
On Behavioural Subtyping inLOTOS �H. Bowman1, C. Briscoe-Smith1, J. Derrick1 and B. Strulo21Computing Lab., Univ. of Kent, Canterbury, Kent, CT2 7NF, UK2BT Laboratories, Martlesham Heath, Ipswich, IP5 7RE, UKEmail: fH.Bowman,cpb4,J.Derrickg@ukc.ac.uk & bstrulo@srd.bt.co.uk
AbstractWe consider how the OO notion of subtyping relates to lotos testing the-ory. In particular, we investigate which of the standard lotos preorders isa suitable instantiation of behavioural subtyping and argue that each of themain preorders, trace preorder, trace extension, reduction and extension, is insome way de�cient. Then, in the light of pre and post condition based modelsof OO subtyping, we re-work the basic interpretation applied to lotos be-haviour descriptions. We argue that this re-interpretation enables reductionto be used as an instantiation of behavioural subtyping.1 INTRODUCTIONThis paper investigates possible de�nitions of behavioural subtyping in theprocess algebra lotos. Interest in this topic is motivated from a numberof important areas of current research. Behavioural subtyping impacts onresearch concerned with,1. enhancing the speci�cation and development capabilities of process algebraby incorporating features of object oriented methodologies [MC93];2. providing a theoretical basis for concurrent OO programming and models ofso called active objects , which are objects that exhibit non-uniform serviceavailability [Nie95]; and3. enhancing existing formal description techniques in order that they can beapplied to the new generation of distributed systems, which are typicallyobject oriented [BDLS95].In all these areas subtyping plays a pivotal role in obtaining incrementalsystem development, with its relationship to di�erent inheritance mechanismsbeing crucial. The third of these areas has particularly motivated the workpresented here. Central to object oriented programming platforms such asCORBA, the TINA DPE (Distributed Processing Environment) and the ODP�The research presented here has been partially supported by British TelecommunicationsResearch Labs, through their funding of Charles Briscoe-Smith's PhD studentship.c
IFIP 1996. Published by Chapman & Hall

(Open Distributed Processing) Computational Model is the notion of trading .A trader is a distinguished object used in order to locate required services.It accepts service o�ers from objects, and maintains a database of currentlyavailable o�ers. When an object wishes to �nd a service, it performs an importoperation on the trader, specifying what kind of service it wants, and receivescopies of a number of service o�ers in reply.When a client sends a description of the service it wants to the trader,the trader must somehow match this to the o�ers it has in its database. If itcannot �nd an o�er exactly matching the requested service, it should look foro�ers of similar services, providing all the facilities that the client wanted, butpossibly having other facilities that the client will not use. It is looking for aservice which has a superset of the operations the client asked for, which theclient could use without knowing that it was any di�erent from the servicetype it requested. In fact, the relationship between the service requested andthe service returned by the trader should be subtyping.The concept of subtyping is familiar from object oriented programminglanguages[FM94], It is de�ned as substitutability: type A is a subtype of type Bi� objects of type Amay be used in any situation where an object of type B wasexpected, without the object's environment being able to tell the di�erence.Thus, an object of any particular type can masquerade as, or stand in for, anobject of any of its supertypes. Subtyping is naturally a re
exive and transitiverelation, i.e. a preorder.However, the state of the art in service matching for trading is signature-based subtyping. Unfortunately, such matching is not rich enough to ensurethe safety of object interactions in a heterogeneous distributed processing en-vironment. For example, two object types may have methods with the samename but quite di�erent meaning. To take a rather frivolous example, considerthe analogy of an artist and a cowboy. Both are able to perform an operation\draw," but the results in each case will be rather di�erent. Thus, it is possiblethat although signatures match, compatibility in terms of the behaviour of ser-vices is not obtained. The insu�ciency of purely signature based approachesis witnessed by the increasing interest within OMG for adding behaviouralproperties to CORBA IDL.What is actually required is a more powerful interpretation of matchingbased on (stronger) behavioural notions of subtyping (in ODP terms be-havioural compatibility). Determining suitable interpretations of behaviouralsubtyping is the subject matter of this paper.As our notation for describing the behaviour of service types we use theprocess algebra lotos. There are a number of reasons for this choice, notleast the role of lotos as a formal description technique for open distributedsystems and the accepted bene�ts of the process algebra approach [Mil89].However, a further bene�t of considering lotos is that a wealth of correct-ness relations exist, many of which are related to substitutibility and hencebehavioural subtyping. From this domain the testing theories are of particu-

