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A B S T R A C T

Human Interactive Proofs (HIPs 1 or CAPTCHAs 2) have become a first-level security measure

on the Internet to avoid automatic attacks or minimize their effects. All the most wide-

spread, successful or interesting CAPTCHA designs put to scrutiny have been successfully

broken. Many of these attacks have been side-channel attacks. New designs are proposed

to tackle these security problems while improving their human interface. FunCAPTCHA is

the first commercial implementation of a gender classification CAPTCHA, with reported im-

provements in conversion rates.This article finds weaknesses in the security of FunCAPTCHA

and uses simple machine learning (ML) analysis to test them. It shows a side-channel attack

that leverages these flaws and successfully solves FunCAPTCHA on 90% of occasions without

using meaningful image analysis. This simple yet effective security analysis can be applied

with minor modifications to other HIP proposals to check if they leak enough information

as to allow simple side-channel attacks.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Free on-line services have become prevalent since the broad de-
ployment of the Internet in the late 90s. The abuse of such
services, using automated methods, is the first step towards more
sophisticated attacks that can result in substantial revenue for
the attackers (as twitterbots that push products, people or false
news on Twitter; automatic voters for different prize-awarding
sites; abuse of social networks; abuse of free cloud computing
services or on-line ticket selling services, and many others).

Naor (1996) was the first to propose a theoretical security
framework based on the idea of using problems that could be
solved easily by humans but were thought to be hard for com-
puters. He offered some suggestions for such problems: gender
classification, facial expression understanding (happy/sad), filling
in words in sentences, etc. A few of his suggestions were sub-
sequently used to create real CAPTCHAs, whilst other pioneers
developed alternative designs, all based on theoretically hard-
AI problems. Researchers at CMU3 improved the idea, listing
the desirable properties for CAPTCHAs, and presenting their
own design (von Ahn et al., 2003).

* Corresponding author.
E-mail address: chernandez@ucm.es (C.J. Hernández-Castro).

1 Human Interaction Proof, or also Human Interactive Proof.
2 Completely Automated Public Turing test to tell Computers and Humans Apart.
3 Carnegie Mellon University.
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This was the trend during the 2000s decade that saw the
publication of many new techniques enabling the breaking of
text-based word-image CAPTCHAs. Some of these tech-
niques relate to one particular CAPTCHA, or family of
CAPTCHAs, while others target a broader range. Among the best
known are.

In the next decade, there was a lot of research on new tech-
niques, enabling the breaking of text-based CAPTCHAs based
on the problem of optical character classification (OCR). These
attacks were not based on improvements in the state of the
art of OCR. Instead, they made clever use of some very simple
properties of the images comprising the challenge set. These
properties allowed the attackers to partially reverse the dis-
tortions applied to the characters and, in conjunction with other
design flaws, gave sufficient information to break these
CAPTCHAs, sometimes using very simple techniques as edge
detection, flood-fill variants, thresholding, shape-matching, clus-
tering, shrink and fill segmentation, principal component
analysis, independent component analysis, horizontal and ver-
tical histograms, skeletonization, erosion and dilation and
pattern matching (Mohamed et al., 2013, Zhu et al., 2010, Yan
and El Ahmad, 2008b, Wilkins, 2010, Wieser, 2007, Hindle et al.,
2008, Yan and El Ahmad, 2008a, Harry “Dark SEO, 2008a, 2008b,
Santamarta, 2008, Bursztein et al., 2011). The reaction from
various companies was to increase the distortion levels, cre-
ating very tough HIPs even for humans (Fidas et al., 2011).
Researchers started seeking new ideas for their CAPTCHA
designs, looking into other subfields of artificial intelligence
(AI), in particular into some of the different problems of com-
puter vision: image classification, object classification and scene
interpretation. The most frequently used idea was image clas-
sification. Warner proposed selecting photos of kittens to tell
computers and humans apart (Warner, 2009). The HumanAuth
CAPTCHA asked the user to distinguish between pictures de-
picting a nature-related scene (e.g. a flower, grass, the sea) and
pictures of human-made objects (e.g. a clock, a boat, or Big Ben).
Similarly, the creators of ASIRRA (Elson et al., 2007) based it
on cat/dog image classification problem, using a large data-
base of “more than 3 million photos”. Currently, “No CAPTCHA”
reCAPTCHA (by Google) asks the user to pick images related
to different categories or to select parts of an image pertain-
ing to a category.

