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NotiMind: Utilizing Responses to Smart 
Phone Notifications as Affective sensors 

Eiman Kanjo, Daria J. Kuss, and Chee Siang Ang 

Abstract—Today’s mobile phone users are faced with large numbers of notifications on social media, ranging from new followers 
on Twitter and emails to messages received from WhatsApp and Facebook. These digital alerts continuously disrupt activities 
through instant calls for attention. This paper examines closely the way everyday users interact with notifications and their impact 
on users’ emotion. Fifty users were recruited to download our application NotiMind and use it over a five-week period. Users’ 
phones collected thousands of social and system notifications along with affect data collected via self-reported PANAS tests three 
times a day. Results showed a noticeable correlation between positive affective measures and keyboard activities. When large 
numbers of Post and Remove notifications occur, a corresponding increase in negative affective measures is detected. Our 
predictive model has achieved a good accuracy level using three different “in the wild” classifiers (F-measure 74-78% within-
subject model, 72-76% global model). Our findings show that it is possible to automatically predict when people are experiencing 
positive, neutral or negative affective states based on interactions with notifications.  We also show how our findings open the 
door to a wide range of applications in relation to emotion awareness on social and mobile communication. 

Index Terms— Mobile Sensing, Affective Computing, Mobile Computing, Mobile Social media, Machine Learning  

——————————      —————————— 

1 INTRODUCTION

 notification is generally defined as a visual cue, 
auditory signal, or haptic alert generated by an 

application or service to capture the user’s attention (Iqbal 
and Horvitz, 2010). Currently, all major smartphone 
platforms (i.e., iOS and Android) offer a standardized user 
interface mechanism for notifications, displaying all 
notifications in the notification bar located at the top of the 
screen. Given the increase of mobile applications (apps) on 
smartphones, notifications are becoming ubiquitous, 
providing a broad range of information, from system (e. g., 
app updates) to social information (e. g., a message from a 
friend). More specifically, notifications on smartphones 
inform users about a variety of events, such as the arrival 
of a text message or emails, an incoming phone call, a new 
comment on one of their social network posts, game-
related status updates, system status or the availability of 
an application update. Notifications hence provide a 
means for app publishers and advertisers to connect with 
users.  

Within the HCI and Ubicomp research communities, 
there has been a growing interest in studying how users 
respond to notifications, with an aim to design better 
notification delivery systems, which minimize disruption.  
For instance, it has been found that not all notifications are 
treated the same way by the users. In response to 

notifications, users may take immediate action or ignore 
notifications depending on the importance of a notification 
as well as the user’s current context. It is important to 
understand how users respond to notifications in the 
context of smartphones. In contrast to notifications on 
desktop computers, notifications on smartphones are less 
likely to be delivered when the users are actively 
interacting with the device: despite the large amount of 
time users spend with their smartphones, the device is 
often not in active use when notifications arrive. Therefore, 
with smartphones, notifications have some unique 
characteristics which need to be considered: i) they are 
delivered through a standardized mechanism, ii) they 
inform about a larger variety of events, ranging from social 
messages to system events, and iii) they are pervasive due 
to the omnipresent nature of smartphones, which are 
always with the user (Ichikawa, Chipchase et al. 2005; 
Wiese, Saponas et al. 2013). 

While mobile phones and mobile notifications have 
enhanced the convenience of our life, their obsessive use 
may have an adverse impact on mental health and 
wellbeing. This impact is still under investigation and 
researchers have started to look at various techniques to 
understand and diagnose problematic mobile phone use 
and mobile phone addiction (Billieux, Maurage, Olatz-
Lopez, Kuss & Griffiths, 2015). 

In this paper, we present our mobile phone application 
NotiMind which aims to: 

1. Monitor mobile notifications and gather interaction 
data unobtrusively based on the amount of 
notifications received and delivery pattern of 
notifications on mobile phones. 

2. Model user interaction and reaction to mobile 
notifications and their impact on affective states 
based on a machine learning approach. 

3. Examine patterns of user interaction with mobile 
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phone notifications, status and screen activities and 
their correlations with affective states of the users. 

Our approach is based on utilising machine learning to 
recognize affective states of smartphone users to assess the 
users’ emotional states. We set up “in the wild” user 
studies (as opposed to lab-based studies) and gathered 
various types of notifications data from participants’ 
smartphones. These data were collected using a custom-
built application, called “NotiMind” which collects a wide 
range of social and work notifications, such as screen 
events (e.g. Screen-On and Screen Unlock), Time/Date, 
ringtone volume. Additionally, NotiMind collects self-
reported affective states of users, using a short version of 
the Positive and Negative Affective States scale (PANAS; 
Thompson, 2007). The ultimate aim of the study is to 
unobtrusively recognize individual smartphone users’ 
positive and negative emotions, as well as their 
relationship with type and frequency of notifications 
received on their smartphones.  

2 BACKGROUND 

2.1 Notifications 

Notifications are a feature on smartphones and other 
devices to keep users informed and engaged. 
Notifications can alert users to information regarding a 
range of subjects, including incoming messages, 
engagement with their social media posts, and availability 
of WIFI networks or applications updates, curated nearby 
places according to their geolocations and email content 
preview (Iqbal and Horvitz 2010), and are commonly 
presented on a notification panel on top of the screen. 
Figure 1 shows types of mobile notifications and their main 
categories. 

In the desktop and mobile environment, notifications 
have been viewed as means to proactively provide 
awareness of information while users are attending to a 
primary task. These alerts arrive in form of a brief text and 
alerting sound (if the volume is on) or vibrating (on mobile 
phones and smart watches) to catch end-users’ attention. 
The time taken by users to attend to those notifications 
often depends on how important the context of the 
notifications is (e.g., a family emergency may require a 
more immediate response than a work email), and what 
contexts the users find themselves in when receiving the 
notification (e.g., a user is more likely to attend to a 
notification when they are not currently actively engaged 
in another activity). A main function of notifications is to 
allow users to switch between work-related and social 
apps. Such switches are often driven by the user’s own 
need to forage information as required for the current task, 
or after being proactively alerted about the arrival of new 
information.   

