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Abstract

We consider how the OO notion of subtyping relates to LOTOS testing the-
ory. In particular, we investigate which of the standard LOTOS preorders is
a suitable instantiation of behavioural subtyping and argue that each of the
main preorders, trace preorder, trace extension, reduction and extension, is in
some way deficient. Then, in the light of pre and post condition based models
of OO subtyping, we re-work the basic interpretation applied to LOTOS be-
haviour descriptions. We argue that this re-interpretation enables reduction
to be used as an instantiation of behavioural subtyping.

1 INTRODUCTION

This paper investigates possible definitions of behavioural subtyping in the
process algebra LOTOS. Interest in this topic is motivated from a number
of important areas of current research. Behavioural subtyping impacts on
research concerned with,

1. enhancing the specification and development capabilities of process algebra
by incorporating features of object oriented methodologies [MC93];

2. providing a theoretical basis for concurrent OO programming and models of
so called active objects, which are objects that exhibit non-uniform service
availability [Nie95]; and

3. enhancing existing formal description techniques in order that they can be
applied to the new generation of distributed systems, which are typically
object oriented [BDLS95].

In all these areas subtyping plays a pivotal role in obtaining incremental
system development, with its relationship to different inheritance mechanisms
being crucial. The third of these areas has particularly motivated the work
presented here. Central to object oriented programming platforms such as
CORBA, the TINA DPE (Distributed Processing Environment) and the ODP

*The research presented here has been partially supported by British Telecommunications
Research Labs, through their funding of Charles Briscoe-Smith’s PhD studentship.
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(Open Distributed Processing) Computational Model is the notion of ¢rading.
A trader is a distinguished object used in order to locate required services.
It accepts service offers from objects, and maintains a database of currently
available offers. When an object wishes to find a service, it performs an import
operation on the trader, specifying what kind of service it wants, and receives
copies of a number of service offers in reply.

When a client sends a description of the service it wants to the trader,
the trader must somehow match this to the offers it has in its database. If it
cannot find an offer exactly matching the requested service, it should look for
offers of similar services, providing all the facilities that the client wanted, but
possibly having other facilities that the client will not use. It is looking for a
service which has a superset of the operations the client asked for, which the
client could use without knowing that it was any different from the service
type it requested. In fact, the relationship between the service requested and
the service returned by the trader should be subtyping.

The concept of subtyping is familiar from object oriented programming
languages[FM94], It is defined as substitutability: type A is a subtype of type B
iff objects of type A may be used in any situation where an object of type B was
expected, without the object’s environment being able to tell the difference.
Thus, an object of any particular type can masquerade as, or stand in for, an
object of any of its supertypes. Subtyping is naturally a reflexive and transitive
relation, i.e. a preorder.

However, the state of the art in service matching for trading is signature-
based subtyping. Unfortunately, such matching is not rich enough to ensure
the safety of object interactions in a heterogeneous distributed processing en-
vironment. For example, two object types may have methods with the same
name but quite different meaning. To take a rather frivolous example, consider
the analogy of an artist and a cowboy. Both are able to perform an operation
“draw,” but the results in each case will be rather different. Thus, it is possible
that although signatures match, compatibility in terms of the behaviour of ser-
vices is not obtained. The insufficiency of purely signature based approaches
is witnessed by the increasing interest within OMG for adding behavioural
properties to CORBA IDL.

What is actually required is a more powerful interpretation of matching
based on (stronger) behavioural notions of subtyping (in ODP terms be-
havioural compatibility). Determining suitable interpretations of behavioural
subtyping is the subject matter of this paper.

As our notation for describing the behaviour of service types we use the
process algebra L.OTOS. There are a number of reasons for this choice, not
least the role of LOTOS as a formal description technique for open distributed
systems and the accepted benefits of the process algebra approach [Mil89].
However, a further benefit of considering LOTOS is that a wealth of correct-
ness relations exist, many of which are related to substitutibility and hence
behavioural subtyping. From this domain the testing theories are of particu-



lar relevance. In such theories specifications are related if they pass the same
tests.

