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Abstract

Background

In their relentless pursuit of thinness, individuals with anorexia nervosa (AN) engage in maladaptive

behaviors (restrictive food choices, over-exercising) which may originate in altered decision-making

and learning.

Methods

In this fMRI study we employed computational modelling to elucidate the neural correlates of

feedback learning and value-based decision making in 36 female AN patients and 36 age-matched

healthy volunteers (12-24 years). Participants performed a decision task which required adaptation

to changing reward contingencies. Data were analyzed within a hierarchical Gaussian filter model,

which captures inter-individual variability in learning under uncertainty.

Results

Behaviorally, patients displayed an increased learning rate specifically after punishments. At the

neural level, hemodynamic correlates for learning rate, expected value and prediction error did not

differ between the groups. However, activity in the posterior medial frontal cortex was elevated in

AN following punishment.

Conclusion

Our findings suggest that the neural underpinning of feedback learning is selectively altered for

punishment in AN.
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Introduction1

Anorexia nervosa (AN) is an eating disorder characterized by a relentless pursuit of thinness,2

mostly by self-starvation. Repeated maladaptive eating behaviors (1, 2) and extreme therapy3

resistance (3) in this enigmatic illness may originate from alterations in reinforcement learning such4

as increased sensitivity to reward or punishment and associated impairments in decision-making (4,5

5). Aberrant reward-based learning in AN may reflect an entrenched “habit” of restrictive food choice6

(6, 7). Similarly, it has been proposed that primary rewards (food) become conditioned as punishing,7

and aversive stimuli (hunger) as rewarding in the brain reward system of individuals with AN (8).8

However, the precise mechanisms underlying response to and learning from reward and punshiment9

in AN are still poorly understood.10

AN is consistently associated with low reward reactivity and high punishment sensitivity on11

clinical scales although important differences between subtypes (restrictive vs. binge-purging) may12

exist (9–13). Most laboratory evidence for altered feedback learning and value-based decision13

making in AN comes from impaired perfomance in the Iowa Gambling Task (IGT; 14, 15) - a paradigm14

used to measure choice behavior in the context of outcome (reward vs. punishment) uncertainty.15

However, reward processing is multifaceted and the typically reported IGT “net score” provides little16

insight into which aspect(s) might be altered in AN. Suggesting that AN patients may be particularly17

hypersensitive to punishment, patients have been also found to make less risky choices than healthy18

controls (HC) in another decision-making paradigm, the Balloon Analogue Risk Task (13). Further19

evidence comes from neuroimaging studies which found altered reward processing in response to20

disorder-related stimuli like food or taste (16–18) and secondary reinforcers (19–23). For example,21

neural response to punishment (monetary loss) has been found to be elevated in acutely ill22

adolescents in corticostriatal regions involved in valuation and action selection (21). Alteration in23

motivational and executive corticostriatal circuitry may also be associated with an impaired ability to24

flexibly adapt to change (24) and an apparently excessive amount of self-control (5, 25).25

To gain a new perspective on feedback learning and decision-making in AN, we here apply26

the methods of computational psychiatry (26) which associate neurobiological signals with defined27

mechanistic steps, such as those needed to estimate the amount of reward associated with28

alternative behavioral options based on previous feedback. Compared to conventional analysis29

methods, this approach avoids i) associating neurobiological signals with subjective reports of30

patients (which depends on their ability to self-reflect and adequately verbalize mood states or31

experiences) and ii) the limitations of purely descriptive measures, such as error rates.32

Intuitively, we expect healthy subjects to place greater importance on unexpected feedback33

in a changing environment, but to nearly disregard it in a stable one. The latter guards against34
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switching away from the preferred option in the presence of environmental noise, i.e. when the35

differences between expected and received rewards (also called reward prediction errors (27, 28))36

are not due to a real change of contingencies. To probe these mechanisms in AN, we employed a37

reversal learning task in which the preferable choice was rewarded probabilistically (in 80% of all38

choices) and changed only after a learning criterion was achieved; thereby requiring participants to39

learn from feedback and adapt to changing reward contingencies. To analyze behavior, we compared40

a hierarchical Gaussian filter (HGF) model (29) with more classical reinforcement learning models41