 Previous work has shown that although users are 
aware of the disruptive effects of notifications, they 
generally appreciate the awareness that notifications 
provide (Iqbal & Horvitz 2010; Mark, Voida et al. 2012). 
Specifically in the smartphone context, users are eager to 
receive notifications as they keep checking their 
smartphones frequently (Oulasvirta, Rattenbury et al. 

2012). The level of importance of notifications varies 
depending on the categories of the notifying apps 
(Oulasvirta, Rattenbury et al. 2012; Pielot, Oliveira et al. 
2014).  

Furthermore, some mobile social network users hardly 
show what they feel; therefore their friends cannot sense 
or react to their emotional states appropriately. This is 
probably because they are unfamiliar with the expression 
of emotion or are not aware of their own emotions. A 
possible solution for this problem is to adopt emotion 
recognition technologies which are being extensively 
studied by the affective computing research society to 
determine user emotions.  

Shirazi et al. (2014) carried out a large-scale assessment 
of mobile notifications and found that participants rated 
notifications from messenger applications as the most 
important ones, at 4.43 out of 5 (5 being the most 
important). Notifications from the three other 
communication categories and from the calendar also 
received high ratings with averages between 3.66 and 3.45. 
Notifications from the system clearly received the lowest 
rating (1.6). The large scale assessment (Shirazi, Henze et 
al. 2014) concluded that important notifications are about 
people and events, specifically if they notify about 
communication with other users, inform about other users’ 
actions, or about real life events. Another factor why 
notifications are considered unimportant is the frequency 
with which they are created, and whether they provide 
information about the phone’s internal processes.   

Pielot, Oliveira et al. (2014) investigated users’ response 
time to various types of notifications and found a wide 
range of differences. Specifically, the median response 
time ranged from 3.5 min for messengers on weekends to 
27.7 min for email on weekends. The shortest notification 
responses were provided for messengers (6.6 and 3.5 min) 
and social network applications (3.8 and 7.0 min / 
weekday and weekend day, respectively). It was also 
found that half of the notifications were viewed within a 
few minutes, and that the majority were attended to within 
an hour. When notifications arrived, the screen was off in 
69.2% of the cases. The speed at which people attended to 
notifications indicates that notifications often triggered 
interaction with the phone. Moreover, given the perceived 
importance of various categories of apps, most users might 
not want to disable notifications. However, this depends 
on the notification, such as: 
1. Frequency: some applications (e.g., social media) have 

the potential to send a large number of alerts by the 
minute: for chats, for new posts and tagged photos, etc. 
The notification content is likely to become less 
important in a situation where a large number of 
interruptions occur over a short period of time.  

2. Content: Many mobile applications use notifications as 
nothing more than marketing vehicles to remind users 
to use those respective apps. These could be potential 
constant distractions if not turned off. 

3. Importance: In the case of a large number of 
applications sending notifications to the user, the user 
may begin to prioritise these in order of the most 
immediately important. For instance, notifications 
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which were previously considered important may be 
re-evaluated with the introduction of new notifications 
which may render the notification previously 
considered important to comparatively less relevant.  
4. Category/Source: Some notifications grab users’ at-

tention more than others merely due to on the ap-
plication source which has generated the notifica-
tion: e.g. email, WhatsApp, Facebook, Udacity, etc. 

 
 

2.2 The drawback of notifications 

Although notifications serve an important purpose for 
smartphone users, the number of apps which compete for 
the user’s attention using notifications has grown signifi-
cantly over the years. Initially designed to raise infor-
mation awareness, it has been argued that notifications 
have now become too frequent (Iqbal and Horvitz 2010; 
Shirazi, Henze et al. 2014), and may be contributing to 
stress (Westermann et al. 2015).  

Extensive research has been conducted investigating in-
terruption of information workers through notifications in 
a desktop context (Horvitz 2001; Adamczyk & Bailey 2004; 
Czerwinski, Horvitz et al. 2004). Studies have shown that 
workers tend to drop their current task to check the notifi-
cation, and it is difficult for them to return to their previous 
tasks (Czerwinski, Horvitz et al. 2004). Indeed, a large 
body of work in HCI has looked into the detrimental ef-
fects of digital interruptions. Experiments in a controlled 
laboratory environment have revealed that notifications 
arriving at random times are particularly disruptive 
(Horvitz 2001; Baethge & Rigotti 2013). In field experi-
ments, digital interruptions at work (e.g., email alerts) 
have been linked to feeling distracted, stressed, and anx-
ious (Kushlev & Dunn 2015).  

As discussed previously (Section 2.1), people often at-
tend quickly, if not immediately, to notifications on their 
smartphones, which arrive at random times, making 
smartphones particularly disruptive (Adamczyk et al., 
2004). Furthermore, due to the omnipresence of 

smartphones, users are constantly disrupted regardless of 
where they are, as they are likely to take their phones with 
them. Even when their phones are set to vibration, studies 
have demonstrated that people still attend to notifications 
quickly regardless of the alert type (Pielot, Church et al. 
2014; Chang & Tang 2015). 

Kushlev, Proulx et al. (2016) provided some evidence 
that interruptions due to notifications can cause inatten-
tion and hyperactivity in the general population. It was 
found that when people switched on notifications and kept 
their phones within physical reach, they experienced 
higher levels of inattention and hyperactivity. They found 
that notifications draw users’ attention away from other 
ongoing activities, making people more prone to distrac-
tions, increasing cognitive load, which may in turn make 
people experience inattention and hyperactivity. Even 
when users choose to disable notifications, research has 
suggested that for some individuals, disabling alerts may 
produce anxiety over missing out (Pielot and Rello 2015). 
Such anxiety may lead users to self-interrupt more fre-
quently. In one study, information workers disabled their 
email notifications for one week; it was found that some 
workers checked their email even more to avoid missing 
important emails (Iqbal & Horvitz 2010). Hence, simply 
turning the notifications off may not be the solution to the 
disruptive nature of smartphone notifications. This may 
lead users to compulsively check for missed notifications, 
for instance from social networking apps due to social 
pressure (Pielot, Church et al. 2014) and the fear of missing 
out (FOMO; Przybylski et al. 2013). 