Testing theory is an extremely rich field. In fact it is possible to place the
spectrum of process algebra correctness relations (at least those based upon
interleaving models of concurrency) in a hierachy of strength, i.e. in terms
of their level of discrimination [vG93]. The relative strengths of particular
correctness relations is tied to the intrusive capabilities of the tester to observe
the specification. In this paper we will use a standard notion of testing in which
the tester has the power of a standard .OTOS process (no additional operators
are added to the testing language). Since clients in the OO setting will be
LOTOS processes this seems a sensible choice. The testing theory induces a
preorder that, for the moment, we will call compatibility:

S1 is compatible with Sy iff for all finite sets of observable actions G and
processes P, Sy |[G]| P == = stop implies Sy |[G]| P == =~ stop.

where |[G]] is the LOTOS parallel composition operator, & is weak bisimulation
equivalence, stop is the deadlock process, o is a trace of observable actions
and relation composition is denoted by juxtaposition®. This notation will be
clarified shortly, but informally, the condition states that S; is compatible
with S, if and only if, for all possible testers, if S; can perform a trace o
and then deadlock, then under the control of the same tester S, can perform
o and then deadlock. Thus, even more informally, S; does not add any new
deadlocks to those that can arise from Ss.

In terms of OO and subtyping, in the above definition, G reflects the possible
interfaces between S; and the tester, i.e. the actions that they can communi-
cate via, and P reflects possible client specifications/programs. We argue that
this condition is the basis for an intuitively sensible instantiation of subtyping
in the process algebra setting. In OO terms the definition states that,

Sy is a subtype of So if and only if any client (tester) using S1 according to
any interface (synchronisation set) can only observe a trace and then observe
a deadlock if the client could observe the same trace and a deadlock if it was
using Sz (with the same interface) *.

From amongst the 1.0OTOS correctness relations, red (reduction) is the most
important. In particular, modulo handling of divergence, red corresponds to
failures divergences refinement [Hoa85] and testing preorder [Hen88], which
are the principle notions of refinement used in CSP and CCS (respectively).
However as it stands, reduction is not a sufficient definition of subtyping. This
is because subtyping in the OO context allows extension of functionality, e.g.
a subtype can offer more operations than its supertype.

*i.e. S |[G]| P == ~ stop means 3Q . S |[G]| P == Q A Q ~ stop

*Since we test against all possible clients (and not just those that have a subset of the
operations of S») we get a strong notion of subtyping. We believe that this strength is
necessary, e.g. when objects are being concurrently interacted with.



In the process algebra setting extending functionality implies addition of
traces. However, reduction enforces a trace subsetting property and thus, does
not allow functionality to be extended. In response to this observation a num-
ber of previous workers [Rud91] [CRS89] [Nie95] have based their interpreta-
tion of subtyping upon an alternative relation: the extension relation (ext)
[BS86]. However, we will argue against using this relation; rather we will show
how to re-interpret LOTOS specifications in order that reduction is the appro-
priate relation.

Section 2 presents background on LOTOS and outlines how aspects of LO-
TOS can be related to OO concepts. Section 3 relates the spectrum of LOTOS
refinement relations to behavioural subtyping. Section 4 considers the char-
acteristics of behavioural subtyping in OO specification and programming
languages and then shows how L.OTOS processes can be transformed in order
to reflect these characteristics. Then section 5 highlights a simple technique
for transforming LOTOS specifications according to this new interpretation.
Finally, section 6 summarises and concludes the paper.

2 BACKGROUND

LOTOS. We use a subset of full LoTos [BB8§]:
P := stop|a; P|P[|P| P|[G]|P | choiceac A[| P| X

where a € Act U {i} (Act contains all observable actions and i is the dis-
tinguished hidden action). Thus, our notation has a deadlock process stop,
action prefix a; P, binary choice P[] P, parallel composition P |[G]| P, gener-
alised choice choice a € A [| P and reference to a process variable X, through
which recursion can be defined. Process definitions have the form, X := P.

We do not include the other basic LOTOS operators, hiding, relabelling,
disabling and enabling. This is not because they bring any technical difficul-
ties, but rather to simplify the presentation.