(30). In the HGF model, the weight given to prediction errors is encoded in an adaptive subject-42

specific learning rate which is high for large environmental uncertainty, and low for small43

uncertainty.44

Previous studies in healthy individuals (31–33) and other patient populations (34) have linked specific45

model parameters to activation in specific brain regions, e.g. posterior medial frontal cortex (pMFC)46

for learning rate, ventromedial prefrontal cortex (vmPFC) for expected (subjective) value of a choice47

option and ventral striatum (VS) for prediction error. Given evidence of hypersensitivity to48

punishment in AN (9–12, 21, 35, 36), we hypothesized that patients’ decision-making would be more49

affected by punishments (monetary loss) relative to HC and that learning from such negative50

feedback would be linked to altered activation in the pMFC. The pMFC spans the dorsal anterior51

cingulate cortex (dACC) and pre-supplementary motor area (pre-SMA) and is broadly implicated in52

reward-based decision-making and signaling the need for adjustments when behavioral goals are53

threatened such as when losses occur (35–37).54

55

Methods and Materials56

Participants and Procedure57

72 females participated in this study: 36 acutely underweight AN (12-23 years old) and 3658

pairwise age-matched HC (12-24 years old). Case-control age-matching was carried out resulting in a59

maximum difference of 1.7 years between the individuals within one pair (SM 1.1). AN participants60

were recruited from specialized eating disorder programs and underwent MRI within 96 hours after61

admission to behaviorally-oriented nutritional rehabilitation programs. Please refer to SM1.1 and SM62
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1.2 for additional information on inclusion and exclusion criteria and clinical assessments. Clinical63

variables are reported in Table 1.64

This study was approved by the Institutional Ethics Review Board and all participants (and65

their guardians if underage) gave written informed consent.66

One AN participant (and her age-matched partner) had to be excluded due to low67

performance (SM 1.3 and Figure S1).68

69

Experimental paradigm70

We used a probabilistic reversal learning task adapted from Hampton et al., (33) (Figure 1)71

which includes probabilistic positive and negative monetary feedback and contingency changes72

according to a learning criterion (see below). In each of the 120 trials participants had to choose one73

of two symbols, referred to as option A and B. One symbol was designated as correct and led to74

monetary reward (+20cents) with a probability of 80% and to punishment (-20cents) in 20% of the75

cases (probabilistic errors). The choice of the ‘wrong’ stimulus led to punishment and reward with76

inverted probabilities. With a probability of 25% the contingency reversed (change of the ‘correct’77

figure to the previously ‘wrong’ figure) after at least four consecutive correct decisions since the last78

contingency switch.79

Computational Modeling80

Our computational model followed the meta-Bayesian ‘observing the observer’ approach81

(40). Accordingly, an active decision-making agent makes inferences about the hidden “state of82

affairs” based on the feedback associated with each option (here: the expected values of option 83ܣ

and ܤ on each trial), using a so-called ‘perceptual model’. Subsequently, an ‘observational model’84

predicted the ensuing behavioral responses.85

We compared the performance of three perceptual models. In addition to (i) the widely used86

Rescorla-Wagner model with constant learning rate, we considered two alternative models: (ii) a HGF87

(29) because it allowed us to quantify different forms of perceptual uncertainty perceived by the88

agent and (iii) a Rescorla-Wagner model with an adaptive learning rate (41). Since Bayesian Model89

Selection (42) revealed that the HGF fitted behavior best across HC and AN patients as well as for90

both groups separately (Protected Exceedance Probability>.996), it was also chosen to fit the fMRI91

data (SM1.5 and Table S1).92
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The HGF (29) used is a Bayesian learning model that allows for individual differences through93

subject-specific parameters: the meta-volatility ,ߠ) 27) and the tonic log-volatility (߱ ). The meta-94

volatility determines how fast the environmental volatility is assumed to change, while the tonic log-95

volatility is a constant component of the log-volatility, and therefore has a modulating effect on the96

learning rate. The update equations for the expected values of each option are similar to those in97

basic Reinforcement Learning Models:98

ݎ݁݌ ݊݋ݐ݅ܿ݅݀ ( )݇ = ݎ݁݌ ݊݋ݐ݅ܿ݅݀ (݇− 1) + ݈݁ ݎܽ݊ ݅݊ ݎܽ�݃ ݐ݁ ( )݇ × ݎ݁݌ ݊݋ݐ݅ܿ݅݀ )ݎ݋ݎݎ݁� )݇.99