Apart from distraction and stress, some studies have 
suggested that extensive use of smartphones could poten-
tially lead to smartphone addiction (Bayer & Campbell 
2012; Billieux et al. 2015; Oulasvirta, Rattenbury et al. 
2012). In one study, researchers found that their partici-
pants checked their smartphones 34 times a day 
(Oulasvirta, Rattenbury et al. 2012). Yoon, Lee et al. (2014) 
investigated the way young people make use of 
smartphones. It was found that they receive an average of 
400 notifications a day. It was claimed that the usage pat-
tern of smartphone by young people bordered on addic-
tion.  

However, research on the extent to which mobile phone 
notifications fare in this is currently limited.  Moreover, the 
traditional clinical approach based on questionnaires and 
interviews typically used in mobile phone addiction re-
search (Lopez-Fernandez, Kuss, et al., 2017) have limita-
tions: health professionals cannot perform continual as-
sessments and interventions for their clients, and the sub-
jectivity of assessments could be a problem.  

2.3 Machine learning work on notifications 

Despite the disruptive nature of notifications, studies have 
found that users suffered no negative consequences when 
they were interrupted at opportune times in between work 
tasks. Therefore, various studies have been conducted by 
means of machine learning to understand the factors lead-
ing to users responding to notifications, with the aim to 
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Game 
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Fig 1. Types of Notifications. 
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predict how long it will take for users to respond to a noti-
fication, and to understand what the most opportune mo-
ments are and what are the best ways to deliver notifica-
tions. 

Avrahami and Hudson (2006) used machine learning 
techniques to predict how fast a user responds to an instant 
message in a desktop computer setting with 16 co-workers 
at Microsoft and a total of 90,000 messages. Using these 
data, they trained models with an accuracy of 90.1% to pre-
dict if a message would get a response in 0.5, 1, 2, 5, and 10 
minutes. Strong predictors of responsiveness were “the 
amount of user interaction with the system”, “the time 
since the last outgoing message”, and “the duration of the 
current online-status”.  

Fogarty, Hudson et al. (2005) and Hudson, Fogarty et al. 
(2003) collected data from four information workers to pre-
dict when they were interrupted whilst at work. They con-
cluded that a single microphone, the time of the day, the 
use of the phone, and the interaction with mouse and key-
board can estimate a worker’s interruptibility with an ac-
curacy of 76.3%. Drawing from this, Begole, Matsakis et al. 
(2004) developed a prototype sensing sounds, motion, us-
ing the phone, and using the office door to predict if a 
worker is potentially available to interruptions.  

Rosenthal, Dey et al. (2011) developed a model to pre-
dict when a phone should be put in silent mode using ex-
perience sampling to collect data on user preferences for 
different situations. They considered features such as time 
and location, reason for the alert, and details about the alert 
(e.g., whether it came from a caller listed in the user’s fa-
vorites) in their model. An experimental study showed 
that thirteen out of nineteen participants were satisfied 
with the accuracy of the automatic muting.  

Pielot, Oliveira et al. (2014) identified that features ex-
tracted from the phone, such as the user’s interaction with 
the notification center, the screen activity, the proximity 
sensor, and the ringer mode, can be used to predict how 
quickly the user will respond to the messages. It was found 
that with seven high-level features, a user’s level of atten-
tiveness to mobile messages can be successfully estimated 
with an overall accuracy of 70.6%. Taken together, these 
studies demonstrate the value of machine learning for 
identifying user interaction trends based on mobile device 
notifications.  

2.4 Recognition and Emotional Impact of 
Notifications 

Although machine learning has been used to identify user 
interactions with smartphones based on notifications, 
there has been little previous research using machine 
learning to predict the direct emotional impact of these no-
tifications and interruptions. Many affective computing 
and HCI researchers have suggested various methods to 
sense and recognize human emotions (Kanjo, Al-Husain et 
al. 2015). Existing emotion recognition technologies can be 
divided into various categories, depending on what kinds 
of data are analyzed for recognizing human emotion: 
physiological signals, facial expressions, text or voice. 
Physiological emotion recognition shows acceptable per-
formance but has some critical weaknesses that prevent its 

widespread use: they are obtrusive to users and need spe-
cial equipment or devices (such as a skin conductance sen-
sor, blood pressure monitor, or electrocardiography 
(ECG)). These devices are not only intrusive to users, but 
involve additional costs. Similarly, emotion recognition 
using facial expressions or speech limits their usage be-
cause the device needs to be positioned in front of the 
user’s face and needs to continuously listen to the user’s 
voice or record the user’s face. This is not only not practical 
in the mobile context, but it raises various issues with re-
gards to user acceptance. 

While emotional recognition using physiological sig-
nals and facial/voice recognition has been extensively re-
searched, few studies have looked into the emotional re-
sponses to smartphone notifications. Many studies have 
found that notifications are predominantly linked to nega-
tive emotions. Pielot, Church et al.’s (2014) qualitative 
analysis revealed that using emails and social networks 
was correlated with feeling overwhelmed, stressed, inter-
rupted and annoyed. Furthermore, when receiving more 
emails, participants were also more likely to report experi-
ences where notifications kept them from doing something 
else or when they felt pressure to respond faster than they 
were able to. On the other hand, social notifications, de-
spite their equally high volume, and social networks to a 
certain extent, triggered more positive emotional re-
sponses. For example, it was found that receiving more so-
cial messages is significantly correlated with increased 
feelings of being connected with others. It is likely that this 
relates to the personal nature of messaging apps. There-
fore, it would appear that the nature of notifications (work 
vs social) in this context rather than the amount of notifi-
cations may have an impact on users’ emotional states, and 
this will be assessed in the present study. 

