than an intrinsic property of computational models. In particular, it should not be explicitly built into the architectural structure of the computational model. As examples consider the recent connectionist models of visual attention proposed by Heinke and Humphreys (Heinke and Humphreys 1998) and Deco and Schurmann (Deco and Schurmann 2000), neither of which build an explicit locus of attention. Seriality emerges from the “global” behaviour of these models.

2.3 Specification

So far we have focussed our motivatory arguments for using process algebra on the structure of computational models of the mind. However, a further issue is the “global” level of abstraction of the resulting computational model. In particular, the process algebra techniques we advocate here are not programming languages, rather they are formal specification languages with the particular purpose of specifying distributed systems (Bowman and Derrick 2001).

Importantly, formal specifications are in nature very different to computer programs or what we will more broadly call implementations. A formal specification is abstract in the sense that it characterises a set of possible implementations (the implementations that satisfy it), while a program characterises a single implementation - itself
.

Associated with this aspect is the desire not to over-specify (or in other terms to provide loose specification), i.e. that the nature of the specification language should not force the specifier to rule out acceptable implementations. We believe this feature of formal specification is very relevant for psychological level modelling, and particularly so in the domain of cognition and affect where, it is singularly important to be able to distinguish fundamental properties of the core mechanisms from systematic variation in implementation. Systematic variation occurs over tasks, motivational states, emotional contexts and, of course, individual predispositions.

Such concerns have been largely addressed in computational modelling of the mind in terms of the the irrelevant specification problem (Newell 1990). In order to construct a working simulation program a large number of assumptions have to be made, leaving it unclear what aspect of the behaviour of the program corresponds to known cognitive behaviour and what arises from expediency
. For example (Cooper, Fox et al. 1996) state,

“Computational models conflate empirically justified mechanisms with pragmatic implementation details, and essential theoretical aspects of theories are frequently hard to identify”

In fact, (Cooper, Fox et al. 1996) have directly targeted this issue. Their approach is to use a re-engineered version of Prolog, which keeps the theoretical and implementation assumptions disjoint, thus enabling one to observe the consequences of changing particular implementation assumptions in production systems architectures.

The approach we advocate is even more radical and further from conventional implementation programming. We would argue that the irrelevant specification problem arises because psychological theories are inherently closer to specifications than implementations/ programs. Psychological theories typically leave much unexplained since a complete mechanistic interpretation of cognition is not available. Thus, such theories are abstract descriptions of behaviour, for which the implementation details can be instantiated in many ways. Using the terminology of abstract specification, a particular programming implementation of a psychological theory is an implementation, which satisfies the theory. Importantly, it is not the psychological theory itself. Consequently we believe there are strong motivatory arguments for employing formal specification in psychological-level modelling of the mind.

It is also worth noting that although formal specification languages are targeted at abstract description of systems this does not preclude component structure from being defined. In this respect there are really two extremes of system description – purely extensionalist and intentionalist. The former means of describing systems allows the global “observable” characteristics of systems to be specified without in any respect constraining the internals of such systems. Typically such approaches are highly abstract. Examples of completely extensionalist specification would be characterising the behaviour of a system using mathematical formulae or by writing logical properties – these say nothing about the structure of the system that realises this behaviour. At the other extreme, intensionalist techniques are typically far more concrete and require internal system structure to be prescribed.

Importantly, the variety of system description we advocate here – formal specification – sits somewhere between these two extremes. Formal specifications are abstract in that they characterise a set of possible implementations, however, they also allow the structural decomposition of systems to be defined. They employ structuring constructs such as objects, processes or modules in order to do this (Bowman and Derrick 2001). We would argue that such an intermediary is appropriate for psychological level modelling since not only is abstraction important it is also important to be able to capture the component structure of the available theory, as exemplified, for example, by box-and-arrow diagrams.

In fact, despite what we have said here, we do not believe that the abstraction advantage of formal specification techniques that we have been discussing in this section has been fully realised in our modelling of the attentional blink. However, we nonetheless believe there is potential in marrying abstract specification and psychological-level modelling. In support of this argument we can point at formal specifications of cognitive theories that have been more successful in this respect, e.g. (Duke, Barnard et al. 1995), (Duke, Barnard et al. 1998), (Bowman and Faconti 1999) or (Bowman, Faconti et al. 2000).

2.4 Process Algebra

Process algebra originated with Milner (Milner 1980) and Hoare (Hoare 1978)
 and there is now a rich and extensive research area surrounding them. In particular, they have been widely applied in order to specify and analyse communication networks, distributed systems and telecommunications system.

Here we will briefly discuss some key elements of process algebra, while referring the reader interested in further details to one of a number of comprehensive texts on the topic, e.g. (Hoare 1985), (Milner 1989), (Roscoe 1998) and (Schneider 2000). From within the canon of process algebra, we will be using a technique named LOTOS, for a complete introduction to which the interested reader is referred to (Bolognesi and Brinksma 1988). In fact, for this paper, we will endeavour to describe our model in intuitive terms, rather than presenting detailed fragments of specification
 and any elements of LOTOS notation that we do use will be introduced as they arise in the text.

However, it is worth noting the following three aspects of LOTOS specifications, all of which impinge upon the arguments we have so far been making for using such techniques.

1. Structural Decomposition and Distribution. As stressed from the beginning of this paper, we seek a notation for describing systems with distributed control. This is obtained in LOTOS since the basic element of structuring is what in process algebras is called a process, which, in the context of this paper, is interchangeable with the concept of a module (the terms subsystem or unit could also be used). In particular, processes possess their own local state and are computationally autonomous. The reader familiar with use of the term process in the psychological literature should beware, since the term carries a very specific and different sense in the process algebra domain and we will use it in this paper with this computer science interpretation.

2. Interaction. Processes evolve independently and asynchronously of one another subject to interaction through message exchange
. If a process wishes to communicate with another process it offers to perform a (synchronisation) action with that other process. If the other process is willing to perform the action, a synchronised message exchange occurs. In addition, when a process offers a synchronisation action, it is blocked while it waits for a matching action to be offered by another process.

It is also important to note that the message passing interaction we have here is different to activation exchange in neural networks (although it would be possible to simulate neural networks and the dynamics of activation exchange in process algebra). On each update cycle of a neural network, activation is relayed over all links in the net. Thus, at the level of update cycles, interactions between neurons are globally synchronised: they occur in lock-step. In contrast, in process algebra there is no global control of interaction. Rather processes autonomously make local decisions about when they wish to communicate and who they wish to communicate with. In addition, while the data relayed between neurons is of a single type – a positive or negative real number – this is not the case with process algebra communication. A value of any data type can be sent from one process to another, even complex data structures such as lists. Thus, the dynamics of communication and the patterns of interaction that can be set-up are extremely flexible and fluid in process algebra.

3. Control and Data. LOTOS is really a composite of two different languages – a control and a data language. The former of which is what we have been discussing in the previous two points – it is a language for describing processes and interaction between processes. In contrast, the data language is not concerned with the dynamics of control. It is a pure data language, which uses a style of data specification called algebraic data types (de Meer, Roth et al. 1992). The details of this language are not important, however, you should note that it is expressively rich and allows us to build symbolic representations. Furthermore, the symbol system is combinatorial in the manner advocated by say Fodor (Fodor and Pylyshyn 1988) and in addition, it is Turing complete. In fact, both the control and the data languages are, in their own right, computationally powerful enough to simulate Turing machines.

That completes our broad motivatory arguments for distributed control and the use of process algebra in computational modelling of cognition. Next we move to discussion of the practical modelling work that we have performed with these techniques. In the context of this paper, our modelling work serves two purposes. Firstly, it represents an illustration of the potential of process algebra in computational modelling of mind and secondly, we will provide, what is to our knowledge, the first implemented computational model of the attentional blink.

