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Abstract. In order to compare two loop detection mechanisms we destsib
calculi for theorem proving in intuitionistic propositiahlogic. We call them both
M JH*t and distinguish between them by description as ‘SwissSaottish’.
These calculi combine in different ways the ideas on focpsedf search of Her-
belin and Dyckhoff & Pinto with the work of Heuerdireg al on loop detection.
The Scottish calculus detects loops earlier than the Swailssiltis but at the ex-
pense of modest extra storage in the history. A comparistimeofvo approaches
is then given, both on a theoretic and on an implementatienal.

1 Introduction

The main interest of this paper is the comparison of the tvep ldetection mechan-
isms described below. In order to do this we illustrate thsi on the permutation-free
sequent calculug/ J for the propositional fragment of intuitionistic logic. Ehgives
calculi whose implementations are suitable for theorervipm

Backwards proof search and theorem proving with a standarfiee sequent cal-
culus, Gentzen'd.J, for the propositional fragment of intuitionistic logiciisefficient
because of three problems. Firstly, the proof search ismgeneral terminating, due
to the possibility of looping. Secondly, it will produce jfs which are essentially the
same; they are permutations of each other, and correspahe &ame natural deduc-
tion. Thirdly, there are choice points where it has to be diegiwhich of several rules
to apply and where to apply them.

The sequent calculu¥ J for intuitionistic logic was introduced (with another ngme
LJT) by Herbelin in [7]. The propositional fragment of the cdlesiM J is displayed
in Figure 1. This uses Girard’s idea of a special place fomidae in the antecedent,
the stoup first seen in [6]. The calculus was developed by Byfflkand Pinto [3] be-
cause it has the property that proofs are in 1-1 correspaedeith the normal natural
deductions ofV.J. M J is a permutation-free sequent calculus; it avoids the @bl
of permutations in the cut-free sequent calculus of GentZhis removes the second
of the problems. In this paper we are more interested in #ragroving than in proof
search, hence the second problem is not directly relevaritn@tice that permutations
are avoided inV/ J by a focusing method — several choice points are removed: Tha
is, M J partly addresses the third problem and hence is advantageoa calculus for
theorem proving. However, the naive implementatioffof will lead to the possibility
of looping.

Looping may easily be removed by checking whether a sequeniaheady oc-
curred in a branch. Implementation of this is inefficienttagduires much information



to be stored. Recent work by Heuerdiagal [9] (the intuitionistic case of which is
closely related to that of Gabbay in [5]) shows how to use stdry’ to prevent looping
in a far more efficient way.

In this paper the history mechanism is developed in two waykagpplied toM .J.
Both the resulting calculi have advantages and disadvastdgese are discussed the-
oretically and also pragmatically (in terms of the speechwihich Prolog implement-
ations give proofs). We call the new calculiis/?#*!, the two varieties ‘Swiss’ and
‘Scottish’.
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Sequent’” = C' has contex{”, goalC and no stoup.

Sequent’” 4, C has context’, goalC and a single formula4, in the stoup.

Fig. 1. Propositional Fragment of the calculiis./.

2 Calculi With Histories

In this section we first discuss the idea of the history meidmanand then describe the
two calculi. We shall conclude with a comparison of the twizgh

2.1 TheUseof Historiesto Prevent Looping

Looping can very easily occur it/ .J, for example:



(pAp)Dp=p (PAP)Dp=>p
(pAp)Dp=pAp

(AR) (ax)

(pAP)Dp—p (5¢)

(pAP)Dp »
(©)

(pAp)Dp —
(pAp)Dp=p

The sequentp A p) D p = p may continue to occur in the proof tree for this
sequent using th&/ J calculus. We can see that there is a loop: we need a mechanical
way to detect such loops.

One way to do this is to addlastory to each sequent. The history is the set of all
sequents that have occurred so far on the branch of a pr@ofAfter each backwards
inference the new sequent (without its history) is checkeske whether itis a member
of this set. If itis we have looping and backtrack. If not tleswhistory is the extension
of the old history by the old sequent (without its history)dawve try to prove the new
sequent, and so on. Unfortunately this method is inefficksnit requires long lists of
sequents to be stored by the computer, and all of this listdias checked at each stage.
When the sequents are stored we are keeping far more infiomidian is necessary.
Efficiency would be improved by cutting down the amount ofate and checks to the
bare minimum needed to prevent looping.