As in previous studies (31, 33, 41, 44), we used prediction errors ,((௞)ߜ) implied learning100

rates ,((௞)ߙ) and expected values of the chosen option (௞)ݒ as parametric modulators in the fMRI101

analysis.102

The probability of an option to be chosen was a softmax function of its inferred expected103

value relative to the other option, which introduces another subject specific parameter, the decision104

noise ;ߚ/1) Figure 1).105

For a precise definition of the models and their update equations, see SM 1.4. For the106

implementation and inversion of the HGF, we used the Translational Algorithms for Psychiatry-107

Advancing Science (TAPAS) package (http://www.translationalneuromodeling.org/tapas/) with v4.10108

of the HGF toolbox (using standard priors for the free model parameters).109
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110

Statistical Analysis111

Behavioral Measures112

We subjected eight measures to t-tests with group as independent factor: (i) The total113

amount of money won, (ii) the number of misses (invalid trials), (iii) the ratio of correct responses,114

(iv) the rate of contingency switches, (v) the log-model-evidence (LME) associated with the inversion115

of the HGF for each subject, and the trial-independent subject-specific parameters of the116

computational model, i.e. (vi) log-decision noise log(1/ߚ), (vii) tonic log-volatility ߱ and (viii) log-117

meta-volatility log(ߠ).118

The trial-dependent parameters (expected value ,(௞)ݒ prediction error (௞)ߜ and learning rate119

((௞)ߙ and the reaction times (RT) were treated each within a 2 × 2 × 2 linear mixed model (after a120

logit and log transform respectively; SM 1.6) with response (correct/wrong) and feedback121

(rewarded/punished) as within-subject factors and group (HC/AN) as between-subject factor. Post122

hoc t-tests were corrected for multiple comparisons using a Bonferroni-correction.123

MRI Data acquisition124

Structural and functional images were acquired between 8 and 9 am after an overnight fast125

using standard sequences with a 3 T whole-body MRI scanner (TRIO; Siemens, Erlangen, Germany) 126 

equipped with a standard head coil (details in SM 1.2).127

MRI Data Preprocessing128

Functional and structural images were processed using the SPM8 toolbox129

(http://www.fil.ion.ucl.ac.uk/spm/) within the Nipype framework (45). Preprocessing steps included130

correcting for slice timing and motion, normalization, smoothing, and noise reduction using CompCor131

(46). For more details and information regarding image quality control see SM 1.8.132

MRI Data Analysis133

First level analysis134

In our main analysis, we implemented three different GLMs. All three models included a135

binary and a parametric modulation regressor of interest (trial-dependent parameter of the HGF),136
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each associated with an event lasting for 1 second and convolved with a canonical hemodynamic137

response function, as in previous studies applying computational modelling in a probabilistic reversal138

learning task (32, 41, 44). In particular, we modulated the (GLM 1) response event (assumed to start139

one second before the button press) with the expected value of the chosen option ,(௞)ݒ (GLM 2) the140

learning event (starting at feedback) with the implied learning rate α(୩) (31, 41), and (GLM 3) the141

feedback event (starting at feedback) separately for rewarded and punished trials with the absolute142

value of the prediction error ;|(௞)ߜ|) 25). Follow-up analysis considered a fourth GLM with two binary143

regressors of interest (and no parametric modulator), starting at feedback and lasting for 1 second,144

separating the rewarded and the punished trials. Additional nuisance regressors in all four models145

were the event of stimulus presentation (lasting 0 seconds), six realignment parameters, six principal146

noise components from the CompCor analysis, and one regressor for each motion or intensity outlier147

volume.148

149

Second level analysis150

To verify that the task elicited the expected activation patterns, we first conducted whole-151

brain one-sample t-tests on the regression weights of the parametric modulators of the first level152

