University of

"1l Kent Academic Repository

Kent, Stuart (1997) Constraint Diagrams: Visualizing Assertions in OO Modelling.
Technical report. University of Brighton

Downloaded from
https://kar.kent.ac.uk/21501/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21501/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Constraint Diagrams: Visualising Assertions in
Object-Oriented Models

Stuart Kent

Division of Computing,

University of Brighton, Lewes Rd., Brighton, UK.
http://www.comp.it.brighton.ac.uk/~sjhk
Stuart.Kent@brighton.ac.uk
fax: ++44 1273 642405, tel: ++44 1273 642494

Abstract. A new visual notation is proposed for precisely expressing constraints in object-oriented
models, as an alternative to mathematical logic notation used in methods such as Syntropy and Catal-
ysis. The notation is intuitive, expressive, integrates well with existing visual notations, and has a
clear and unambiguous semantics. It has similarities with informal diagrams used by mathematicians
for illustrating relations and borrows much from Venn diagrams. It may be viewed as a generalisation
of instance diagrams.

Subject areas Analysis and design methods, language design, formal methods, software engineer-
ing practices.

Kind of paper: Research.

1 Introduction

There is a strand of object-oriented (OO) modelling, in particular Syntropy (Cook and Daniels,
1994) and Catalysis (D’'Souza and Wills, 1995, 1997), where precision is held to be one of the cen-
tral tenets of building object-oriented models. In this context, being precise means:

» being precise about the meaning of the visual notations (type models, statecharts etc.) employed
in the model descriptions, in terms of a common model;

» supplementing these notations with precise mathematical expression of constraints (e.g. pre/post-
conditions and invariants) that it is not easy or possible to express using the visual notation.

The latter is advocated as a way of achieving a level of detail necessary for a comprehensive behav-
ioural description, at a level of abstraction that avoids irrelevant implementation or design detail.
Unfortunately it is also unintuitive and off-putting to many working software engineers. That this is
so is evident from the limited success of formal methods in practical software development.
Amongst other things, Parnas (1996) attributes this to the demanding mathematical skills current for-
mal methods seem to expect of the software engineer, and to the lack of intuitive notation to make
this maths more palatable:

“Mathematical methods offered to the working software engineer are not very practical [...].
Most, but not all, are theoretically sound but very difficult to use than the mathematics that
has been developed for use in other areas of engineering. [...] We need a lot more work on
notation. The notation that is purveyed by most formal methods researchers is cumbersome
and hard to read. Even the best notation | know (mine of course) is inadequate.”

Stuart Kent 7 March 1997 1

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

From our experience of teaching (potential) software engineers OO modelling techniques, Parnas
seems to be quite accurate in his observations. Engineers have little difficulty in using, for example,
instance diagrams to understand and explain what is happening, and to identify various cases of
behaviour to be considered; but formalising these into mathematical notation is often hard for them
to do. However, the process of formalisation can be extremely valuable in that it helps to uncover
gaps and misunderstandings, as well as providing a general characterisation of behaviour that is sim-
ply not possible to achieve through instance diagrams alone.

What is required is a notation which is as intuitive as instance diagrams and as expressive and precise
as mathematical assertions. This paper proposes a candidate notation.

In essence, all the OO modelling notations may be viewed as imposing constraints either on the set
of allowable system states, examples of which can be illustrated using instance diagmaeps or

shots or on the allowable execution paths through those states, examples of which can be illustrated
throughfilmstrips - sequences of snapshots (one per frame) annotated with the actions performed
between each frame. Current graphical notations are inadequate in the constraints they are able to
impose, so need to be supplemented by mathematical assertions describing the more intricate con-
straints. We propose a visual notatioanstraint diagramswhich, in many cases, replaces the need

to write assertions mathematically, and we argue, provides a far more intuitive picture of the con-
straints being imposed. The notation has similarities with informal diagrams used by mathematicians
for illustrating relations and borrows much from Venn diagrams. It may be viewed as a generalisation
of snapshot notation.

The paper is structured around the construction of an object-oriented (specification) model of a
library system. The specification is presented through a number of views each one focussing on a
different aspect of the model. Each view comprises a type diagram, mathematical assertions describ-
ing addional constraints (invariants, pre/post specifications of actions), and visualisations of those
assertions as one or more constraint diagrams. Sometimes the maths is omitted, if previous examples
already illustrate the relationship between the constraint diagrams and the maths.

82, p.3 is a short problem description for the library system. This is introduced first as the rest of the
paper uses this example for illustration. 83, p.3 gives the type diagrams for the library, illustrating the
semantics in terms of snapshots, writing invariants both mathematically and using constraint dia-
grams. In this way, the main components of the notation are introduced. 83.3, p.10 also shows how
constraint diagrams can be used to define constraints on states, as an alternative to state types on type
diagrams and some aspects of statecharts. 84, p.12 gives some action specifications, illustrates their
semantics using filmstrips, writing the pre and post-conditions mathematically and then visually. The
interesting extensions here are how changes in state can be expressed in the notation, that is how the
old state may be depicted visually in the constraint diagrams representing the pre and post-condi-
tions; and also how the creation of new objects may be depicted. 85, p.23 and 86, p.23 are a summary
and an indication of further work, respectively.