lar relevance. In such theories speci�cations are related if they pass the sametests.Testing theory is an extremely rich �eld. In fact it is possible to place thespectrum of process algebra correctness relations (at least those based uponinterleaving models of concurrency) in a hierachy of strength, i.e. in termsof their level of discrimination [vG93]. The relative strengths of particularcorrectness relations is tied to the intrusive capabilities of the tester to observethe speci�cation. In this paper we will use a standard notion of testing in whichthe tester has the power of a standard lotos process (no additional operatorsare added to the testing language). Since clients in the OO setting will belotos processes this seems a sensible choice. The testing theory induces apreorder that, for the moment, we will call compatibility :S1 is compatible with S2 i� for all �nite sets of observable actions G andprocesses P , S1 j[G]j P �=) � stop implies S2 j[G]j P �=) � stop.where j[G]j is the lotos parallel composition operator,� is weak bisimulationequivalence, stop is the deadlock process, � is a trace of observable actionsand relation composition is denoted by juxtaposition�. This notation will beclari�ed shortly, but informally, the condition states that S1 is compatiblewith S2 if and only if, for all possible testers, if S1 can perform a trace �and then deadlock, then under the control of the same tester S2 can perform� and then deadlock. Thus, even more informally, S1 does not add any newdeadlocks to those that can arise from S2.In terms of OO and subtyping, in the above de�nition,G re
ects the possibleinterfaces between S1 and the tester, i.e. the actions that they can communi-cate via, and P re
ects possible client speci�cations/programs. We argue thatthis condition is the basis for an intuitively sensible instantiation of subtypingin the process algebra setting. In OO terms the de�nition states that,S1 is a subtype of S2 if and only if any client (tester) using S1 according toany interface (synchronisation set) can only observe a trace and then observea deadlock if the client could observe the same trace and a deadlock if it wasusing S2 (with the same interface) �.From amongst the lotos correctness relations, red (reduction) is the mostimportant. In particular, modulo handling of divergence, red corresponds tofailures divergences re�nement [Hoa85] and testing preorder [Hen88], whichare the principle notions of re�nement used in CSP and CCS (respectively).However as it stands, reduction is not a su�cient de�nition of subtyping. Thisis because subtyping in the OO context allows extension of functionality , e.g.a subtype can o�er more operations than its supertype.�i.e. S j[G]j P �==) � stop means 9Q : S j[G]j P �==)Q ^ Q � stop�Since we test against all possible clients (and not just those that have a subset of theoperations of S2) we get a strong notion of subtyping. We believe that this strength isnecessary, e.g. when objects are being concurrently interacted with.

In the process algebra setting extending functionality implies addition oftraces. However, reduction enforces a trace subsetting property and thus, doesnot allow functionality to be extended. In response to this observation a num-ber of previous workers [Rud91] [CRS89] [Nie95] have based their interpreta-tion of subtyping upon an alternative relation: the extension relation (ext)[BS86]. However, we will argue against using this relation; rather we will showhow to re-interpret lotos speci�cations in order that reduction is the appro-priate relation.Section 2 presents background on lotos and outlines how aspects of lo-tos can be related to OO concepts. Section 3 relates the spectrum of lotosre�nement relations to behavioural subtyping. Section 4 considers the char-acteristics of behavioural subtyping in OO speci�cation and programminglanguages and then shows how lotos processes can be transformed in orderto re
ect these characteristics. Then section 5 highlights a simple techniquefor transforming lotos speci�cations according to this new interpretation.Finally, section 6 summarises and concludes the paper.2 BACKGROUNDLOTOS. We use a subset of full lotos [BB88]:P ::= stop j a; P j P []P j P j[G]jP j choice a 2 A [] P j Xwhere a 2 Act [fig (Act contains all observable actions and i is the dis-tinguished hidden action). Thus, our notation has a deadlock process stop,action pre�x a; P , binary choice P []P , parallel composition P j[G]jP , gener-alised choice choice a 2 A [] P and reference to a process variable X , throughwhich recursion can be de�ned. Process de�nitions have the form, X := P .We do not include the other basic LOTOS operators, hiding, relabelling,disabling and enabling. This is not because they bring any technical di�cul-ties, but rather to simplify the presentation.We also assume some semantic constructions. In the following P; P 0; Q;Q0stand for processes. L is the alphabet of observable actions associated witha certain process (we will write L(P) when we need to be explicit about theprocess we are referring to). The standard semantics for lotos [ISO87] maplotos processes to Labelled Transition Systems (LTSs) using a structuredoperational semantics. We will not repeat these inference rules. However, instandard fashion, we denote transitions as: P a�!P 0, meaning that P canperform an a and evolve to P 0. Furthermore, L� denotes traces over L, � 2 L�denotes the empty trace and � ranges over L�. We assume the followingde�nitions:�=) ; the re
exive and transitive closure of i�! ;P a�==)P 0 i� 9Q;Q0 � P �=)Q a�!Q0 �=)P 0;