These schemes have been broken, many times through side-
channel attacks that did not solve the base problem (Santamarta,
2008, Tam et al., 2008, Hindle et al., 2008, Yan and El Ahmad,
2008a, 2008b, Harry “Dark SEO, 2008b, Hernández-Castro et al.,
2010, Hernandez-Castro et al., 2009b, Hernández-Castro et al.,
2015, Hernandez-Castro and Ribagorda, 2009a), and in other oc-
casions using small improvements or state-of-the-art ML
algorithms (Golle, 2009; Sivakorn et al., 2016).The recent advance
in automatic image classification also poses a risk to image-
classification CAPTCHAs (Ciregan et al., 2012; Goodfellow et al.,
2013; Krizhevsky et al., 2012; LeCun et al., 1998), and although
some research has been done on the limits of these algo-
rithms (Goodfellow et al., 2014) and some propose to use them
to build new CAPTCHAs (Osadchy et al., 2017), DL4 can cur-

rently be a threat to them. Other proposals have appeared
recently and await scrutiny. Some of these are based on dif-
ferent tasks in image classification (Vikram et al., 2011), like
artificial vs human face classification (D’Souza et al., 2012).Recent
proposals enhance the typical OCR/text-based HIP (Alsuhibany,
2011). Another current trend is to try to analyse different client
metrics to detect possible access from bots, self-named as
“behavioural”, even though what they measure is typically a
series of metrics dependent on the platform of the client for
client fingerprinting – as No CAPTCHA reCAPTCHA by Google,
NuCAPTCHA, BadBehaviour or Mollom CAPTCHA. These pro-
posals avoid, in some cases, to show a typical CAPTCHA, and
use them when there is insufficient data. Other proposals use
the same behaviour analysis to vary the difficulty of the
CAPTCHA presented to the user.All of these schemes have been
so far proprietary. They have the added drawback that these
behavioural and client metrics are all taken remotely on the
client’s machine. These CAPTCHA authors try to protect their
measurement algorithms with obfuscation. This paradigm is
known as Security by Obscurity, and has a long tradition of failure
(Anderson, 2002; Hoepman and Jacobs, 2007; Swire, 2004). IT
security history suggests that this is not a sound way to go.

During these years, those CAPTCHAs and CAPTCHA pro-
posals that have gotten the interest of the researchers – might
it have been because of their originality, their commercial
success, or widespread use – and that have been scrutinized
have been found vulnerable to attacks.These attacks have been
either side-channel attacks or ML attacks that have used the
intended path of attack. New CAPTCHAs keep appearing, some
of which use original ideas, either applied to known CAPTCHA
types, or based on completely new paradigms. Known attacks
are typically not applicable to them. Thus, they await scru-
tiny from the IT security community. It is important to assess
their security, and even more, to find ways to assess semi-
automatically a basic security level for new CAPTCHA designs.

FunCAPTCHA is an original CAPTCHA implementation that
claims better strength and usability than a typical word-
classification CAPTCHA. FunCAPTCHA is not the first CAPTCHA
design to be based on image orientation and gender classifi-
cation (Gossweiler et al., 2009, Kim et al., 2010 and Kim et al.,
2014 respectively). However, to the best of our knowledge, it
is the first readily available gender classification CAPTCHA
system in production. The general problem of face identifica-
tion and interpretation can be considered currently unsolved
by ML, as “bad” inputs, like partial pictures of faces from an
angle, faces partially covered, faces with different garments
(glasses, hats, etc.) or facial expressions are still considered a
problem. It is possible to assume a similarly higher difficulty
in classifying the gender of faces that are similarly “bad”. Fur-
thermore, FunCAPTCHA uses synthetic images, which allows
its designers to choose creation parameters that are the most
difficult for a ML classifier.

In this article we demonstrate a novel attack against
FunCAPTCHA. Our attack does not follow the intended path
of attack by a gender classification CAPTCHA like FunCAPTCHA.
We neither perform sophisticated image analysis nor use novel
ML techniques. Instead, we perform a basic security analysis
of it, finding flaws that might enable a side-channel attack. We
then proceed to assess their real impact on the Security of
FunCAPTCHA using ML.