Apart from constraint diagrams, the notation used throughout is essentially Catalysis, which extends
OMT/UML notation with mathematical expression of constraints. The OMT (Rumbaugh et al.,

1991) style of notation e.g. for type diagrams, is used in this paper, though this could easily be
replaced with UML (UML, 1997) or similar notations; it makes no difference to the essential con-
cepts.

Stuart Kent 7 March 1997 2

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

2 Problem Description for a Library System

The general requirements are to produce a computerized system to support the management of loans
in a university library. A library maintains a catalog of publications (books, CD’s etc.) which are
available for lending to users. There may be many copies of the same publication. Publications and
copies may be added to and removed from the library. Copies available for lending may be borrowed
by active users registered with the library. When a publication (or more specifically a particular
copy) has been borrowed it is on loan, and is not available for lending to other users. However, it still
belongs to the library and so is still part of its collection. Users are able to reserve publications, when
none of the copies are available for loan. A user may not place more than one reservation for the
same publication. When a copy is returned after it has been out on loan, it may be put back on the
shelf or, alternatively, held for a user who has reserved the publication of which it is a copy. This may
be done immediately on return, or delayed, and done as part of a batch of returned copies.

3 Invariants

Invariants are constraints which restrict the set of allowable snapshots that the system being mod-
elled can enter. In OO modelling invariants accompany type diagrams. A type diagram defines the
kinds ortypesof object that may appear in the system being modelled and the liaksamiations

that may exist between those objects. It also includes notation for constraining the multiplicity of
associations: how many objects at the target of the association may be connected to the object at the
source.

When modelling a system, it is often a good idea to draw different type diagrams focussing on differ-
ent aspects of functionality. This is the approach taken here. There are three main aspects to the
library system as described in 82, p.3.

Users, publications and copiesThese are the “real world” objects the system needs to keep
track of.

Loans. The part of the system for tracking loans.
Reservations.The part of the system for tracking reservations.

Each is dealt with in turn below, following the format: type diagram, illustration with snapshots, and
invariants, expressed both mathematically and using constraint diagrams.

Where it is clear what is happening, the snapshots and mathematical expression of invariants may be
omitted.

3.1 Basic Notation: Users, publications and copies

This section introduces the basic notation, at the same time introducing the essential “real world”
objects appearing in a model of a library system.

A library needs to know about users, publications and copies of publications. Thus Figure 1 on
page 4 includes types for all these objects and shows the possible associations between them and
library system objects and between each other.

Stuart Kent 7 March 1997 3

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

Library

Publication

catalog I collection

Figure 1: Basic view of library

The typedUser, Publication andCopy have been enclosed inside the tyjterary, for two meth-
odological reasons, and one semantic:

* To make it clear that these types are being defined in the context of a library, so no thought has
been put into how they might be used in a different context.

» Because it is much easier to draw these diagrams if the “system” type encloses the others (nearly
all other types will have a link with the system type).

* We suppose that all the objects that a type within the enclosure refers to are those that become
associated with the system object, either through internal creation, or by being passed as a
parameter. A consequence of this is that the associatiduilsriary are all optional, or single.

One can navigate from a copy either through the assoc@ilication.~catalog, or through

the associatiorcollection. Whatever route is taken, the same library object must be reached
(hence the associations can not be multiple). Note that e.g. a copy may be passed into the system
as a parameter, in which case it need not be connected to the library object by a permanent asso-
ciation (hence the associations can be optional).

This semantics is similar to that suggested for Catalysis; the main difference is that they do not seem
to account for the possibility that the “system” object may only know about other objects through
temporary links, such as when they are passed through as parameters to system actions.

Table 1 on page 5 gives some snapshots indicating whether or not they are consistent with the type
diagram and/or consistent with the “real world” situation we are trying to model.

Snapshots 1 and 2 represent undesirable situations, which are rejected by the type diagram as
required. 1 shows a copy attached to a publication from a different library: this is specifically denied
by enclosing the typ€opy within the typeLibrary (the optional multiplicities on theatalog and
collection associations are not enough by themselves). 2 shows a case where a copy is associated
with two publications, which is denied by the single multiplicity on the associationGopyto
Publication.

Stuart Kent 7 March 1997 4

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

consistent with | consistent with
shapshot type model “real world”

1. X x

collection—_
catalog

:Library

:Publication

collection

:Publication

catalog—{ :Publication) co”ec\ﬁon

K :Library N\
r‘egis‘reredf/

registered
:User .
active

N

:Library

catalog—~__
:Publication

collection

:Library

catalo
? :Publication

collection

:Library
acTive

Table 1: Snashots of userspublications and cpies

Snapshots 3 and 4 represent desirable situations which are accepted by the type diagram. 5 and 6, on
the other hand, shoundesirablesituations accepted by the type diagram; additional constraints -
invariants - are required to ensure their rejection. The invariant corresponding to snapshot 5 is

Stuart Kent 7 March 1997 5

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

catalog.copies = collection

Invariants apply teelf. Thus this says that the set of objects obtained by first traversing the associ-
ation ca‘ralozg from self, followed bycopies,tis equal to that obtained by traversing the association
collection.