We also assume some semantic constructions. In the following P, P, Q, Q'
stand for processes. L is the alphabet of observable actions associated with
a certain process (we will write £(P) when we need to be explicit about the
process we are referring to). The standard semantics for LOTOS [ISO87] map
LOTOS processes to Labelled Transition Systems (LTSs) using a structured
operational semantics. We will not repeat these inference rules. However, in
standard fashion, we denote transitions as: P % P', meaning that P can
perform an a and evolve to P'. Furthermore, £* denotes traces over £, € € L*
denotes the empty trace and o ranges over £*. We assume the following
definitions:

= : the reflexive and transitive closure of %
P=%P'iff 3Q,Q" - P=Q % Q' = P';



P=% iff 3P . P= P';

P=A iff -(3P'- P= P');

Tr(P) = {0 € £L* | P=%}; the set of traces of P;

P after o = {P' | P== P'}; the set of states reachable from P by o;

Ref(P,0) = {X | 3P' € (P after o) . Na€ X : P’ qab }; refusals of P after o.
initials(P) ={a € L |a € Tr(P) }.

Relating OO Concepts to LOTOS. Before we consider subtyping it is
worth clarifying how 1.0TOS specifications relate to OO concepts. This section
highlights some basic relationships.

Class. A class describes the common behaviour of a set of objects. As noted
by a number of authors, e.g. [DEBS96] [Smi95] [Rud91], in LOTOS the natural
counterpart to a class is a process definition. This describes the common
behaviour of instantiations of the process definition.

Object. In OO programming objects are instantiations of a class. Thus, a
simple interpretation of instantiation in LOTOS is as process instantiation.

However, more sophisticated interpretations of object instantiation can also
be given. For example, [Rud91] [CRS89] interpret instantiation as the LO-
TOS implementation relation conf (which is the LOTOS conformance relation).
Thus, any process that conforms to the specification of a class is seen as an
instantiation of the class. Although conf has a number of undesirable prop-
erties as an implementation relation, in principle such an interpretation of
instantiation is much richer and more flexible than simple process instanta-
tion. In particular, when working in a behavioural setting it seems sensible to
interpret instantiation in behavioural terms rather than as a purely syntactic
instantiation. Although we will not need to consider this issue of instantiation
further in this paper, implicitly instantiations in our setting will be related
to their class definition much more strongly than by conf; perhaps by testing
equivalence.

Operations. The basic units of interaction between objects are operations, also
called method invocations, member function calls, or feature calls. In process
algebra, the basic units of interaction between processes are actions. The
affinity between these two concepts is witnessed by the number of workers
in this area who have related the two: [Nie95] [Rud91] [CRS89] [DEBS96]
[Smi95].

However, it should be pointed out that this similarity may not be exact,
since process algebra actions are considered to be atomic, whereas in many
00 models operations have duration. The assumption of atomicity is highly
significant in the process algebra setting as it justifies the modelling of con-
currency as interleaving. Non-atomic interpretations of actions lead to more
complex semantic theories. A simplifying assumption that Nierstrasz makes
[Nie95] is only to model method requests. Such an assumption effectively
justifies an atomic interpretation of actions when modelling operations. In



accordance with this majority of workers we will also enforce a simplifying
atomic interpretation of actions/operations.

Finally, the parameters of operations may be modelled using LOT0S’s data
passing attributes, “!” and “?”.

Interface. An object oriented class definition will usually contain a statement
of the interface to objects of that class: usually a list of calls which may be
made on the objects. The LOTOS equivalent is the set of all non-hidden actions
in the process definition.

The above are only the most basic correspondences; there are many more
which can be made. For example, Rudkin[Rud91] describes how inheritance
and self might be introduced into LOTOS and Najm and Stefani [NSF94]
consider how object mobility may be obtained. The interested reader is also
referred to part IV of [ITU95] which relates OO modelling concepts to LOTOS
constructs in the ODP setting.