P �=) i� 9P 0 � P �=)P 0;P �=6) i� :(9P 0 � P �=)P 0);Tr(P) = f� 2 L� j P �=)g; the set of traces of P ;P after � = fP 0 j P �=)P 0g; the set of states reachable from P by �;Ref(P; �) = fX j 9P 0 2 (P after �) :8a 2 X : P 0 a=6) g; refusals of P after �.initials(P) = f a 2 L j a 2 Tr(P) g.Relating OO Concepts to LOTOS. Before we consider subtyping it isworth clarifying how lotos speci�cations relate to OO concepts. This sectionhighlights some basic relationships.Class. A class describes the common behaviour of a set of objects. As notedby a number of authors, e.g. [DEBS96] [Smi95] [Rud91], in lotos the naturalcounterpart to a class is a process de�nition. This describes the commonbehaviour of instantiations of the process de�nition.Object. In OO programming objects are instantiations of a class. Thus, asimple interpretation of instantiation in lotos is as process instantiation.However, more sophisticated interpretations of object instantiation can alsobe given. For example, [Rud91] [CRS89] interpret instantiation as the lo-tos implementation relation conf (which is the lotos conformance relation).Thus, any process that conforms to the speci�cation of a class is seen as aninstantiation of the class. Although conf has a number of undesirable prop-erties as an implementation relation, in principle such an interpretation ofinstantiation is much richer and more
exible than simple process instanta-tion. In particular, when working in a behavioural setting it seems sensible tointerpret instantiation in behavioural terms rather than as a purely syntacticinstantiation. Although we will not need to consider this issue of instantiationfurther in this paper, implicitly instantiations in our setting will be relatedto their class de�nition much more strongly than by conf; perhaps by testingequivalence.Operations. The basic units of interaction between objects are operations, alsocalled method invocations, member function calls, or feature calls. In processalgebra, the basic units of interaction between processes are actions. Thea�nity between these two concepts is witnessed by the number of workersin this area who have related the two: [Nie95] [Rud91] [CRS89] [DEBS96][Smi95].However, it should be pointed out that this similarity may not be exact,since process algebra actions are considered to be atomic, whereas in manyOO models operations have duration. The assumption of atomicity is highlysigni�cant in the process algebra setting as it justi�es the modelling of con-currency as interleaving. Non-atomic interpretations of actions lead to morecomplex semantic theories. A simplifying assumption that Nierstrasz makes[Nie95] is only to model method requests. Such an assumption e�ectivelyjusti�es an atomic interpretation of actions when modelling operations. In

accordance with this majority of workers we will also enforce a simplifyingatomic interpretation of actions/operations.Finally, the parameters of operations may be modelled using lotos's datapassing attributes, \!" and \?".Interface. An object oriented class de�nition will usually contain a statementof the interface to objects of that class: usually a list of calls which may bemade on the objects. The lotos equivalent is the set of all non-hidden actionsin the process de�nition.The above are only the most basic correspondences; there are many morewhich can be made. For example, Rudkin[Rud91] describes how inheritanceand self might be introduced into lotos and Najm and Stefani [NSF94]consider how object mobility may be obtained. The interested reader is alsoreferred to part IV of [ITU95] which relates OO modelling concepts to lotosconstructs in the ODP setting.3 RELATING LOTOS RELATIONS AND SUBTYPINGIn this section, we attempt to locate an interpretation of behavioural sub-typing from amongst the existing lotos correctness relations. Firstly, sincesubtyping is re
exive and transitive, but not symmetric (a symmetric relationwould suggest substitutability in both directions, which is too strong), we willonly consider the preorder relations. This choice rules out the equivalencesweak bisimulation (�), strong bisimulation (�), testing equivalence (te) andtesting congruence (tc) and the implementation relation conf, which is nottransitive.Trace Subsetting and Supersetting.We �rst consider trace preorder, oneof the simplest correctness relations. The fact that P1 is a trace re�nementof P2 is de�ned as (notice the order that we write re�nement, this contrastswith some other workers), P1 �tr P2 i� Tr(P1) � Tr(P2). This relation isclearly inappropriate since it does not allow P1 to have any more traces thanP2, which contradicts the extension of functionality involved in subtyping.An alternative to �tr is trace extension: P1 �tre P2 i� Tr(P1) � Tr(P2).This does allow new operations to be added and, in fact, is the interpretationof subtyping used in [Pun96]. In Puntigam's work, trace extension serves as avalid check for type safety. Where in this context, type safety ensures that thesubtype can understand all operations that the supertype can. However, therelation is not a suitable instantiation of the stronger notion of behaviouralsubtyping since it allows deadlocks to be added. For example, if X and Y arede�ned as,X := a; stop [] b; stop Y := a ; stop [] b; stop [] i ; stopthen Y �tre X . However, Y is not a behavioural subtype of X . When placed

