Specification and Prototyping of Structured
Multimedia Documents using Interval Temporal
Logic *

Howard Bowman', Helen Cameron?, Peter King? and Simon Thompson'

! Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent, CT2
7NF, United Kingdom
2 Department of Computer Science, University of Manitoba, Winnipeg, Manitoba,
R3T 2N2, Canada
{H.Bowman,S.J.Thompson } @ukc.ac.uk {prking,hacamero}@cs.umanitoba.ca

Abstract. This paper explores a formalism for describing a wide class
of multimedia document constraints. We outline the requirements on
temporal logic specification that arise from the multimedia documents
application area. In particular, we highlight a canonical document ex-
ample. Then we present the temporal logic formalism that we use. This
formalism extends existing interval temporal logic with a number of new
features: actions, framing of actions, past operators, a projection-like op-
erator called filter and a new handling of interval length. A model theory
and satisfaction relation are defined for the logic and a specification of
the canonical example is presented.

1 Introduction

This paper explores a formalism for describing a wide class of multimedia docu-
ment constraints. The term multimedia indicates that a document may contain
continuous or time-dependent entities [9] known as media items [5]. Part of the
task facing the author of such a document, therefore, is to describe the dynamic
temporal relationships that are to hold between media items. We are interested
in documents with rich sets of such relationships, and as a consequence are
keenly interested in issues of consistency verification, modelling, proto-typing,
and specification refinement. While a number of authoring systems for multi-
media documents are extant [8, 3], little investigation of suitable formalisms for
such temporal constraints has been done.

The formalism that we introduce is an Interval Temporal Logic (ITL) spec-
ification notation called Mexitl (Multimedia in Ezecutable Interval Temporal
Logic). While the anticipated application area for this notation is multimedia, it
is also relevant to other areas of real-time specification. King [10, 11] proposed

* Travel grants to support the research presented here have been provided by the
British Council. The second author is supported by an individual research grant
from the Natural Sciences and Engineering Research Council of Canada.

the use of ITL to specify multimedia documents and the theory presented here
stems from that earlier work.

A major difference between ITL and standard linear time temporal logic
[13] is that it is interpreted over finite state sequences, called intervals, rather
than over infinite models. A number of authors have investigated ITLs, e.g. [14]
[7] [12] [4]. The restriction to finite states prompts consideration of a number
of temporal operators not typically found in non-interval temporal logics, e.g.
chop and projection. These turn out to be useful in the multimedia documents
application domain and will be discussed in Section 3.1.

We anticipate that complete specifications of multimedia documents will have
a number of elements. An abstract data typing notation will be used to describe
the primitive operations/actions of a specification, such as displayCaption or
playVideo. We will not consider this notation here; the specification language
that we present takes the primitive actions as given. Mechanisms to define com-
posite actions out of primitive actions can also be added.

We introduce a methodology for developing multimedia artifacts using Mez-
itl. Specifications are written in the logic, and refined according to the rules of the
language. Implementations can be developed as either deterministic refinements
or as proofs of Mezitl formulas interpreted in a constructive logic.

Structure of the Paper. The paper is structured as follows. Section 2 reviews
the requirements associated with multimedia documents, and introduces a typ-
ical problem from the field. Section 3 presents the specification notation that
we advocate. The operators of the language are presented, the model theory is
highlighted, and the satisfaction relation is defined. Section 4 applies the defined
notation to the requirements of Section 2. Related work is discussed in Section 5
and concluding remarks are presented in Section 6.

2 Multimedia Documents Requirements

Erfle [5] presents a set of eighteen issues, or functional requirements, which are
regarded as being sufficient to describe multimedia documents. This set was
obtained by a study of what is provided in many existing authoring systems and
standards. King [10] presents an equivalent set of eight requirements. For the
sake of completeness we will provide a summary of these requirements. We divide
our summary into two, a set of general requirements, dictated by the authoring
aspect of this application, followed by eight individual functional requirements.

General Requirements We first need to represent the display of a media
item, both standard display, where an item is displayed in its normal fashion at
its normal rate, and variations, such as displaying at half speed, rewind, fast-
forward. We also require facilities for both serial and parallel composition of
sets of constraints. Parallel composition also permits independent development
of channels [8, 3], which may then be combined so that they occur in the same
multimedia presentation. Our use of the term channel generalises its multimedia
usage to independent authorship and is akin to the term thread.