GLMs. To test for group differences, we then conducted independent samples t-tests on activation153

regressors and parametric modulators. We also implemented a whole-brain 2×2 mixed factorial154

ANOVA with group (AN/HC) as between- and feedback (punished/rewarded) as within-subjects155

factors on the 1st level coefficients from our follow-up GLM using GLMFlex156

(http://mrtools.mgh.harvard.edu), which allows for the estimation of partitioned errors terms.157

We report results as significant at a family-wise error rate FWE level whole-brain corrected158

using random field theory (47) with a false-positive rate ߙ < 0.05. In the case of non-significant159

whole-brain results in any of the three a priori defined ROIs (SM 1.9 and Figure S2) corresponding to160

the vmPFC ஺,஻ݒ)
(௞)

), VS ,((௞)ߜ) and pMFC ,((௞)ߙ) we computed small volume corrected (SVC) voxel-wise161

thresholds (FWE-SVC<.05).162

163
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Results164

Sample Characteristics165

There were no significant differences in age, IQ, or handedness score between the pairwise166

matched groups of AN and HC. However, as expected, AN had lower body mass index (BMI), higher167

eating disorder symptom and depression scores (Table 1). Differences in the Behavioral Inhibition168

Scale (BIS) or Junior Temperament and Character Inventory subscale ‘harm avoidance’ (HA) were not169

significant in the sample with neuroimaging data. However, in a larger sample with questionaire170

data, that included the one used for the present study, AN patients had a significantly higher BIS and171

HA (SM 2.1).172

Behavioral and Modeling Data173

The results of the ANOVA on behavioral measures and on trial independent model174

parameters (and of the Mann-Whitney test on ߱ ) are summarized in Table 2. There were no group175

differences for the number of correct answers and contingency reversals, for the total win and the176

number of misses. The LME and the subject-specific model parameters (inverse log-decision noise177

log(ߚ), tonic log-volatility ߱ and log-meta-volatility log(ߠ)) also did not differ between the groups.178

The results of the 2(HC/AN)×2(rewarded/punished)×2(correct/wrong) mixed model on the179

trial dependent model parameters and the reaction times are summarized in Table 3 (see also Table180

S5). The expected main effects and interactions of feedback and response on the learning rate, the181

prediction error and the expected value were reproduced [ (44, 48); SM 2.3]. Most importantly, a182

group×feedback interaction indicating a higher learning rate on punished trials in AN was found183

[F(1,8262.6)=6.6, p=0.010; Figure 2]. This effect was not influenced by age (SM 2.3, Table S4). Further184

explorative analyses indicated that increased learning rate after punishment in AN might be related185

to eating disorder symptoms, but is not driven by HA or extreme underweight (SM 2.3, Table S6).186

Imaging Data187

In line with previous studies (31), BOLD activity in the pMFC correlated with the changing188

(time-dependent) learning rate (௞)ߙ (Figures 3a, S5). Also as in previous studies (32, 33), activation in189

the vmPFC correlated with the changing expected value (௞)ݒ (Figure S3). Furthermore, BOLD190

activation in the VS correlated with the changing prediction error |(௞)ߜ| separately in rewarded and191

punished trials [Figure S3, (32, 33, 41, 44)]. Together, these findings corroborate our task and192
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analytical approach. Other significant activations are reported in Table S4. No group differences were193

found at FWE or FWE-SVC level.194

More important regarding our hypotheses, given (i) the behavioral findings indicative of an increased195

learning rate in AN on punished trials (Figure 2), (ii) previous evidence of elevated sensitivity to196

punishment in AN (9, 12), and (iii) the linear correlation between learning rate and BOLD activity in197

pMFC as in previous studies (31, 41), we predicted altered activation in AN in the region associated198

with learning rate, specifically after punishments. To test this hypothesis, we calculated a 2(group)199

x2(feedback) ANOVA. Critically, while no group difference in the pMFC was revealed on win trials, the200