4 Deep Learning, or very deep neural networks, that typically
include convolutional layers (DCNNs) if they are dealing with images.
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Flaws that allow side-channel attacks are common in new
CAPTCHA designs. Many CAPTCHA designers, following the
paradigm introduced by Naor and Von Ahn (Naor, 1996; von
Ahn et al., 2003), have presented proposals based on prob-
lems that they consider to be AI-hard. As most AI problems
have not been formalized, we have yet to prove that these prob-
lems are AI-hard.Worse, a CAPTCHA by design presents a subset
of what can be considered the full problem. This subset might
not be representative of the whole problem. In particular, it
might not be as hard for AI. It might significantly alter the pro-
portion of weak, easy to solve challenges. It might discard the
most complex examples. If any of these are the cases, it might
fall to side-channel attacks that do not deal at all with the base
problem. Thus, this type of analysis is important for new
CAPTCHA designs. We propose here a simple way of doing it
and show its results for FunCAPTCHA.

In the following sections, we introduce FunCAPTCHA and
then proceed to discuss its possible design flaws (Section 3).
In Section 5 we test how different well-known ML algorithms
can be used to exploit these flaws. In Section 6 we check if our
previous positive results can be turned into a novel attack. We
proceed to implement it and analyse its performance (Section
7), showing that it passes FunCAPTCHA on 90% of occasions.
We then discuss some possible countermeasures to our attack
and similar attacks (Section 8). We finish by presenting our
conclusions.

2. FunCAPTCHA

FunCAPTCHA tests are of two different main types, each one
appearing roughly 50% of the time. The first type requires the

user to rotate in 40° increments an image until it is in its correct
vertical orientation.This idea is not new (Gossweiler et al., 2009)
and has known drawbacks (Zhu et al., 2010) that make it of
little interest.

The second type of challenges is a gender classification chal-
lenge that requires the user to select a picture of a female face
among 8 pictures and drag and drop it to the centre of a 9 × 9
tile box. Because of its novelty, this is the test that interests
us and that we will study in this article.

Each of these two types of CAPTCHA has subtypes depend-
ing on how many tests are performed sequentially to pass the
CAPTCHA. In our tests, the whole CAPTCHA challenges have
consisted of either 1, 3 or 5 tests.

FunCAPTCHA has implemented different versions of the
gender classification test over time (Table 1). We are aware of
at least four different versions: using real human models, ren-
dering different 3D facial models in 2D in colour, using only
one model per gender in colour, and rendering them in
greyscale. Why the FunCAPTCHA designers did these changes
is uncertain.

Apart from its security, another strong point according to
FunCAPTCHA marketing is that it offers a significantly higher
conversion rate than other CAPTCHAs, as “FunCaptcha has a
96% completion rate” and “is completed 28% more than twisty-
lettered CAPTCHAs”.

FunCAPTCHA presents a last fake test in which it asks the
user to move the icon representing its favourite activity to the
centre (possibilities beingTV, sports, etc.).An example is shown
in Table 2.The user’s answer does not affect the outcome of the
challenge. From an IT security standpoint, we do not under-
stand the value of this question.After contacting FunCAPTCHA
designers, they comment that this test is not render for

Table 1 – Different FunCAPTCHA gender classification iteratens.
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security reasons, but for UI reasons: “[it is] better to give the user
something to do rather than make them look at a loading bar
or spinner”.

3. FunCAPTCHA design analysis

We analysed FunCAPTCHA from the viewpoint of an attacker
that wants to bypass it as a means to gain access to some on-
line service. Thus, we did not register with the API of
FunCAPTCHA, nor installed a client in our machines. We
analysed its protocol directly from the browser, using HTTP
analysis tools.

3.1. FunCAPTCHA initial analysis

The most basic challenge of FunCAPTCHA consists of a single
gender classification test. It is correct to argue that a chal-

lenge with a 12.5% brute-force success rate ( 1
8

) is weak (0.6%

is enough to consider a CAPTCHA broken (Zhu et al., 2010), even
though we do not know in what cases FunCAPTCHA decides
that this simple challenge is enough. The chances of passing
the 3- and 5-test challenge by brute-force would be 1.5% and
0.003% respectively. Only the 5-test challenge has a strength
against brute-force attacks good enough for a production
CAPTCHA. We do not know whether the shorter tests are just
for demonstration purposes, so even though we will analyze
all cases, we will focus on the results of the 5-test challenge.
Given that the typical time to complete it is around 15 s, we
do not think that a version of FunCAPTCHA with more tests
per challenge would have the same conversion rates.