in synchronisation with the process \a ; stop", X will do action a , but Y maydo a , or may do an internal action and then deadlock. If Y deadlocks in asituation where X would not, Y is distinguishable from X and is thereforenot a subtype of/compatible with X . In fact, the same criticsm can be levelledat all solely trace based correctness relations, including trace preorder.Reduction. Reduction[BS86] is a more discriminating re�nement relationthat adds consideration of liveness properties to trace preorder. Its de�nitionis, P1 red P2 i� Tr(P1) � Tr(P2) ^ 8� 2 Act* . Ref(P1,�) � Ref(P2,�)(that is, P1 reduces P2 i� P1 �tr P 2 and, after any trace, P1 does not refusemore than P2). Interpreting re�nement as reduction corresponds to viewingdevelopment as reduction of non-determinism. In addition, in terms of ourgeneral testing constraint, the property we called compatibility in section 1,we have the following result�:Theorem 1 For all processes P1, P2, P and G � Act, the following areequivalent:1. P1 red P22. P1 j[G]j P �=) � stop implies P2 j[G]j P �=) � stop.Thus, reduction ensures the deadlock property we are seeking. However, asdiscussed in section 1, it fails to allow extension of functionality. So, as itstands, reduction is not a suitable instantiation of subtyping.Extension. Since extension[BS86] is sensitive to deadlock properties and sup-ports extension of functionality, it appears at �rst sight to be an ideal can-didate for the subtyping relation. This is witnessed by the large number ofworkers who have used it as the basis for de�nitions of subtyping [CRS89][Rud91] [Nie95]. Its de�nition is,P1 ext P2 i� Tr(P1) � Tr(P2) ^ 8� 2 Tr(P2) . Ref(P1,�) � Ref(P2,�)(that is, P1 extends P2 i� P1 �tre P2 and, after any trace that P2 can do, P1does not refuse more than P2). Consider two lotos processes, X and Y :X := a ; stop [] b; stop Y := a ; stop [] b; stop [] c; stopReferring to the de�nition of ext, we see that Y ext X . Y can do every trace�This is actually a slightly stronger result than that proved in [BS86], since we do notrequire trace subsetting between P1 and P2. However, this stronger result can be veri�edwith minor changes (involving taking a larger synchronization set) to Brinksma et al's proof.

that X does (and more), and, after any trace that X can do, X refuses atleast everything that Y refuses. Conceptually Y de�nes a class which addsan operation to class X , viz. the action c. Thus, extension enables interfaceenlargement.Unfortunately extension does not ful�l our requirements for behaviouralsubtyping. In particular, extension does not guarantee the de�nition of com-patibility that we gave in section 1. For example, the tester c; stop withsynchronization set fcg serves as a counterexample since,Y j[c]j c; stop c=) � stop but, X j[c]j c; stop c=6)Extension only satis�es the following more restrictive theorem, which is provedin [BS86],Theorem 2 For all processes P1, P2, P ; G � L(P2) and Tr(P1) � Tr(P2),the following are equivalent:1. P1 ext P22. 8� 2 Tr(P2), P1 j[G]j P �=) � stop implies P2 j[G]j P �=) � stop.Thus, extension only ensures compatibility when restricting to traces of thesupertype. However, we require the stronger compatibility property that washighlighted in section 1.Another way of looking at this problem is that our de�nition of behaviouralsubtyping is based on the principle that a subtype must be usable in any situa-tion where the supertype could be used, and not be seen to behave di�erently.If we have a process which may be a X or a Y , we can detect which it is bytrying to perform the action c on the process. If the c is accepted, we have Y ,but if c is refused, we must have X . Since it is possible to tell that we havea Y , our de�nition of behavioural subtyping tells us that Y is not a subtypeof X .Interestingly, this problem with extension is one that Nierstrasz has ob-served [Nie95]. His illustrative example is that of a one place bu�er supertypeand a deleting bu�er subtype. We can express his example in lotos as follows:Buf1 := put; get;Buf1 and DelBuf := put; (get;DelBuf [] del; stop)Thus, DelBuf behaves as Buf1 does but it adds the possibility to delete theelement in the bu�er and then evolve to deadlock. The tester/client whichdistinguishes the two is analogous to the lotos process:T := Prod jjjCons jjj del; stop with Prod := put;Prod Cons := get;Conswhich yields the composite behaviour shown in �gure 1. Now DelBuf is clearly