3 RELATING LOTOS RELATIONS AND SUBTYPING

In this section, we attempt to locate an interpretation of behavioural sub-
typing from amongst the existing 1.OTOS correctness relations. Firstly, since
subtyping is reflexive and transitive, but not symmetric (a symmetric relation
would suggest substitutability in both directions, which is too strong), we will
only consider the preorder relations. This choice rules out the equivalences
weak bisimulation (=), strong bisimulation (~), testing equivalence (te) and
testing congruence (tc) and the implementation relation conf, which is not
transitive.

Trace Subsetting and Supersetting. We first consider trace preorder, one
of the simplest correctness relations. The fact that P; is a trace refinement
of P, is defined as (notice the order that we write refinement, this contrasts
with some other workers), Py <y P, iff Tr(P;) C Tr(P). This relation is
clearly inappropriate since it does not allow P; to have any more traces than
P,, which contradicts the extension of functionality involved in subtyping.

An alternative to <y, is trace extension: P; <g.. Po iff Tr(Py) D Tr(Ps).
This does allow new operations to be added and, in fact, is the interpretation
of subtyping used in [Pun96]. In Puntigam’s work, trace extension serves as a
valid check for type safety. Where in this context, type safety ensures that the
subtype can understand all operations that the supertype can. However, the
relation is not a suitable instantiation of the stronger notion of behavioural
subtyping since it allows deadlocks to be added. For example, if X and Y are
defined as,

X := a; stop [] b; stop Y := a; stop [] b; stop [] i; stop

then Y <;.. X. However, Y is not a behavioural subtype of X. When placed



in synchronisation with the process “a; stop”, X will do action a, but Y may
do a, or may do an internal action and then deadlock. If Y deadlocks in a
situation where X would not, Y is distinguishable from X and is therefore
not a subtype of/compatible with X. In fact, the same criticsm can be levelled
at all solely trace based correctness relations, including trace preorder.

Reduction. Reduction[BS86] is a more discriminating refinement relation
that adds consideration of liveness properties to trace preorder. Its definition
is

)

Py red Ps iff Te(P1) C Tr(P2 ) A Vo € Act* . Ref(Pi1,0) C Ref(P2,0)

(that is, Py reduces P iff P; <y P 5 and, after any trace, P; does not refuse
more than P,). Interpreting refinement as reduction corresponds to viewing
development as reduction of non-determinism. In addition, in terms of our
general testing constraint, the property we called compatibility in section 1,
we have the following result™:

Theorem 1 For all processes Py, Py, P and G C Act, the following are
equivalent:

1. P1 red P2
2. P, |[G]] P == =~ stop implies P, |[G]| P == =~ stop.

Thus, reduction ensures the deadlock property we are seeking. However, as
discussed in section 1, it fails to allow extension of functionality. So, as it
stands, reduction is not a suitable instantiation of subtyping.

Extension. Since extension[BS86] is sensitive to deadlock properties and sup-
ports extension of functionality, it appears at first sight to be an ideal can-
didate for the subtyping relation. This is witnessed by the large number of
workers who have used it as the basis for definitions of subtyping [CRS89]
[Rud91] [Nie95]. Its definition is,

Pi ext Py iff Tr(P1) O Tr(P2) A Vo € Tr(P2) . Ref(P1,0) C Ref(P2,0)

(that is, Py extends P, iff Py <. P> and, after any trace that P, can do, P,
does not refuse more than Py). Consider two LOTOS processes, X and Y:

X := a; stop [] b; stop Y := a; stop [] b; stop [] ¢; stop

Referring to the definition of ext, we see that Y ext X. Y can do every trace

*This is actually a slightly stronger result than that proved in [BS86], since we do not
require trace subsetting between P; and P». However, this stronger result can be verified
with minor changes (involving taking a larger synchronization set) to Brinksma et al’s proof.



that X does (and more), and, after any trace that X can do, X refuses at
least everything that Y refuses. Conceptually Y defines a class which adds
an operation to class X, viz. the action ¢. Thus, extension enables interface
enlargement.