It seems that FunCAPTCHA relies on some tracking, maybe
based on IP tracking, to harden the test after a user sends a wrong
answer. FunCAPTCHA authors later confirmed this extreme.They
claim to use “other ways to trace a user’s identity besides IP”,
and that because of this, the 1-test challenge does not pose a
risk, as a bot (with low accuracy) would be identified.

During our analysis, we found that FunCAPTCHA is using
several obfuscation techniques to try to prevent its analysis.
Some of these techniques are JavaScript code obfuscation at

two levels, cyphering its communications using the AES5 cypher
in Counter-mode for the transmission of some values (in ad-
dition to using HTTPS), obfuscating the order in which it deploys
the face images on the client’s browser and using 2-level of
cross-domain IFrame nesting to prevent easy JavaScript de-
bugging. Each of these measures was rendered at least partially
useless after the following findings:

1. It was possible to partially revert JavaScript code obfusca-
tion, as a different JavaScript code was found thanks to
caches and using a smaller version name.

2. FunCAPTCHA uses the AES library from Chris Veness (which
can be found at http://www.movable-type.co.uk/scripts/
aes.html). Even though this AES library is protected by a MIT
license and requests a link to the original page and the origi-
nal copyright notice, we were not able to find those in
FunCAPTCHA’s site. Thanks to this finding, it was possible
to easily decipher its communications. In particular, it was
possible to see that the value of the form attribute guess was
being used to send back the answers to FunCAPTCHA after
each drag and drop. Its value was cyphered using AES in
Counter mode, initialized with a value partially time depen-
dent and partially pseudo-random.This value was transmitted
with the cyphered answer to allow for its decyphering at the
FunCAPTCHA server. The key used for cyphering was the
session_token, passed from the FunCAPTCHA server to the
client during the initial set-up of the test.

3. The other three obfuscation measures were all bypassed by
using a real browser to analyse and later bypass the
CAPTCHA. More details about this in Section 6.

The reasoning for some of these obfuscation measures is
not clear. As an example, encoding the answers using AES with
a key already delivered from the server does not increase its
security. Other measures are more of a nuisance to some analy-
sis that a real impediment to any attacker. After contacting
FunCAPTCHA designers, they claim that “obfuscation is asym-
metrical effort” that is “effective at slowing down the progress
of attackers”. We think this is at least controversial, especially

5 Advanced Encryption Standard, or Rijndael, an algorithm and
specification for the encryption of electronic published by US NIST.

Table 2 – Different FunCAPTCHA iteratens of the fake test.
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given browser automation tools and open-source browsers. Our
attack, that can be easily modified to bypass the obfuscation,
is an example of this.

3.2. FunCAPTCHA image repository

Soon we knew enough of the client–server communications
protocol as to download several hundreds of images from
FunCAPTCHA. After downloading 500 images, we calculated the
MD56 and SHA17 Cryptographic hash functions for all the images
downloaded, using them as a simple fingerprint of the file con-
tents. We found 0 coincidences. The fact that there is no real
image repetition was somehow surprising, as many of the faces
look quite similar to the eye.

This leads us to affirm that FunCAPTCHA does render the
3D model each time using different parameters: different angle,
illumination and distance (field of view), so that no two images
are identical at the bit level.This initially looks as a sound imple-
mentation decision for FunCAPTCHA.

3.3. FunCAPTCHA protocol analysis

Even though FunCAPTCHA uses several obfuscation mecha-
nisms, it was possible to relate its client–server communications
to the different events happening at the browser. The com-
munications cyphered with AES were easily deciphered. We
were able to easily analyse the FunCAPTCHA communica-
tions protocol.

This allowed us to know whether a particular challenge was
of the orientation type or of the gender classification type (i.e.
if the value of the parameter challengeURL was 001 or 002 re-
spectively), to know how to request the different components
of a challenge to the server (POST petition at https://
funCAPTCHA.co/fc/gfct/ including the variables token and sid
among other sent before), how to send our answer to the server
(POST to https://funCAPTCHA.co/fc/ca/ sending the variable
guess encoded with AES), and how to know when such answer
is complete (all tests were answered) and correct (“response”:
“answered”, “solved”: true, …).