The basis of the reduced history is the realisation (as irtf@it one need only store
goal formulae in order to loop-check. The rulesiéf/ are such that the context cannot
decrease; once a formula is in the context it will be in thetextinof all sequents above
it in the proof tree. For two sequents to be the same they oislyaneed to have the
same context. Therefore we may empty the history every timebntext is extended.
All we need store in the history are goal formulae. If we haveequent whose goal
is already in the history, then we have the same goal and the santext as another
sequent, that is, a loop.

There are two slightly different ways of doing this. Thereth® straightforward
extension and modification of the calculus described in y&ji¢ch we call a ‘Swiss
history’). The other approach involves storing slightlymadormulae in the history, but
detects loops more quickly. This we describe as the ‘Sdottistory’; it can, in many
cases, be much more efficient than the Swiss method.

2.2 TheSwissHistory

Before continuing, we should point out that the calculus wsatibe here as Swiss is
significantly different from the one in [9]. This is partly diio our use ofi/ J as a base
calculus, and partly because we are trying to focus on therdgimmechanism, hence we
have not included the subsumption checks that the calcnl{®§ uses.

The Swiss-style calculus/ /7! is displayed in Figure 2. Let us make some gen-
eral points about it (which will apply to the Scottidii 77 ¢ as well). We have given
explicit rules for negation (which are just special casethefrules for implication) for
the sake of completeness of connectives. Also, noticeltieat re two rules fofor ).



These correspond to the two cases where the new formula ssramtiin the context.
As noted above (if§2.1) this is very important foi/ J###t, Also note that the number
of formulae in the history is at most equal to the length of fibrenula we check for
provability.

The loop checking due to the history in the calculus works &mailar way to that

of IPCRPA7_>SU in [9]. A sequent is matched against first the conclusionggbitirules
until the goal formula is either a propositional variablalstim, or a disjunction (note
that disjunctionisn’t covered in [9], and requires speti@htment). This is ensured by
condition* on rule(C'). Then a formula from the context is selected and placed in the
stoup by thg ') rule, the sequent is then matched against stoup formulaftatiles
(this focusing does not occur in [9]). The history mechanismsed to prevent looping
in the (D) rule (and similarly in theg—,) rule). The left premiss of the rule has the
same context as the conclusion, but the goal is generaligrdift. If the goal (', of
the conclusion is not in the history, we storeC' in % and continue backwards proof
search on the left premiss. Alternativelymight already be ifi{. In this case thereis a
loop, and so this branch is not pursued. We backtrack andftowakproof in a different
way.

There is another place where the rules are restricted irr twgevent looping. This
is the condition placed on th& ;) rule. For the(Dx ) rule (which attempts to extend
the context) there are two cases corresponding to when titextas and when it is not
extended. Something similar is happening inttig) rule. In both the premisses of the
rule a formula may be added to the context. If both contexdayr@re extended, then
we continue building the proof tree. If one or both contexts ot extended then the
sequent with the non-extended contextwill be the same as some sequent at a lesser
height in the proof tree — there is a loop. This is easy to deeeghe context and goal
of S are the same as that of the conclusion, the sequent befostatine formula (or a
formula containing it as a subformula) was selected intcstbap must be the same as
S.

We now state the equivalence theorem. This is done in twestag

Theorem 1 Thecalculi M.J and M JH st (without I) are equivalent. That is, a sequent
S isprovablein M J if and onlyif S; ¢ (the sequent with the empty history) is provable
in M JHist (without 7).

PROOF (Sketch) The< direction is straightforward.

To prove the=- direction we take ai/ J proof tree and use it to build aly .J 75!
proof tree.

We start at the root]’ = A in M J and we have roof’ = A; {A} in M JHist,

Given a fragment of/ J proof tree with corresponding fragment &f ./ 7s* proof
tree, we look at the next inference in théJ tree. We have a recipe which we can use
to build a fragment of\/ J it proof tree corresponding to a strictly larger fragment of
the M J proof tree.

As proof trees are finite, this process must be terminating.

For full details see [10
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Fig. 2. The propositional calculug/ J it Swiss style
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Theorem 2 The calculus M Jis! with condition I"placed on rule (C') isequivalent to
M JH?st without the extra condition.

PROOF (Sketch) The= direction is trivial.

To prove the=- direction, we first prove that/.J and M/ J with conditionI"on (C')
are equivalent. This is done by a simple induction on theldeptthe proof and on
complexity of formulae.

For any M JHist (without I) proof that doesn't satisfy, we can consider it as an
M J proof. Then we can find ai/ J proof satisfying/. Using the procedure in the
proof of theorem 1, we can build av J##** (with I) proof tree.