Unfortunately extension does not fulfil our requirements for behavioural
subtyping. In particular, extension does not guarantee the definition of com-
patibility that we gave in section 1. For example, the tester c; stop with

synchronization set {c¢} serves as a counterexample since,

c
Y |[c]| ¢;stop == ~stop but, X |[¢]| ¢;stop =~

Extension only satisfies the following more restrictive theorem, which is proved
in [BS86],

Theorem 2 For all processes Py, Py, P; G D L(P) and Tr(Py) D Tr(P),
the following are equivalent:

1. P] ext P2
2. VYo € Tr(P), P, |[G]] P == = stop implies P, |[G]| P == =~ stop.

Thus, extension only ensures compatibility when restricting to traces of the
supertype. However, we require the stronger compatibility property that was
highlighted in section 1.

Another way of looking at this problem is that our definition of behavioural
subtyping is based on the principle that a subtype must be usable in any situa-
tion where the supertype could be used, and not be seen to behave differently.
If we have a process which may be a X or a Y, we can detect which it is by
trying to perform the action ¢ on the process. If the ¢ is accepted, we have Y,
but if ¢ is refused, we must have X. Since it is possible to tell that we have
a Y, our definition of behavioural subtyping tells us that Y is not a subtype
of X.

Interestingly, this problem with extension is one that Nierstrasz has ob-
served [Nie95]. His illustrative example is that of a one place buffer supertype
and a deleting buffer subtype. We can express his example in LOTOS as follows:

Buf1 := put; get; Bufl  and DelBuf := put; (get; DelBuf [] del; stop)
Thus, DelBuf behaves as Bufl does but it adds the possibility to delete the
element in the buffer and then evolve to deadlock. The tester/client which
distinguishes the two is analogous to the LOTOS process:

T := Prod||| Cons ||| del;stop with Prod := put; Prod Cons := get; Cons

which yields the composite behaviour shown in figure 1. Now DelBufis clearly
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Figure 1 1.0T0S Behaviours

an extension of Bufl, however, Nierstrasz observes that with the interface
{put, get,del} and the tester T', Buf! cannot reach a deadlock state while
DelBuf can. Specifically,

ut del put del
DelBuf|[put, get, del]| T Lutdel, ~ stop but, Bufl|[put, get,del]|T ——~

In fact, the problem here is exactly the same as that which we highlighted
with behaviours X and Y above. Nierstrasz develops a number of concepts
such as request substitutability and a notion of restriction in order to con-
tain this problem. In contrast, our approach will be to reject extension as an
interpretation of behavioural subtyping.

4 FUNCTIONALITY EXTENSION AND UNDEFINED

Undefined Operations in Object Oriented Methods. In order to in-
form this problem let us consider how functionality extension and particularly
adding operations works in OO specification and programming methods.

® (OO0 Specification Techniques. A relatively large number of OO specification
notions now exist, for example, OO versions of Z, such as Object-Z [Ros92]
and ZEST [CR92], OO versions of VDM, such as VDM++ [Lan95] and
Liskov and Wing’s notation [LW93]. Subtyping is not handled in a uni-
form way throughout these techniques, so, let us focus on the Liskov and
Wing approach which has considered the topic in some depth. In [LW93]
a number of conditions are highlighted which must all hold in order to
ensure subtyping between a pair of specifications. However, the part of
the definition that concerns us here is the pre and post condition relation-
ship between operations. The definition requires that for every operation
in the supertype there must exist a corresponding operation in the sub-
type (although, the subtype may contain extra operations) such that, for
corresponding operations, the following holds,

1. the precondition of the supertype operation implies the precondition of
the subtype operation, and



2. the postcondition of the subtype operation implies the postcondition of
the supertype operation.

Thus through subtyping, preconditions can be weakened and postcondi-
tions can be strengthened. In informal terms, weakening of preconditions
enables operations to be applied (i.e. terminate) in more states, while
strengthening of postconditions reduces non-determinism. This really does
give us what we seek: addition of traces and reduction of refusals when we
take subtypes. In spirit, subtyping behaves like refinement in state based
specification notations such as Z.
Importantly though, this interpretation of subtyping only works because
applying an operation outside its precondition has a very different meaning
than the analogous occurrence in process algebra. In process algebras the
analogue of applying an operation outside its precondition is the environ-
ment trying to perform an action when it is not currently offered, which has
the result deadlock. In contrast, in state based specification notations such
as Z or Liskov and Wing’s notation, applying an operation outside its pre-
condition is undefined, i.e. is completely unpredictable. In an “operational
sense” anything could occur and the choice between these alternatives is
non-deterministic.