Similarly, the invariant corresponding to snapshot 6 is:

active O registered

The active users must also be registered. A constraint diagram visualising these invariants is given in
Figure 2 on page 6. Notes of explanation are included on the diagram. In particular note:

i A box like this indicatesghe set

' of objects of the named type venn diagrams indicate

relationships between sets

Represents the objec
which is Self

/ User N\

K Publication \ m

collection

catalog

Indicatesa set of objects |pgicates the set of objects (at the target) obtained
of the named type. by navigating the named association from the set at
the source. The rolename used is the same as that at
the target of the association, navigated in the
direction of the arrow, in the type diagram.

Figure 2: Constraint diagram for basic view

1. Inline with common practise, if the rolename of an association is omitted then the name of the type to which the d@ssociation
directed is used as the rolename, in its plural form if the association is multiple.

2. This is the interpretation of navigation expressions used by Catalysis, and as will be seen this is a (the) key copiceptgnder
the visual notation. In other attempts to integrate formal assertions with OO modelling notation (e.g. Syntropy) thisnexpressio

would have to be rewrittefix:Copy | Cy:Publication, y O catalog Oy.copy = x} O collection.

Stuart Kent 7 March 1997 6

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

* associations are depicted as relations between sets of objects (after all that's what they are!)
» the use of Venn diagrams to express relationships between associations
» the depiction of types as sets

« navigation always begins at thelf object

Links are directed for the following reason. Consider Figure 3 on page 7. The assaviaifian

Figure 3: TheavailableTo link (i)

bleTo indicates, for any user, which set of copies is available for loan to that user. If the arrow was
omitted then we would not know in which direction to read the diagram. Reading the link in the
other direction would mean that any set of copies are always available only to a single user which is
the same for all copies in that set. This is clearly not the case. Instead we could draw Figure 4 on
page 7, which says that for any user there is a set of copies available to that user (possibly empty),

available To

Figure 4: TheavailableTo link (ii)

and for any copy in that set, that useone ofthe users for which the copy is available.

3.2 A More Substantial Example: Loans

The loans view illustrates a more substantial example of a constraint diagram, in particular how it
tends to lead to more comprehensive coverage of invariants than an alternative method of generating
shapshots and deriving invariants from them.

Figure 5 on page 8 is the part of the type diagram focussing on loans.

As with the basic view of the library system, we generate snapshots to establish what additional
invariants need to be expressed, looking, in particular, for snapshots which are consistent with the
type model but not with the real world. Two such snapshots are given in Table 2 on page 8. Snapshot
1 represents an undesirable situation, as the current loan associated with the copy is actually part of
the history of loans. The intention is that the sets of current and historical loans are disjoint. Snapshot
2 is undesirable on two counts: the current loan depicted is associated with a user which is not active,
and it is also not a current loan of any copy.

Stuart Kent 7 March 1997 7

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

Library

O
O

registered

active

User

currentL

availableTo

current

collection

Figure 5: Loans

consistent with | consistent with
snapshot type model “real world”

. 4 iLibrary N\ v x

4 :Library
\

registered

collection

currentlL

J

Table 2: Snashots for loans

=

Reading directly off from these snapshots we might come up with the invariants below.

1. Jl:Loan, | O historyL O l.~current = ni

2. UOlLoan, | OcurrentL O
(l.user O active Ol.~current # nil)

Stuart Kent 7 March 1997

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

This is only a small selection of the snapshots, with corresponding invariants, that would need to be
generated, so that, even for this small system, it begins to get difficult to ascertain when all cases
have been considered.

On the other hand, drawing a constraint diagram tends to provide the kind of overarching view that
leads to comprehensive coverage more quickly. One considers each association in turn, drawing the
appropriate set at the target of the association on the diagram. As a hew association is included the
notation forces you to consider its relationship with those already there.

The constraint diagram for the loans view is given in Figure 6 on page 9. An explanation of new

: :Library N\
Indicates that there are no elements in | [COpy \

this area of the set

¢ A set (in this case a singleton)

i with no links targeted on it. This

i means any (i.e. universal

! quantification) arbitrary set like | collection
i this within the smallest /

. containing set depicted.
~current

/ LO?hS \ current K User \

currentl active

k registered j
historyL \

N / \ y

Figure 6: Constraint diagram for loans

notation is annotated on the diagram.

Stuart Kent 7 March 1997 9

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

The invariants derived from this diagram are listed in Table 3 on page 10 are obtained. Comments

surrentl n historyL = O

currentl.users O active

active [registered

pegisfeped]oans = currentL O hisfor‘yl_ currentlL andhistoryL partition the set at
the target ofegistered.loans, as they do not

intersect and the area outside of them is indi
cated as having no elements.

collection.loans = currentlL O historyL As above.

collection.current = currentlL
Ol:Loan, | O currentL O l.~current # nil Notice the use of universal quantification. In
addition one could say that

|.current O collection , but this is deriv-
able from invariant above

Table 3: Invariants for loans (from constraint diagram)

are written next to some invariants to highlight the most interesting cases.