BOLD response was elevated in this region in AN on punished trials. This group difference overlapped201

the cluster in which BOLD activity correlated with learning rate (Figures 3b, S4, Table S8; see also202

Figure S5). To investigate possible causal relationships, we conducted mediation analysis using the203

SPSS PROCESS toolbox (49). However, no mediation effects of the learning rate on the pMFC204

activation or vice versa were detected (SM 2.4, Tables S9). Moreover, no correlation between pMFC205

activation and BMI-SDS, BDI-II, EDI-2 or HA scores was evident in AN (FWE-SVC).206
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Discussion207

We used computational modelling in combination with fMRI to provide insight into the208

neural mechanisms underlying decision-making and feedback learning in young, acutely ill AN209

patients. Bayesian Model Comparison (Methods) demonstrated better fit between a recently210

developed HGF model (29) and the behavioral data for both the AN and HC groups than more211

classical reinforcement learning models (30). However, AN patients were characterized by an212

increased learning rate on punished trials; possibly indicating hypersensitivity to punishment which213

has been observed clinically and empirically in AN (10, 12, 35). This finding suggests that when AN214

patients experience negative feedback, they question their beliefs to a greater degree than HC. On a215

neural level, time-dependent parameters of feedback learning correlated with BOLD activity in the216

same brain regions in both groups. In particular, consistent with previous model-based fMRI studies217

of decision-making and feedback-learning in healthy participants (31, 41), we found a significant218

correlation between learning rate and BOLD activation in the pMFC, a region involved in outcome219

evaluation and initiating adaptive adjustments accordingly (31, 38, 50). Most importantly, mirroring220

the behavioral group difference, BOLD activation was increased in this region in AN after221

punishment.222

Our finding of increased pMFC activation after punishment in AN converges with recent223

evidence attributing a role of this region to the pathophysiology of the disorder. For example224

adolescent AN patients exhibited an elevated neural response to punishment in the “cognitive” zone225

of the dACC relative to HC in a monetary guessing task. (21). Conversely, Zastrow et al. (24) found226

decreased pMFC activation specifically on “shift” trials of a target detection task in AN. Altered pMFC227

activity has also been reported during temporal reward discounting (19, 51) and during inhibitory228

processing (52). Moreover, a recent resting-state functional connectivity study (53), found reduced229

connectivity between pMFC and the executive control network in adolescent AN. While these studies230

suggest altered pMFC functioning in AN, the direction of group differences vary and the possible231

interpretations range from altered conflict monitoring, excessive cognitive control and increased232

neural efficiency. Structurally, volume reductions in the ACC (including portions of the pMFC) in233

acutely ill AN have been related to deficits in perceptual organization and conceptual reasoning,234

while the degree of normalization during treatment was linked to clinical outcome (54). Using SPECT,235

reduced regional cerebral blood flow in the dACC extending into the pre-SMA was observed during236

the acute phase of the illness and after weight recovery (55). Our study gives additional support for237
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functional pMFC alterations in acutely ill AN using a novel approach that had been applied238

successfully in other disorders before (42–44). Taken together, our behavioral and imaging findings239

suggest thatthe elevated pMFC response in AN may help to explain the abnormally rapid learning240

rate following punishment.241

Restrictive food choice and extreme resistance to treatment are just two examples of altered242

decision-making in AN. While previous laboratory investigations (14, 15) were relatively limited in243

their ability to isolate specific alterations, a recent cognitive modelling study of IGT performance244

found a “recency bias” in AN captured by a learning/memory parameter (58). Although the model245

did not uncover a group difference in a feedback sensitivity parameter, the finding that patients246

tended to base their decisions on recent experience is commensurate with our finding of increased247

learning rate in AN. The current evidence of altered decision-making in response to negative248

feedback is in line with notion of altered reinforcement learning in AN (1–5, 8) and, considered in249

light of similar recent findings (13), is suggestive of a particular sensitivity to punishment. Decision-250

making may be intact, however, in paradigms that don’t include negative feedback, at least in251