2.5 Impact on mental activity and affective states 

Nomophobia is defined as fear of being without the mobile 
phone, resulting in discomfort, anxiety, and stress, and has 
been considered to be included in the most recent fifth edi-
tion of the Diagnostic and Statistical Manual for Mental 
Disorders (DSM-5) (Bragazzi & Del Puente, 2014). Psy-
chologists recommend cognitive-behavioral psychother-
apy combined with pharmacological intervention for the 
treatment of this potential disorder (Bragazzi & Del 
Puente, 2014). 
Recent research findings have also shown that young 
adults who make particularly heavy use of mobile phones 
and computers run a greater risk of sleep disturbances, 
stress and symptoms of mental illness (Billieux et al., 2014). 
Thomée et al. (2011) conducted four studies assessing how 
the use of computers and mobile phones affects the mental 
health of young adults. Their findings have highlighted the 
need for moderation in the use of these technological 
devices. Their studies furthermore revealed that intensive 
use of mobile phones and computers can be linked to 
stress, sleep disorders and depressive symptoms. They 
also discovered that frequently using a computer or phone 
without breaks also increases the risk of stress, sleeping 
problems and depressive symptoms in women, whereas 
men who use computers intensively are more likely to 
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develop sleeping problems. According to the mental 
health charity Young Minds (2016), problems highlighted 
as a consequence of excessive mobile phone use include 
the following: addiction, attention deficiency, 
attentiveness/or lack of it, depression, anxiety and stress, 
sleep disturbances and insomnia, as well as a lack of 
involvement in family life, suggesting excessive mobile 
phone use can be associated with a considerable array of 
difficulties. 

3. DATA COLLECTION SYSTEM 

3.1 Software 

The first stage of developing the classification system was 
the collection of notification data and affective state test re-
sponses. The data collection process is visualized in Figure 
2. In this process, we gathered various notification data us-
ing the specifically designed mobile application ‘No-
tiMind’, which sits in the background and collects various 
system, message and social media notifications (see Figure 
2). These notifications usually appear on the notification 
panel. NotiMind utilises the phone’s Notification manager 
API and System Manager API in order to intercept notifi-
cations. These notifications are then logged and stamped 
with the time and date of the notification activity.  

The application also records the following attributes 
(see Table 1): 

1. Notification originators event name: e.g., email or 
social media client, such as WhatsApp and individ-
ual users or groups. 

2. Event State in terms of what type of notification is 
being sent: e.g. screen event (Screen on, Screen-off 
and screen unlock), notification post (i.e. notifica-
tion is received) and Notification removed (by the 
user). 

3. Message content.  
4. Event time and data.  

NotiMind records the message body without requiring 
root privileges. However, users are required to manually 
enable notification access for NotiMind from their phone 
settings. All the data logged from the application are 
stored on a local SQLite database.  

The application also collects self-reported affective 
states based on the Positive and Negative Affect Schedule     
(PANAS) model (Watson, Clark, & Tellegen, 1988). The 
PANAS model is based on the idea that it is possible to feel 
good and bad at the same time (Larsen, McGraw et al. 
2001). Thus, PANAS tracks positive and negative affect 
separately. The PANAS contains adjectives to assess 
affect/mood states using differentiated terms (e.g. 
inspired, ashamed, and determined) with a general 
positive-negative index. The PANAS scale has good 
reliability, is sensitive to changes over time, and is 
considered one of the best measures of current mood  
(Watson, Clark, & Tellegen, 1988). To perform a 
measurement, the PANAS model uses a checklist to 
measure affect from various aspects. To reduce the burden 
on participants from completing measures of all the 60 

PANAS elements, we assessed only 10 items based on a 
shortened PANAS version, the I-PANAS-SF (Thompson, 
2007; see PANAS screenshot in Figure 2). All participants 
are asked to take the short PANAS test three times every 
day. The application sends a reminder every 8 hours to 
prompt users to take these tests. Also, users were 
encouraged to take the PANAS more often and whenever 
they can during the day to report their emotions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2. NotiMind system architecture and Android Platform 

Data cleaning and features extraction was performed using 
Python, and our classifiers were performed using 
RapidMiner software (RapidMiner, 2016).  

 

3.2 Participant Recruitment of the Participants 

The study was launched in April 2016 over a five week 
period. The call for participation was advertised at 
Nottingham Trent University and the University of Kent’s 
mailing lists, as well as on Twitter and other social media. 
The NotiMind application was not made available to 
download on the Google Play store for the following three 
reasons: 1) anyone can download the app on GooglePlay, 
even underage participants which would violate our 
ethical approval agreement, 2) we cannot validate the 
purpose of data use; 3) no immediate benefit for the users 
is achieved, which meant a poor ranking might be given to 
the application by reviewers, potentially undermining our 
future plan to release a consumer-facing version.  Once 
participants have given their consent to participate in the 
study, they were asked to download the NotiMind app 
and enable Notification access on their mobile phones. 
They also received an instruction manual and email 
address in order to get in touch in case of any difficulties. 
The instruction manual pointed to where the log file was 
stored on the participant’s Android phone (in our case it is 
a Sqlite file in .db format). 

Our application triggered three silent alerts a day with 
popup notifications to remind the users of taking the 
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PANAS test and to check that NotiMind is working as in-
tended. Those who successfully completed the study were 
presented with a voucher as incentive for volunteering 
their time. 

Fifty participants took part in the study (30 male and 20 
female). All were existing Android users with an average 
age of 25. The study was approved by Nottingham Trent 
University’s Ethics Committee.  

During the data collection process, 832,776 notifications 
were collected. Many users stopped responding to the 
questionnaires after a few days and some did not respond 
at all. Therefore, we selected a subset of the data for the 
analysis and included data of 34 users who completed the 
data collection task.  If no PANAS test score was recorded 
over 10 hours, then the data for this period were dismissed. 
Therefore, our final dataset comprises 534,346 
notifications, and 3328 unique PANAS entries. 

3.3 Response Rate 

We first calculated the response rate of the overall PANAS 
affective measure input, confirming the reliability of user 
input into our system.  

Although we asked users to report their mood at least 
three times a day, we expected some absence of self-report 
entry due to the extensive nature of our study. We calcu-
lated the daily response rate of our users and found that on 
average, 70% of users had three or more entries, which 
demonstrates the effectiveness of our self-report applica-
tion. The affect distributions were fairly consistent during 
different times, seemingly unaffected by whether the entry 
was during work mornings, afternoons or evenings. The 
response rate, affect persistence, and distribution of the en-
tered moods show NotiMind’s efficacy in collecting a wide 
variety of data from the users, and provide insight into the 
design of NotiMind.  