3 The Attentional Blink

Although related findings were present in the literature (e.g. (Broadbent and Broadbent 1987); (Lawrence 1971)), the attentional blink phenomenon was first reported by (Raymond, Shapiro et al. 1992). It is a robust and now widely investigated phenomenon. In its most elemental form, a series of letters are presented very rapidly at a rate of something like 100ms per item. In a typical experimental task, one of the letters is presented in a distinct colour and is the designated target whose identity must be reported (T1). A second target (T2) may follow the first after a variable number of intervening letters. For example, the person may simply have to report whether the letter “X” was present among the list items that followed T1. The length of the T1-T2 interval is controlled by the serial position in which T2 follows T1 or in other words how T2 lags T1. We will talk in terms of the lag 1 position to indicate that T2 immediately followed T1, lag 2 to indicate that a single non-target appeared between T1 and T2, and so on for lags 3, 4, 5 etc.

Detection of the second target is impaired with a characteristic serial position curve. A typical result is shown in Figure 5. If T2 occurs immediately after T1 then its presence is accurately detected. Detection then declines and characteristically recovers to baseline levels towards the end of the 500ms “blink” period. In this case baseline represents a person’s ability to report the presence of T2 in the absence of a T1. Thus the blink typically has a delayed, but rapid onset and slow offset.

Both the empirical literature and alternative theoretical accounts of the data have been summarised in a number of articles (Potter 1999) (Shapiro, Arnell et al. 1997) and by (Shapiro and Luck 1999). These authors conclude that the blink does not appear to be a product of simple perceptual, memory or response output limitations. Various theories have been advanced to account for the influences on the serial position curves (e.g. see (Chun and Potter 1995); (Duncan, Ward et al. 1994); (Raymond, Shapiro et al. 1995). These theories all naturally assume that allocating attention to T1 leaves less attention for T2. The details of the proposed mechanisms are obviously different, and there remain significant areas of empirical uncertainty – such as the extent to which the effects do or do not occur with cross modal presentations (again see (Shapiro, Arnell et al. 1997) and (Potter 1999) for pertinent discussions). 

As research advances, it is becoming increasingly clear that the allocation of attention to the targets in context of rapid serial presentation is affected, not only by their form, but also their meaning (Maki, Frigen et al. 1997) and personal salience (Arnell, Shapiro et al. (in press)). Indeed, similar serial position curves are readily obtained when words rather than letters are targets. In addition, there is mounting evidence from report data, priming studies (Shapiro, Arnell et al. 1997) and electrophysiological recordings strongly suggest that the meaning of a target is being processed to some degree, even when it remains unreported (e.g. see (Potter 1999); (Shapiro and Luck 1999)).  Most recently there are reports of specific effects of affective variables as well. For example, (Holmes and Richard 1999) report differences in target detection in the AB paradigm for high and low anxious people. More dramatically (Anderson 2001) has shown that the attentional blink is markedly attenuated when the second target is an aversive word. The degree of affective modulation of the blink effect was most pronounced at earlier lags where attention is most heavily devoted to the processing of T1. However, (Anderson and Phelps 2001) also report intriguing data for patients with amygdala damage. These patients displayed impaired T2 report comparable to controls with affectively neutral material – a standard blink effect. However, unlike controls, one patient with bilateral amygdala damage showed almost no advantage in the detection of aversive targets at the earlier lags. This same pattern was then found for a larger group of patients with unilateral damage to left amygdala whereas those with unilateral damage to the right amygdala, like the control group, showed reliable attenuation of the blink effect with aversive material. 
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Figure 4: Schematic Task Sequence for Word based Attentional Blink (adapted from (Barnard, Scott et al. 2001))

The vast bulk of research on the blink phenomenon has relied on marking the to-be reported target identity with some form of perceptual feature such as a distinct colour. In our own research, we have used a variant of the blink paradigm in which no perceptual features distinguish the target from the background list items (Barnard, Scott et al. 2001). In addition since it is not a dual task assessment, target detection is not contingent upon accurate report of T1. Target words are only distinguishable from other items in terms of their meaning. Participants are asked to report a word in a rapidly presented list of 35 words if it refers to a job or profession for which people get paid, such as “waitress” and these targets were embedded in a list of background words that all belong to the same category. In this case, background words all refer to inanimate things, like “mountain” or phenomena, like hurricane, encountered in natural environments. Target words (labelled E2 in Figure 4) occurred at a lag following a distractor item (E1) and each distractor word appeared only once in the entire experiment. Distractor items were of three types (a) novel instance of a nature word drawn from the same category as the background list (b) an instance of a word drawn from a category quite different from both the background and target words (a household item), and therefore of low potential semantic salience, or (c) a word such as “tourist” or “husband” that referred to a property of a human agent, but not one that conerned paid work. Figure 5 shows that neither novel items in the background category, nor a distractor drawn from a very different semantic category gave rise to a typical blink curve. Fully accurate report of the target is substantially impaired across lags 3, 4 and 5 only when the distractor word is semantically related to the target.

This particular experiment reinforces and extends the findings referenced earlier that support a substantial involvement of post-perceptual semantic mechanisms in the blink paradigm. Barnard et al.  allowed their participants three response categories: to report the identity of the job, to say they were confident of the fleeting appearance of a job word but couldn’t say exactly what it was, or to say that they didn’t see a job at all. They also used latent semantic analysis (Landauer et al., 1997) to assess similarities between distractors and targets. Being aware of a targets presence and being totally unaware were linked with rather different profiles of semantic similarities. A theoretical account based upon simple positive or negative priming effects could not readily account for the data. Priming arguments would hold that awareness should be related in the same way whatever the response. In particular high use of the “no target present” response category should have been linked to high levels of semantic similarity. In fact it was linked to a profile of low semantic similarities. 

Assuming that all words in the list are post-perceptually processed, Barnard et al argued for what amounts to a two stage model of semantic analysis in which a generic and abstract level of semantic representation is monitored and initially used to determine if an incoming item is salient in the context of the specified task. If it is found to be so, then the specific referential meaning of the word is subjected to more detailed scrutiny in which its meaning is actively evaluated in relation to the required referential properties of the target category. If this reveals a match then the target is reported. The first of these stages somewhat akin to first taking a glance at generic meaning with the second akin to taking a closer look at the relationships between the meaning of the word and the meaning of the target category. Such an account can readily handle the asymmetric effects of semantic similarities. At a first glance at generic meaning, those human distractors with relatively low similarities to the target category would have been less likely to stand out as salient than those with higher similarities . In the second stage, human distractor words of high similarity to jobs would again be at an advantage because their semantic profile facilitates access to and use of knowledge concerning payment. In contrast, items of low similarity would take longer to reject. Having passed the first stage, they would now be more difficult to evaluate because the pertinent referential knowledge about payment would be less directly accessible. Assuming that semantic processes cannot glance at incoming items while scrutinising another, this argument enables participants to be more aware of items with high similarities to the target while being more unaware of targets with relatively low similarities to the target category.


[image: image3.png]% canecl apail al Lagel Kenlity

90

80 1

70 A

60 -

50 1

40 A

30 1

— -@— -C-E1 Nature
—8—LS-E1 Household
——g—HS-E1 Human

X  No E1 Baseline

3 4 5
Serial Position post-E1




Figure 5: Percentage Report of Correct Identity of Target across Serial Positions post-E1 (adapted from (Barnard, Scott et al. 2001))

Using exactly the same paradigm, we have also found evidence for effects of emotional salience as well as semantic similarity. When the distractors in our blink task are physical threat words, we currently find no significant impairment in target report for less anxious participants, but a reliable impairment for high anxious participants. The impairment is smaller and with a shallower onset curve than that associated with semantic relatedness, and it is more cleanly related to state anxiety than trait anxiety (Barnard and Ramponi 2001).

In summary, over and above effects of relatively low level perceptual features, there is now mounting evidence concerning subtle multimodal variation, as well as quite intricate semantic and affective influences, on blink characteristics. The latter include the presence of a basic blink with patients with localised brain damage coupled with the absence of an attentuated effect on T2 report for aversive targets. For such effects to be even partially modelled, some form of specification of many rather than few relationships among processing “levels” “resources” or “modules” would seem to be required.  