® (OO0 Programming Methods. In strongly typed object oriented systems, it is
not possible to call an operation which is not offered by an object. How-
ever, other OO systems produce error messages when a program calls an
undefined operation, or result in undefined behaviour (such as the program
crashing or giving incorrect results), e.g. Smalltalk [GR83].

So, both these OO settings give justification for the argument that attempting
to apply an operation that is not currently offered should result in undefined
behaviour and not deadlock.

Undefinedness and LOTOS Specifications. What, then, would be the
consequence of adapting 1L.OTOS specifications to behave in an undefined fash-
ion if an action that is not currently offered is performed? Unpredictable
behaviour can be modelled in LOTOS using non-determinism. In fact, we can
highlight the following process:

Q := (choice a€Act [] 1; a; Q) [] (4; stop)

which offers a completely non-deterministic behaviour; at every point in its
evolution it could offer any action and refuse any set of actions. Since Tr(2)=Act*
and Vo €Act®, Ref(2, 0)=P(Act), Q is at the top of the reduction preorder;
every behaviour is a reduction of it.

It turns out that we will be able to use reduction as the subtyping relation
if the LOTOS definitions of our objects’ behaviours are modified using 2. We
will show how the modification is done with two examples.



put

put get

put

Bufl Q2 \/
s/

put

Figure 2 Buf! and Buf2 without and with undefined added

Ezample 1. A one-place buffer, Bufl, was defined earlier. A two-place buffer
may be defined:

Buf2 := put; Buf2a  Buf2a := get; Buf2 || put; get; Buf2a

The labelled transition systems corresponding to Buf! and Buf2 are given in
figure 2. For these definitions, £ = {put, get}.

We’d like the two-place buffer to be a subtype of the one-place buffer. Notice
that, for the same reasons that we highlighted in our earlier example, as they
stand, the two-place buffer is not compatible with the one-place buffer. Thus,
to achieve this, we will modify the first two processes as shown in the right
hand LTSs of figure 2.

We have added transitions such that every node has at least one transi-
tion leading away from it for every possible action in £. Following any of the
transitions we have added, the process evolves to Q (this is in fact a rela-
tively standard technique in process algebra which is used to enable parts of
specifications to be extended when refining, see for example [LSW94]).

Using the fact that any behaviour reduces 2, these two processes are now
related in the way we wish; with the addition of undefined behaviour Buf2
is both a reduction and a subtype of Bufi. To justify this, firstly observe
that the traces of T (Buf2) and T (Buf1) (we will define the mapping 7, that
adds undefined behaviour shortly) are the same, i.e. £*. This is because our
transformation has ensured that at any state each process “may” perform any
action in £. Secondly, observe that for any trace in £* the refusals of T (Buf2)
are a subset of those of T (Buf1). Informally, 7 (Buf!) and T (Buf2) have iden-
tical refusals apart from those for traces of the form put put o. For such traces,
T (Buf1) will have evolved to undefined, and will thus refuse everything, while



T (Buf2) may still be performing defined behaviour, in which case it will refuse
nothing. Thus, in addition, 7 (Bufl) is not a reduction/subtype of T (Buf2)
since, for example, 7 (Buf1) can perform the trace putput and then refuse
anything, while after the same trace T (Buf2) cannot refuse anything.

We introduce some terminology. The original LOTOS specification, i.e. before
(Vs have been added, is called the defined behaviour of the specification, while
the additional choices arising from the addition of 2’s is called the undefined
behaviour of the specification. We call the LOTOS process resulting from the
addition of undefined behaviour the transformed process, i.e. T.

Ezample 2. Interestingly, using the label set {put, get, del}, when transformed
DelBuf will be a subtype of Buf1. This is because in either of its defined states
the transformed Buf! can perform a del and evolve to Q2. This contrasts with
the approach taken in [Nie95], where Nierstrasz attempts to develop conditions
that show that in their untransformed form DelBuf is not a subtype of BufI.