adolescents (19, 59). Nonetheless, these findings were made in predominately restrictive AN and252

future studies are needed to clarify potential subtype differences in reward and punishment253

sensitivity (10, 11). Furthermore, given the presumption that AN is characterized by altered general254

reward-related decision-making (4, 8, 19) and the lack of group differences in this respect in both the255

current study and other recent ones (21, 51), future research is also needed to clarify under which256

conditions the neural substrates of reward processing are aberrant in AN.257

While our study was not designed to clarify whether altered decision-making causes AN or is258

a temporary effect of acute illness, correlation between punishment sensitivity and attachment259

insecurity has been reported (60). This suggests that, together with attachment style, a decision-260

making strategy geared toward loss avoidance may develop early in life. Speculatively, oversensitivity261

to negative feedback may contribute to the onset of AN. For example, negative comments from262

peers regarding physical appearance might be given exaggerated importance as an effect of an263

increased learning rate, and consequently, predispose (future) AN patients to change their264

nutritional habits and activity levels to lose weight (61). Indeed, it has been found that increased HA265

persists after recovery in AN, raising the possibility that such a trait exists premorbidly (62, 63).266

At the neurobiological level, PET imaging studies found associations between HA and 5-HT267

functioning in various eating disorders (62). Interestingly, a low 5-HT state, probably due to reduced268
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tryptophan intake because of food restriction (63–65) has been suggested for acute AN (62). In269

healthy participants (66), it was found that acute tryptophan depletion (ATD), a method for270

transiently reducing cerebral 5-HT levels, was associated with increased BOLD responses in a region271

of the dorsomedial PFC overlapping the pMFC during a probabilistic reversal learning task, especially272

after punishment. Given the role of 5-HT in altered neural mechanisms during feedback learning and273

evidence suggesting normal or even increased 5-HT levels in recovered AN (62, 67), future studies in274

weight-recovered AN targeting the pMFC during feedback learning are of great interest.275

At a more qualitative level, our model-based approach suggests that learning and decision-276

making activate the same brain regions similarly in both AN and HC. This finding fits neatly with our277

model comparison: by using different computational models of feedback learning, we found that the278

behavior of both groups was better explained by the Bayesian HGF model than Rescorla-Wagner279

models (either with fixed or flexible learning rate) suggesting that, equally to controls, AN patients280

place differential importance on prediction errors depending on their perception of environmental281

volatility. Note that for other psychiatric disorders such as binge eating disorder (57), schizophrenia282

(68) or alcoholism (69), Bayesian Model Selection indicated that patients’ behavior was guided by283

different (typically less efficient) decision-making strategies. For example, in adolescent ADHD,284

patients choice behavior was better explained by a Rescorla-Wagner model with constant learning285

rate whereas for HC the HGF provided a better fit (56). Previous computational modeling studies in286

AN (16, 70) used a temporal difference model with a fixed learning rate (28) to derive prediction287

error measures in passive taste reward learning tasks, but model parameters and model comparison288

data were not reported in these studies.289

Our study has to be seen in the light of the following limitations: First, we focused on young290

(mostly adolescent) patients with acute AN. While this has the advantage of minimizing secondary291

effects of prolonged malnutrition on cognition, it provides no indication whether parameters such as292

the learning rate can be seen as biological markers. Therefore, studies measuring patients293

longitudinally after weight restoration or complete recovery are needed. However, although patients294

were in a state of undernutrition, they did not show reduced performance and the behavioral results295

were not driven by particularly underweight patients (SM 2.3, Table S6). Second, although we296

compared three computational models of behavior and identified one with best fit for both groups297

(suggesting that the general strategies employed in AN are normal), there may be better models that298

lead to different conclusions. Third, although our sample size was large relative to most fMRI studies299
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in AN and the employed task had a comparable number of trials as in similar clinical studies (21), the300

power of our study to detect all relevant between-group effects (e.g. reward-related) may be limited301

and future studies with more observations in larger samples are needed. Fourth, the group302

difference in self-reported HA was not significant in the present study, presumably because of lack of303

statistical power (SM 2.1), and the expected correlation between HA and learning rate after304

punishment was not found (SM 2.3). Therefore, alternative explanations of increased learning rate in305