Of the models that have so far been developed to explain attentional blink data (see the review by (Shapiro, Arnell et al. 1997)), most would require considerable modification and extension to address the full range of effects. Of these models, that proposed by (Chun and Potter 1995) is most closely related to the line of argument just outlined. The Chun & Potter model assumes two stages of processing and also invokes central semantic representations and a form of conceptual short term memory to hold them (see also (Potter 1999)). The Chun & Potter model is also one of the most computationally well-specified explanations of blink phenomenon to date, albeit in abstract terms.

In the Chun and Potter model the first stage performs an initial “categorical” evaluation to determine features of the item under consideration and whether it is broadly salient. In spirit this is related to the idea outlined earlier of some form of initial semantic “glance” at incoming data. For example, it might assess whether the item is a letter or a digit and thereby detect the presence of a target. However, Chun and Potter assume that the level of processing of the item is limited and in particular, that the identity of the item is not available at this stage (Chun and Potter 1995). Furthermore, in order to explain the serial position curves, they assume that this first stage is not capacity limited (at least not at the rate of presentation in the RSVP sequence). However, the stage is assumed to be subject to rapid forgetting, presumably through some mechanism of representational decay.
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Figure 6: The Full Interacting Cognitive Subsystems Architecture

The second stage of processing in the Chun and Potter model builds upon and consolidates the results of the first stage in order to reach a full identification of the target. In particular, this stage is required in order to generate representations of the target that are sufficient to allow subsequent report. It is further assumed that, in contrast to stage 1, this second stage is capacity-limited and is only initiated by detection of the target at stage 1. This second stage of the Chun & Potter model again captures something very similar to the idea that the specific meaning of an incoming item undergoes more detailed scrutiny in relation to the target category.
Using their two stages, Chun and Potter explain the blink as follows,

1. T2 is missed because stage 2 is capacity limited and the products of stage 1 processing decay. Thus, while stage 2 is occupied processing T1 it is closed to new targets and cannot process T2. Furthermore, dependent upon the T1 to T2 lag, the output representation of T2 at stage 1 will have decayed by the time that stage 2 is once again free.

2. The characteristic delayed, but fast, blink onset is explained because there is a delay between detection of T1 and initiation of stage 2 and since stage 2 has sufficient capacity for two items. The upshot of which is that if T2 immediately follows T1 (i.e. it is at lag 1 position), then it will successfully pass through the two stages with T1 and will be fully processed.

3. In order to explain the slow offset of the blink, Chun and Potter argue that if the lag between T1 and T2 is long enough, then by the time T2 needs to enter stage 2, processing of T1 will be over. In other words, stage 2’s processing resources are freed before stage 1’s output representation of T2 has decayed too much. It is assumed that stage 2 can only build upon sharply differentiated representations that have not been subject to extensive decay.

The framework we present and specify below draws on theretical ideas that have much in common with those of Chun & Potter. However, since we are working in the context of a wider scoped mental architecture with distributed control and processing resources, the common threads will appear expressed in terms of very different form and content.
3.1 Interacting Cognitive Subsystems

As noted in the introductory paragraphs, our computational model draws heavily upon the Interacting Cognitive Subsystems (ICS) architecture, see 
Figure 6
. This assumes that the complete mental architecture can be decomposed into nine subsystems each of which process a different form of mental representation. Each subsystem is itself composed of processes that transform information from one type of mental representation to another. There are three sensory subsystems, four central subsystems, two effector subsystems. These are supplemented by somatic and visceral response systems that are embodied rather than representational. All subsystems have an identical internal decomposition. They differ only in terms of the representational material input to them, stored in their own local memories and output by them. In our current modelling exercise we focus on just two of these subsystems, those that effectively implement what would be termed “central executive functions” in other models. These two subsystems process different encodings of meaning. One subsystem encodes propositional meaning. This captures referentially specific semantic properties and relationships.  The other form of meaning is more holistic, abstract or schematic. It encodes and processes higher order regualarities that also are derived from co-occurences across the products of processing propositional meaning and the products of processing sensory inputs, including body states.

A full description of the ICS architecture, although simple in overall conception, is beyond the scope of the current paper. Interested readers are referred to either informal descriptions of its operation (e.g. (Teasdale and Barnard 1993); (Barnard 1999)) or more formal models of its operation in complex real-world tasks (Barnard & May, 1999; (Duke, Barnard et al. 1998)), Here we focus only on those aspects that directly constrain the modelling of the attentional blink.

Implicational subsystem

This subsystem could be said to implement the kind of “glance” introduced earlier. It performs the broad “categorical” analysis of items considered in Chun and Potter’s first stage of processing by detecting the presence of targets according to their broad categorical features. In the context of this paper, we will call the representations built up by this subsystem implicational representations. Also, we will talk in terms of implicationally salient items, which are those items that “pass the implicational subsystem test”. Since implicational meaning takes as inputs the immediate, and rather unrefined, products of processing visual, auditory and body state patterns, it provides a platform from which not only semantic effects can be modelled but also those associated with personal salience and affect.

Propositional subsystem

This subsystem could be said to implement the more detailed look. It builds upon the implicational representation generated from the glance in order to construct a full (propositional) identification of the item under consideration. It thus builds a propositional representation, which is sufficient for report. We will describe items that “pass the propositional test” as propositionally salient. The existence of a propositionally explicit representation is required in the ICS model to compute the word form to be passed through an output configuration for either speaking or writing a response. In the ICS architecture, implicational representations cannot directly pass data to the subsystems that mediate this form of output.

It should though be noted that the implicational system can rather easily be fooled in tasks that pose relatively few “executive demands”. In a series of experiments in which participants are asked to generate one number in between an upper and lower bound (Scott, Barnard et al. 2001) or a sequence of numbers in between two bounds (Barnard, Scott et al. 2001), participants are influenced by the particular way the question is asked. For example, when asked to generate a random number between one million and ten million, respondents frequently focus their attention on realising a particular kind of number schema and rather frequently generate numbers outside the specified bounds. Indeed this is also what the attentional blink results of (Barnard, Scott et al. 2001) results also indicate, but in a different way. Participants blink and miss the target (E2 events) because the implicational system categorises distractor words (E2 events) as implicationally salient. As a consequence of this incorrect assessment, the propositional subsystem looks at the distractor item, thus, preventing sufficient processing of the target. 

In fact, we will draw heavily from ICS throughout our modelling work, not only from the overall configuration of subsystem interactions that it permits, but also from its assumptions concerning the internal organisation, representations, and dynamics of process operation. As information arrives at an ICS subsystem, it is mapped into an input array. From this point a dedicated process “copies” all the input into a local image record. This is a specific form of memory that preserves a trace or image of recent input as well as preserving a long-term record of information patterns. In parallel with the operation of the copy process, each subsystem contains a set of processes that transform inputs to outputs and these mediate communication between subsystems. Since the local memory holds representations in its input code, the processes can internally reconfigure to access recently arrived material, in a mode referred to as “buffered processsing”. Alternatively, the process can also reconfigure to access the long-term regularities in a mode referred to as “record access” (Barnard 1999). In what follows, the recent image and long term regularities are given computational realisation as delay lines. It is known that such mechanisms can be realised in neural network models. 

Our modelling of emergent attentional mechanisms (as well as the seriality of these mechanisms) will be built upon ICS’s notion of buffer movement. The concepts of the glance and more detailed look stages will be instantiated in terms of interactions between the ICS implicational and propositional subsystems. Our blink serial position curves will arise because the glance is associated with a buffered state of processing generic, implicational meaning, while the more detailed look is associated with the buffering of referentially specific propositional meanings. Processing is subject to specific constraints. For example, a process can only be in one of direct, buffered, or record access modes at a particular time, it can only process one coherent stream of data at a time and only one process in a wider configuration can be buffered at a time (Barnard 1985). In the context of a delay-line representation, the automatic copying of data to the image record means that all input is represented in temporally extended form. However, if it is not being used in interactions with other subsystems, the data will pass along and then off the delay line without be processed further. Hence if the buffer does not “return” from a look at a distractor (or a different form of T1) to another glance, the implicational salience of an incoming target will not lead to a detailed look.