3.3 Use with Statecharts: The Reservations View

The reservations view illustrates how constraint diagrams connect with and can be used in conjunc-
tion with statecharts as an alternative to using state types on type diagrams, as suggested in e.g. Syn
tropy, Catalysis and UML. The part of the type model concerned with reservations is given in

Figure 7 on page 10. The invariants on reservations have a lot to do with the state of copies, in partic-

Library

O

registered

active
User

l availableTo

Reservation

O

historyR

currentR onHoldFor

heldCopy

Publication

ca‘rulogI

ular whether they are on hold or not. It is therefore worth first exploring the statepypfand draw-

collection

Figure 7: Reservations

Stuart Kent 7 March 1997 10

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

ing up some invariants to relate them to the associations on the type model. Similarly it is worth
exploring the states ®&eservation. Doing this also illustrates how constraint diagrams relate to
statecharts.

A statechart foCopy is given in Figure 8 on page 11. If the transitions are ignored, then the diagram

- Copy R

OnHold

checkOut

P

L)
ot

_ J

Figure 8: Statechart for Copy

return

Returned

looks just like part of a constraint diagram. This is in fact the case. The states represent sets of
objects, namely those objects in that state. They are, of course, disjoint. It is natural, therefore, to
draw a constraint diagram relating associations with states. This is done for the Slapgsanfd
Reservation in Figure 9 on page 12. As discussed in §3.1, p.3, theGypg represents all the

Copy objects known in any way &elf, for any particular snapshot, whether by permanent or tem-
porary association. Similarly f®eservation andUser. The states represent the subsets of those

sets of objects which are in a particular state. The diagram informs us that if an object is in any of the
statesOnShelf, Returned, OnHold or Out, then it is a copy in the library’s collection. In other

words, a copy object should not be passed in as a parameter in@nSatef, for example: The

set of objects in thReturned state is exactly that reached through the associegiturned.? Sim-

ilarly All the waiting and pending reservations areurrentR, and the fulfilled ones ihistoryR.

The associations of objects in particular states with objects of other types are also intuitively
depicted on the type diagram. Thus we see that the set of copies on hold map into the set of waiting
reservations and vice-versa, and copies/reservations in other states do not have such an association.
The use of constraint diagrams in this way provides an alternative and, we think, more intuitive
approach than introducing state subtypes on a type diagram, as is done in e.g. Syntropy, Catalysis
and UML.

The constraint diagram for reservations can now be given. Figure 10 on page 13 is similar to the dia-
gram for loans, with the addition of the notation to identify the sets of objects from a type that are in
a particular state (as introduced in Figure 9). This diagram includes additional information that was
not really relevant to the diagram constraining states; for example that navigaitagal@g.res-
ervations gets you to the union ¢fistoryR andcurrentR. Also included is the constraint that a

copy on hold, must be on hold for a current reservation, and that the only user to whom it is available

1. |If thisis not desired, then there is notation, introduced in the latter part of 84.4, p.17, which allows the intersdajdots af a
particular state with objects from another set (e.g. collection) to be easily represented.

2. Of course this association is redundant. However, having it does make the visual specificatioleafRegurns transaction in
84.4, p.17 less cluttered.

Stuart Kent 7 March 1997 11

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

4 :Library N\
- Copy N

returned
|

i

heldCopy collection

/ }R{aser'va‘rion

T
onHoldFor

AN
currentR /

historyR

Figure 9: Constraints on states o€opy and Reservation

for loan is the user associated with that reservation, and that copies on the shelf are available to all
active users. Textual versions of these constraints are given, as they illustrate how sets of objects in a
particular state translate into the mathematical assertion language.

Dc:Cg)y,
(c O OnHold O c.onHoldFor.user = c.availableTo) O
(c O OnShelf O c.availableTo = active)

4 Action Specifications

Formal assertions are also used to write specifications for the behaviour of actions in terms of pre
and post-conditions. This section shows how constraint diagrams can be used in this role.

Stuart Kent 7 March 1997 12

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

4 'Libr'ar'y N\
PUb|ICG‘|‘I0n Copy
| catalog
.'
onHoIdFor \

availableTo GVGI|Gb|eTo

) |
/ L/ Reservation / \\ USer‘/ \

active

—
\ currentR /\//

\
historyR \ registered /

_ \ J

Figure 10: Constraint diagram for reservations

As before, the specifications are considered with respect to the different views of the library system
model. Since this is a specification model, all the actions are assumed to take place on the system
object (D’'Souza and Wills, 1997). The actions consideredayisterUser, as it illustrates the

point made earlier that some objects may only be known to the system object through temporary
associations, angheckout, return, reserve andclearReturns, as they have some of the most
interesting behaviour and therefore give a good indication of the expressiveness and intuitiveness of
the notation. Of course actions would also be required for adding and removing publications and
copies to the library stock, removing users etc.

registerUser is specified in terms of the “basic” view of the librargserve andclearReturns

are specified in terms of the reservations view; @metkout andreturn are actions specified

(largely) in terms of the loans view. We say “largely” dseckout does impact a little on reserva-

tions: this will provide an opportunity to show how the specification of an action may be factored

into different components, each concerned with a different aspect of the system, which means draw-
ing separate constraint diagrams, one per component, which can then be “composed”.