It is important to note that, when the answer is incorrect,
the server returns:

{“response”:“answered”,“solved”:false,“incorrect

_guess”:4,“score”:3}’

Where incorrect_guess is the ordinal of the answer that was
wrong.This is not a sound idea, as it allows an attacker to know
which tests within a full challenge have been correct, and thus,
to correctly label a subset of the images of the challenge and
gain knowledge for other attacks. This makes it easier for an
attacker create a labelled training set.

Using a proxy, we were able to programmatically intercept
the communications between the client (browser) and the
server. This allowed us to determine what type of challenge
we were facing – rotation or gender classification – and also
how many tests it contained. When we were dealing with a

gender classification task, we were also able to download the
challenge images. Finally, it allowed us to easily know whether
the answers sent to FunCAPTCHA were correct or not accord-
ing to their servers.

4. FunCAPTCHA design flaws

At this point of our research, we could list some decisions of
the FunCAPTCHA design that might be key to its security:

1. It uses only one male and one female 3D model.
2. The model does not show facial expressions nor other dis-

tortions, as the addition of glasses, different haircuts, etc.
3. Even though the served 2D images do not repeat at the bit

level, some of them look similar or very similar to images
shown before.

4. The background is always plain white.
5. The images do not have the same distance from the model.

For example, there are images that include the shoulders,
others show the neck partially, and others show mostly only
the face. The field of view changes from image to image.

A common mistake in novel CAPTCHA designs is that the
problem presented by the CAPTCHA is not as strong as the AI
problem in which it is based (Hindle et al., 2008, Yan and El
Ahmad, 2008a, 2008b, Harry “Dark SEO, 2008b, Hernández-Castro
et al., 2010, Hernandez-Castro et al., 2009b, 2011, 2014). Just by
analysing the raw tests and challenges of a CAPTCHA, it is dif-
ficult to know whether they have been carefully selected or
crafted to be hard against ML or not. We wanted to know if
this might be the case with FunCAPTCHA, and we wanted to
check it in a way that might be extensible to other CAPTCHAs.

Even given the limited number of models and rendering pa-
rameters, it is true that visually, there is no apparent way to
algorithmically classify male from female pictures.The number
of white pixels is more affected by the distance than any other
factor.The histogram of the use of the different grey shades used
does not seem significantly different in both cases. The head
of the male model is larger than the head of the female model,
but given that the distance and field of view changes ran-
domly, a histogram of white pixels or shades of grey will probably
not be relevant for classification. This seems to be the result of
some thought put into the CAPTCHA design and analysis, and
possibly this pushed the evolution of FunCAPTCHA through time.

To check whether this is the case, we employed a simple
classifier with the aim of distinguishing male faces from female
faces. We wanted to check whether the similarities of the
FunCAPTCHA images would allow a classifier to efficiently dis-
tinguish male vs. female images if fed with very simple statistics
from the images.

To test this hypothesis, we downloaded and manually clas-
sified 4320 images from FunCAPTCHA. Note that this was not
strictly necessary, it would have been possible to solve the 1-test

challenges with 1
8

12= %, and use these solved challenges as

a training set. Yet during our initial experiments with
FunCAPTCHA, it was only serving the 3-test and 5-test chal-
lenges, which would have made it quite slow for us to get the
training set size we wanted. Of those 4320 images, only 535

6 Message Digest 5, a widely used hash function producing a 128-
bit hash value.

7 Secure Hash Algorithm 1, a 160-bit cryptographic hash func-
tion designed by the US NSA and published by the US NIST.
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were images of females (not exactly 1 in 8 due to some time-
outs during the downloads). We used these images to extract
some very basic statistical information from them: the per-
centage of white pixels; the histograms of the use of different
grey intensities, in groups of 5, 10, 15 and 25 intervals; and the
size of the image compressed with JPEG8 using different quality
factors (from quality = 0 to 100).

Initially, we decided to use the k-nearest neighbours algo-
rithm. kNN has little parametrization: the number of neighbours
searched, how the weights are calculated regarding the
distances and the algorithm to use for the search. kNN is a good
representation of the idea of classifying by finding similari-
ties between examples. It can also show the previous known
examples that are found to be similar to the one being classi-
fied. This allows checking if the metrics and distances are
relevant for the classification we are trying to achieve.