Functional Requirements The following eight individual items are required:

=~ O Ot = W N

. Temporal placement of a media item at an absolute (time) point;
. Specification of the duration of a media item;

. Determination of the start and finish points of a media item,;

. Relative placement of two or more media items;

. Repetitive display of a media item;

. Conditional display of a media item;

. Scripting, that is, using events or conditions occurring in one media item to

control the display of a second; and

. Exception handling, that is, controlling error situations which may occur

during the display of a multimedia document.

We illustrate these requirements by an informal specification of a fairly elab-

orate multimedia document, to be known as the Beethoven Problem. It requires
the development of a multimedia document containing an audio of Beethoven’s
Fifth Symphony, opus 67 in ¢ minor, together with various other media items
to illustrate the music. King [11] presents an earlier version of a portion of this
example. The seven parts of the Beethoven Problem appear in Figure 1.

Beethoven’s Fifth Symphony comprises four movements.

1.

Play the four movements of the symphony in sequence with a gap of 20 seconds
between each movement.

Before the symphony, play an audio which announces the name of the symphony,
the composer, and the orchestra. Two seconds after this audio starts, display a
video still of Beethoven. Stop the video still display as the first movement starts.
After the last movement, wait 3 seconds, display a video of LLudwig van Beethoven,
and then, after a further 5 seconds, display for 30 seconds information about how
to order this presentation.

At the start of each movement display a video still of a title for 5 seconds; repeat
this 5 second display every 3 minutes during the corresponding movement.

The audio introduced in 2 is actually in three parts, corresponding to the name
of the symphony, the composer, and the orchestra. During this audio, display, in
sequence, three video stills containing the same information for an appropriate
time.

. In the twenty second gap between the second and third movements, show a

video/audio display describing the third movement. If this display takes longer
than twenty seconds, truncate it.

During each crescendo passage of the first movement, display a looped video tape
of a bug climbing an inclined plane.

Count the number of staccato notes in the first movement.

Fig. 1. The Beethoven Problem.

3 Introduction to Mexitl

We present a core language for Mexitl, which contains the primitive constructs of
the notation. Then we describe the model theory underlying the language; this
theory is based upon finite sequences of states (called intervals) and we define
the satisfaction relation.

3.1 The Core Language

Expressions have the following form:
E = c|v]| V] f(F)|mylen

where ¢ € N, v € Vary,;., the set of static variables, V € Var,;q;., the set of
state variables, and f is in a set of assumed functions. In addition, mylen is a
distinguished variable which denotes the length of the current interval.

P € P (the domain of logical propositions) is constructed as follows:

P:=ax |p(EL,...E)) | E=E | False | P= P |P; P |
P proj P|P 5 P|(3xe<E)P|P filter P

where ¢ € Act and X C Act is a ‘framing’ set; p is in a set of given predicates
and F is an expression. Much of this logic will be well known to a reader familiar
with interval temporal logic [14]; for instance,

— 5 is the sequencing operator, chop, familiar from [14]. An interval satisfies
P 5 @ if the interval can be divided into two contiguous sub-intervals, such
that P holds over the first subinterval and @ holds over the second.

— proj is the projection operator, also described in [14]. An interval satisfies
P proj @ if it can be sub-divided into a series of sub-intervals each of
which satisfies P - we call P the projection formula - and a new interval
formed from the end points of the sub-intervals satisfies (), which we call the
projected formula.

The remainder of our operators are not standard, and require more explanation.

Actions. Actions in Mezitl are atomic, in the sense that they cannot be analysed
into simpler components. Time is discrete, and an action is thought of as taking
place in a single state.

In the full paper [2] we consider actions with data attributes; here we confine
ourselves to basic actions, written a. We assume that actions are given; their
definition is not part of the language. From a logical point of view we can think
of an action a as an atomic proposition.

An action can appear a number of times in an interval, however, each of
these represents a different instance of the action. At the level of interval states,
actions do not have duration. However, durational behaviour can be obtained by

defining composite actions, which are a shorthand for the occurrence of multiple
primitive actions. In particular, primitive actions may correspond to indexing
into a composite action. For example, an action video[500] (the 500th frame of
the video) might be a constituent of the composite action video.

