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the use of ITL to specify multimedia documents and the theory presented herestems from that earlier work.A major di�erence between ITL and standard linear time temporal logic[13] is that it is interpreted over �nite state sequences, called intervals, ratherthan over in�nite models. A number of authors have investigated ITLs, e.g. [14][7] [12] [4]. The restriction to �nite states prompts consideration of a numberof temporal operators not typically found in non-interval temporal logics, e.g.chop and projection. These turn out to be useful in the multimedia documentsapplication domain and will be discussed in Section 3.1.We anticipate that complete speci�cations of multimediadocuments will havea number of elements. An abstract data typing notation will be used to describethe primitive operations/actions of a speci�cation, such as displayCaption orplayVideo. We will not consider this notation here; the speci�cation languagethat we present takes the primitive actions as given. Mechanisms to de�ne com-posite actions out of primitive actions can also be added.We introduce a methodology for developing multimedia artifacts using Mex-itl . Speci�cations are written in the logic, and re�ned according to the rules of thelanguage. Implementations can be developed as either deterministic re�nementsor as proofs of Mexitl formulas interpreted in a constructive logic.Structure of the Paper. The paper is structured as follows. Section 2 reviewsthe requirements associated with multimedia documents, and introduces a typ-ical problem from the �eld. Section 3 presents the speci�cation notation thatwe advocate. The operators of the language are presented, the model theory ishighlighted, and the satisfaction relation is de�ned. Section 4 applies the de�nednotation to the requirements of Section 2. Related work is discussed in Section 5and concluding remarks are presented in Section 6.2 Multimedia Documents RequirementsEre [5] presents a set of eighteen issues, or functional requirements, which areregarded as being su�cient to describe multimedia documents. This set wasobtained by a study of what is provided in many existing authoring systems andstandards. King [10] presents an equivalent set of eight requirements. For thesake of completeness we will provide a summary of these requirements. We divideour summary into two, a set of general requirements, dictated by the authoringaspect of this application, followed by eight individual functional requirements.General Requirements We �rst need to represent the display of a mediaitem, both standard display, where an item is displayed in its normal fashion atits normal rate, and variations, such as displaying at half speed, rewind, fast-forward. We also require facilities for both serial and parallel composition ofsets of constraints. Parallel composition also permits independent developmentof channels [8, 3], which may then be combined so that they occur in the samemultimedia presentation. Our use of the term channel generalises its multimediausage to independent authorship and is akin to the term thread .



Functional Requirements The following eight individual items are required:1. Temporal placement of a media item at an absolute (time) point;2. Speci�cation of the duration of a media item;3. Determination of the start and �nish points of a media item;4. Relative placement of two or more media items;5. Repetitive display of a media item;6. Conditional display of a media item;7. Scripting, that is, using events or conditions occurring in one media item tocontrol the display of a second; and8. Exception handling, that is, controlling error situations which may occurduring the display of a multimedia document.We illustrate these requirements by an informal speci�cation of a fairly elab-orate multimedia document, to be known as the Beethoven Problem. It requiresthe development of a multimedia document containing an audio of Beethoven'sFifth Symphony, opus 67 in c minor, together with various other media itemsto illustrate the music. King [11] presents an earlier version of a portion of thisexample. The seven parts of the Beethoven Problem appear in Figure 1.Beethoven's Fifth Symphony comprises four movements.1. Play the four movements of the symphony in sequence with a gap of 20 secondsbetween each movement.2. Before the symphony, play an audio which announces the name of the symphony,the composer, and the orchestra. Two seconds after this audio starts, display avideo still of Beethoven. Stop the video still display as the �rst movement starts.After the last movement, wait 3 seconds, display a video of Ludwig van Beethoven,and then, after a further 5 seconds, display for 30 seconds information about howto order this presentation.3. At the start of each movement display a video still of a title for 5 seconds; repeatthis 5 second display every 3 minutes during the corresponding movement.4. The audio introduced in 2 is actually in three parts, corresponding to the nameof the symphony, the composer, and the orchestra. During this audio, display, insequence, three video stills containing the same information for an appropriatetime.5. In the twenty second gap between the second and third movements, show avideo/audio display describing the third movement. If this display takes longerthan twenty seconds, truncate it.6. During each crescendo passage of the �rst movement, display a looped video tapeof a bug climbing an inclined plane.7. Count the number of staccato notes in the �rst movement.Fig. 1. The Beethoven Problem.