4 A Computational Model of the Attentional Blink

We now move to presenting the details of the model that we have implemented. We describe the main aspects of the model first. Then we explain how the model implements the blink and present sample data generated by the simulations.

4.1 Specification Structure

The top-level structure of our model is shown in Figure 7. The heart of the model is the central-engine, which contains the two subsystems (which have been inherited from ICS) – IMPLIC and PROP. However, in addition, we assume that input into the central-engine is received from perceptual systems and output from the central-engine is relayed to a response system from which detected targets are reported. Our modelling of these “peripheral” systems is however not detailed; they are largely placeholders for further, more detailed, computational modelling
.

You should notice that while this diagram seems like an informal box-and-arrow diagram, in fact, the structure of our specification exactly follows the structure of this diagram. Thus, at the top-level of decomposition, our specification contains three processes, one encapsulating the perceptual subsystems, another modelling the central-engine and a third encapsulating the response systems. This fits with the observation that we have been making that explicitly having facilities to express distributed control in a modelling notation yields a natural formalisation of psychologist’s box and arrow diagrams.

Returning to Figure 7, we can see that at this top-level, the specification evolves through the interaction between the three top-level processes, i.e. as the result of message exchanges between these processes. The links over which message exchanges occur are indicated by action names. At the top level these actions are ext_implic_data and prop_ext_data.










Figure 7: Top-level Structure of Model

If we move in a level and consider the structuring of the central-engine, we see that it contains two interacting processes – IMPLIC and PROP, which implement the implicational and propositional systems respectively. The fact that we can structure our specification in this way indicates one of the strengths of process algebra – since arbitrary process hierarchies are available to us, systems with complex decompositional structure can be defined
.

The behaviour of the central-engine emerges through interaction between processes at this level, with the communication channels between IMPLIC and PROP playing a major role. These channels are divided into two types – a data channel (implic_prop_data) and control channels (implic_prop_cont and prop_implic_cont). The former of these is used to relay item representations from the implicational to the propositional system, while the latter two links are used in order to control buffer movement. As previously indicated, the concept of subsystems being buffered will play a central role in modelling the allocation of restricted attentional resources and we will discuss the mechanism in some depth shortly.

To give an indication of the style of specification arising with LOTOS, the central-engine in our specification would have the following basic format
,

process CENT_EXEC :=

hide implic_prop_data, implic_prop_cont, prop_implic_cont

in

      IMPLIC

      |[ ext_implic_data, prop_implic_data, implic_prop_data,

         implic_prop_cont, prop_implic_cont ]|

      PROP

where

    process IMPLIC :=

      (* The body of the process would go here. *)

    endproc

    process PROP :=

      (* The body of the process would go here. *)

    endproc

endproc

To pick out a few aspects of this style of specification, you should firstly notice that there is a separate definition for each process (e.g. the IMPLIC and PROP definitions), secondly, the syntax,

hide x1,…,xn in Y

states that the synchronisation actions x1,…,xn are local and thus, not available to the context in which a process (here CENT_EXEC) is placed. Also, the expression,

      IMPLIC

      |[ ext_implic_data, prop_implic_data, implic_prop_data,

         implic_prop_cont, prop_implic_cont ]|

      PROP

denotes that the implicational and propositional systems execute independently in parallel subject to interaction via the actions,

ext_implic_data, prop_implic_data, implic_prop_data,

implic_prop_cont, prop_implic_cont
Thus, the, so called, parallel composition operator,

P |[ x1,…,xn ]| Q

yields distributed control, it allows two processes (here P and Q) to execute independently of one another. However, it states that the two processes can interact by exchanging messages over the action links x1,…,xn.

4.2 Data Representations

The constituents in the RSVP are words and thus, we need to have a representation for them. In fact, we use a very simple representational mechanism. Firstly, note that there are three types of words in the word-based blink – background, target and distractor words. Secondly, it turns out that all we need from our word representations is to distinguish between these different types. In order to do this we use an enumerated type which (using a simple syntax) can be expressed as follows,

Word_id ::= Back | Targ | Dist

which states that a word identifier can either be Back, Targ or Dist.

The purpose of the model is to associate salience assessments with words in the RSVP. As a result, the actual data representation passed through the model is a triple that contains three “slots” – a word identifier (as just introduced), an implicational salience assessment and a propositional salience assessment, i.e.

Rep ::= ( Word_id , Sal , Sal )

 The latter two slots are initially set to U, indicating that when they enter the central-engine, they are un-interpreted. The IMPLIC process strives to place a T or an F in the second slot (indicating True if the word is implicationally salient or False if it is not) and PROP has a similar role with regard to the third slot.

We could construct our model so that items entering the model and being passed through it correspond to complete words. This would mean that a new item would enter the model every 110/120ms. Thus, the update rate of the model would be inherited from the SOA of the experiment. In fact, we use a more fine-grained timing – a new item enters the system every 20ms. We call each new item fed into the system a word constituent or sometimes just a constituent. Each constituent is modelled as a triple in the manner just described.

 There are a number of reasons for moving to a 20ms update rate. Firstly, it is compatible with the assumption that underlying neural mechanisms can represent updates around every 20ms (e.g. see (Bond 1999) (Rolls and Stringer 2001)). Secondly, our explanation of the blink data will be in terms of the time-course of allocation of attentional resources, consequently, it will be useful to have a fine grain timing so that we can be more discriminating with regard to this time-course
. Thirdly, in our modelling work we wish ultimately to be able to model the temporal build-up of word representations, clearly we could not do this if every update corresponded to a complete word
.

4.3 Delay-Lines

At one level, we can view the model as implementing a pipeline. New constituent items enter the pipeline via action ext_implic_data, items are then fed through IMPLIC and passed into PROP via action implic_prop_data and they reach the end of the pipeline at action prop_ext_data. Every 20ms a new item enters the pipeline and all items currently in transit are pushed along one place. We call this the update cycle. The IMPLIC and PROP subsystems perform their corresponding salience assessments as items pass through them in the pipeline.

The key data structure that implements this pipeline metaphor is a delay-line. This is a simple data structure for recording time constrained serial order. It is a very natural mechanism to use in order to capture the temporal properties of the blink experiment, which is after all just such a time constrained order task
. To illustrate the data structure, consider a delay-line of 4 elements. We would have a structure of the following form,


which records the last 4 time instants of data (where in our model, each instant corresponds to a 20ms time-slice).

The pipeline employed in our model is, in overall length, considerably longer than 4 units and we will not depict it in full here. However it is worth representing a typical state of a 12 item portion of the overall delay-line during our attentional blink simulations. A typical form for it to be in would be,





where indices indicate the position of the item in the corresponding word. Since we assume an SOA of and updates occur every 20ms, 6 delay-line items correspond to one RSVP word.

As a clarification of terminology we will talk in terms of the overall delay-line and subsystem delay-lines. The former of which describes the complete end-to-end pipeline, from the perceptual to the response subsystems, while the latter is used to describe the portion of the overall pipeline passing through a component subsystem, e.g. the IMPLIC delay-line.

It should also be noted that, although it has informed our modelling undertaking, the classic “serial-order” literature is actually addressing a somewhat different issue from that which we are attempting to solve. For example, the serial-order recall literature, e.g. (Page and Norris 1998) (Burgess and Hitch 1999), is concerned with how order is encoded in short-term memory and Lashley’s classic paper (Lashley 1951) was largely motivated by the desire to understand how output actions are sequenced. In contrast, we are using delay-lines as a metaphor for representations passing through processing stages. In particular, we are not proposing such data structures as a mechanism to memorise sequencing information ready for a strict recall. This is another topic. Consequently, the arguments that have often been made in the serial-order literature against models in which order is strictly and prescriptively defined do not apply here. In particular, delay-lines may well be a poor model of serial-order memory, because they are likely to suffer similar problems to associative-chaining models (Lashley 1951), but this should not prevent us using them here.