Although actions do not have duration, sets of (distinct) actions can occur
at the same state. Such sets reflect simultaneous lock-step occurrence of the
actions. In this sense, the model employs synchronous parallelism.

Framing of actions. One aspect which distinguishes our usual perception of
logical propositions and actions 1s the idea of framing. An assertion of a, where
a is a particular action, 1s often interpreted as ‘a and no other action happens’
whereas a logical interpretation simply reads this as a happening. The former
interpretation, in which the action a is “framed”, would lead to a non-monotonic
logic were we to adopt it.

Instead of this, in our system we subscript the actions with sets X of actions.
ax 1s interpreted as ‘a happens and none of the other actions in X happens’.
The set X thus provides an explicit frame within which the action a takes place.
Logically the interpretation of ax is the conjunction of a and —b for all b in
X — {a}. We add a distinguished action — null - to the set of actions. This
action has null effect, but can be used for framing purposes thus: nully.

Length and Next. In contrast to the standard approach to I'TL we have not
included the next operator, O, directly in Mezitl. However, standard length op-
erators and O can be derived from the expression mylen, as follows:

len(F) = mylen=F OP = (mylen=1); P

We have included mylen as primitive for three reasons. It is useful to be able
to refer directly to the length of an interval when defining various properties
of component parts, such as the two halves into which it is cut by the ‘chop’
operator. Moreover, we use mylen as a bound for existential quantifications in
derivations of many temporal operators from the core language. Finally, includ-
ing mylen allows us to avoid a ‘next’ operator over expressions, thus avoiding
expressions which might be undefined.

Quantification. In our core language we have included a limited form of exis-
tential quantification, namely quantification in which the value of the variable is
bounded by (the value of) an expression: (3z < E)P. The effect of an existential
quantification is to introduce a new variable in the scope of the quantifier. A
bounded quantification has the property that its satisfaction over a given inter-
val remains decidable; this is not the case for unbounded quantification over the
natural numbers.

Past Operators. We include a single past operator in Mexzitl, chop in the past,
denoted ;. An implication of the inclusion of past operators is that the past
history of a computation must be recorded; we will show how this is done in
Section 3.2. Using such a more sophisticated model theory, P T Q is satisfied by
an interval such that,

1. P holds over the larger interval resulting from moving the start of the interval
into the past, and

2. @ holds over the original interval according to a past history that is truncated
at the start of the interval over which P holds.

Intervals are depicted as line segments with three reference points. The leftmost
point is the start of time, then moving to the right, the next point is the start of
the current interval and the final point is the end of the current interval. Amongst
other things, % has the effect of chopping up the past, in a dual manner to which
; divides up the future.

The more familiar past operators, since and previous, can be derived from

chop in the past as follows. P § @ is given by
z=mylen = (((Q A mylen > z) AOO(mylen > z = P)) ; True)

where O is defined in Figure 3 and ©FP = False § P. In fact, § is a strong
since operator. The definition of strong since enables previously to be derived;
weak since can also be derived in standard fashion. The incorporation of past
operators is a significant departure from standard interval temporal logic. The
motivation for their inclusion is that the specification of a number of examples
is made substantially easier.

Filter. In filtering we have a variant of projection (proj). P filter () has the
effect of selecting all points which begin an interval over which the property P
holds; the formula holds if over this new interval the property @) is true. In the
following illustrative figure, propositions are associated with the initial point of
the interval over which they hold.

Q
L) ° d

(IR 1 |

11 I T 1
PPP p P
filter generalises when as defined in [7]; in Hale’s definition (based on proj)
the property P needs to be a local property, that is, one without temporal oper-
ators. We see the generalisation as valuable — 1t allows us to express properties

of the form ‘whenever a musical performance is within 5 minutes of the end of a
movement, show some more of a video sequence’ (see for example Part 6 of the

Beethoven example presented in Section 2) — but we see no way of deriving it
from the other Mezitl operators.

Types and definitions. We use a simple mechanism for naming types and
values in the remainder of the paper. Note that ‘::”1s used to mean ‘is of type’, and
that definitions of types and values are not allowed to be (mutually) recursive.

3.2 Satisfaction

The order of presentation of this section is as follows. First we describe com-
putation structures, which enhance intervals in order that past operators can
be handled. Then we consider the interpretation of expressions and finally, we
describe the satisfaction relation for the main temporal operators.