3 Introduction to MexitlWe present a core language forMexitl , which contains the primitive constructs ofthe notation. Then we describe the model theory underlying the language; thistheory is based upon �nite sequences of states (called intervals) and we de�nethe satisfaction relation.3.1 The Core LanguageExpressions have the following form:E ::= c j v j V j f(E) j mylenwhere c 2 N , v 2 Varstatic, the set of static variables, V 2 Varstate, the set ofstate variables, and f is in a set of assumed functions. In addition, mylen is adistinguished variable which denotes the length of the current interval.P 2 P (the domain of logical propositions) is constructed as follows:P ::= aX j p(E1; :::; En) j E = E j False j P ) P jP ; P jP proj P j P �; P j (9x � E)P j P �lter Pwhere a 2 Act and X � Act is a `framing' set; p is in a set of given predicatesand E is an expression. Much of this logic will be well known to a reader familiarwith interval temporal logic [14]; for instance,{ ; is the sequencing operator, chop, familiar from [14]. An interval satis�esP ; Q if the interval can be divided into two contiguous sub-intervals, suchthat P holds over the �rst subinterval and Q holds over the second.{ proj is the projection operator, also described in [14]. An interval satis�esP proj Q if it can be sub-divided into a series of sub-intervals each ofwhich satis�es P - we call P the projection formula - and a new intervalformed from the end points of the sub-intervals satis�es Q, which we call theprojected formula.The remainder of our operators are not standard, and require more explanation.Actions.Actions inMexitl are atomic, in the sense that they cannot be analysedinto simpler components. Time is discrete, and an action is thought of as takingplace in a single state.In the full paper [2] we consider actions with data attributes; here we con�neourselves to basic actions, written a. We assume that actions are given; theirde�nition is not part of the language. From a logical point of view we can thinkof an action a as an atomic proposition.An action can appear a number of times in an interval, however, each ofthese represents a di�erent instance of the action. At the level of interval states,actions do not have duration. However, durational behaviour can be obtained by



de�ning composite actions, which are a shorthand for the occurrence of multipleprimitive actions. In particular, primitive actions may correspond to indexinginto a composite action. For example, an action video[500] (the 500th frame ofthe video) might be a constituent of the composite action video.Although actions do not have duration, sets of (distinct) actions can occurat the same state. Such sets reect simultaneous lock-step occurrence of theactions. In this sense, the model employs synchronous parallelism.Framing of actions. One aspect which distinguishes our usual perception oflogical propositions and actions is the idea of framing. An assertion of a, wherea is a particular action, is often interpreted as `a and no other action happens'whereas a logical interpretation simply reads this as a happening. The formerinterpretation, in which the action a is \framed", would lead to a non-monotoniclogic were we to adopt it.Instead of this, in our system we subscript the actions with sets X of actions.aX is interpreted as `a happens and none of the other actions in X happens'.The set X thus provides an explicit frame within which the action a takes place.Logically the interpretation of aX is the conjunction of a and :b for all b inX � fag. We add a distinguished action { null { to the set of actions. Thisaction has null e�ect, but can be used for framing purposes thus: nullX .Length and Next. In contrast to the standard approach to ITL we have notincluded the next operator, , directly in Mexitl . However, standard length op-erators and  can be derived from the expression mylen, as follows:len(E) � mylen = E P � (mylen = 1) ; PWe have included mylen as primitive for three reasons. It is useful to be ableto refer directly to the length of an interval when de�ning various propertiesof component parts, such as the two halves into which it is cut by the `chop'operator. Moreover, we use mylen as a bound for existential quanti�cations inderivations of many temporal operators from the core language. Finally, includ-ing mylen allows us to avoid a `next' operator over expressions, thus avoidingexpressions which might be unde�ned.Quanti�cation. In our core language we have included a limited form of exis-tential quanti�cation, namely quanti�cation in which the value of the variable isbounded by (the value of) an expression: (9x � E)P . The e�ect of an existentialquanti�cation is to introduce a new variable in the scope of the quanti�er. Abounded quanti�cation has the property that its satisfaction over a given inter-val remains decidable; this is not the case for unbounded quanti�cation over thenatural numbers.Past Operators.We include a single past operator in Mexitl , chop in the past,denoted �; . An implication of the inclusion of past operators is that the pasthistory of a computation must be recorded; we will show how this is done inSection 3.2. Using such a more sophisticated model theory, P �; Q is satis�ed byan interval such that,



1. P holds over the larger interval resulting frommoving the start of the intervalinto the past, and2. Q holds over the original interval according to a past history that is truncatedat the start of the interval over which P holds.