put get

del

T

put

get

put

get

del

DelBuf |[put,get,del]| TBuf1 |[put,get,del]| TFigure 1 lotos Behavioursan extension of Buf1, however, Nierstrasz observes that with the interfacefput; get; delg and the tester T , Buf1 cannot reach a deadlock state whileDelBuf can. Speci�cally,DelBuf j[put; get; del]jT put del=====) � stop but, Buf1 j[put; get; del]jT put del=====6)In fact, the problem here is exactly the same as that which we highlightedwith behaviours X and Y above. Nierstrasz develops a number of conceptssuch as request substitutability and a notion of restriction in order to con-tain this problem. In contrast, our approach will be to reject extension as aninterpretation of behavioural subtyping.4 FUNCTIONALITY EXTENSION AND UNDEFINEDUnde�ned Operations in Object Oriented Methods. In order to in-form this problem let us consider how functionality extension and particularlyadding operations works in OO speci�cation and programming methods.� OO Speci�cation Techniques. A relatively large number of OO speci�cationnotions now exist, for example, OO versions of Z, such as Object-Z [Ros92]and ZEST [CR92], OO versions of VDM, such as VDM++ [Lan95] andLiskov and Wing's notation [LW93]. Subtyping is not handled in a uni-form way throughout these techniques, so, let us focus on the Liskov andWing approach which has considered the topic in some depth. In [LW93]a number of conditions are highlighted which must all hold in order toensure subtyping between a pair of speci�cations. However, the part ofthe de�nition that concerns us here is the pre and post condition relation-ship between operations. The de�nition requires that for every operationin the supertype there must exist a corresponding operation in the sub-type (although, the subtype may contain extra operations) such that, forcorresponding operations, the following holds,1. the precondition of the supertype operation implies the precondition ofthe subtype operation, and

2. the postcondition of the subtype operation implies the postcondition ofthe supertype operation.Thus through subtyping, preconditions can be weakened and postcondi-tions can be strengthened. In informal terms, weakening of preconditionsenables operations to be applied (i.e. terminate) in more states, whilestrengthening of postconditions reduces non-determinism. This really doesgive us what we seek: addition of traces and reduction of refusals when wetake subtypes. In spirit, subtyping behaves like re�nement in state basedspeci�cation notations such as Z.Importantly though, this interpretation of subtyping only works becauseapplying an operation outside its precondition has a very di�erent meaningthan the analogous occurrence in process algebra. In process algebras theanalogue of applying an operation outside its precondition is the environ-ment trying to perform an action when it is not currently o�ered, which hasthe result deadlock . In contrast, in state based speci�cation notations suchas Z or Liskov and Wing's notation, applying an operation outside its pre-condition is unde�ned , i.e. is completely unpredictable. In an \operationalsense" anything could occur and the choice between these alternatives isnon-deterministic.� OO Programming Methods. In strongly typed object oriented systems, it isnot possible to call an operation which is not o�ered by an object. How-ever, other OO systems produce error messages when a program calls anunde�ned operation, or result in unde�ned behaviour (such as the programcrashing or giving incorrect results), e.g. Smalltalk [GR83].So, both these OO settings give justi�cation for the argument that attemptingto apply an operation that is not currently o�ered should result in unde�nedbehaviour and not deadlock.Unde�nedness and LOTOS Speci�cations. What, then, would be theconsequence of adapting lotos speci�cations to behave in an unde�ned fash-ion if an action that is not currently o�ered is performed? Unpredictablebehaviour can be modelled in lotos using non-determinism. In fact, we canhighlight the following process:
 := (choice a2Act [] i; a;
) [] (i; stop)which o�ers a completely non-deterministic behaviour; at every point in itsevolution it could o�er any action and refuse any set of actions. Since Tr(
)=Act*and 8� 2Act*, Ref(
, �)=P(Act),
 is at the top of the reduction preorder;every behaviour is a reduction of it.It turns out that we will be able to use reduction as the subtyping relationif the lotos de�nitions of our objects' behaviours are modi�ed using
. Wewill show how the modi�cation is done with two examples.

put

put

get

get

get

put

put

get

get

put

put
get

Buf1

put

put

get

get

Buf2Figure 2 Buf1 and Buf2 without and with unde�ned addedExample 1. A one-place bu�er, Buf1, was de�ned earlier. A two-place bu�ermay be de�ned:Buf2 := put ; Buf2a Buf2a := get ; Buf2 [] put ; get ; Buf2aThe labelled transition systems corresponding to Buf1 and Buf2 are given in�gure 2. For these de�nitions, L = fput ; getg.We'd like the two-place bu�er to be a subtype of the one-place bu�er. Noticethat, for the same reasons that we highlighted in our earlier example, as theystand, the two-place bu�er is not compatible with the one-place bu�er. Thus,to achieve this, we will modify the �rst two processes as shown in the righthand LTSs of �gure 2.We have added transitions such that every node has at least one transi-tion leading away from it for every possible action in L. Following any of thetransitions we have added, the process evolves to
 (this is in fact a rela-tively standard technique in process algebra which is used to enable parts ofspeci�cations to be extended when re�ning, see for example [LSW94]).Using the fact that any behaviour reduces
, these two processes are nowrelated in the way we wish; with the addition of unde�ned behaviour Buf2is both a reduction and a subtype of Buf1 . To justify this, �rstly observethat the traces of T (Buf2) and T (Buf1) (we will de�ne the mapping T , thatadds unde�ned behaviour shortly) are the same, i.e. L�. This is because ourtransformation has ensured that at any state each process \may" perform anyaction in L. Secondly, observe that for any trace in L� the refusals of T (Buf2)are a subset of those of T (Buf1). Informally, T (Buf1) and T (Buf2) have iden-tical refusals apart from those for traces of the form put put �. For such traces,T (Buf1) will have evolved to unde�ned, and will thus refuse everything, while