4 DATA PREPARATION 

4.1 Basic definitions and Attributes 

The NotiMind app generates five attributes, which are de-

scribed in Table 1. 

Due to the unstructured nature of these data, a considera-

ble amount of cleaning, removing redundant data and 

reformatting was required. This step was followed by a 

feature extraction step (from Event-Name, and Event- 

Message columns). 

Similar to prior work (Shirazi, Henze et al. 2014, Iqbal et 

al., 2010), we have derived a specific categorisation scheme 

based on messages and the applications they originated 

from. These new categories were then discussed with the 

users and finalised through further team discussion.  

Also, following a similar approach to previous research 

(Shirazi, Henze et al. 2014), notifications were categorised 

as “work”, if the message originated from email 

applications. Also we have found that “Group” messages 

names were often tagged with the symbol @, which made 

it easy to detect a “Group” category. Table2 shows the 

derived categories.  
 

TABLE 1 

DESCRIPTION OF ATTRIBUTES COLLECTED FROM THE NO-

TIMIND APP 

Attributes Description 

Date/Time Time and Date of notification arrival 

Event-Name Including which application or internal 

mobile service initiated the message, phone 

number or name of a user, or a group ( e.g. 
com.android.systemui : Cable charging). 

Event-State With two possible values, either Notifica-

tion is posted or removed from the notifica-

tion panel 

Event-Message Content of the message 

Type Notification event or screen event, such as 

screen locked screen On or Off 

 

TABLE 2 

LIST OF CATEGORIES DERIVED FOR THE AFFECT STATE PREDIC-

TION 

Catego-

ries 

Description 

Group Detected when the ‘@’ sign is present in the Event-

Name. e.g.  whatsapp : William @ Friendship-Group 

Work Detected when certain email tags are present in the 

Message. Also messages received from LinkedIn are 

considered as work related. 

 

System Detected when the following keywords are present 

in the Message or Event-Name, including: ‘Updat-

ing’, ‘WIFI’, or ‘USB’. 

Emoji De-

scription 

Emojis detected in the text are decoded to its descrip-

tion according to the Emoji/Unicode table*. 

Emoji 

Count 

The number of Emojis in the message. 

Video 

Presence 

Video presence in the message is represented by the 

‘Camera Recording’ Emoji (🎥 Unicode: U+1F3A5). 

Video 

Length 

Length of the video is recorded from the value ac-

companying the ‘Camera Recording’ Emoji 

Image 

Presence 

Image presence in message is represented by the 

‘Camera’ Emoji (📷, Unicode: U+1F4F7). 

Message 

Length 

Length of the message. 

Multiple 

Messages   

Multiple messages notifications don’t show actual 

messages, however, they indicate that the user is re-

ceiving many number messages simultaneously. 

 

 

4.2 PANAS Data distribution 

We considered the PANAS as a two-dimensional vector 
with 20 possible values for PA (Positive Affect) and 20 pos-
sible values for NA (Negative Affect). 

PA is the sum of PANAS items 1, 4, 5, 8, 10 (positive 
metrics (PM)): 

PM= <Determined, Attentive, Alert, and Active> 

PA = ∑ 𝑃𝑀

𝑡

𝑖
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NA is the sum of PANAS items 2, 3, 6, 7, 9 (negative 

metrics (NM)): 

NM=<Inspired, Ashamed, Nervous, Upset, Afraid Hostile> 

NA = ∑ 𝑁𝑀

𝑡

𝑖

 

In the current study, following Koydemir et al.’s (2013) 

and Mukolo and Wallston’s (2012) method, the affect bal-

ance score  was computed as overall indicator of affective 

well-being by subtracting the negative affect score from the   

positive affect score (PA-NA). The affect balance (we will 

refer to it as the PANAS score) has the range L, ranging 

from -20 to 20. We discretize this range into 3 classes:  -1 

(negative), 0 (neutral), and 1 (positive). To perform data 

discretization, we adopted a recursive partitioning based 

on entropy of the PANAS score distribution. Intuitively the 

entropy measures the amount of randomness of a source 

producing random items. Using this approach, an interval 

is split at a point that results in minimum entropy. For-

mally, let pi be the empirical probability of observing the 

label yi on sequence. 

i.e., the ratio of labels yi to all labels in the sequence I. 

Then the entropy of the label distribution on I is defined 

as: 

 
Entropy(𝐷𝑖) = − ∑ 𝑝𝐼(𝑦𝑖)𝐿𝑜𝑔2(1/𝑝𝐼(𝑦𝑖))𝑚

𝑖=1                

 

where the sum is over-all labels.  

Discretization ranges are determined by selecting the 

cut point for which Entropy is minimal amongst all the 

candidate cut points  (Fayyad & Iran, 1993). 
We also analyzed the distribution of PANAS scores that 

users entered into the system. As we expected, neutral af-

fective states occupy a significant percentage of our da-

taset. 

Users generally reported positive affective states rather 

than very negative states. 68% of total PANAS affective 

states reported by participants were positive, while 32% of 

total reported PANAS affective states were negative. The 

maximum number of positive states reported was +18, and 

the minimum negative states reported was -5, with a mean 

μ=4.78 and a Standard Deviation of =5.08.  

13% represents the highest PANAS entry (mood state 

Active), whilst 4% represents the lowest PANAS entry 

(mood state Ashamed) as shown in Table 3. 

 

 

 

 

 

 

 

 

TABLE 3 

PANAS Scores Frequencies 
 

PANAS Individual Metrics  

Determined 6% 
Upset 9% 
Ashamed 4% 
Attentive 8% 
Alert 9% 
Nervous 5% 
Afraid 5% 
Inspired 9% 
Hostile 5% 
Active 13% 
PANAS Positive and Negative  
PA 68% 
NA 32% 

 

Fig. 3. Feature extraction Dataflow  

 

In addition, Figure 3 shows the whole life cycle of data col-

lection and categorisation including the PANAS self-re-

port process. 

Figure 4 shows the count of PANAS annotations per user. 

Although all users were reminded to take the test three 
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times a day (at the same interval), the level of motivation 

to annotate varied between users.  