AN inlcuding impaired memory (58) and uncertainty regarding present beliefs are also plausible.306

However, an increased learning rate specifically after punishments indicates that an exaggerated307

importance is placed to negative feedback, despite uncertainty due to the probabilistic nature of308

contingencies.309

Computational approaches focusing on learning mechanisms appear to be particularly310

promising with respect to the detection of basic mechanisms contributing to the development and311

maintenance of mental disorders. Altered decision-making has been linked to treatment outcome in312

AN (71) and quantification of individual differences in learning mechanisms have the potential to313

guide the development of new therapeutic strategies that directly aim at the modification of such314

behavior patterns. Given the present results in patients with acute AN, a stronger focus on increasing315

self-confidence (72) and the ability to tolerate criticism might foster therapeutic success.316
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Figure Legends

Figure 1. Top: Time course of the experiment. First, two abstract stimuli were presented. The participant had

up to 2s time to make a choice. After the participant had selected one stimulus (by left or right button press), a

fixation cross was presented for 4s. Finally, positive or negative feedback (monetary reward or punishment)

was displayed for 1s followed by a jittered inter-trial interval (fixation cross) for 4 to 8s. Bottom left: The

Hierarchical Gaussian Filter (HGF). Graphical representation of the perceptual (HGF) model used in this work.

Polygons represent quantities that change with time, while circles denote time-independent, subject-specific

parameters. Arrows indicate dependency of one variable on another. While hexagons represent states that

satisfy the Markov property, such that the state at trial ݇ also depends on the state at ݇− 1, diamonds contain

quantities that do change with time, but do not depend on their previous state. ߚ is the inverse decision noise,

ߠ the meta-volatility and ߱ the tonic log-volatility. ଵݔ is the probability of reward for each option A and B, ଶݔ is

the tendency towards reward and ଷݔ is the time-dependent part of the log-volatility. ݕ are the responses given

by the participant. In our observational model doesݕ not depend directly on the environmental volatility .ଷݔ

Bottom right: The softmax choice rule. Probability that option A is chosen according to the observational

model used in this work (softmax). ஺ݒ
(௞)

− ஻ݒ
(௞)

can be computed from ,ଵݔ see SM1.4. A small value of decision

noise (ߚ/1) implies that the most valuable option is chosen with high probability. The ߚ values chosen

correspond to the mean on the entire sample plus minus the standard deviation (see Table 2).
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Figure 2. Increased learning rate after punishment in AN. The critical group×feedback interaction (significant

also after Bonferroni correction across the four tested models p(corrected) = 0.40) was followed up with post-

hoc comparisons which revealed that learning rate is greater in AN than in HC on punished trials (mean

difference (SE) = 0.083(0.036)). Error bars reflect 95% confidence level intervals.

Figure 3. a: Correlation of BOLD activity after feedback with learning rate .ࢻ Learning rate was computed

within a Hierarchical Gaussian Filter and the expected pattern of activation in the pMFC (31, 41) across all

participants (whole-brain one-sample t-test) was reproduced. b: Increased BOLD activity in AN following

punishment. Increased BOLD activity in AN relative to HC following punishment as revealed by a whole-brain

independent samples t-test is depicted on the same slice. A list with the peaks of activation is reported in Table

S4. We display regions where the signal is significant at a FWE<.05 level determined with random field theory.

The color scale shows one sample t-test values.
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Tables

Table 1. Group characteristics. Comparisons of demographic and clinical variables were examined using

independent two-sample t-tests, differences in task relevant variables were examind using one-way ANCOVAs

controlling for IQ. Means and standard deviations (SD) are given.