P
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QIntervals are depicted as line segments with three reference points. The leftmostpoint is the start of time, then moving to the right, the next point is the start ofthe current interval and the �nal point is the end of the current interval. Amongstother things, �; has the e�ect of chopping up the past, in a dual manner to which; divides up the future.The more familiar past operators, since and previous, can be derived fromchop in the past as follows. P �S Q is given byx =mylen ) (((Q ^ mylen > x) ^2(mylen > x) P )) �; True)where 2 is de�ned in Figure 3 and - P � False �S P . In fact, �S is a strongsince operator. The de�nition of strong since enables previously to be derived;weak since can also be derived in standard fashion. The incorporation of pastoperators is a signi�cant departure from standard interval temporal logic. Themotivation for their inclusion is that the speci�cation of a number of examplesis made substantially easier.Filter. In �ltering we have a variant of projection ( proj ). P �lter Q has thee�ect of selecting all points which begin an interval over which the property Pholds; the formula holds if over this new interval the property Q is true. In thefollowing illustrative �gure, propositions are associated with the initial point ofthe interval over which they hold.
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P�lter generalises when as de�ned in [7]; in Hale's de�nition (based on proj )the property P needs to be a local property, that is, one without temporal oper-ators. We see the generalisation as valuable { it allows us to express propertiesof the form `whenever a musical performance is within 5 minutes of the end of amovement, show some more of a video sequence' (see for example Part 6 of the



Beethoven example presented in Section 2) { but we see no way of deriving itfrom the other Mexitl operators.Types and de�nitions. We use a simple mechanism for naming types andvalues in the remainder of the paper. Note that `::' is used to mean `is of type', andthat de�nitions of types and values are not allowed to be (mutually) recursive.3.2 SatisfactionThe order of presentation of this section is as follows. First we describe com-putation structures, which enhance intervals in order that past operators canbe handled. Then we consider the interpretation of expressions and �nally, wedescribe the satisfaction relation for the main temporal operators.The major di�erence between our interpretation of Mexitl and the standardinterpretations of interval temporal logics, to be found in [14] [7], for example,is that our satisfaction relation embraces past operators. Consequently, the se-quence of states that have already been passed through must be recorded. Thisrecord is obtained by de�ning our satisfaction relation over what we call com-putation structures. These computation structures are pairs, (�; i) where, in thenormal way, � is a sequence of states, with length j�j, i.e., � = �0; �1; :::; �j�j (werefer to this as the interval) and i is the point of reference. The point of referenceidenti�es the past states of the computation (the history) and the interval undercurrent consideration (the current interval). We introduce notation for pre�xand su�x of intervals,[�]i = �0; :::; �i (�)i = �i; :::; �j�jSince we have actions, our states are slightly more sophisticated than thoseof standard interval temporal logic. Speci�cally, each state �i is a pair; the �rstcomponent of the pair Ai is a set of actions and the second componentDi recordsthe current data state; it is a �nite function from variables to data values (whichcome from N , the natural numbers).Expressions are interpreted in a standard manner apart from the operatormylen, which is interpreted as follows:[[mylen]](�;i) = j�j � iOur satisfaction relation, j=, interprets Mexitl propositions over computationstructures. The