 

Fig 4. Number of PANAS annotations per user (STD=±63). 

4.3 Data Segmentation 

In total, we utilized 534,346 valid notifications from 34 
users.  Based on the derived categories above, we 
segmented the data based on PANAS scores (one segment 
per PANAS label) and then we extracted our features 
based on the following process:  

In each segment, the rate of occurrence (frequency) for 
each metric (category) was calculated as follows:  

Let 𝑡1 be the time of PANAS test, 𝑡2 the time of the 
following PANAS test. Then the sum of Post Notification 
P during (ti, ti+1): 

P(𝑡𝑖  , 𝑡𝑖+1) = ∑ 𝑃𝑖

𝑡

𝑖

 

Then we calculated the percentage Post Notifications P 
for one segment based on the following formula: 

𝑃𝐴 = (∑ P(𝑡𝑖  , 𝑡𝑖+1) ∗ 100)

𝑡

𝑖

/(∑ N(𝑡𝑖  , 𝑡𝑖+1)

𝑡

𝑖

) 

 

  where N(𝑡𝑖 , 𝑡𝑖+1)  is the total number of notifications in 

the segment. 
Similarly, R(ti,ti+1), O(ti,ti+1), F(ti,ti+1), U(ti,ti+1), and 

K(ti,ti+1), M(ti,ti+1) and G(ti,ti+1),  are the sums for 
Removed, Screen-On, Screen-off, Unlock, Keyboard-Out, 
Multiple and Group states over (ti,ti+1) period, 
respectively. The corresponding percentages are RA, OA, 
FA, UA, and KA and were calculated similarly.  

In addition, the following percentages, Emoji count EA, 
Work Notification, Rate WA, Group Notification GA, Multi 
Notification MA and System Notification SA were 
calculated as follows: 

 

𝐸𝐴 = (∑ R(𝑡𝑖  , 𝑡𝑖+1) ∗ 100)

𝑡

𝑖

/(∑ P(𝑡𝑖  , 𝑡𝑖+1) − ∑ M(𝑡𝑖  , 𝑡𝑖+1)

𝑡

𝑖

𝑡

𝑖

) 

We excluded the Multi-Notifications from the Post 
notifications count since these notifications do not have 
Emojis in them.   

𝑊𝐴 = (∑ R(𝑡𝑖  , 𝑡𝑖+1) ∗ 100)

𝑡

𝑖

/(∑ P(𝑡𝑖  , 𝑡𝑖+1) −

𝑡

𝑖

∑ S(𝑡𝑖  , 𝑡𝑖+1)

𝑡

𝑖

) 

Similarly, we excluded the System notifications from 
the total post notification count in order to calculate the 
work percentage. 

𝑆𝐴 = (∑ R(𝑡𝑖  , 𝑡𝑖+1) ∗ 100)

𝑡

𝑖

/ ∑ P(𝑡𝑖  , 𝑡𝑖+1)

𝑡

𝑖

 

𝑀𝐴 = (∑ M(𝑡𝑖  , 𝑡𝑖+1) ∗ 100)

𝑡

𝑖

/ ∑ P(𝑡𝑖  , 𝑡𝑖+1)

𝑡

𝑖

 

𝐺𝐴 = (∑ G(𝑡𝑖  , 𝑡𝑖+1) ∗ 100)

𝑡

𝑖

/ ∑ P(𝑡𝑖  , 𝑡𝑖+1)

𝑡

𝑖

 

 

The segmentation process resulted in 3328 segmented 

instances (rows) of labelled data. Table 4 lists all the 

categories along with their percentages based on the 

overall data. 

TABLE 4 

MAIN EXTRACTED FEATURES, WITH THE OVERALL PERCENTAGE. 

Sym-

bol 

Extracted Features 

 

Percentage of 

overall data (%) 

P Notification Post 31 

R Notification Removed 5 

O Screen On 15 

F Screen Off 15 

U Screen Unlock 10 

K Keyboard-Out 20 

S System Notification 6 

M Multiple Notification 17 

E Emoji Count 9 

G Group Notifications 13 

W Work Notifications 7 

ti Time and Date of the event.  

V 
The phone's ringer mode when 

notification arrived (Volume) 
 

5 CORRELATION ANALYSIS 

By examining the statistical significance of our variables 
(i.e., features), we determined the relation between our fea-
tures and the affective measure as well as interdependency 
between these variables. The highest positive correlations 
were observed between Keyboard-Out and PANAS score 
(r = 0.46, p< 0.001). Figure 5 depicts the lack of negative 
affective states when high instances of keyboard states 
were present. This suggests that users experienced positive 
emotions when interacting with other users (while the user 
is typing a message). 

Our data showed that only 10% of Keyboard-out data 
segments (when Keyboard-Out=1) are linked to negative 
PANAS.  

On the other hand, the data demonstrate more negative 
emotions are present when the users constantly receive 
and remove messages without direct engagement with 
other users as shown in Figure 6. Our data showed that 
89% of the segments with high Post and Remove Notifica-
tions rates are associated with negative PANAS scores.  
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A negative correlation was found between work mes-
sages and PANAS scores (r = −0.38, p < 0.001). This indi-
cates that people like to engage with social messages and 
family and friends, and become stressed when interacting 
with work-related messages. 

There was a noticeable positive correlation between 
multiple messages notifications (e.g., five messages from 
WhatsApp notifications which did not reveal the identity 
of the senders) and PANAS score (r = 0.22, p < 0.001).  

Emoji Count was noticeably correlated with high posi-
tive affective measures (r =0.35). A closer look identified a 
statistically significant correlation between Emojis count 
and positive PANAS scores (p <0.01).   

 
Fig. 5. Shows a correlation between low rate of Keyboard-Out states 
occurrences and negative affective measures 

 

6 PREDICTIVE MODEL 
In order to develop the system for the identification of 

affective states from notifications and mobile usage behav-
ior, we developed a predictive model. For these tasks, we 
utilized a popular machine learning software toolkit 
named RapidMiner Data Mining software v7.1 
(RapidMiner, 2016) and also checked the results on the Ma-
chine Learning Open Source software WEKA 3.8 (Weka, 
2016). As mentioned above, emotional states were defined 
by three classes in the classification task: -1, 0 and 1, for 
negative, neutral and positive, respectively. 