AN HC test statistics

Mean SD Mean SD

Demographic variables T p

Age 16.0 2.6 16.3 2.6 -0.5 0.662

BMI 14.7 1.3 20.4 2.5 -12.0 <0.001

BMI-SDS -2.1 0.6 0.0 0.8 -11.7 <0.001

IQ 111.9 11.1 110.9 10.0 0.4 0.673

Handedness 0.5 2.0 1.7 3.7 -1.8 0.081

Clinical variables T p

EDI-2 total score 197.4 50.7 139.6 28.0 5.9 <0.001

EDI-2 perfectionism 19.6 6.0 15.7 4.2 3.3 0.002

BDI-II total score 19.5 11.6 5.5 5.7 6.5 <0.001

BIS 22.0 3.7 20.8 3.3 1.12 0.269

BAS 39.8 6.3 40.5 4.2 -0.44 0.665

JTCI harm avoidance 37.3 11.5 34.1 8.0 1.36 0.178

SCL-90-R 74.9 59.8 28.6 26.8 17.4 <0.001

AN=anorexia nervosa patients; HC=healthy controls; BMI-SDS=body mass index standard deviation score;

IQ=intelligence quotient; EDI-2=Eating disorder inventory; BDI-II=Beck Depression Inventory; SCL-90-R = revised

Symptom Checklist 90, BIS-BAS= behavioral avoidance/inhibition (BIS/BAS) scales, computed on a sample of 19

AN and 21 HC, JTCI=Junior Temperament und Character Inventory values, computed on a sample of 34 AN and
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35 HC. 32 patients were of restrictive subtype and 3 of binge-purge. P-values below 0.05 indicates a significant

group difference.

Table 2. ANOVA on trial independent parameters. The individual parameters from the HGF perceptual model

and softmax observational model were subjected to an ANOVA with group as independent factor. Group

means and standard deviations (SD) are given. For the tonic log-volatility (߱), a Mann-Whitney test found no

group differences (U=612.5, p(2-tailed)=0.089).

AN HC test statistics

Mean SD Mean SD Group

Behavioral measures F p

Correct answers 81.3 6.1 82.1 8.0 0.18 .675

Contingency reversal 9.2 1.4 8.7 1.9 1.27 .264

Perceptual model parameters F p

tonic log-volatility [߱] -1.15 .59 -1.62 1.54 2.86 .095

Log meta-volatility [log(ߠ)] -5.87 1.38 -6.01 .64 .313 .578

Observational model parameter F p

Log decision-noise [− ݈݃݋ [(ߚ) -1.33 .53 -1.39 .59 .197 .659

Quality of Fit F p

Log Model Evidence -52.2 14.2 -52.9 15.5 .036 .850

AN=anorexia nervosa patients; HC=healthy controls; P-values below 0.05 indicate a significant group

difference. See Figure S1 for more details on performance parameters.
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Table 3. Mixed factor ANOVA on trial dependent parameters. The individual trial dependent parameters from

the HGF perceptual model and the reaction times were subjected to a 2×2×2 ANOVA after a logit and log

transformation respectively (see SM 1.6) with group, response and feedback as factors. We provide F and p

values for the main effects and interactions. Reaction times did not differ between the groups, but there was a

main effect of response. The post hoc test revealed that reaction time was longer on those trials where a

wrong answer was given.

Effect learning rate prediction error

df F p df F p

response 1,8264 24.4 <.001 1,8275 823 <.001

feedback 1,8263 692.5 <.001 1,8260 13419 <.001

group 1,69.3 3.8 .055 1,83.7 .827 .366

response×feedback 1,8263 265.1 <.001 1,8260 21.4 <.001

feedback×group 1,8263 6.6 .010 1,8260 1.64 .200

response×group 1,8264 .02 .891 1,8275 .002 .964

response×feedback×group 1,8263 .46 .498 1,8260 1.925 .165

Effect
expected value reaction times

df F p df F p

response 1,8282 927 <.001 1,8274 9.99 .002

feedback 1,8272 10.7 .001 1,8270 1.06 .303

group 1,77.6 .926 .339 1,71.6 .425 .517

response×feedback 1,8273 .002 .962 1,8270 .052 .819

feedback×group 1,8272 .051 .822 1,8270 .139 .709

response×group 1,8282 .841 .359 1,8274 .577 .448

response×feedback×group 1,8273 1.35 .246 1,8270 .821 .365