T (Buf2) may still be performing de�ned behaviour, in which case it will refusenothing. Thus, in addition, T (Buf1) is not a reduction/subtype of T (Buf2)since, for example, T (Buf1) can perform the trace put put and then refuseanything, while after the same trace T (Buf2) cannot refuse anything.We introduce some terminology. The original lotos speci�cation, i.e. before
's have been added, is called the de�ned behaviour of the speci�cation, whilethe additional choices arising from the addition of
's is called the unde�nedbehaviour of the speci�cation. We call the lotos process resulting from theaddition of unde�ned behaviour the transformed process , i.e. T .Example 2. Interestingly, using the label set fput; get; delg, when transformedDelBuf will be a subtype of Buf1 . This is because in either of its de�ned statesthe transformed Buf1 can perform a del and evolve to
. This contrasts withthe approach taken in [Nie95], where Nierstrasz attempts to develop conditionsthat show that in their untransformed form DelBuf is not a subtype of Buf1 .5 ADDING UNDEFINEDNESS TO LOTOS SPECIFICATIONSTransforming Speci�cations. Having introduced the concept of unde�nedbehaviour we have to consider how to add this behaviour to lotos speci�ca-tions in an automated way. There are three possible approaches; we could,1. leave it in the hands of the speci�er to explicitly include the unde�nedbehaviour in their speci�cations;2. develop a mapping which takes de�ned lotos speci�cations and mapsthem to lotos speci�cations with unde�ned behaviour; or3. we could leave the lotos speci�cations unchanged, but rather add theunde�ned behaviour implicitly at the semantic stage.Of these three, the �rst is not a feasible approach as it would make the speci-�er's task signi�cantly more di�cult. The second is feasible, however, de�ningthe mapping is not straightforward. In particular, adding unde�ned behaviourthrough the parallel composition operator is quite subtle. Thus, it is the thirdof these alternatives that we select.Our approach is to take the LTS of a lotos process and derive a newtransition relation, which we denote ` a !. This new transition relationwill add states and transitions that re
ect the required unde�ned behaviour.Where L is the label set of the speci�cation we generate the smallest relationthat satis�es the inference rules:R1 : P a�!P 0P ` a! P 0 R2 : a 2 L n initials(P)P ` a!
R3 : a 2 Act
 ` i! a;
 R4 : �a;
 ` a!
 R5 : �
 ` i! stop

R1 ensures that the new relation contains the relation �! . R2 adds the pos-sibility to evolve to
 when applying an action that is not currently o�ered.Rules R3, R4 and R5 code up the behaviour of the unde�ned process
.Non-determinism.These inference rules de�ne a simple means to add unde-�nedness to an LTS. For deterministic processes, the consequences of applyingthese rules are very straightforward. For example, the rules will map the �rsttwo LTSs of �gure 2 to the second two LTSs. However, application of therules is more subtle in the presence of non-determinism. Consider the follow-ing examples of the three archetypal forms of lotos non-determinism, withL = fa; b; cg:X := a; b; stop [] a; c; stop Y := i; a; stop [] i; b; stopZ := i; a; stop [] b; c; stop
a a

b,c

b

a,c

a,b,c a,b,c

c

a,b,c a,b,c

i i
c

b
a,c

a

b,c

(1) (2)

a,b,c a,b,c

i

c

a

b,c

b

a,b
c

(3)

a,b

a,b,c a,b,c

i

a

b,c

b

a,b
c

(4)Figure 3 Transformed behavioursLTSs resulting from adding unde�nedness for each of these processes areshown as (1),(2) and (3) of �gure 3. This transformation has the virtue ofbeing extremely simple, however, it does not generate the minimum (in termsof least number of transitions) LTS. For example, in (3) the transition labelledc emanating from the start state is in fact redundant and (3) and (4) of �gure3 are testing equivalent.