4.4 Salience Assessment

Each central-engine subsystem implements a delay-line. In fact, it is not a single linear delay-line, rather, as shown in Figure 8, there are two levels to it and although only IMPLIC is shown here, the same basic structure applies to both subsystems. Each subsystem has a mini (3 item) delay-line into which new items are inserted; this is called the input array. It is used to model the slow build-up of word representations over time. It is a restricted window into the sequence of most recently arriving items.

Figure 8: Salience Assessment at IMPLIC
The main computation performed by a subsystem is to build new (more high-level) item representation from the items currently in the input array window. If the subsystem is buffered (we discuss this constraint in the next subsection), it assesses salience when building new item representations. Our intuition is that salience assessment is performed in each subsystem by looking across the newest elements to have arrived to see how the representation is building-up over time. For example, the oldest item in the input array (the “back” of the array) might offer little evidence for categorising the word, the middle item might offer somewhat more evidence and so on.

If we focus on the mechanism at a more fine grain level, assessing a word for its salience generates a number, which indicates how closely the word fits into the corresponding category. The smaller the number, the better the word fits into the category. We have been motivated in this approach by the “high dimensional space” models of semantics in which each dimension encodes a particular (often arbitrary) feature (see for example, Latent Semantic Analysis (Landauer and Dumais 1997)). The number generated by our assessment mechanism can be thought of as the distance (in this space) of the word from the most typical element of the corresponding category (there are other ways to represent categories in such approaches, however, this intuition will suffice here)
. Such distances can be computed as the cosine of the angle between the corresponding vectors in the high dimensional space. Thus, in terms of our word typing mechanism, implicational salience assessment will yield a smaller number for a target than a distractor and the largest number for background words.

This distance is then used to determine whether the word is salient or not. This is done using a salience assessment threshold, which is specified for each subsystem – if the distance is smaller than the threshold then the word is adjudged to be salient. Finally, in order to add noise into the assessment mechanism, for each simulation, we sample the thresholds from a normal distribution. We give the exact details of how this sampling is performed in section 4.7.

4.5 Buffering and Attention

Now we move to what is perhaps the critical mechanism involved in generating the blink – buffering. This concept also has its roots in ICS (Barnard 1999). However, we use it in a rather specific way. In our model, a subsystem being buffered represents the focusing of central attentional resources at that location
, and critically, in the context of the attentional blink, a subsystem can only assess salience of novel, unautomated patterns if it is buffered. Furthermore, a global constraint is imposed on buffering – only one subsystem can be buffered at any one moment. In broad terms this implies that attention can only be focussed at one processing location. In terms of the attentional blink, this means that only one subsystem can be assessing salience at any instant. The buffer does though move between subsystems, representing the redirecting of these attentional resources. However, the fact that only one subsystem can be buffered at any instant ensures that attention is allocated serially.

In understanding our model, it is important to realise that all constituent items entering the central engine (at action ext_implic_data), will make it through the pipeline (coming out at prop_ext_data) and they will be output in the same order that they are input. However, due to the constraints on buffering, there is no guarantee that the item will have been assessed for salience at both IMPLIC and PROP. If, because it does not have the buffer, a subsystem is not able to perform a salience assessment on an item, then the corresponding slot in the item representation is left as U (i.e. un-interpreted). During the reporting phase of our simulations, a word is only reported if both its implicational and propositional salience have been assessed and both have been found to hold, i.e. both the second and third slots in the item representation are T.

The algorithm that controls buffer movement is thus central to realising the attentional blink. Two principles control buffer movement:

1. The subsystem that is buffered decides when the buffer moves and actively passes it on to the other subsystem (by sending a signal down a control link).

2. Subsystems decide to pass on the buffer by observing the representations they are outputting.

The exact algorithm can be explained as follows.

BUFFER INITIALIZATION

Initially IMPLIC is buffered

The buffer is assumed to default to IMPLIC since it models the first stage of processing (propositional processing follows and builds upon implicational processing).

IMPLIC TO PROP BUFFER MOVEMENT

If IMPLIC is buffered and it is outputting an implicationally salient item
then the buffer is passed to PROP
The idea here is that whenever an implicationally salient item is being output, it causes the next stage of meaning analysis, i.e. propositional analysis, to commence. Since propositional processing excludes implicational processing, the buffer must move in this circumstance.

PROP TO IMPLIC BUFFER MOVEMENT

If PROP is buffered and it is outputting an implicationally un-interpreted item
then the buffer is passed to IMPLIC
Thus, whenever PROP is buffered and reaches the point where it is outputting an implicationally un-interpreted item, it has completed processing the items that it was “requested” to process when the buffer moved from IMPLIC to PROP. Another way of thinking about this is that PROP can only build propositional salience upon implicational salience and it cannot build upon implicationally un-interpreted items, thus, the buffer must move back to IMPLIC.

Also, since there is a delay between the point at which an item is assessed for salience and when it reaches the end of the subsystem delay-line (see Figure 8), there is also a delay between salience assessment and the corresponding buffer movement. Remember that buffer movement is controlled by the representation being output by a subsystem, not the construction of a new representation earlier in the subsystem delay-line. This is justified on the grounds that redirection of attentional resources is computationally demanding and thus, time constrained. In other words, the system becomes “bound into” a particular processing configuration, which causes inertia when the buffer needs to move. This assumption of buffer movement inertia will prove important in obtaining the delayed onset of the attentional blink.

4.6 How the Model Blinks

Having now discussed the main details of our model and before we present the results of running simulations, we give an informal more detailed explanation of how our model generates the blink profile to allow this model to be compared with our earlier characterisation of the Chun and Potter model.

1. Targets are missed when an earlier distractor is found to be implicationally salient, causing the buffer to move from IMPLIC to PROP. While the system is buffered at PROP, implicational salience cannot be assessed. Consequently, the implicational salience of a target could fail to be assessed and hence during the reporting phase the system would fail to register the overall salience of the word. In other words, the model would have blinked!

2. The delayed onset of the blink arises because (as just mentioned) there is a delay between implicational salience assessment of an item and that item passing out of IMPLIC. Thus, closely following items, will be at early stages in the pipeline before the distractor item has fully passed out of it and the buffer moves. This ensures that targets immediately following a distractor are likely to be processed for implicational salience.

3. Recovery from the blink arises because, if there is sufficient separation between the distractor and the target, propositional salience assessment of the distractor will have completed before the target enters IMPLIC. Consequently, the buffer will have returned to IMPLIC in time to assess the implicational salience of the target.

4.7 Results

We begin by discussing the parameter settings that are available to us when running simulations. Firstly, it should be noted that, in standard fashion, we add noise into our simulations by (almost always) sampling our parameters randomly from distributions. This is done in order to give variability between simulation runs and thus to reflect individual differences. In addition, as a consequence of such sampling we obtain gradual transitions within the serial-position curve, as required.

The key parameters that need to be set when running simulations are the buffer movement delays and the salience assessment thresholds for both subsystems. For the simulations reported here (see Figure 9) the former of these have been set as follows
:

1. Implicational Buffer Movement. The delay between an implicationally salient item entering IMPLIC and the buffer moving is set to either 180 or 240ms (this corresponds to 9 (respectively) 12 update cycles)
. We sample randomly from these two possibilities with equal probability (i.e. we “flip a coin”).

2. Propositional Buffer Movement. The delay between an implicationally un-interpreted item entering PROP and the buffer moving is sampled from the following six possibilities: 60, 120, 180, 240, 300 and 360ms. Again we sample randomly, however, here the probability mass associated with each possibility is determined according to a normal distribution. A probability mass of 0.341 is associated with 180 and 240; 0.136 with 120 and 240; and 0.023 with 60 and 360.