To build the model, we tested the levels of significance 
of the features in relation to the PANAS scores and 
checked the response of the PANAS scores for any interde-
pendency between the variables based on the correlation 
matrix.  

 

 
Fig. 6. Shows that high rate of Post and Remove states correlates with 
high negative affective measures. 
 

We checked the pairwise correlations between features 
and PANAS score on the whole dataset. Based on the result 
of features evaluation, we finally selected nine features, 
which have strong correlations with PANAS scores to 
build an inference model (i.e., feature selection step). 
Selected features were: Keyboard-Out, Emoji-Count, Re-
move, Work, Post, Group, Multi, Screen-On and Unlock. 

 
TABLE 5 

PAIRWISE CORRELATIONS BETWEEN FEATURES AND PANAS 

SCORE. 

Features r 

Keyboard-Out 0.46 

Emoji-Count 0.35 

Multi 0.22 

Post 0.13 

Screen-On 0.09 

Remove 0.08 

Unlock -0.07 

Group -0.08 

Work -0.35 

 
As shown in table 5, Keyboard-Out had the highest 

positive correlation with PANAS score, while Work had a 
high negative correlation. We kept Screen-On state and 
removed Screen-off since highly correlated attributes 
could lead to a multicollinearity problem. 

 In order to configure Rapid Miner to build the 
predictive model, the selected features were then 
normalized and converted into polynomial data as shown 
in Figure 7, which represents the main building blocks of 
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our predictive model using RapidMiner.  
Then we set a special role which identified a label (i.e. 

the PANAS scale), which must be predicted for new 
examples that were not yet characterized in such a manner. 
Setting the label was a RapidMiner preparatory step to 
feed the data to the classifier to build a predictive model of 
the notification data. 

 
 

 
Fig. 7. Rapid Miner design of ANN predictive model 

 
The performances of three supervised machine learning 

algorithms were tested to classify user interaction 
segments into three PANAS classes. A feed-forward 
Neural Network (ANNs) with a hidden layer, and radial 
basis function-Support Vector Machine (rbf-SVM) (Chang, 
Hsieh et al. 2010), and a Logistic Regression (LR) analysis 
(Cox 1958) were performed. We chose these algorithms in 
order to evaluate how discriminative (SVM), probabilistic 
(LR) and neural network (ANN) (McCulloch & Pitts 1943) 
algorithms work on our dataset.   

A neural network system (ANN) for recognition is 
defined by a set of input neurons (nodes) which can be 
activated by the information of the intended object to be 
classified. The input can be either raw data, or pre-
processed data from the samples. In our case, we have pre-
processed our data by building a feature vector. The feed-
forward neural network was trained by the 
BackPropagation algorithm (single layer). An artificial 
neural network (ANN) is a mathematical model or 
computational model that is inspired by the structure and 
functional aspects of biological neural networks.  

Our ANN was set with one hidden layer, 500 learning 
cycles and a 0.3 learning rate and a momentum of 0.2. The 
momentum simply added a fraction of the previous weight 
update to the current one. This prevented local maxima 
and smoothed optimization directions. It indicated 

whether the learning rate should be decreased during 

learning. 
The averaged performance of each classifier was as-

sessed via a multiple-run k-fold (nested) stratified cross-
validation. In our study, we adopted fifteen and ten folds. 
The inner loop of the cross-validation aimed to perform 

model selection. To quantify the performance of the classi-

fication models, we used the F-Measure, the harmonic 

mean of precision and recall, as our primary evaluation 

metric. F-Measure is calculated as follows: 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
 

Figure 7 shows the performance of the three classifiers 

across the two cross-validation methods. 
 

 

Fig.8.F-Measure of different Classification Models: ANN, SVM and LR. 

 

TABLE 6 

 F-MEASURE OF THE MODELS 

 ANN SVM LR 

Average 0.784 0.762 0.741 

STD ±0:09 ±0:15 ±0:16 

Global 0.753 0.752 0.721 

 

We employed 15-Fold Cross-Validations to evaluate 

the within-subject models, and Leave-One-Out for the 

global one.  F-measures were calculated to evaluate the 

goodness of the classification model among the three 

classification methods (ANN, SVM and LR). When a 

comparative study comprises n classifiers, 𝑐 =
𝑛(𝑛−1)

2
 

pairwise comparisons are possible.   

As shown in Figure 8 and Table 6, we observed that 

ANN worked significantly better than SVM (p-

value=0:007) using the within-the-subject model, and SVM 

was significantly better than LR (p-value=0:009). ANN was 

significantly better than LR (p-value=0:002). 

By applying Bonferroni Adjustment, we obtained the 

critical value as follows:  α =0.0.5/3=0.016. The statistical 

power was then calculated based on α. This means the null 

hypothesis of equal performance was rejected for all the 

comparative tests (p-value<0.016). 

Similarly, we obtained similar results when applying com-

parative pairwise tests on the Global models (p-values 
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were 0.04, 0.012 and 0.003, respectively), and the null hy-

pothesis of equal performance was also rejected (p-

value<0.016).  

The data from our first field study with participants 

showed that it is possible to create a machine-learning 

model to automatically predict when people are experienc-

ing positive, neutral or negative affective states from 

smartphone notification activities with F-measures  

between 74-78% for the within-subject model, and between 

72-76% for the global model. 

In the next section, we will demonstrate how we can im-

prove the accuracy level of the model performance by con-

ducting another experiment when the user is in a less dis-

ruptive environment. 

7 DISCUSSION 

The main focus of this work was to explore whether 

notification and screen interaction information extracted 

from smartphones can be a good predictor of users’ 

affective states. We took a systematic approach to model 

the dependency of mobile notifications and screen 

interaction patterns and users’ emotions. We 

demonstrated that our model can predict users’ affect state 

with good performance, as shown in the previous section.  

Our findings indicate that users feel positive when 

engaged directly with other humans using social media 

applications.   