4.1 Filmstrips: registerUser

This section introducdgmstrips, first using snapshots, and then using constraint diagrams. We refer

to the latter ageneralised filmstripsThe example usedregisterUser - also illustrates why the

objects known to the system object (in this case a library) can include objects not in permanent asso-
ciation with that object, as originally discussed in 83.1, p.3.

Stuart Kent 7 March 1997 13

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

In working out the specification of an action it is usual to produce one or more filmstrips, each with
two frames: the first a snapshot satisfying (or not) the pre-condition of the action; the second a snap-
shot satisfying (or not) the post-condition. A filmstrip fegisterUser is given in Figure 11 on

page 14, where the snapshots satisfy the pre and post-conditions, respectively. The filmstrip is placed

self

/_/_'/—’\
4 :Library N\

active

registered u

- J

registerUser(u) -~

> O

a :Library N\
[

active

G

active

registered

registered
NS /

’00000000000000000D00D
'000000000D0D00D000D0D0O0D)

/_/_/_’_\

Figure 11: Filmstrip for registerUser

alongside an object interaction diagram (this is Catalysis notation), as a powerful technique of
explaining how the state of a system changes as the actions on various objects are performed.

Following common practice, a dotted link indicates a temporary association with an object. Thus
there are objects which the system needs to know about and which we need to refer to for specifica-
tion purposes which are not permanently associated with the system. Here one such object is identi-
fied to the system through the temporary associati@amd in the pre snapshot this object is not
permanently associated with the system.

A formal specification of the action is:

register(u:User)

pre .
u is not registered

Stuart Kent 7 March 1997 14

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

u 0 registered

post

u is now registered and active
u O registered Ou O active

By replacing the snapshots with constraint diagrams, we prodyeeesalised filmstrip(Figure 12

on page 15) which expresses exactly what the formal specification exprd$sssand the formal
specification, are more general in that they cover all cases, not just the one depicted in Figure 11 on
page 14 (for example, the cases whegistered is an empty set or has more than a single ele-

ment). The first constraint diagram both represents the pre-condition and also can be used to indicate

self

Indicates a
temporary
association.

a :Library I

registered

g / Y,

registerUser(u)
|-

> O

4 :Library I
/ User \

registered

N) y,

active™ |

)OUOUOOOOODOOOOOO;GUW
Y0 000D0000D0OD0D00D000O0G00 D)

Figure 12: Generalised filmstrip for registerUser

1. ltactually says a bit more, specifically timagtive [registered in both the pre and post-conditions. In the pre-condition this

is guaranteed by the invariant (see 83.1, p.3) so is redundant, and, assuming that nothing else changes except therplacing of
the setaictive andregistered (see following discussion), is guaranteed to be preserved by the action, so true in the post-condi-
tion.

Stuart Kent 7 March 1997 15

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

what associations are affected by the action. In this case the associadiaiered andactive

are depicted to indicate that they are likely to change when the action is performed in this case by
gaining the object identified through Currently we make no claims about the representation of

frame conditions i.e. stating what doesn’t change, as this is a difficult area for formal specification in
general (Borgida et al. 1995); for this reason frame conditions have deliberately been omitted from
the textual representation of the action post-condition, for example by using set membership instead
of set union. Nevertheless, intuitively one can see that anything not indicated as changed on the dia-
gram may be assumed to be unaffected by this action. Working out the detailed semantics needs fur-
ther work (see 86, p.23).

4.2 Object creation: checkout

The generalised filmstrip fatheckout is given in Figure 13 on page 16. The new piece of notation
introduced here is to indicate that a new object, previously unknown to the system, has been created.
In this example, the object in question iscan, which is used in the post-condition to record that

the copy €) is on loan to the usea), Nothing will be gained by further explanation, that can not be

//\"/__—\

self

4 :Library I

User active™ |

. current Loan
collection

NSy
/

:Library

checkout(c,u)

J

Y00 00000000D000D00D0O00D0N

[User ™\

copy user
current m
e _ currentL

=By

N J

Indicates a
new object.

>0 0 0/0 0 00000000000000D07

Figure 13: Generalised filmstrip for checkout

Stuart Kent 7 March 1997 16

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

discovered by examining the textual specification read off from this diagram, except to note that in
Catalysisnew is the set of new objects created in moving from the pre state to the post state. The text
is given below.

checkOut(u:User, c:Copy)

pre .
uIs an active user

uactive
¢ is available for lending to the uset
u O c.availableTo

post

c is no longer available for lending.

c.current # nil
The loan ofc tou is recorded and marked as current.