One motivator for this choice of parameter settings has been to obtain the required serial-order profile (see Figure 9). Broadly speaking
, the speed of implicational buffer movement controls the shape of the blink onset. Smaller implicational buffer movement values reduce lag 1 performance. This is because the longer the gap between implicational salience detection of the distractor and the buffer moving to PROP, the more the chance that following target items are completely processed for implicational salience. Values of 180 and 240ms ensure that lag 1 performance is not impaired. In addition, because the distribution of values is small (there are just two), there is not a great deal of variability in assessment outcome at early serial-positions and thus, blink onset is steep.

In contrast, the propositional buffer movement value plays a significant role in controlling the shape of the blink offset (although it is not the only factor). As previously suggested, recovery from the blink arises because the gap between distractor and target is long enough that propositional salience assessment of the distractor has been completed and the buffer has moved back to IMPLIC by the time that the target starts being processed. Consequently, longer propositional buffer movement times tend to slow blink recovery. Furthermore, the fact that propositional buffer movement values range over a sample set of 6 values (for IMPLIC there were just two options) contributes to obtaining a slow blink offset.

As previously stated, the other major parameters controlling our simulations are the salience assessment thresholds. These are set as follows:

1. IMPLIC Threshold. The salience assessment threshold used at IMPLIC is sampled from three possible values, each has equal probability of being selected (one third). For all the three possible threshold values, background words will be judged not to be implicationally salient.  For the smallest threshold value, neither background nor target words will be judged to be salient. For the intermediate value, target words will be salient and distractor words will not be salient, while for the largest value, both target and distractor words will be salient.

2. PROP Threshold. The PROP salience assessment threshold is not randomly sampled. It is set to a value that ensures that background and distractor words are not propositionally salient and target words are.

The key consequence of these two threshold settings is that there is considerably less precision in implicational salience assessment than in propositional salience assessment. For example, PROP will never mistakenly interpret a distractor word as propositionally salient. In contrast, not only can IMPLIC interpret distractor words as implicationally salient, it can also assess target words as not implicationally salient (although this is a low probability outcome). This could be argued to fit in with the theory that IMPLIC is implementing a “superficial glance”, while PROP is implementing a “detailed look”. In other words, IMPLIC can more easily be fooled than PROP.

Running the simulation with these parameter settings we obtain the serial-position curve shown in Figure 9.
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Figure 9: Simulation Results 

When compared with the HS condition of (Barnard, Scott et al. 2001), it can be seen that we have quite successfully reproduced Barnard et al’s serial-position curves. The only significant difference between our results and (Barnard, Scott et al. 2001) is that our curve recovers somewhat more quickly than theirs
.

There is evidence from Barnard et al’s work (Barnard, Scott et al. 2001) that the depth of the blink can be altered by varying the semantic similarity between distractor and target. Specifically, the more related the distractor is to the target category, the deeper the blink. By way of further evidence of the accuracy of our model, it should be noted that, at least qualitatively, our model will give this effect. If we make the implicational salience assessment threshold more generous (i.e. we increase it), then more distractors will be assessed as implicationally salient and consequently, more targets will be missed, i.e. the blink will become deeper. Thus, a smaller distance (in semantic space) between distractor and target would be modelled by a larger IMPLIC threshold. Indicating that more distractor assessment mistakes will be made in IMPLIC.

4.8 Comparison with Chun and Potter’s Model

While we have argued that Chun and Potter’s two stage model has been a major influence on us, and indeed this is true, it is also the case that in a number of respects we have diverged from their proposal. The nature of these differences and why we have made them is discussed here.

A major difference between our model and Chun and Potter’s is that they assume processing in their stage 1 is unaffected by the initiation of stage 2 processing (thus, stage 1 processes continually). This really amounts to assuming that attentional resources employed in stage 2 are distinct from those employed for stage 1. A further key element of Chun and Potter’s model is that their look is capacity bottlenecked. In contrast our approach rests on the assumption of limited attentional resources, which can be exclusively directed at one or other stage and that directing them at the second stage prevents complete processing at the first stage.

Central to these differences is the handling of concurrency. The serial pipeline of processing is a central metaphor in our approach. That is not to say that there is no concurrency in our model. Clearly, different items are being processed simultaneously at different stages in the pipeline (e.g. at IMPLIC and PROP). However, in our model, concurrency is solely a product of the pipeline. Thus, there are no individual locations in the pipeline at which threads evolve concurrently. Chun and Potter’s model seems to be different in this respect. Although it should be emphasised that, in the absence of a running simulation, it is difficult to be sure of the exact details
. However, our interpretation of their model is that they assume concurrent threads are initiated at the same location in the processing pathway. We illustrate this in the following points.

1. In order to explain the delayed onset of the blink, they suggest that, if they follow one another, the T1 and T2 items are processed simultaneously in stage 2. Although there are a number of ways in which such simultaneity could arise, an obvious one, would be that stage 2 would comprise two parallel processing threads which evaluate the two items concurrently and independently of one another. However, this raises the question of why 2 threads. As emphasised by (Shapiro, Arnell et al. 1997), this is an arbitrary bound– why not 3 or 4? It would be easier to justify a single thread of computation in stage 2 as it would fit with the seriality of higher-level attention. However, a bound of 2 is less easy to justify.

This is quite a different solution to ours. With our approach there is a certain “temporal window of opportunity” following the T1 item; if T2 arrives in that window it will be processed. T1 and T2 will still be processed serially, without the need for concurrency at a particular location in the pathway. However, if T2 is close enough after T1 attentional resources will not have moved when T2 needs to be processed.

2. Also, with regard to concurrency, Chun and Potter’s model seems to require intermediate buffering of items between stages. This, for example, would be required because in their scenario, T2 items can wait (while subject to decay) at the end of stage 1 for stage 2 to complete. This indeed is the manner in which they argue that blink recovery occurs. Furthermore, some sort of buffering would probably also be required in order to ensure that T1 and T2 enter stage 2 together.

The reason that we have employed our approach is that the pipeline is justified by the blink task– items are presented strictly in order and in the absence of evidence to the contrary, this strict seriality is preserved in our model. We are explaining the phenomenon in terms of a single processing (neural) pathway which items follow each other through.

5 Standard Attentional Blink

Although our model has been developed in order to reproduce Barnard et al’s word based attentional blink, we believe that the principles underlying our approach are also applicable to modelling the standard blink. Indeed the relationship between Chun and Potter’s model and our’s supports this perspective. In order to give more evidence for this claim, we now discuss the implications of modelling the standard blink using our approach.

Firstly, by replacing our word based items with letter or digit items and perhaps adapting the salience assessment thresholds accordingly, we should certainly be able to reproduce the basic blink profile of a condition such as that discussed in, say, (Chun and Potter 1995). However, in addition to this profile the model would need to reproduce a number of key characteristics associated with the standard blink, see the review given in (Shapiro, Arnell et al. 1997). We pick out two of these here and discuss how they would be handled in our model.

1. Priming (Shapiro, Driver et al. 1997) and EEG (Luck, Vogel et al. 1996) studies have thrown light on the degree to which T2 items are processed during the blink. The data suggests that even when T2 fails to be reported, it is nonetheless processed significantly. In particular, the ERP study of (Luck, Vogel et al. 1996) discovered that even when unreported, T2 elicited electrical potentials associated with semantic analysis (the N400 waveform). At first sight this data seems to militate against our model. This is because, in our approach, the absence of attentional resources causes implicational salience assessment of T2 to fail. However, it is important to interpret this failed assessment correctly. In particular, there is no reason to conclude that such a failed assessment precludes semantic processing of the non-reported item. In fact, it is quite reasonable to think that even without being buffered, items can be significantly processed in IMPLIC. It is just that the extra attentional resources made available during buffering are needed to give the extra push necessary to complete implicational salience assessment and to “mark” the item thus. Not being buffered prevents the completion of salience assessment, rather than preventing it altogether.