notation (�; i) j= P denotes that the computation structure(�; i) satis�es the proposition P . The most important clauses of the de�nition ofsatisfaction are in Figure 2; others which are standard can be found in [2].Note that we say that �0 'x;E � if � and �0 are the same length and theyhave the same value on all actions and variables except (perhaps) x, and that ateach point the value of x is less than or equal to the corresponding value of E.An arbitrary Mexitl proposition is interpreted relative to a zero point ofreference. Thus, we de�ne that an interval � satis�es a proposition P if andonly if (�; 0) j= P . In addition, in the usual way, we state that P is valid if and



(�; i) j= aX i� a 2 Ai and 8x 2 X � fag x 62 Ai(�; i) j= P1;P2 i� 9k 2 N (i � k � j�j and ([�]k; i) j= P1 and (�; k) j= P2)(�; i) j= P1 proj P2 i� 9m 2 N and 9�0; �1; :::; �m 2 N(i = �0 < �1 < ::: < �m = j�j and8j < m (([�]�j+1 ; �j) j= P1) and([�]i�1:��0��1 :::��m ; i) j= P2)(�; i) j= P1 �; P2 i� 9k (0 � k � i and (�; k) j= P1 and ((�)k; i� k) j= P2)(�; i) j= (9x � E)P i� (�0; i) j= P for some �0 'x;E �(�; i) j= P1 �lter P2 i� 9�0; �1; :::; �m 2 Ni � �0 < �1 < ::: < �m � j�j and8j < m ((�; �j) j= P1) and8k; i � k � j�j ^ (�; k) j= P1 implies k = �j for some j and([�]i�1:��0��1 :::��m ; i) j= P2)or no points satisfy P1Fig. 2. Satisfaction for Mexitlonly if for all � in I, (�; 0) j= P , where I denotes the set of all possible intervals.If P is valid we write j= P .[2] de�nes a full set of ITL derived operators from Mexitl . Due to spaceconsiderations we can only include the operators that we use in the Beethovenexample of Section 4. These operators are presented in Figure 3.3.3 Reasoning about MexitlWe have developed a range of proof rules for the Mexitl logic. Details of theseare given in [2]. The rules include{ characterisations of the basic operators of the language, such as[P6] ((P proj R) _ (Q proj R))) ((P _Q) proj R){ derivation of common theorems of temporal logic from the de�nitions ofoperators given in [2];



3tP � mylen = t ; P 3P � True ; P 2P � :3:P3i tP � P ; mylen = t 3i P � P ; True 3i XP � P ; null�X3i �tP � P ; mylen � t 3a P � True ; P ; True P � � P proj Truebeg P � (len(0) ^ P ) ; True halt P � 2(P , len(0))haltX P � 2(P , len(0) _ beg(nullX)) �n P � 2(len(0)) P )for i := 1 to E do P � i := 1 ; ((P ^ i i+ 1 ^ i � E)� ^ �n(i > E))P when Q � :3Q _ (halt(Q) ; (halt(Q) proj P ) ; keep(:Q))Fig. 3. Derived Operators{ a characterisation of the framing of actions discussed earlier. From an ac-tion aX we can deduce a and :b for all b in X � fag; the occurrence oftwo actions in X simultaneously results in a contradiction, and hence anunimplementable speci�cation.The rules have a number of purposes:{ Implication formalises re�nement, so that a rule such as [P6] shows that asound re�nement of (P_Q) proj R is given by a choice between (P proj R)and (Q proj R).{ We can use the rules to reason about speci�cations.{ Using the rules we can aim to �nd a normal form for Mexitl formulas (alongthe lines of Gabbay's work [6]) which may form the basis for an implemen-tation of the language.We do not claim that the logic we present is complete; we know of no completeaxiomatisation of interval temporal logic with projection. Kono claims such anaxiomatisation in unpublished work, but we have discovered that one of the rulesin that system is unsound. See [2] for more details.4 Applying MexitlWe show how Mexitl can be employed for multimedia documents. We �rst de-scribe a development methodology forMexitl and then we show how the individ-ual functional requirements are met by providing a complete formal speci�cationof the Beethoven problem of Figure 1.4.1 The Mexitl Development MethodologyThe Mexitl interval temporal logic is designed to support the speci�cation, de-sign, prototyping and implementation of multimedia systems. Various aspects ofthe system are useful in di�erent ways.