The major difference between our interpretation of Mexitl and the standard
interpretations of interval temporal logics, to be found in [14] [7], for example,
is that our satisfaction relation embraces past operators. Consequently, the se-
quence of states that have already been passed through must be recorded. This
record 1s obtained by defining our satisfaction relation over what we call com-
putation structures. These computation structures are pairs, (o, ¢) where, in the
normal way, o is a sequence of states, with length |0, i.e., 0 = 00,01, ..., 05| (We
refer to this as the interval) and ¢ is the point of reference. The point of reference
identifies the past states of the computation (the history) and the interval under
current consideration (the current interval). We introduce notation for prefix
and suffix of intervals,

[o’]i:(fo,...,O’i (U)i:Uia"'aU|0|

Since we have actions, our states are slightly more sophisticated than those
of standard interval temporal logic. Specifically, each state o; is a pair; the first
component of the pair A; is a set of actions and the second component D; records
the current data state; it is a finite function from variables to data values (which
come from N, the natural numbers).

Expressions are interpreted in a standard manner apart from the operator
mylen, which is interpreted as follows:

[[mylen]](gyi) =lo|—1

Our satisfaction relation, |=, interprets Mexitl propositions over computation
structures. The notation (¢,¢) = P denotes that the computation structure
(0, 1) satisfies the proposition P. The most important clauses of the definition of
satisfaction are in Figure 2; others which are standard can be found in [2].
Note that we say that ¢/ ~; g ¢ if ¢ and ¢’ are the same length and they
have the same value on all actions and variables except (perhaps) x, and that at
each point the value of z is less than or equal to the corresponding value of E.
An arbitrary Mexitl proposition is interpreted relative to a zero point of
reference. Thus, we define that an interval o satisfies a proposition P if and
only if (¢,0) = P. In addition, in the usual way, we state that P is valid if and

(0,)) Fax i a€ AjandVe € X —{a} = & A;
(0,0) = Pi; P> iff 3k e N (1 <k <|o| and ([¢]*,) = Pi and (0,k) = P»)

(o,i) =P proj P, iff Im e N and 3,71,y T €N
(=7 <7 <..<Tmn=|o| and
Vi< m (([e]"*, 75) = P1) and

([6] 7 0ryOry o Or 1) = P2)
(o)) =EP1 5 P iff 3k (0<k <iand (0,k) =P and ((0)F,i—k) |= P2)
o) E(Jx <EYP iff (¢'i) =P forsomeo ~, 5o
(0,1) F (3= < E) (o',1) | :

(0,i) = P filter P, iff Fro,71,...,Tm €N
1<70 <7< ... <7 <Jo|and
Vi< m ((o,75) FE P1) and
Vk,i <k < |o|A(o,k) |= P, implies k = 7; for some j and
([6) " 0ry0ry .07,y 1) = P2)

or no points satisfy P;

Fig. 2. Satisfaction for Mewxitl

only if for all ¢ in Z, (7,0) = P, where Z denotes the set of all possible intervals.
If P is valid we write = P.

[2] defines a full set of ITL derived operators from Mexitl. Due to space
considerations we can only include the operators that we use in the Beethoven
example of Section 4. These operators are presented in Figure 3.

3.3 Reasoning about Mezitl

We have developed a range of proof rules for the Mexitl logic. Details of these
are given in [2]. The rules include

— characterisations of the basic operators of the language, such as
[P6] (P proj R)V (Q proj R)) = ((PV Q) proj R)

— derivation of common theorems of temporal logic from the definitions of
operators given in [2];

O¢P = mylen=1¢3; P OP = True; P ap = -O=P

&P = Pimylen=t¢ &P = P j; True &xP = P ;nully

= Pymylen<t &P = True; P ; True P* = P proj True
beg P = (len(0) A P); True halt P = O(P & len(0))

haltx P = O(P < len(0) vV beg(nullx)) fin P = O(len(0) = P)

fori:=1to EdoP = i:=1;((P ANi+1+1 A i< E) A fin(t > E))
P when Q@ = -0Q Vv (halt(Q) ; (Chalt(Q) proj P) ; keep O(—-Q))

<

2
>
I

Fig. 3. Derived Operators

— a characterisation of the framing of actions discussed earlier. From an ac-
tion ax we can deduce a and —b for all b in X — {a}; the occurrence of
two actions in X simultaneously results in a contradiction, and hence an
unimplementable specification.