For full details see [10M

2.3 The Scottish History

In this section we discuss the Scottish/#?*!. We go through its theory where it is
different from the Swiss style calculus and explaining tfegigations for the alternative
approach. The Scottisk J##*! is given in Figure 3.

We said earlier that when using a history mechanism to ptdeemping it would
be good to cut down the amount of storage and checking needetbare minimum.
This was done in the Swis® J#?*! — the history mechanism operates in one place
only and other restrictions for loop prevention involve riorage. However it is not
clear that this is the best and most attractive approactreliba tradeoff between these
advantages and the obvious disadvantage of not looking@gd very often. We will
find loops more quickly if we look for them at more points. Tigtwe might continue
building a tree needlessly, when a loop might already haea Ispotted. The Scottish
M JHst has larger histories, but this allows us to check for loopsenaiten, and in
certain situations this is advantageous.

As in the Swiss history, when attempting to prove a sequdttt rules are applied
first, then(C), then left rules. Also, looping is prevented by the;) rule in the same
way. The difference between the two calculi is in the way thathistory mechanism
works.

Whereas the Swiss calculus only places formulae in the fyistbich have been
the goal of the conclusion of @) (or (—.)) rule, the Scottish calculus keeps as the
history a complete record of the goal formulae of sequentisd®En context extensions.
At each of the places where the history might be extendednéiegoal is checked
against the history. If it is in the history, then there is agoThe heart of the difference
between the two calculi is that in the Swiss calculus loopckimg is done when a
formula leaves the goal, whereas in the Scottish calcuigslibne when it becomes the
goal.

We have the same equivalence theorems as for the SwisswzlThlese are proved
in a similar manner. For details again see [10].

Theorem 3 Thecalculi M J and M Jit (without ) are equivalent. That is, a sequent
I' = Aisprovablein M J if and only if I' = A;{A} (the sequent with its trivial
history) is provablein M JHist (without I).



PrRoOOFE Similar to that of theorem 1

Theorem 4 The calculus M Jis* with condition I'placed onrule (C') isequivalent to
M JH#st without the extra condition.

PrRoOOFE Similar to that of theorem A

2.4 Comparison of the Two Calculi

Because of the way that the Swiss history works, loop deteds delayed. Let us
illustrate this with an example. Consider the sequent:

p,¢,(pDgDr)Dr=pDdgDr
In the Swiss stylé// JH st (wherel' =p,q,(p D ¢Dr) Dr,andG=p D¢ D)
this gives the following:

7‘7. (Cll‘)
I'=sG{r} I'—r¢ (5¢)

I (PDq_D?“))Dr r; ¢

I'=r;¢ ()
I'=>q¢Dr;¢ R2)
TG PR

We have to go through all the inference steps again (in thedbrabove the left
premiss) before the loop is detected. However, in the Stotidlculus we get:

(az)

(Dr)

I'= G {G,r,q>r,G} I' - ri{rgdr G}
(PDq_D?“))Dr

I r;{r,q D r,G}
I'=r{rqgD>r G}
I'=q¢Dori{¢gDr G} ®2)
r=aay  Or2

The topmostinferencép ), is not valid, because the left premiss has goal formula,
G, which is already in the history. That is, the loop is detdctnd is detected lower in
the proof tree than in the Swiss style calculus.

Spotting the loop as it occurs is not only theoretically matteactive, but could also
prevent a lot of costly extra computation.

The two calculi both have their good points. The Swiss caleus$ efficient from
the point of view that its history mechanism requires ligterage and checking. The
Scottish calculus is efficient in that it detects loops ay tiezur, avoiding unnecessary
computations.

The question is whether or notin general an overhead inggéaaad checking of the
history (which shouldn’t be too great due to regular reagitis preferable to the larger
proof trees which are the result delaying checking. Pernap&ést way to decide this
is to look at empirical results in the form of timings for ingohentations of the calculi.
Note that as the two calculi are rather similar it is more thieely that any optimisation
that can be applied to the one can be applied to the other.