One possible interpretation of this finding is that people 

are more willing to share their positive emotional states, 

while those experiencing negative emotions are reluctant 

to broadcast how they feel or share information in general. 

We discussed these results with some of the participants  

after sharing our findings, and our data interpretation was 

confirmed. 

On the other hand, notifications of non-social messages 

(e.g., WIFI availability and system updates) have the most 

negative impact on users. Users usually get frustrated 

when they receive a notification which is not sent by a 
human.  

Positive affective states further correlated with multi-
messages notifications (e.g., 5 messages from WhatsApp) 
which did not show the identity of the senders directly, but 
created a sense of belonging and feeling more connected. 
As expected, work-related notifications had a negative 
impact on affective states, especially when they arrived in 
bulks. 

The presence of Emojis in notification messages 
influenced the sentimental value of the message and hence 
correlated with positive affective states of users who were 
receiving them. This is not surprising since we have found 
recently a significant relationship between the number of 
Emojis and the overall positive affective measure in a 
relevant project (Tauch & Kanjo, 2016). Emoji characters 
may seem trivial to traditionalists, but they are becoming 
the world’s fastest growing language in all forms of 

communications, text messages, posts on social media, 
chatting applications and emails (Kralj Novak, Smailović 

et al. 2015). This may be due to a richer set of graphical 

representations of facial expressions in comparison to text 

only, which may lead to improved reader comprehension 

of the emotional message content, and a visual 

representation of animals, food, activities, etc.  

7.1 Limitations  

Our evaluation results presented in Section 5 illustrate the 
promising nature of affective states sensing based on 
interaction with messages and notifications, despite noisy 
labels and variation in user input. Our future work is 
required to more thoroughly evaluate our models on 
larger datasets. 

We outline the limitations of our work subsequently so 

future work can address these. 

Incentivized Public Deployment: Currently our 

NotiMind application and our call for participation have 

managed to attract a reasonably high level of user 

participation (mainly from within university contexts). 

Although we originally recruited 50 users, only 34 users’ 

data have provided PANAS labels. Future work will look 

at improving user participation and enhancing various 

user interface features and performance to enable a robust, 

continuous and flawless collection phase. 

Robustness of Self-reports: A remaining challenge in 

training data from sensing systems is the collection of 

accurate subjective labels from users. Similarly, annotating 

affective responses can be imprecise, since users may vary 

when expressing their own emotions, hence mapping 

them differently on a scale.  

Additional Affective states cues: With the 

advancement of the off-the-shelf wearable devices that can 

monitor health and physiological change, we can easily 

combine our approach with recent work of others 

exploring alternative data sources for mental health 

inference, such as sensor data. This could account for other 

co-founding variables that may influence mood and 

affective states. 

Finally, we will look at new techniques to extract 

features that are not limited to a specific window size. 

Instead, we will explore the potential of adaptive data 

segmentation and recurrent networks which is one of the 

staples of deep learning that allow to contextualize and 

learn the temporal dynamics of sequential data across long 

periods of time. 

8 POTENTIAL APPLICATIONS 

In summary, the present research paves the foundation for 
future studies looking into predicting emotions based on 
smartphone user responses to notifications and activities. 
In the long term, research in this direction will have a 
significant impact, as outlined in the following: 
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1. Impact on society: Emotion detection could help 
improve behavior prediction. For example, people 
who discuss dangerous and violent acts, but seem 
to be happy and emotionally stable, might be less of 
a threat to society or themselves than people who 
do not discuss these subjects in their messages, but 
their overall negative emotions might make them 
more of a concern. This has implications for 
national security and cybersecurity. 

2. Intervention: The output of our predictive model 
could be reflected on users’ profiles (e.g., social 
media applications, such as WhatsApp and 
Facebook) which could prompt positive 
interventions, such as fewer system notifications 
and more messages from close friends when the 
user is feeling down. This may be particularly 
relevant for younger users who may be overly 
preoccupied with their messages. 

3. Entertainment features on the phone: Knowledge 
about users’ affective states can be abstracted in a 
decorative character (i.e. Emoji style agent) which 
can be displayed on their phone. Illustrating the 
user’s emotional state may allow the user to insert 
this emotion into messages or social media posts.   

In exploring these possible applications, we need to 
consider the ethical implications of monitoring people’s 
smartphone activities as this can be seen as an intrusion of 
privacy. Although this form of monitoring is physically 
less intrusive than physiological signals (i.e., not requiring 
the users to wear specialist equipment), people may be 
concerned about their private text messages being “read” 
by the system, and thus may be unwilling to use it despite 
the potential benefits. 

9 CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed an unobtrusive emotion 
recognition approach which exploits phone notifications 

as affective states sensor. The mobile application NotiMind 

was developed, which logs and samples both mobile 

notification interaction activities along with PANAS 

affective measures. Additionally, we proposed a machine 
learning method to automatically infer users’ affective 
states from the collected mobile data: mobile notification 
and screen interaction (e.g., keyboard-out, Post and 
Remove), notification style (e.g., work, health or social) 
and message context (e.g., message length, presence of 
Emojis or images). In the user study, we gathered 534,346 
notifications which formed the base of our training dataset 
including nine of 20 selected features. We built three 
classifiers and they showed good classification 
performance against three classes: positive, neutral and 
negative.  

We identified a direct relationship between different 
notification interaction states and user’s emotions. We also 
validated some past psychological studies which have 
suggested that mobile phone use and constant 
notifications and interruption can impact users’ mental 

health (Billieux et al., 2015; Lopez-Fernandez et al., 2017). 
The proposed technology can contribute to creating 

positive emotions for users through automatic recognition 
and sharing of their emotions. Suggestions for future 
research include improving the accuracy of classifications 
by employing more features associated with users’ 
emotions. For instance, we will look at the sentimental 
contents of the messages. In addition, we intend to work 
on a real-time emotion analysis and prediction application 
which acts as a background service to keep users informed 
of their current mental states. This will help users to refrain 
from excessive engagement with their mobile phones and 
with disruptive applications by switching off unnecessary 
notifications. The resultant emotive indicators can be 
tagged on to social media profiles which may allow users 
to be aware of their friends’ current mood and wellbeing. 
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