The rules have a number of purposes:

— Implication formalises refinement, so that a rule such as [P6] shows that a
sound refinement of (PVQ) proj R is given by a choice between (P proj R)
and (@ proj R).

— We can use the rules to reason about specifications.

— Using the rules we can aim to find a normal form for Mezit! formulas (along
the lines of Gabbay’s work [6]) which may form the basis for an implemen-
tation of the language.

We do not claim that the logic we present is complete; we know of no complete
axiomatisation of interval temporal logic with projection. Kono claims such an
axiomatisation in unpublished work, but we have discovered that one of the rules
in that system is unsound. See [2] for more details.

4 Applying Mezitl

We show how Mezitl can be employed for multimedia documents. We first de-
scribe a development methodology for Mexitl and then we show how the individ-
ual functional requirements are met by providing a complete formal specification
of the Beethoven problem of Figure 1.

4.1 The Mexitl Development Methodology

The Mezitl interval temporal logic is designed to support the specification, de-
sign, prototyping and implementation of multimedia systems. Various aspects of
the system are useful in different ways.

— The logical rules mentioned in Section 3.3 and [2] underpin a refinement
strategy for specification development. A specification 57 is refined by the
specification Sy if S5 implies Sy, that is if S5 = 5 is valid. For instance, if
P'= Pand Q' = @ then

P’ proj Q' = P proj Q

which states that we can refine a projection by refining either of its con-
stituent formulae. We might, for instance, be more specific about the subdivi-
sion of an interval in a projection and replace True by len(2) in True proj @),
which is acceptable since len(2) = True. In a similar way we can refine a
specification by conjoining other constraints into it. This meets our formal
definition of refinement since A A B = A for any A and B.

— A specification written in Mezitl can be prototyped in two ways.

e A general interval formula can be thought of as a non-deterministic de-
scription of an interval, since in general it will describe a collection of
intervals rather than a single interval. A refinement of a specification
will be more deterministic, in that it describes fewer intervals, and we
can thus see the process of refinement as moving towards a deterministic
specification implementable in standard ways.

o Alternatively, taking a constructive view of logic as expounded in [17], we
can view formulas of temporal logic as specifications with proofs being
implementations. Preliminary work in this direction, which implements
interval temporal logic in the Alf system, is reported elsewhere [18].

— As our first point suggested, we can build refinements of specifications by
means of conjunction: we can think of this as a parallel composition, in
contrast to the sequential composition given by chop.

If our actions are framed by giving an explicit framing set, as in ax, then
actions provide a means of synchronising between different conjuncts. For
example in,

(axibxiex) A (Truesbx;True)

where the framing set X is {a, b, ¢}, the only interval satisfying this formula
must be one in which the b action in the second conjunct happens at the same
point as the b action in the first conjunct. We achieve this synchronisation
without adding any specific machinery for that purpose. We are also actively
exploring the role that framing plays in the separate development of aspects
of multimedia documents.

— We also conclude from our exploration of the sequence of examples in Section
4.2 that the Mezitl language is a low-level mechanism for representing such
presentations; we aim to investigate higher-level approaches for which Mezitl
as presented here might play the role of an intermediate language.

We introduce a methodology for developing multimedia artefacts using Mezitl.
Specifications are written in the logic, and refined according to the rules of the
language. Implementations can be developed as either deterministic refinements
or as proofs of Mezitl formulas interpreted in a constructive logic.

4.2 Specification of Beethoven Example
We begin with a type definition of a symphony with four movements.

type symphony4 = (movement, movement, movement, movement)
type movement = interval — a finite interval of actions
mi, Ma, M3, My :: Mmovement

These definitions allow us to use my, msg, etc. both as intervals in Mexitl for-
mulae, and also as sequences of primitive actions into which we can index. We
distinguish two elements of these sequences, m;[1] and m;[m;.last], where last
is a predefined constant stating how many actions there are in such a sequence.
The constants my, ms, ms and m4 are assumed to be set to the contents of the
corresponding movements. In addition, the association of a framing set with a
composite action, e.g. ms x, implicitly frames all the primitive actions involved
in the composite action, e.g. ma[5]x.

We now give a Mexitl specification of each part of the Beethoven problem as
given in Figure 1.