A consequence of applying this transformation is that (modulo the addi-tion of unde�ned behaviour) more processes are reductions than they wouldnormally be. For example, once transformed all of the following behaviourswould be reductions of Z.a; stop [] b; c; stop [] c; stop a; stop [] c; stop a; stop [] b; a; stopThe last of these is perhaps the most suprising as the de�ned behaviour ofthe resulting speci�cation requires an a action to be performed after the traceb, while Z requires a c action to be performed after the same trace. How-ever, according to our intuition about subtyping in OO this is correct as thetransformed Z can refuse the b action that leads to c, but cannot refuse theb action that leads to
. Thus, this situation is only odd if the processes areinterpreted without unde�nedness.Further Examples. It is important to note though that while transforminglotos speci�cations in this way yields a more generous relationship betweenprocesses, which was after all our original intention, the resulting notion ofsubtying still remains sensitive to incompatible behaviour.Consider two examples from [Nie95]: a variable and a non-deterministicstack:Var := put ; Var2 Var2 := put ; Var2 [] get ; Var2NDstack := put ; NDstack2NDstack2 := put ; NDstack2 [] get ; NDstack2 [] get ; NDstackNow, it can be checked that, T (Var) red T (NDstack) and T (NDstack) redT (Buf1), but :(T (NDstack) red T (Var)) and :(T (Buf1) red T (NDstack).The latter two of these are because,Ref(T (NDstack); put get get) = P(L) 6� f;g = Ref(T (Var); put get get)Ref(T (Buf1); put put) = P(L) 6� f;g = Ref(T (NDstack); put put)In addition, we can handle data passing processes by, in the usual way, ex-panding full lotos into basic lotos, using a richer action set and choice tomodel input alternatives �. The following two processes, an in�nite stack andan in�nite queue, are written in a pseudo full lotos.Stack(l : list) := put?x : nat; Stack(x#l) [] [l 6= []]! get!hd(l); Stack(tl(l))Queue(l : list) := put?x : nat; Queue(x#l) [] [l 6= []]! get!lst(l); Queue(frnt(l))�There are actually some subtleties in how data passing has to be handled which we do nothave space to discuss here. One issue is that mapping full lotos to basic lotos generatesa deterministic modelling of output which is not always what is required. Ongoing researchis currently seeking to resolve these issues.

where x#[x1; ::; xn] = [x; x1; ::; xn], lst([x1; ::; xn]) = xn, frnt([x1; ::; xn]) =[x1; ::; xn�1] and hd, tl and empty lists, denoted [], are treated in the usualway.As would be expected these two behaviours are incomparable. The followingtrace/refusal properties demonstrate this (where � = put 1 put 2 get 1, �0 =put 1 put 2 get 2 and a v denotes the occurrence of an action at gate a withdata value v):Ref(T (Stack([])); �) = P(L) 6� f;g = Ref(T (Queue([])); �)Ref(T (Queue([])); �0) = P(L) 6� f;g = Ref(T (Stack([])); �0)As these examples demonstrate, transformed behaviours have a very precisetrace/refusal character. Transformed speci�cations can perform any trace inL� and after all traces either refuse nothing or refuse everything. One con-sequence of this is that for transformed speci�cations red = ext = conf.This is good news as it has previously been argued [BS86] that checking tracesubsetting is a major hindrance to verifying reduction. In fact, this is one ofthe reasons that Brinksma considered conf in the �rst place. In addition, thenormal relationships between the lotos equivalences still hold, i.e. ���� te.A Note on Unde�ned Behaviours. Up to testing equivalence, there areactually several di�erent processes that could be used as
. For example, boththe following two processes have the same trace/refusal characterisation as
.
0 := (choice a2Act [] i ; a;
0) [] (i ; stop) [] (i ;
0)
00 := (choice a2Act [] a;
00) [] (i ; stop)One of the reasons for this is that lotos trace/refusal semantics are notsensitive to divergence. Thus although from amongst these processes,
0 isdivergent and
 and
00 are not, the three processes have the same semanticcharacterisation. The decision not to be sensitive to divergence concurs withthe approach taken in bisimulation semantics [Mil89] and is tied to a subtledebate concerning fair abstraction [BBK87].However, it should be pointed out that other models handle this issue dif-ferently. For example, in CSP, which employs a chaotic interpretation of di-vergence, only
0 would give the most unpredictable behaviour.6 CONCLUSIONSA criticism of the approach to adding behaviour that we have presented hereis that it is not very re�ned; a path to unde�ned is added at any state for anyaction that is not currently o�erred. A more re�ned approach would allowthe speci�er to obtain refusal when (s)he wishes and unde�ned when (s)hewishes. This is an area of ongoing research.