{ The logical rules mentioned in Section 3.3 and [2] underpin a re�nementstrategy for speci�cation development. A speci�cation S1 is re�ned by thespeci�cation S2 if S2 implies S1, that is if S2 ) S1 is valid. For instance, ifP 0 ) P and Q0 ) Q thenP 0 proj Q0 ) P proj Qwhich states that we can re�ne a projection by re�ning either of its con-stituent formulae.We might, for instance, be more speci�c about the subdivi-sion of an interval in a projection and replace True by len(2) inTrue proj Q,which is acceptable since len(2) ) True. In a similar way we can re�ne aspeci�cation by conjoining other constraints into it. This meets our formalde�nition of re�nement since A ^B ) A for any A and B.{ A speci�cation written in Mexitl can be prototyped in two ways.� A general interval formula can be thought of as a non-deterministic de-scription of an interval, since in general it will describe a collection ofintervals rather than a single interval. A re�nement of a speci�cationwill be more deterministic, in that it describes fewer intervals, and wecan thus see the process of re�nement as moving towards a deterministicspeci�cation implementable in standard ways.� Alternatively, taking a constructive view of logic as expounded in [17], wecan view formulas of temporal logic as speci�cations with proofs beingimplementations. Preliminary work in this direction, which implementsinterval temporal logic in the Alf system, is reported elsewhere [18].{ As our �rst point suggested, we can build re�nements of speci�cations bymeans of conjunction: we can think of this as a parallel composition, incontrast to the sequential composition given by chop.If our actions are framed by giving an explicit framing set, as in aX , thenactions provide a means of synchronising between di�erent conjuncts. Forexample in,(aX ;bX ;cX ) ^ (True;bX ;True)where the framing set X is fa; b; cg, the only interval satisfying this formulamust be one in which the b action in the second conjunct happens at the samepoint as the b action in the �rst conjunct. We achieve this synchronisationwithout adding any speci�c machinery for that purpose. We are also activelyexploring the role that framing plays in the separate development of aspectsof multimedia documents.{ We also conclude from our exploration of the sequence of examples in Section4.2 that the Mexitl language is a low-level mechanism for representing suchpresentations; we aim to investigate higher-level approaches for which Mexitlas presented here might play the role of an intermediate language.We introduce a methodology for developing multimedia artefacts using Mexitl .Speci�cations are written in the logic, and re�ned according to the rules of thelanguage. Implementations can be developed as either deterministic re�nementsor as proofs of Mexitl formulas interpreted in a constructive logic.



4.2 Speci�cation of Beethoven ExampleWe begin with a type de�nition of a symphony with four movements.type symphony4 = (movement, movement, movement, movement)type movement = interval { a �nite interval of actionsm1, m2, m3, m4 :: movementThese de�nitions allow us to use m1, m2, etc. both as intervals in Mexitl for-mulae, and also as sequences of primitive actions into which we can index. Wedistinguish two elements of these sequences, mi[1] and mi[mi:last], where lastis a prede�ned constant stating how many actions there are in such a sequence.The constants m1, m2, m3 and m4 are assumed to be set to the contents of thecorresponding movements. In addition, the association of a framing set with acomposite action, e.g. m2 X , implicitly frames all the primitive actions involvedin the composite action, e.g. m2[5]X.We now give a Mexitl speci�cation of each part of the Beethoven problem asgiven in Figure 1.1. In this speci�cation, we frame each movement against any (other) actionsfrom the set of actions comprising the four movements. The bounded tem-poral operator 32000 is also framed to prevent any of the actions M from anyof the movements from playing during the 20 second intervals.S1 � m1M ; (for i := 2 to 4 do 32000 M mi M )where M is the set of all all audio actions forming m1, m2, m3 and m4.2. We compose the items at the beginning and end of the presentation in aserial fashion and express the �rst of these as a parallel composition of twosub-channels. The video still itself is speci�ed as the repetition (�) of anelementary one-state action displaying a picture of Beethoven.type still = action ; audio, video = intervala1 :: audio ; Ludwig, orderinginfo :: still ; lvb :: videoS2 � (a1 A ^ (3200 SLudwig�S)) ; S1 ;(3300 V lvbV ) ; (3500 S(OrderingInfo�S ^ len(3000)))where A is the set of audio actions, S is the set of still image actions, andV is the set of video image actions.3. For each of the four movements we use halt(mi[1]) and halt(mi[mi:last])to synchronise with the start and �nish of each movement mi. Actions areframed against the corresponding class of actions so as to avoid unwantedbehaviour. Note that the earlier framing of actions in S1 ensures, for example,that the occurrence of the �rst action in m1 is uniquely de�ned.t1; t2; t3; t4 :: still { the four titlesR=500 � (t�i T ^ len(500)) { repeat title for exactly 5 seconds