1. In this specification, we frame each movement against any (other) actions
from the set of actions comprising the four movements. The bounded tem-
poral operator $agr is also framed to prevent any of the actions M from any
of the movements from playing during the 20 second intervals.

S1 = myip s (for i :=2to 4 do Cagr pr my ar)

where M is the set of all all audio actions forming my, ms, ms and mq.

2. We compose the items at the beginning and end of the presentation in a
serial fashion and express the first of these as a parallel composition of two
sub-channels. The video still itself is specified as the repetition (*) of an
elementary one-state action displaying a picture of Beethoven.
type still = action ; audio, video = interval
ay :: audio ; Ludwig, orderinginfo :: still ; Ivb :: video

Sy = (CllA A (Qz//sLudWigg)) ; Sh ;
(s vlvby) 3 (Osn g(Orderinglnfos A len(30”)))

where A is the set of audio actions, S is the set of still image actions, and
V' is the set of video image actions.

3. For each of the four movements we use halt(m;[1]) and halt(m,[m; last])
to synchronise with the start and finish of each movement m;. Actions are
framed against the corresponding class of actions so as to avoid unwanted
behaviour. Note that the earlier framing of actions in \S; ensures, for example,
that the occurrence of the first action in m; is uniquely defined.
t1,%ta,t3,t4 o still — the four titles

R—sn = (t7p A len(b”)) — repeat title for exactly 5 seconds

Resi = (t5p A less(5)) — repeat title for less than 5 seconds
Sz =852 A Op fori := 1to4 do (halty(m;[1]) ; (halt(m;[m; last])
A ((@2/55//R:5//)* ; (R<5II V (®32/55//R:5//)))))

where T is the set {t1,1s,15,14}.

. The display of each still is synchronised with the end of the corresponding
audio display. The framing here is more subtle. We cannot compose with the
original S» in Example 2 above, since we deliberately framed S> against any
other video stills occurring in that prefix interval. Hence, we have provided
an alternative S} without framing on the item Ludwig.

ai, as, az :: audio ; fi, fa, fz o still

S, =((fori := 1to3doa;a) A OoLudwig™); -+
S4=S53 A Ofori == 1to3do (ff A halt(a;[a;.last]))

. We synchronise the display of the audio-video with an interval where the
state previous to the first contains the last action of movement 2, and end the
display when the next state contains the first action of the third movement.
In the 20 second interval we either play the entire audio-video, which, if 1t is
less than 20 seconds, will require a (strictly) initial interval, or play as much
of it as we can, using a for loop with a bounded existential quantifier.
type videoaudio = interval

va :: videoaudio

S5 =S4 N Dyafi} (beg(© ma[ms.last]) A halt(Oms[l]) A
((Ovaya) V (Tt <valast) for i := 1 tot do va[ilva))

where {va[i]} is the set of all actions corresponding to va and VA is the set
of all video/audio actions.

In Examples 6 and 7, we have chosen to omit all considerations of framing as
they would confuse matters unduly. We assume that the condition staccato
corresponds to a state variable whose value is supplied by the application.
We assume that each note in the music occupies exactly one state in the
interval.

. C tests if we are in a crescendo by comparing the current volume with the
volume in the previous and next states. The filter operation allows us to
concatenate the crescendo passages as a single interval, over which we then
play the video (of the climbing bug) as often and for as long as we can.

C = (Fx < maxVol) ((vol=2) A (©(vol <z) vV Ovol > x)))
Se =S5 A @ (beg(© aglas.last]) A halt(O mq[my.last]) A
(C filter (video™; (3¢ < video.last) fori := 1 tot¢ do video[d])))

. Point scripting conditions are specified with when. The definition of gets
can be found in [2].

S7=S8¢ A @ (beg(mi[1]) A halt(my[m; last]) A
(32 <(mylen+ 1)((x =1) A (x gets z + 1)) when staccato)

4.3 Serial Composition and Past Operators

In the foregoing we have commented on the issues associated with framing and
parallel composition. These 1ssues do not arise in the case of serial composition
using the ; operator. Assuming P4 does not contain past operators, P4 implies
nothing about the framing of () in the formula P, ; (). Further, the past operators
in the formalism allow a coauthor to create piece a of a document «a ; b without
providing information required by the author of piece b. For example, suppose
that a definition P of “pianissimo” should be displayed exactly once. Instead of
a having to signal b in some way whether or not a presents P, the author of b
could specify if =& P then P.