To summarise, then, we have considered the spectrum of lotos correctnessrelations and argued that all fail in some respect to be a suitable instantia-tion of behavioural subtyping. Then through consideration of how subtypingbehaves in OO speci�cation and programming notations we have motivateda re-interpretation of lotos speci�cations in the OO setting. This involvesadding unde�ned behaviour to lotos speci�cations. We have de�ned a simpleLTS based mapping to add unde�ned behaviour to lotos speci�cations. Themain consequence of applying this mapping is that the most well behaved ofthe lotos re�nement relations, reduction, really is behavioural subtyping .Acknowledgements.We would like to thank Tim Regan and Steve Rudkinfor giving an initial stimulus to this research. In particular, Tim Regan wasinvolved in preliminary discussions from which this paper has evolved. Alsothanks to Benjamin Pierce for giving pointers to relevant literature and toErik Poll and the anonymous referees for useful comments and suggestions.REFERENCES[BB88] T. Bolognesi and E. Brinksma. Introduction to the ISO Speci�ca-tion Language LOTOS. Computer Networks and ISDN Systems,14(1):25{29, 1988.[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistencyof koomen's fair abstraction rule. Theoretical Computer Science,51:129{176, 1987.[BDLS95] H. Bowman, J. Derrick, P. Linington, and M. Steen. FDTs forODP. Computer Standards and Interfaces, 17:457{479, Septem-ber 1995.[BS86] E. Brinksma and G. Scollo. Formal notions of implementation andconformance in LOTOS. Technical Report INF-86-13, Dept ofInformatics, Twente University of Technology, 1986.[CR92] E. Cusack and G. H. B. Rafsanjani. ZEST. In S. Stepney, R. Bar-den, and D. Cooper, editors,Object Orientation in Z, Workshopsin Computing, pages 113{126. Springer-Verlag, 1992.[CRS89] E. Cusack, S. Rudkin, and C. Smith. An object oriented interpre-tation of LOTOS. In Proceedings 2nd International Conferenceon Formal Description Techniques (FORTE'89). North-Holland,December 1989.[DEBS96] J. Derrick, E.A.Boiten, H. Bowman, and M. Steen. SupportingODP - translating LOTOS to Z. In First IFIP Internationalworkshop on Formal Methods for Open Object-based DistributedSystems, Paris, March 1996. Chapman & Hall.[FM94] Kathleen Fisher and John C. Mitchell. Notes on typed object-oriented programming. In Proceedings of Theoretical Aspects ofComputer Software (TACS '94), Sendai, Japan, volume 789 of

LNCS, pages 844{886. Springer, 1994.[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and itsImplementation. Addison-Wesley, 1983.[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. PrenticeHall, 1985.[ISO87] ISO 8807. LOTOS: A Formal Description Technique based on theTemporal Ordering of Observational Behaviour, July 1987.[ITU95] ITU Recommendation X.901-904 | ISO/IEC 10746 1-4. OpenDistributed Processing - Reference Model - Parts 1-4, July 1995.[Lan95] K. Lano. Speci�cation of distributed systems in VDM++. InFORTE'95. Chapman and Hall, 1995.[LSW94] K.G. Larsen, B. Ste�en, and C. Weise. A constraint oriented proofmethodology based on modal transition systems. Technical Re-port RS-94-47, University of Aarhus, 1994.[LW93] B. Liskov and J. M. Wing. A new de�nition of the subtype rela-tion. In O. M. Nierstrasz, editor, ECOOP '93 - Object-OrientedProgramming, LNCS 707, pages 118{141. Springer-Verlag, 1993.[MC93] A.M.D. Moreira and R.G. Clark. ROOA: Rigorous Object-Oriented Analysis. Technical Report TR 109, Computing Sci-ence Department, University of Stirling, Scotland, October 1993.[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.[Nie95] O. Nierstrasz. Regular types for active objects. In Object-orientedSoftware Composition, pages 99{120. prentice-Hall, 1995.[NSF94] E. Najm, J-B. Stefani, and A. Fevrier. Introducing Mobility inLOTOS. ISO/IEC JTC1/SC21/WG1 approved AFNOR con-tribution, July 1994.[Pun96] Franz Puntigam. Types for active objects based on trace seman-tics. In First IFIP Workshop on Formal Methods for OpenObject-Based Distributed Systems, Paris, March 1996. Chapman& Hall.[Ros92] G.A. Rose. Object-Z. In S. Stepney, R. Barden, and D. Cooper,editors, Object Orientation in Z, Workshops in Computing,pages 59{78. Springer-Verlag, 1992.[Rud91] S. Rudkin. Inheritance in LOTOS. In K. R Parker and G. A. Rose,editors, Formal Description Techniques, IV, Sydney, Australia,November 1991. North-Holland.[Smi95] G. Smith. Extending W for Object-Z. In J. Bowen andM. Hinchey, editors, 9th International Conference of Z Users,volume 967 of Lecture Notes in Computer Science, pages 276{295. Springer-Verlag, 1995.[vG93] R.J. van Glabbeek. The linear time - branching time spectrum(I and II). In Concur'90 and Concur'93, LNCS 458 and LNCS715. Springer-Verlag, 1990 and 1993.