O : loan, | O new Ol O currentL Ol.user = u
l.copy = ¢ Ocopy.current = |

4.3 old state:return

return illustrates a specification where direct reference needs to be made in the post-condition to
the pre state. Textually, we writdd x or X , wherex is an association, to identify the valuexah

the pre state. Similar notation can be used in a constraint diagram, as is done inr#tarfom

Figure 14 on page 18. Here, the loan that euagent for ¢, the copy being returned, in the pre

state, is placed into the loan histarycurrent in the post state becomes unattached. The textual
specification is again read off directly from the diagram.

return(c:Copy)

pre
c is on loan.

c.current # nil

post

c is marked as ‘returned’, waiting to be reshelved or put on hold.

c.~returned # nil
The loan ofc tou is no longer current.

c.current = nil Oc.current O currentl Oc.current O historyL

4.4 reserve

reserve introduces no new notation, but is included for the sake of completeness and because it
helps to understand the next example. Its specification is visualised in Figure 15 on page 19. The
post-condition is very similar to that oheckout: a new reservation object is created to record the

fact that there is a current reservation for the ussrpublicationp. The pre-condition is more
sophisticated than has so far been encountered: note the ux2 ofa in the pre-condition to indicate

1. Inthe case thatis on holdu must be the user associated with the reservation for whihn hold.

Stuart Kent 7 March 1997 17

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

self Q/\/_/'_’_\—O
D) (@D
:Librar
c Loan
- opy)
- Teegn |_current ™
currentlL

(D) (D)

() collection returned historyL —

return(c) - W j (D)

| :Library =

— Loan -

- . current Q\ -

— cur‘r‘enTL‘ -]

| current
R " returned (D)
‘ ke ‘ historyL

Allows direct refergnpe O K / j ()
to values of associations

in the pre state. - >

I /\/_/__/_’_\/\

Figure 14: Generalised filmstrp for return

that there is no existing current reservatiop &r u, and the use of Venn diagram notation (disjoint
sets) to indicate that there are no copigs available for lending ta. The textual specification
derived from the diagram is:

reserve(p:Publication, u:User)

pre
p is not currently reserved ly

l.reservations n currentR n p.reservations = C
there is no copy gf available for lending ta
l.availableTo n p.copies = O

post

The reservation gf tou is recorded and marked as current.

[: Reservation, r O new Or O currentR O
r.user = u Or.publication = p

4.5 States (again) and Set Counting:learReturns

clearReturns is significantly more difficult to specify than the actions so far described. Its specifi-
cation illustrates how relationships between set counts may be depicted, and shows a refinement of
the notation for referring to objects in a particular state.

Stuart Kent 7 March 1997 18

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

self

4 :Library I

COPY USCI" active |

~available

Publication

ﬁeserv@ﬂorﬁ

collection
currentR

-
a :Library I

reserve(p,u)

Reservation

currentR

}OOOUU:OOOOOUUUOOOUUUS

v
20000000000000000000D0Y

Figure 15: Generalised filmstrip for reserve

When a copy is returned it is marked as returned, which by invariants given in 83.3, p.10, means that
it is unavailable for lending - it is waiting to be put on hold or put back on the shelflddre

Returns action takes all those copies that have been returned and matches them up with pending
reservations, those that still require copies (one each) to be put on hold for them. As this is a specifi-
cation, we do not wish to fix on any particular algorithm for matching copies to reservations; all we
wish to ensure is that the correct number of copies are put on hold for the appropriate reservations.

The specification is given by Figure 16 on page 20. It introduces some new notation which needs
explaining:

* Two ways are shown for “counting” sets or placing restrictions on the size of a set: annotating an
association targeted on the set, as in the pre-condition, and placing a box on the boundary of the

Stuart Kent 7 March 1997 19

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

Indicates the set of objects in the named set

which are also contained in the smallest
[

self

—— T~

0

containing set depicted (in this case the
intersection).

-

0

Multiplicities can
be indicated against
links.

00000

returned

:Library

~

currentR

/ Copy \

VA

/ Reservation \
\ ‘f

Publication

ca'ralog’/j

clearReturns

0

Element counts can be directly attach
i to the set. A "variahle" allows the size
of a set to be used in the definition of ..

:Library

~

Reservation

/ Copy \

the size of other sets. A

heldCopy

~{ min(p.q)
[—heldCopy

onHoldFor E X n
8/

Figure 16: Generalised filmstrip for clearReturns

returned

\

SUUUUUOOOOOODUUOOOU

50 0 0 0 0/0

set, which contains the counting restriction or defines an integer variable whose value is the size
of the set, as in the post-condition.

The use of notation Iik1 to indicate the set of objects in a particular state which are con-

tained within the smallest containing set, in this case the set of reservations which are pending
and are reservations for the publication depicted.

Arbitrary temporary associations have been introduced éerelB) for allowing reference to a
particular set, derived from other sedstepresents all those copies that have been returned for
the particular publication depicteB;represents all the pending reservations for that publication.