As afurther example, the author of b could use § (since) to specify (= off) S on
to determine whether or not a map display was left on by a.

© is useful for finding a transition point, that is, a point at which some
property P becomes true: ©=FP A P. Example 6 above provides a specific
example.

5 Related Work

There has been little previous work on applying temporal logic to the field of
electronic publishing. King [10, 11] justify the use of ITL in this area and present
examples. Furuta and Stotts [16, 15] make use of a temporal logic for specifying
and tracing dynamic link paths in hypertext documents. Their logic is somewhat
different from ours, and does not require, for example, any notion of projection,
and their application is also rather different.

In contrast, interval temporal logic has a relatively extensive history, e.g.
[14, 7, 12]. Our work builds upon this body of literature: Mezitl is derived from
the TTL notation defined in [14]; we have used a number of the derived ITL
operators defined in [7] and our proof theory is related to that of [12].

However, in terms of obtaining executability we have taken a rather different
approach to other researchers. Ostensibly there are two approaches to obtaining
executability. Firstly, a restricted logic (without operators such as eventually)
can be used in order that specifications are deterministic and characterise just a
single model. This is the approach employed by [14]. Alternatively, a richer set
of logical operators can be allowed resulting in non-deterministic specifications
having to be accommodated. This is the approach employed by [12] and, to take
a non interval temporal logic example, by [1]. However, the consequence of such
an approach is that more complicated execution strategies must be considered,
in particular, backtracking must be employed. In contrast to these two alterna-
tives, we are considering multi-levelled development strategies in which abstract
Meuitl specifications are refined into concrete specifications. In general terms,
the abstract specifications will be expressed in the full logic, while refinement
entails evolving the specification towards a deterministic executable form. We
are also exploring a constructive approach to this issue [18].

Duan’s [4] approach to interval temporal logic is the closest to ours. Duan’s
work extends Moskowski’s interval temporal logic in a number of respects: (1)

past operators are added, (2) a new projection operator is defined, (3) framing of
variables is investigated, (4) infinite models are incorporated and (5) concurrency
and communication primitives are considered. The last two of these are beyond
the scope of this paper, however, the other extensions are of interest; we consider
each in turn.

1. Past Operators. Firstly, we have incorporated past operators for somewhat

different reasons to Duan. He is motivated by the desire to give an operational
definition of assignment in the presence of framed variables. In contrast, our
interest in past operators has arisen because they simplify certain of our
example specifications. Importantly though, all the past operators that Duan
uses can be defined from our chop in the past operator which, it should be
pointed out, is different from the operator Chopp that Duan uses. These
derivations are included in the full paper [2].
In addition, Duan’s chop (in the future) behaves differently to our chop
in the presence of past operators in its second argument. Our reason for
defining chop in the way we have is to fit with our motivatory examples
and to allow & and O to be defined from it in the usual manner. Duan
loses this interderivability. In addition, Duan’s chop is derivable from ours
as demonstrated in the full paper [2].

2. Projection. Duan defines a new projection operator, denoted prj. His moti-
vation for defining this new operator is in order to model concurrency and
interaction. However we have remained faithful to the original projection
operator of Moskowski [14] which seems much more applicable to our ap-
plication area. Furthermore, we have discovered how to derive Duan’s prj
operator from the standard projection. This derivation is also included in
the full paper [2].

3. Framing of Variables. In the context in which we are working this has not
been important; we have however introduced a notion of framing for actions,
without using a non-monotonic logic.

6 Concluding Remarks

Our paper represents the first step in a programme of work looking towards for-
mally based specification, refinement, prototyping and implementation of mul-
timedia systems using interval temporal logic. We have shown how the Meuxitl
formalism is given a semantics; we have highlighted the fundamentals of a proof
theory and we have shown how to use the formalism in the development of a
substantial example. This is built in a series of steps using the operations of the
logic to combine parts of the specification into a coherent whole.

For the future, we intend to investigate in a number of directions. We aim to
develop the logic of Mezitl, working towards a system which is complete (relative
to the theory of Peano arithmetic). We will also look further at a constructive
implementation of Mexitl; the beginnings of which are reported in [18].