5 ADDING UNDEFINEDNESS TO LOTOS SPECIFICATIONS

Transforming Specifications. Having introduced the concept of undefined
behaviour we have to consider how to add this behaviour to LOTOS specifica-
tions in an automated way. There are three possible approaches; we could,

1. leave it in the hands of the specifier to explicitly include the undefined
behaviour in their specifications;

2. develop a mapping which takes defined L.OTOS specifications and maps
them to LOTOS specifications with undefined behaviour; or

3. we could leave the LOTOS specifications unchanged, but rather add the
undefined behaviour implicitly at the semantic stage.

Of these three, the first is not a feasible approach as it would make the speci-
fier’s task significantly more difficult. The second is feasible, however, defining
the mapping is not straightforward. In particular, adding undefined behaviour
through the parallel composition operator is quite subtle. Thus, it is the third
of these alternatives that we select.

Our approach is to take the LTS of a 1L.OTOS process and derive a new
transition relation, which we denote - a —. This new transition relation
will add states and transitions that reflect the required undefined behaviour.
Where L is the label set of the specification we generate the smallest relation
that satisfies the inference rules:

P-4 P a € L\ initials(P)
'l — 2
R Pra— P k Pra—Q
€ Act - -
R3. 2= R4: —— R5:

QFi—a; Q a;, QFa— Q " QFi— stop



R1 ensures that the new relation contains the relation — . R2 adds the pos-
sibility to evolve to 2 when applying an action that is not currently offered.
Rules R3, R4 and R5 code up the behaviour of the undefined process (2.

Non-determinism. These inference rules define a simple means to add unde-
finedness to an LTS. For deterministic processes, the consequences of applying
these rules are very straightforward. For example, the rules will map the first
two LTSs of figure 2 to the second two LTSs. However, application of the
rules is more subtle in the presence of non-determinism. Consider the follow-
ing examples of the three archetypal forms of LOTOS non-determinism, with
L ={a,b,c}:

X := a;b;stop [ a;¢;stop Y := i;a;stop [] i; b;stop
Z = i;a;stop [] b; ¢;stop

a a i i
b,c c
ac ab b,c ac
SL 13 S S
a,b,c a,b,c a,b,c a,b,c
A @ a1 b @ f

i b i b
a N ’\ ‘ ’\
b,c ab bc a,b
S 118 a2 a1
ab,c ab,c ab,c
5 @ L < @

n

ab,c

Figure 3 Transformed behaviours

LTSs resulting from adding undefinedness for each of these processes are
shown as (1),(2) and (3) of figure 3. This transformation has the virtue of
being extremely simple, however, it does not generate the minimum (in terms
of least number of transitions) LTS. For example, in (3) the transition labelled
¢ emanating from the start state is in fact redundant and (3) and (4) of figure
3 are testing equivalent.



A consequence of applying this transformation is that (modulo the addi-
tion of undefined behaviour) more processes are reductions than they would
normally be. For example, once transformed all of the following behaviours
would be reductions of Z.

a; stop [] b; ¢; stop [] ¢; stop a; stop [| ¢; stop a; stop [] b; a; stop

The last of these is perhaps the most suprising as the defined behaviour of
the resulting specification requires an a action to be performed after the trace
b, while Z requires a ¢ action to be performed after the same trace. How-
ever, according to our intuition about subtyping in OO this is correct as the
transformed Z can refuse the b action that leads to ¢, but cannot refuse the
b action that leads to Q. Thus, this situation is only odd if the processes are
interpreted without undefinedness.

Further Examples. It is important to note though that while transforming
LOTOS specifications in this way yields a more generous relationship between
processes, which was after all our original intention, the resulting notion of
subtying still remains sensitive to incompatible behaviour.