Stuart Kent 7 March 1997 20

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

The diagram then shows the sAtandB (defined in the pre frame) being partitioned, respectively,
between the copies that are put on hold and those that are put on the shelf, and between the reserva-
tions which are awaiting collection, and those which remain pending. The copies put on hold are
matched to the reservations awaiting collection on a one-one basis. The size indicators on sets ensure
that the number of copy/reservation pairs matched in this way is the minimum of

the number of reservations for the depicted publication that are pending

the number of returned copies for that publication

The textual specification derived from the diagram is given below. It is perhaps worth mentioning
that this specification was first attempted without the aid of the diagram and found to be very diffi-
cult to write; we only arrived at (what we think is) the correct specification by constructing the con-
straint diagram; previous attempts were either incomplete or inconsistent.

clearReturns

There are copies waiting to be shelved.

returned # nil

For every publicatiop in the catalog
Jp:Publication, p O catalog O (
Let A represent all the returned copiesgan the pre state

Let A = refurned n p.copies in
Let B represent all the pending reservationspfar the pre state

-et B = p.reservations n currentR n Pending ir
Every copy inA put on hold must be put on hold for a reservatio that has been
marked as waiting

Jc:Copy, ¢ 0 OnHold n A O c.onHoldFor O Waiting n E
Any two reservations iB that have been marked as waiting must have different copies
put on hold for them, and those copies must b& and must have been put on hold

Ory, ro:Reservation, (r; O Waiting n B Or, O Waiting n BOr; #r,)
O (ry.heldCopy # r,.heldCopy
O ry.heldCopy O A O r;.heldCopy O A

O r,.heldCopy # nil O r,.heldCopy # nil)
Copies inA have either been put on hold or put on the shelf
OnHold n A) O (OnShelf n A) = £
Reservations i have either been marked as waiting or left pending
Pending n B) O (Waiting n B) = E
The number of reservations Bhmarked as waiting (which by earlier relationships is the

same as the number of copiedAiput on hold) is the minimum of the sizeAfandB,
respectively.

Waiting n B| = min(|A|, |BJ)
There are no returned copies left
returned = nil

Stuart Kent 7 March 1997 21

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

4.6 Diagram Composition: Impact ofcheckout on Reservations

When a copy which is on hold is checked out, then the reservation it is on hold for must be marked as
fulfilled. This aspect of its specification was not dealt with in 84.2, p.16. There are two choices: go
back and change the original specification, or, assuming appropriate notational and semantic support,
deal with this part of the specification separately and then just “compose” it with the original specifi-
cation. The latter approach is more appealing as, in general, it lets us split up a specification into
more manageable pieces. Catalysis tells us how to compose textual specifications of actions, and
this, in turn, has been taken from research in formal methods. Since we can derive the textual specifi-
cation from the constraint diagrams, this provides a semantic underpinning to composition of gener-
alised filmstrips. Intuitively it is just the overlaying of diagrams, as we would expect.

The constraint diagram showing the impactloéckout on reservations is given in Figure 17 on
page 22. Comparing this with Figure 13 on page 16 we see that there are no mismatches: specifically

self /_/__/_\’/—_\/\
(- (-
e :Library |
() / COpy A\ (@D
Ol |, -
) /" Reservation \ (S
(@) (-
onHoldFor Waitin
D @
checkout(c,u)
- O
e :Library N\
i / Copy o
(- | (-
(@) ()
) onHoldFor Fulfilled -
- S
|\ o
(- (-
A N N B

Figure 17: Impact of checkout on reservations

both pre and post-conditions in Figure 17 only consider associations between tobeandRegser-
vation objects, which are not mentioned in Figure 13.

Stuart Kent 7 March 1997 22

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

5 Summary

The paper has introduced a new notataamstraint diagramsfor visualising assertions in object-
oriented modelling. The notation has similarities with informal diagrams used by mathematicians for
illustrating relations and borrows much from Venn diagrams; it may be viewed as a generalisation of
snapshot or instance diagram notation. We have shown, by means of a case study, how the notation
may be used to express invariants and pre/post-conditions, and, in addition, how it may be used in
conjunction with existing visual notations, such as type models and statecharts. The semantics of the
notation has been informally sketched through the use of instance diagrams, informal description,
and mappings into formal assertions.

6 Further Work

Constraint diagrams have opened up a number of avenues for further research. A few of them are
listed below:

Relationships with Other Notations.The examples in the paper have illustrated to some extent the
relationships between constraint diagrams and other visual notations. Further investigation is
required to explore these relationships in more generality, in particular (a) whether constraint dia-
grams could actually be used as the sole notation, hence underpin other notations, and (b) how they
could best be used in conjunction with other notations. So far we have observed:

* Multiplicity constraints on associations on type diagrams can be expressed in constraint dia-
grams by annotating links, annotating sets, or using different notation for different sets with dif-

ferent multiplicity: ¢ =1,0 =0,2C > =0 or more.

» State types on type diagrams, and constraints on them, can be intuitively represented on con-
straint diagrams. See 83.3, p.10 and 84.5, p.18.

» Types are represented as sets on constraint diagrams. Thus, as with substating, static subtyping
and associated constraints (partitions, disjoint types, etc.) can be represented directly in con-
straint diagrams using Venn diagrams. This accords with explanations of subtyping e.qg. in Wirfs-
Brock et al. (1990).

« Statecharts could be simplified, with constraint diagrams used to show nesting and orthogonality
of states. Then the primary focus of statecharts would be on describing state transition behaviour,
providing an alternative way of visualising the specifications of actions e.g. as discussed in
D’Souza and Wills (1997). Following this route might make it easier to split the description of
transition behaviour for one type over many statecharts.