We trained kNN using all the manually classified images. To
test it, we downloaded an additional 148 challenges, each one
composed of 5 tests (except of a few download errors). We pro-
ceeded with a semi-exhaustive search trying different values
for k and the rest of the parameters. We ordered the results
by their Cohen’s κ statistic values. We chose this statistic as

it measures a classifier against the expected accuracy, which
is more relevant for such an unbalanced training data than just
the accuracy. The best result was typically obtained selecting
only the closest neighbour, reaching an accuracy of 97% and
a κ statistic of 0.84 when tested on new images.

We run our experiment again to show the closest image to
each unknown image.The result of this experiment can be par-
tially seen in Table 3. In this table, the first six rows represent
a test image and the value of its different metrics, and the next
six rows are the training image representing the correspond-
ing class (i.e. the closest image to the test one) and the same
metrics for that training image. The metrics, in order of ap-
pearance from higher to lower, are: the number of white pixels
(% from maximum), histogram of grey-scales used divided in
5 bins, 15 and 25 bins, and the sizes of the image compressed
with JPEG and different quality settings. Table 3 shows two
wrongly and two correctly classified images, and the closest
one to each query.

5. Exploit of FunCAPTCHA design flaws using
machine learning

kNN is possibly the simplest ML algorithm. We wondered
whether other ML algorithms, using the same metrics, would

8 Joint Photographic Experts Group, which created a standard and
method for lossy compression of images.

Table 3 – Some FunCAPTCHA faces, both wrongly and correctly classified, and their associated metrics.
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cope better with the problem proposed by FunCAPTCHA. To try
other algorithms, we checked the use of different ML frame-
works that allow the use of several ML classifiers and have some
integration with Python. In particular, we looked at Orange and
Weka (Hall et al., 2014). We decided to use Weka because of
the many more classifiers that Weka has out-of-the-box (79 vs.
11 in Orange).

We compared all compatible Weka classifiers with their
default parameters, testing them using 5-CV. The selection of
the best-performing algorithms was done using the κ metric,
as the classifiers have to be effective with a heavily unbal-
anced training and test set. It is worth to note this unbalanced
training set caused some problems to several classification
algorithms that went along with the they are all males classi-
fication. Other classifiers were much better at coping with it.
The results of these tests are available in Table 4. This table
shows the best and worst 12 performers of the whole set. It
turned out that the multilayer perceptron, IB1/k, KStar, and tree-
based algorithms are the ones that perform best.

6. Machine learning attack to the
FunCAPTCHA

The effectiveness of the ML classifiers for bypassing the dif-
ferent challenges presented by FunCAPTCHA was determined
and hence the strength of the design was assessed.

For that purpose, we created an attack that comprises the
following steps:

1. Start a local proxy for the HTTP and HTTPS protocols. We
use the proxpy Open-Source proxy (available at
https://code.google.com/p/proxpy/).

2. Open a web browser (Mozilla FireFox) and direct it to the
web-page at https://www.funCAPTCHA.com/contact-us/. We
control this browser instance thanks to the Selenium library.
This web-page contains the FunCAPTCHA CAPTCHA at its
bottom. We decided not to use the web-page at https://
www.funCAPTCHA.com/demo/ because of its frequent
changes during our analysis, including a period of over a

Table 4 – Best and worst classifiers for off-line gender classification with FunCAPTCHA.

Algorithm Weka class name Correct (%) κ statistic

A multilayer NN that uses backpropagation to classify instances. All the nodes
in the network are sigmoid.

MultilayerPerceptron 99.19 0.96

K* is an instance-based classifier, that is the class of a test instance is based
upon the class of those training instances similar to it. It uses an entropy-
based distance function (Cleary and Trigg, 1995).

KStar 98.94 0.95

Nearest-neighbour classifier: uses normalized Euclidean distance to find the
training instance closest to the given test instance.

IB1 98.91 0.95

K-nearest neighbours classifier: selects the appropriate value of K based on
cross-validation (Aha and Kibler, 1991).

IBk 98.91 0.95

Logistic Model Trees: classification trees with logistic regression functions at the
leaves (Landwehr et al., 2005).