2. It is clear from a number of studies that the T1+1 and T2+1 items play an important role in obtaining the blink (Raymond, Shapiro et al. 1992) (Shapiro, Arnell et al. 1997) (Chun and Potter 1995). It has been argued that they act as masks for the T1 and T2 items, i.e. they prevent consolidated processing of the targets. For example, Chun and Potter reduced the strength of the blink by placing a blank at the T1+1 position. Furthermore, they varied the ease with which the T1+1 item could be discriminated (by type) from T1 and found that the blink deepened with increased difficulty in discriminating T1+1 from T1. Qualitatively we could obtain such an effect by adapting our implicational buffer movement mechanism. Currently, IMPLIC passes the buffer to PROP at the point at which implicationally salient items start to be output from IMPLIC. However, consider the consequences of adding the following constraint to the control of IMPLIC to PROP buffer movement – the buffer can move earlier if the level of implicational salience of items on the input array (i.e. at the input end of the IMPLIC pipeline) falls below a certain level. Then the buffer would move more quickly from IMPLIC to PROP if the T1+1 item could easily be distinguished from T1; the extreme case being when T1+1 is a blank. Now if the buffer moves more quickly to PROP, it will also return more quickly to IMPLIC. As a result, the blink will be shorter and is also likely to be shallower. Such an adaptation is psychologically plausible. It adds the constraint that if attentional resources are no longer required at IMPLIC, which would be the case if a blank or easily discriminated items appear on the IMPLIC input array, then these resources should be redirected more quickly to PROP.

In the absence of implementations of these refinements their exact consequences remain unverified. However, this section indicates that, at least in broad terms, through adaptations to our basic model we should be able to reproduce the key data surrounding the standard attentional blink.

6 Architectural Implications

As indicated throughout this paper, our modelling has been influenced by the Interacting Cognitive Subsystems (ICS) Architecture of Barnard (Barnard 1999) (see Figure 6) and the model we have developed could be positioned within this larger architectural framework. In particular Barnard postulates a common structure to subsystems, which in ICS’ most recent form is delay-line based. Broadly speaking, this common structure amounts to a hierarchy of delay-lines. The higher the delay-line in the hierarchy the higher the level of meaning and the temporally more coarse-grain. In addition, higher levels build their more abstract meaning by looking across the input arrays of lower delay-lines. Using such a hierarchy Barnard shows how super-ordinate meaning structures can be constructed and also how delay-lines can be used to implement short-term memory.

Although, giving a detailed exposition of ICS, is not within the scope of this paper, it should be clear from what we have said that the modelling principles presented here could be employed in constructing a more comprehensive realisation of ICS. In particular, we would argue that in order to avoid over-specification in such an ICS model, it is important that modelling techniques supporting distributed control are used. This is exactly what is obtained through using a notation such as a process algebra.

The construction of a comprehensive ICS model would enable macro-level implications of the architecture to be explored. As an example of the benefits of building such a macro-level model, Barnard has used the direct link from ICS’ body-state to IMPLIC in explaining emotional effects on cognition (Teasdale and Barnard 1993). In addition, as stated earlier, (Barnard and Ramponi 2001) indicate an emotional version of the word based attentional blink is modulated by emotional state. 

Furthermore, we know that the directing of attentional resources towards IMPLIC, via buffering, strongly affects the shape of the blink. Thus a plausible explanation of (Barnard and Ramponi 2001)’s emotional blink data would be that for anxious subjects there is inertia against the buffer moving from IMPLIC to PROP in the context of emotionally salient distractors.

7 Conclusions

It is clear that the choice of modelling notation dramatically affects the “value” of (even the ability to complete) a model of a psychological theory. In a very general sense, selection of an appropriate modelling notation can be a major enabler to problem solving
. It is thus natural to believe that the identification of appropriate modelling notations, which offer a suitable level of abstraction, can aid the progress of cognitive modelling. The most attractive feature of process algebras, in this respect, is that they allow the formal specification and computational exploration of the properties of psychological theories formulated in terms of interaction between subsystems. As we have previously argued, it has been difficult to accurately express such theories in production systems or neural networks. Furthermore, models based upon hierarchical control theory (Carver and Scheier 1998) or “box and arrow” explanations can be given an explicit and direct computational realisation in process algebras.

To be more explicit, we would emphasise the following the benefits of such approaches:

· As just stated, a pragmatic reason for preferring distributed control is that, we would argue, the resulting computational model more directly reflects the component structure of the psychological theory. For example, in EPIC’s model of Baddeley and Hitch’s Working Memory theory there is no direct analogue of the central executive (Kieras, Meyer et al. 1999). The central executive function arises from programming of the cognitive processor with particular productions. This places a level of indirection in the computational modelling of the working memory theory, which can be a barrier to psychologist’s interpretation of the resulting model. In contrast, the component structure of the working memory model could be directly represented in a process algebra.

· Although our work to date has not directly confirmed this, we postulate that another advantage of the modular (distributed control) approach is that neuropsychological evidence can be more easily modelled. In simulating lesion studies the more direct mapping between the structure of computational models and psychological and brain-level theories, should make it easier to localise the appropriate site of damage in the model.

· It is also worth noting that, in a certain sense, using a model with distributed control, does not lose you very much since, centralized systems are just special cases of distributed systems – distribution is the general case. For example, even if in modelling Baddeley and Hitch’s working memory theory one sought to keep the centralised executive as unitary, one could still use a process algebra.

· Our hypothesis is that for many forms of psychological-level modelling the sort of techniques we have been advocating are at a similar level of abstraction to that at which psychologists work. In particular, not only, as previously discussed, is distribution of control valuable, but also other aspects of the advocated modelling techniques are important. For example, process algebra come with rich combinatorial symbol systems and data structuring mechanisms. We have also argued that hierarchical decomposition of components is important in supporting macro-level modelling and that abstract specification can (potentially) be used to tackle the irrelevant specification problem.

Also, although control is certainly distributed in neural networks, we have not used such techniques, because, in broad terms, we seek coarser grain and computationally richer components. With neural networks, all computational elements have to be constructed out of primitive and fine grain computational entities – neurons. In a sense the approach we are advocating sits somewhere between connectionism and traditional AI – we have concurrency and distribution (as do neural networks), however, we also have combinatorial symbol systems and computationally rich specification devices at our disposal (reflecting the level of abstraction of traditional AI). Furthermore, there is no fundamental reason why neural networks could not be simulated using process algebra. Each neuron would be encoded as a process, activation exchange between neurons would be modelled through message passing and the synchronous activation update of neural networks could be modelled using a global timing signal. Thus, it would seem to be possible to reconcile and integrate neural networks and process algebra.

A further contribution of this paper has been to give a concrete illustration of the use of process algebra in computational modelling of the mind. In particular, we have provided the first implemented computational model of the attentional blink. The resulting model successfully reproduces the available data. Furthermore, through our use of distributed control, attentional constraints (in particular, its sequentiality) have been modelled as emergent properties of inter-subsystem interaction with no recourse made to a centralised focus of attentional or supervisory control. Attentional resources can be allocated and moved around amongst modules. However, this movement is constrained since the buffer can only be at one subsystem at one instant.

The history of computational modelling in psychology has been an extremely rich one. In particular, traditional AI techniques and connectionism have made profound contributions. The former of these still offers the most complete architectural-level explanation of the mind, which is still the only realistic modelling technique when macro-level constraints on the mind need to be brought into play. In contrast, the connectionist revolution in psychology has yielded many influential models, which have elucidated specific cognitive phenomena. In particular, connectionism has lead to a profound re-evaluation of theories of innate cognitive capacities (Elman, Bates et al. 1996) and to bridging the gap to the brain (Rolls and Treves 1998). However, despite the strengths of these approaches, we nonetheless believe that new modelling techniques from computer science can also advantageously be employed in computational modelling of the mind. These would complement existing techniques, being specifically targeted at psychological level modelling in which it is advantageous to directly represent the distribution inherent in a theory.