The methodology supported by Mez:itl is also a topic of active interest for us:
we aim to look further at the interaction between conjunction, framing and the

separate development of channels in presentations. This will come from the in-
vestigation of further case studies as well as from looking at the theoretical issues
involved. In particular, we aim to study higher-level languages for multimedia
specification and their translation into the Mezitl logic.

References

1.

10.

11.

12.

13.

14.

15.

16.

17
18

H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM : A
framework for programming in temporal logic. In Lecture Notes in Artificial In-
telligence, vol. 430. Springer—Verlag, 1989.

. H. Bowman, H. Cameron, P. King, and S. Thompson. Mez:itl: Multimedia in Exe-

cutable Interval Temporal Logic. Technical Report 3-97 (Kent), Computing Lab-
oratory, University of Kent, 1997.

D.C.A. Bulterman and L. Hardman. Multimedia authoring tools: State of the art
and research challenges. In Computer Science Today: Recent Trends and Develop-
ments, LNCS, No. 1000, pages 575-591. Springer-Verlag, 1995.

Z. H. Duan. An Fxtended Interval Temporal Logic and A Framing Technique for
Temporal Logic Programming. PhD thesis, Univ. of Newcastle Upon Tyne, 1996.

. R. Erfle. Specification of temporal constraints in multimedia documents using

hytyime. Electronic Publishing, 6(4):397-411, December 1993.

D. Gabbay. The declarative past and imperative future. In Temporal Logic in
Specification. LNCS 389, Springer-Verlag, 1989.

R. Hale. Using temporal logic for prototyping: the design of a lift controller. In Lec-
ture Notes in Computer Science, vol. 379, pages 375-408. Springer—Verlag, 1989.

. L. Hardman, G. van Rossum, and D.C.A. Bulterman. Structured multimedia au-

thoring. ACM Multimedia, pages 283-289, 1993.

ISO 19744. Information Technology — Hypermedia/Time-based Structuring Lan-
guage (HyTime), 1992.

P.R. King. A logic based formalism for temporal constraints in multimedia doc-
uments. In PODP 96, September 1996. Revised version to appear in LNCS,
Springer Verlag.

P.R. King. Modelling multimedia documents. Elec. Pub., 8(2, 3):95-110, 1996.

S. Kono. A combination of clausal and non-clausal temporal logic programs. In
Lecture Notes in Al, vol. 897, pages 40-57. Springer—Verlag, 1993.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

B. Moskowski. Fzecuting Temporal Logic. Cambridge University Press, 1986.
P.D. Stotts, R. Furuta, and J.C. Ruiz. Hyperdocuments as automata: Trace-based
browsing property verification. In Proc. ACM Conf. on Hypertext, pages 272-281.
ACM Press, 1992.

P.D. Stotts, R. Furuta, and J.C. Ruiz. Hyperdocuments as automata: Verifica-
tion of trace-based browsing properties by model checking. ACM Transactions on
Information Systems, 1997. To appear.

S. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.
S. Thompson. Constructive interval temporal logic in Alf. In this volume, 1997.

COVER SHEET

Specification and Prototyping of

Structured Multimedia Documents using
Interval Temporal Logic

Howard Bowman (Kent), Helen Cameron (Manitoba),
Peter King (Manitoba) & Simon Thompson (Kent)

Computing Laboratory,
University of Kent at Canterbury,
Canterbury, Kent, CT2 7NF, United Kingdom

Department of Computer Science,
University of Manitoba,
Winnipeg, Manitoba, R3T 2N2, Canada

{H.Bowman,S.J.Thompson}Qukc.ac.uk
{prking,hacamero}@cs.umanitoba.ca

Area: (2) Specification and Verification

Keywords Interval temporal logic; actions; framing; past operators; se-
mantics; multimedia; case study; Beethoven

Abstract: This paper explores a formalism for describing a wide class
of multimedia document constraints. We outline the requirements on
temporal logic specification that arise from the multimedia documents
application area. In particular, we highlight a canonical document ex-
ample. Then we present the temporal logic formalism that we use. This
formalism extends existing interval temporal logic with a number of new
features: actions, framing of actions, past operators, a projection-like op-
erator called filter and a new handling of interval length. A model theory
and satisfaction relation is defined for the logic and a specification of the
canonical example is presented.

This article was processed using the ¥TEX macro package with LLNCS style