R<500 � (t�i T ^ less(500)) { repeat title for less than 5 secondsS3 � S2 ^ 3i T for i := 1 to 4 do ( haltT (mi[1]) ; (halt(mi[mi:last])^ ((3i 205500R=500)� ; (R<500 _ (3i �205500R=500))) ) )where T is the set ft1; t2; t3; t4g.4. The display of each still is synchronised with the end of the correspondingaudio display. The framing here is more subtle. We cannot compose with theoriginal S2 in Example 2 above, since we deliberately framed S2 against anyother video stills occurring in that pre�x interval. Hence, we have providedan alternative S02 without framing on the item Ludwig.a1, a2, a3 :: audio ; f1, f2, f3 :: stillS02 � ((for i := 1 to 3 do ai A) ^ 32Ludwig�) ; � � �S4 � S3 ^ 3i for i := 1 to 3 do (f�i ^ halt(ai[ai:last]))5. We synchronise the display of the audio-video with an interval where thestate previous to the �rst contains the last action of movement 2, and end thedisplay when the next state contains the �rst action of the third movement.In the 20 second interval we either play the entire audio-video, which, if it isless than 20 seconds, will require a (strictly) initial interval, or play as muchof it as we can, using a for loop with a bounded existential quanti�er.type videoaudio = intervalva :: videoaudioS5 � S4 ^ 3a fva[i]g(beg(- m2[m2:last]) ^ halt(m3[1]) ^((3i vaVA) _ (9 t � va.last) for i := 1 to t do va[i]VA))where fva[i]g is the set of all actions corresponding to va and VA is the setof all video/audio actions.In Examples 6 and 7, we have chosen to omit all considerations of framing asthey would confuse matters unduly. We assume that the condition staccatocorresponds to a state variable whose value is supplied by the application.We assume that each note in the music occupies exactly one state in theinterval.6. C tests if we are in a crescendo by comparing the current volume with thevolume in the previous and next states. The �lter operation allows us toconcatenate the crescendo passages as a single interval, over which we thenplay the video (of the climbing bug) as often and for as long as we can.C � (9x � maxVol) ((vol = x) ^ (- (vol < x) _ (vol > x)))S6 � S5 ^ 3a ( beg(- a3[a3:last]) ^ halt( m1[m1:last]) ^(C �lter (video� ; (9 t � video.last) for i := 1 to t do video[i])))7. Point scripting conditions are speci�ed with when. The de�nition of getscan be found in [2].S7 � S6 ^ 3a ( beg(m1[1]) ^ halt(m1[m1:last]) ^(9 x � (mylen+ 1)((x = 1) ^ (x gets x+ 1)) when staccato )



4.3 Serial Composition and Past OperatorsIn the foregoing we have commented on the issues associated with framing andparallel composition. These issues do not arise in the case of serial compositionusing the ; operator. Assuming PA does not contain past operators, PA impliesnothing about the framingofQ in the formulaPA ; Q. Further, the past operatorsin the formalism allow a coauthor to create piece a of a document a ; b withoutproviding information required by the author of piece b. For example, supposethat a de�nition P of \pianissimo" should be displayed exactly once. Instead ofa having to signal b in some way whether or not a presents P , the author of bcould specify if :3- P then P .As a further example, the author of b could use S (since) to specify (: o�) S onto determine whether or not a map display was left on by a.- is useful for �nding a transition point, that is, a point at which someproperty P becomes true: - :P ^ P . Example 6 above provides a speci�cexample.5 Related WorkThere has been little previous work on applying temporal logic to the �eld ofelectronic publishing. King [10, 11] justify the use of ITL in this area and presentexamples. Furuta and Stotts [16, 15] make use of a temporal logic for specifyingand tracing dynamic link paths in hypertext documents. Their logic is somewhatdi�erent from ours, and does not require, for example, any notion of projection,and their application is also rather di�erent.In contrast, interval temporal logic has a relatively extensive history, e.g.