(©)




3 Implementation of the Decision Procedure

Our implementation of the calculus is syntax directed. Auseq /" = A; ¢ for the
Swiss calculus, of = A; { A} for the Scottish, is passed to the theorem prover. For a
sequent with an empty stoup, the next inference is detedbigehe goal. If the goal is
an implication, negation or conjunction, then the appratgriule on the rightis applied.
If an instance of one of these rules fails, then we have totbadk as no other rule is
applicable. If the goal is a propositional variable, falsuma disjunction, the contraction
rule is applied, selecting a formula and placing it in theugtdf a contraction fails,
then a different formula is placed in the stoup. If the goad igropositional variable
or falsum, and contraction has failed for all possible stiarmulae, we backtrack. If
the goal is a disjunction and contraction has failed for algible stoup formulae, then
we may apply disjunction on the right. If this fails we havebecktrack. For a sequent
with a stoup formula, the next inference is decided upon kystbup formula. The next
inference must be an instance of the appropriate rule onetielfl such an inference
fails, then we have to backtrack. Note that(in;) we check the right branch, the one
with the stoup formula, first. We get failure if at any point nde instance can be
applied. We give an example of failure due to the history:

(Or2)

p,I'=pDq{pq}

fails due tog ¢ {p, ¢} not being satisfied. Because of conditibnno other rule in-
stances are applicable to this sequent and so we must backtra

For this implementation we do not need to know anything abiwiinvertibility of
any of the rules. However, it may be of some independentéstap point out rules
which are invertible and those which are not. For all threlewa- M.J, M.JHist
(Swiss) andM JHist (Scottish) - all rules are fully invertible with the excemti of
(/\5), (\/R) and(C).

4 Reaults

The issue we are concerned with here is that of speed: howlguwie find out whether
or not a certain sequent or formula is provable. We testeditbeéheorem provers on a
sample of problems, some easy, some more problematic.

The calculi were implemented in prolog (naively, code carfdund in [10]). The
programs were run using SICStus Prolog2.1 on a SUN SparoStHii. The times given
are runtimes (in milliseconds), i.e. “CPU time used whilst@xing, excluding time
spent garbage collecting, stack shifting or in system tHlE]. In Figure 4 we present
the formulae we gave to the theorem prover (the quantifietidéme were instantiated
over finite universes). In Table 1 we give the results andagetimings (where NR
means that the machine had not proved the example aftemgiorernight).

The results indicate that although the Swiss calculus caguibeker on some ex-
amples, this advantage is less significant than the distatyaiof the several examples
where the Swiss calculus is several orders of magnitudeesltivan the Scottish calcu-
lus. It should also be added that the times for the calculi@mented compare poorly
with our implementation of the single succeda@nt?" calculus of [1].
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|[ExamplgUnivers¢ Result [Swiss TimgScottish Timé

1 Provable 14 18
2 Provable 1388 1701
3 Unprovable 15 21
4, Provable 0.2 0.2
5. Provable 0.1 0.1
6 Provable 0.6 0.8
7 Provable 11 14
8 Provable 0.5 0.5
9. Provable 4.3 4.3
10. Unprovable 0.4 0.5
11. Unprovable 24 10
12. Provable 0.7 1.0
13. Unprovable 4.5 3.2
14. Provable 3.5 2.7
15. Provable 50 57
16. 3 Provable 803 961
17. 2 Provable 7497 845(
18. 4 Provable 63 8.5
18. 5 Provable 146 15
19. 2 Provable 7.8 8.1
19. 3 Provable 18420 27
20. 2 Provable 1.1 2.1
20. 4 Provable 5.3 6.6
21. 2 |Unprovable 8.6 10
21. 3  |Unprovable 27 33
22. 2 Provable 366 22
22. 3 Provable 12320 514
23. 2 Provable 35 45
23. 3 Provable 2186 1407
24, 2 |Unprovable 49 31
25. 2 Provable 10790 20
25. 4 Provable NR 365
26. 2 Provable 34 5.8
26. 5 Provable 17 30
27. 2 Provable 10087 47

Table 1. Results and Timings (averages in milliseconds)

5 Conclusion

The use of a pared down history makes for a seemingly efficrexains of loop detec-
tion for a theorem prover. However, as other intuitionisiieorem provers are written



in different languages, are run on different machines amdhfst cases) deal with first-
order formulae, comparison is hard. An (incomplete) lisbtfer intuitionistic theorem
provers is: [2], [4], [8], [11], [12], [13], [14]. Of the twoalculi given here, the one
with the smallest history and the least checking (the Swigy can become inefficient
(see example 27.) when delay in loop checking allows mamadanches to be pur-
sued. In the Scottish style calculus the inefficiency of treeéased history is more than
counterbalanced by the early loop detection.

We have illustrated the use of the two history mechanisms jparticular calculus
for intuitionistic propositional logic - one in which we aparticularly interested, rather
than because it is the best illustration. We anticipatelamaidvantages of the Scottish
history mechanism in treatment of modal logics.

Afinal issue to be addressed is that of proof search. For thiker calculus is really
suited, as they only find loop free proofs (plus a few more éSkviss case). For details
see [10].
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