» Constraint diagrams can be overlayed with snapshots, as illustrated by Figure 18 on page 24.
Similarly for filmstrips. Links can then be compared to establish if one is consistent with the
other. Figure 18 on page 24 is inconsistent: look attireent links. Visually this may be use-
ful in design, especially with appropriate tool support. A “logical” overlaying process could pro-
vide the basis for consistency checking algorithms.

Semantics.Work has begun on describing the semantics of the notation in terms of logical theories

in Larch (Guttag and Horning, 1993). This builds open recent work in interpreting existing model-

ling notations (Bourdeau and Cheng, 1995; Hamie and Howse, 1997ab). The aim of this work is to
check that the consistency and expressiveness of the notation - basically to ensure that no stone has
been left unturned. A particular area of interest here is to look at diagram composition, both disjunc-

Stuart Kent 7 March 1997 23

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

e :Library I

~current

current
\< }/oans

/ User active

historylL

_

N |

Figure 18: Integration with snapshot diagram

tion and conjunction. This may open up new avenues of investigation into the expression of frame
conditions (see e.g. Borgida et al., 1995). As hinted above, the notation looks as if it could be used to
give the semantics of existing visual notations. With its own formal semantics, we would then be in a
position to provide formal, yet intuitive, semantic underpinnings to other OO modelling notations,
such as those introduced by UML (UML, 1997).

Concepts.If the notation is able to express most constraints that one requires in OO modelling, then
it is interesting to see if it is able to clarify certain concepts in that world. By exploring the various
possibilities, a better and more precise characterisation of the intended semantics of new notations
could be given. Specifically we have in mind the area of composite objects, where there seem to be
many possible semantics (see e.g. Civello, 1993), and how this impacts on notations such as com-
posite classes in UML.

Use of the notationFurther investigation is required into (a) whether the notation would be useful

in practice and whether it really is more intuitive and easier to use than mathematical assertions; and
(b) what are the most appropriate ways to use it, in particular in conjunction with other notations
such as stachecharts and type models. It would also be interesting to compare its use with other
approaches to making assertions easier to write and understand such as ADL (ADL, 1997).

Tools. We foresee interesting possibilities for providing sophisticated yet intuitive tool support for
semantic checking of models. Some of this has already been hinted at e.g. in checking snapshots and
filmstrips against constraint diagrams. Other areas to consider are the generation of constrainst dia-
grams from snapshots and filmstrips; animation of models, visualised through constraint diagrams;
and consistency checking between notations by mapping into constraint diagrams and then matching
the results.

Stuart Kent 7 March 1997 24

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

Acknowledgements

| am grateful to the BIRO research team at Brighton, in particular Franco Civello, John Howse and
Richard Mitchell for many useful comments and feedback. Thanks are also due to Alan Wills and
Desmond D’'Souza whose work on Catalysis has had considerable influence on my recent thinking.
This research was partially funded by the UK EPSRC under grant number GR/K67304.

Stuart Kent 7 March 1997 25

Constraint Diagrams: Visualising Assertions in Object-Oriented Models

References

ADL (1997) Assertion Definition Languagd&he Open Group (formerly X/Open), http://
adl.xopen.org.

Borgida A., Mylopoulos J. and Reiter E. (1995) “On the Frame Problem in Procedure Specifica-
tions”, IEEE Transactions in Software Engineeringl. 21, No. 10.

Bourdeau H. and Cheng B. (1995Formal Semantics for Object Model DiagranmslEEE Trans-
actions on Software Engineering 21, 799-821.

Civello F. (1993) “Roles of Composite Objects in Object-Oriented Analysis and DesigdQRa
SLA93 pp.376-393, ACM Press.

Cook S. and Daniels J. (1992¢signing Object Systepfrentice Hall Object-Oriented Series.

D’Souza D. and Wills A. (1995 atalysis: Practical Rigour and Refinemgtgchnical report avail-
able at http://www.iconcomp.com.

D’Souza D. and Wills A. (199 omponent-Based Development Using Catalysiek submitted
for publication, manuscript available at http://www.iconcomp.com.

Guttag J. and Horning J. (1993 rch: Languages and Tools for Formal Specificatidggringer-
Verlag.

Hamie A. and Howse J. (1997a)arch-based Semantics for the Type Views of Synsapynitted
to FME97.

Hamie A and Howse J (1997A)Larch-based Semantics for the Statecharts of Synsapynitted
to ECOOP97.

Parnas, D. (1996) “Mathematical methods: What we need and don’t ne@a”Jiritation to For-
mal MethodslIEEE Computer.

Rumbaugh J., Blaha M., Premerali W., Eddy F. and Lorensen W. (0&§d¢t-Oriented Modelling
and DesignPrentice Hall.

UML (1997) Unified Modeling Language vl,.Rational Software Corporation, available at http://
www.rational.com.

Wirfs-Brock R., Wilkerson B. and Wiener L. (199Dgsigning Object-Oriented Softwarerentice
Hall.

Stuart Kent 7 March 1997 26