[14, 7, 12]. Our work builds upon this body of literature: Mexitl is derived fromthe ITL notation de�ned in [14]; we have used a number of the derived ITLoperators de�ned in [7] and our proof theory is related to that of [12].However, in terms of obtaining executability we have taken a rather di�erentapproach to other researchers. Ostensibly there are two approaches to obtainingexecutability. Firstly, a restricted logic (without operators such as eventually)can be used in order that speci�cations are deterministic and characterise just asingle model. This is the approach employed by [14]. Alternatively, a richer setof logical operators can be allowed resulting in non-deterministic speci�cationshaving to be accommodated. This is the approach employed by [12] and, to takea non interval temporal logic example, by [1]. However, the consequence of suchan approach is that more complicated execution strategies must be considered,in particular, backtracking must be employed. In contrast to these two alterna-tives, we are considering multi-levelled development strategies in which abstractMexitl speci�cations are re�ned into concrete speci�cations. In general terms,the abstract speci�cations will be expressed in the full logic, while re�nemententails evolving the speci�cation towards a deterministic executable form. Weare also exploring a constructive approach to this issue [18].Duan's [4] approach to interval temporal logic is the closest to ours. Duan'swork extends Moskowski's interval temporal logic in a number of respects: (1)



past operators are added, (2) a new projection operator is de�ned, (3) framing ofvariables is investigated, (4) in�nite models are incorporated and (5) concurrencyand communication primitives are considered. The last two of these are beyondthe scope of this paper, however, the other extensions are of interest; we considereach in turn.1. Past Operators. Firstly, we have incorporated past operators for somewhatdi�erent reasons to Duan. He is motivated by the desire to give an operationalde�nition of assignment in the presence of framed variables. In contrast, ourinterest in past operators has arisen because they simplify certain of ourexample speci�cations. Importantly though, all the past operators that Duanuses can be de�ned from our chop in the past operator which, it should bepointed out, is di�erent from the operator Chopp that Duan uses. Thesederivations are included in the full paper [2].In addition, Duan's chop (in the future) behaves di�erently to our chopin the presence of past operators in its second argument. Our reason forde�ning chop in the way we have is to �t with our motivatory examplesand to allow 3 and 2 to be de�ned from it in the usual manner. Duanloses this interderivability. In addition, Duan's chop is derivable from oursas demonstrated in the full paper [2].2. Projection. Duan de�nes a new projection operator, denoted prj . His moti-vation for de�ning this new operator is in order to model concurrency andinteraction. However we have remained faithful to the original projectionoperator of Moskowski [14] which seems much more applicable to our ap-plication area. Furthermore, we have discovered how to derive Duan's prjoperator from the standard projection. This derivation is also included inthe full paper [2].3. Framing of Variables. In the context in which we are working this has notbeen important; we have however introduced a notion of framing for actions,without using a non-monotonic logic.6 Concluding RemarksOur paper represents the �rst step in a programme of work looking towards for-mally based speci�cation, re�nement, prototyping and implementation of mul-timedia systems using interval temporal logic. We have shown how the Mexitlformalism is given a semantics; we have highlighted the fundamentals of a prooftheory and we have shown how to use the formalism in the development of asubstantial example. This is built in a series of steps using the operations of thelogic to combine parts of the speci�cation into a coherent whole.For the future, we intend to investigate in a number of directions. We aim todevelop the logic ofMexitl , working towards a system which is complete (relativeto the theory of Peano arithmetic). We will also look further at a constructiveimplementation of Mexitl ; the beginnings of which are reported in [18].The methodology supported byMexitl is also a topic of active interest for us:we aim to look further at the interaction between conjunction, framing and the
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