In another respect, we hope this paper has shown that the symbolic tradition in cognitive modelling does not have to imply centralised architectures and Von Neumann assumptions. Rather it is quite possible to have Turing power and symbolic combinatorial representations without building seriality into the structure of the architecture.
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� The term module is, of course, a rather loaded one. Here we use the termit in a very broad sense, as any component or subsystem, which possesses its own local state and evolves independently subject to interaction with other modules. In particular, our use of the term does not carry the strict constraints associated with the Fodorian view of modules � ADDIN ENRfu ��Fodor, J. A. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, Massachussets, MIT Press.� We further clarify what we mean by a module in section � REF _Ref522349117 \r \h ��2.1�.


� Notice that centralized control and concurrency are not mutually contradictory, as will become clear when we discuss production systems approaches. This issue is also clarified in section � REF _Ref522349117 \r \h ��2.1�.


� This debate is also informed by the observation that Shallice has made (page 350 of � ADDIN ENRfu ��Shallice, T. (1988). From neuropsychology to mental structure. Cambridge UK:, Cambridge University Press.�) that his Supervisory Attentional System (SAS) (which plays the role of what we are calling the central executive) is not equipotential. Rather Shallice argues that it is modular since distinct lesion sites yield distinct deficits. In justification Shallice points to animal studies which suggest that “an inability to deal with a prepotent response tendency and excessive distractibility arise from lesions in different areas of the frontal lobes”. The lack of equipotentiality in frontal lobe function mitigates against architectures in which executive function is centralised and effectively unitary.


� Although, we in no way wish to denigrate this debate, which is central to certain modelling topics, e.g. serial order recall (� ADDIN ENRfu ��Burgess, N. and G. J. Hitch (1999). "Memory for Serial Order: A Network Model of the Phonological Loop and Its Timing." Psychological Review 106(3): 551-581.�). 


� Note that here we are not talking about units in the sense of neural network nodes. Units in this context are more coarse grain and computationally powerful than neurons. They have arbitrary data storage and processing capabilities. At least potentially, each unit is Turing powerful.


� In fact, to be precise, we are really talking about object-based systems here rather than object-oriented systems (see, � ADDIN ENRfu ��Wegner, P. (1986). "Classification in Object-Oriented Systems." SIGPLAN NOTICES, Special Issue on Proceedings of the Object-Oriented Programming Workshop (P. Wegner and B. Shriver (eds)) 21: 173-182.�).


� Although this discussion is most relevant to traditional AI computational modelling, for which Turing computability has been a central motivator (see for example, � ADDIN ENRfu ��Newell, A. (1990). Unified Theories of Cognition. Cambridge, Massachusetts, Harvard University Press.�), within the connectionist domain, the vast majority of networks, at least certainly feed-forward nets, are transformational systems. They compute (in fact, they learn how to compute) input to output mappings.


� The term reactive is also often used in a related manner (see, � ADDIN ENRfu ��Manna, Z. and A. Pnueli (1992). The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag.�).


� Notice that, as suggested earlier, such architectural-level explanation is something that connectionism has done less well in providing – the connectionist models tend to be specific to particular cognitive phenomena and do not combine broad ranging psychological constraints into a single model.


� See � ADDIN ENRfu ��Dennett, D. C. (1991). Consciousness Explained. London, Penguin Books.� (Chapter 7) for a re-iteration of the classic seriality argument for Von Neumann-based architectures of the mind.


� This is similar to the manner in which a logical formula characterises a set of possible models, i.e. the models that satisfy it.


� Also, although once again our point is mainly targeted at AI approaches, similar arguments carry over to connectionism. In particular, in order to get a connectionist simulation to run, it is typically necessary to set a number of parameters and constraints, which are not directly motivated by psychological theory. For example, with feed-forward back-propagation networks one has to manipulate parameters such as learning rate, momentum, number of hidden units, weight setting range, etc, in order to ensure successful learning and the avoidance of local minima on the error surface. The settings of these parameters can often inform psychological explanation, however, it is also sometimes the case that they are not directly motivated by that level of explanation. Indeed, in the absence of a biological justification for it, one can argue to what extent back-propagation itself is cognitively motivated!


This said, some level of implementation assumptions is probably unavoidable and our current activity is primarily one of limitation rather than eradication of such assumptions. Consequently, it is difficult to level too strong a criticism of connectionism in this respect. 


� Although the roots of declarative (as opposed to imperative) styles of computation, which process algebra employ, can be traced back to Alonzo Church’s Lambda Calculus (see � ADDIN ENRfu ��Barendreght, H. (1984). The Lambda Calculus: Its Syntax and Semantics, North-Holland.�). In declarative notations, systems are described as terms (expressions) and computation comprises the repeated rewriting of these terms according to rules of operational semantics.


� The complete specification of the attentional blink is though available on request from the first author.


� Notice that in fact, the move away from centralised concurrent systems and message passing communication are closely related. In centralised concurrent systems, communication between processing components is performed via a shared memory – parallel threads of computation interact by writing and reading from shared variables in the shared memory. In contrast, in systems with distributed control, the necessity to include a shared memory is avoided, by allowing interaction between parallel threads using message exchange.


� We could in fact have used further ICS subsystems in order to give a more detailed model of the perceptual and response systems, however, we have avoided this in order that we can focus on central-engine processing, which is the key to obtaining the blink.


� Recall that earlier we argued that describing such hierarchical decomposition is less clean in neural networks since they have a flat component structure.


� Although, of course, the specification is in fact much more complex than this and in addition, in order to simplify presentation, we have pared down the LOTOS syntax somewhat.


� Notice that fine-grained timing refines course grain timing (as long as the unit of course grain timing is a multiple of the unit of fine grain timing). In other words, we do not lose anything in terms of expressiveness through employing a fine grain. Although it will clearly have consequences for the computational demands of running our simulations.


� Although in actual fact in order to obtain the results presented in this paper, such a gradual build-up is not essential. There are other pieces of blink data where it would though be important.


� As a specific illustration of the need to record temporal order consider, for example, the slow blink onset. This lag 1 effect suggests that after being determined to be implicationally salient, the distractor needs to be stored in sequence (if you like, “in transit” between IMPLIC and PROP), while the lag 1 item is being processed at IMPLIC. A delay line is a natural way to implement such a dynamic.


� Although the analogy between what is going on in IMPLIC and PROP with categorisation is not completely accurate. For example, as we have previously argued, PROP is performing more than just categorisation, for example, it is also constructing representations suitable for report. Although in terms of reproducing the blink data the most significant aspect of PROP is its categorisation function; the key element is that it distinguishes targets from distractors.


� In the context of our model, attentional resources correspond to general purpose information processing resources, which can be co-opted by different processing stages in order to fulfil the overall task demands.


� Although all these parameter settings are completely reasonable, we should not read too much into them, since it is surely the case that other settings would yield similar results.


� In effect, this parameter controls the length of the IMPLIC pipeline. The greater this parameter, the longer the 2nd level delay-line in � REF _Ref522359403 \h ��Figure 8�. The same applies for the corresponding PROP parameter.


� Actually the interplay between implicational and propositional buffer movement values is somewhat more complex, however, the intuition we give here will be satisfactory for the current presentation.


� However, as previously stated, it should be observed that Barnard et al’s experiment had 3 response types. Subjects could respond in one of three ways: (a) they saw a target and could recall it; (b) they saw a word meeting the task demands (e.g. a job word), but could not recall it; (c) they did not see a target word. Now if we interpret successful report in our model as not distinguishing between (a) and (b), i.e. the item is reported by the model if it has been seen, whether or not it can be recalled. Thus, in effect our � REF _Ref522359707 \h ��Figure 9� corresponds to a summation of Figures 2 and 4 from � ADDIN ENRfu ��Barnard, P. J., S. Scott, et al. (2001). "Paying Attention to Meaning." Under Review.� Then our results would match well with Barnard et al’s which would indeed recover to baseline around serial-position 5 (as ours does). This is because Barnard et al’s (b) reports are stacked up in the later serial positions.


� And we apologise to the authors for any misrepresentation of their model that we might make.


� To take a familiar illustration, the uptake of the Arabic number system in the middle ages crucially enabled the progress of arithmetic, e.g. the development of arithmetic manipulation techniques, such as long division, which would have been infeasible with, for example, the roman number system.
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