Consider two examples from [Nie95]: a variable and a non-deterministic
stack:

Var := put; Var2 Var2 := put; Var2 || get; Var2
NDstack := put; NDstack2
NDstack2 := put; NDstack2 || get; NDstack2 || get; NDstack

Now, it can be checked that, 7 (Var) red T (NDstack) and T (NDstack) red
T (Buft), but =(T (NDstack) red T (Var)) and —(T (Bufl) red T (NDstack).
The latter two of these are because,

Ref(T (NDstack), put get get) = P(L) € {0} = Ref(T (Var), put get get)
Ref(T (Buf1), put put) = P(L) € {0} = Ref(T (NDstack), put put)

In addition, we can handle data passing processes by, in the usual way, ex-
panding full LOTOS into basic LOTOS, using a richer action set and choice to
model input alternatives *. The following two processes, an infinite stack and
an infinite queue, are written in a pseudo full LOTOS.

Stack(l : list) := put?x : nat; Stack(z#l) [| [l #[]] — get! hd(l); Stack(tl(l))
Queue(l : list) := put?z : nat; Queue(z#l) [] [ # []] — get!lst(l); Queue(frni(l))

*There are actually some subtleties in how data passing has to be handled which we do not
have space to discuss here. One issue is that mapping full LOTOS to basic LOTOS generates
a deterministic modelling of output which is not always what is required. Ongoing research
is currently seeking to resolve these issues.



where z#[z1, ...z, = [z, 21, .., 2], Ist([z1,..,20]) = zpn, frot([z, .., z,]) =
[%1,..,2n—1] and hd, tl and empty lists, denoted [], are treated in the usual
way.

As would be expected these two behaviours are incomparable. The following
trace/refusal properties demonstrate this (where o = put_1put 2 get_1, o' =
put_1put_2 get_2 and a_v denotes the occurrence of an action at gate a with
data value v):

),0)

REf(T(Stack([]?) o) = P(ﬁ() Z {0} = Ref(T (Queue( ))7 :

: (1)
Ref(T (Queue([])),0") = P(L) £ {0} = Ref(T (Stack([]
As these examples demonstrate, transformed behaviours have a very precise
trace/refusal character. Transformed specifications can perform any trace in
L* and after all traces either refuse nothing or refuse everything. One con-
sequence of this is that for transformed specifications red = ext = conf.
This is good news as it has previously been argued [BS86] that checking trace
subsetting is a major hindrance to verifying reduction. In fact, this is one of
the reasons that Brinksma considered conf in the first place. In addition, the
normal relationships between the 1.0TOS equivalences still hold, i.e. ~C=xC te.

A Note on Undefined Behaviours. Up to testing equivalence, there are
actually several different processes that could be used as €. For example, both
the following two processes have the same trace/refusal characterisation as Q.

Q' := (choice a€Act [] 1; a; Q') [] (4; stop) [] (4; Q)
Q" := (choice a€Act [| a; Q") [] (i; stop)

One of the reasons for this is that LOTOS trace/refusal semantics are not
sensitive to divergence. Thus although from amongst these processes, ' is
divergent and Q and Q" are not, the three processes have the same semantic
characterisation. The decision not to be sensitive to divergence concurs with
the approach taken in bisimulation semantics [Mil89] and is tied to a subtle
debate concerning fair abstraction [BBK87].

However, it should be pointed out that other models handle this issue dif-
ferently. For example, in CSP, which employs a chaotic interpretation of di-
vergence, only Q' would give the most unpredictable behaviour.

6 CONCLUSIONS

A criticism of the approach to adding behaviour that we have presented here
is that it is not very refined; a path to undefined is added at any state for any
action that is not currently offerred. A more refined approach would allow
the specifier to obtain refusal when (s)he wishes and undefined when (s)he
wishes. This is an area of ongoing research.



To summarise, then, we have considered the spectrum of LOTOS correctness
relations and argued that all fail in some respect to be a suitable instantia-
tion of behavioural subtyping. Then through consideration of how subtyping
behaves in OO specification and programming notations we have motivated
a re-interpretation of LOTOS specifications in the OO setting. This involves
adding undefined behaviour to LOTOS specifications. We have defined a simple
LTS based mapping to add undefined behaviour to LOTOS specifications. The
main consequence of applying this mapping is that the most well behaved of
the LOTOS refinement relations, reduction, really is behavioural subtyping.
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