LMT 97.73 0.89

Multinomial logistic regression model with a ridge estimator (le Cessie and van
Houwelingen, 1992).

Logistic 97.59 0.89

Linear logistic regression, with LogitBoost for fitting the logistic models
(Landwehr et al., 2005).

SimpleLogistic 97.43 0.88

Functional trees: classification trees that could have logistic regression
functions at the inner nodes and/or leaves (Gama, 2004).

FT 97.36 0.88

Stochastic variant of the Pegasos (Primal Estimated sub-GrAdient SOlver for
SVM) (Shalev-Shwartz et al., 2007).

SPegasos 97.43 0.88

John Platt’s sequential minimal optimization algorithm for training a support
vector classifier (Keerthi et al., 2001).

SMO 96.83 0.84

Forest of random trees (Breiman, 2001). RandomForest 96.74 0.83
Class is binarized and one regression model is built for each class value (Frank

et al., 1998).
ClassificationViaRegression 96.41 0.83

. . .
Voted perceptron algorithm by Freund and Schapire. VotedPerceptron 88.63 0.13
Normalized Gaussian radial basis function network: uses the k-means

clustering algorithm to provide the basis functions and learns a logistic
regression on top of that.

RBFNetwork 88.17 0.13

Locally weighted learning: an instance-based algorithm to assign instance
weights. Uses naive Bayes for classification.

LWL 87.75 0.03

Meta-classifier that uses a clusterer for classification, like simple k-Means. ClassificationViaClustering 55.56 0.01
Discriminative Multinomial Naive Bayes classifier. DMNBtext 87.71 0.01
Bayesian Logistic Regression for both Gaussian and Laplace Priors. BayesianLogisticRegression . 0
Uses some base classifiers that are “graded”. Grading 87.64 0
MultiBoosting can be viewed as combining AdaBoost with wagging. MultiBoostAB 87.64 0
Selects the best ZeroR classifier (can select others, but this is the default). MultiScheme 87.64 0
Implements a single conjunctive (“and”) rule learner. ConjunctiveRule 87.64 0
Class for building and using a 0-R classifier. Predicts the mode. ZeroR 87.64 0
Decision stump, classifies based on entropy. DecisionStump 87.64 0
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month during which it did not provide any challenge
demonstration.

3. We wait for the proxy to capture the value of the challenge_url
variable that indicates if we are facing an image orienta-
tion challenge or a gender classification one.
(a) If we are served an image orientation challenge

(challenge_url = 001), we restart the process, unless we
have done it 2 times already, in which case we wait a
random time in between 25 and 115 s.

(b) If we are served a gender classification challenge
(challenge_url = 002), we read how many images it is com-
posed of by looking at the contents of the array variable
image_urls_str in the page content.

4. We wait till all images are downloaded by the browser.
5. A classifier is run over the sets of 8 images (1, 3 or 5 sets or

tests). We use the Weka ML framework (Hall et al., 2014) and
the previously trained models in Section 5. We check that for
each set, one and only one image is classified as a woman.

(a) If the classifier fails to do so, not classifying one and
exactly one as a woman each 8 images, then the chal-
lenge is declared failed. This case is counted both as a
classification failure and an attack failure. A log is saved,
and the process starts again. Note that it is possible to
take more intelligent options here in order to increase
the success rate of the attack.

(b) If the classifier classifies one and only one image of each
set as a woman, we proceed to the next step in order
to send the answers to the server.

6. Send the answers to each classification test of the challenge:
(a) We locate the solution face on the screen using the

SWIFT algorithm as implemented in the OpenCV library.
(b) We drag and drop the face to the centre of the chal-

lenge using the pyautogui library (at GitHub (https://
github.com/asweigart/pyautogui).

(c) We wait for the answer from the FunCAPTCHA server.
It could be:

Fig. 1 – Flow chart of the attack.
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• “not solved”: we proceed to send the next answer.
• “solved:false”: we log the challenge as failed (both for

the attack and the classifier).
• “solved:true”: we log the challenge as correct.

Fig. 1 shows a summarized flow chart of this attack. All steps
of the attack had a set time-out that, when reached, would
declare that challenge as failed and restart it.

7. Attack results

We ran our attack for the classifiers that performed best on our
off-line classification test, and also with the original kNN imple-
mentation.The behaviour of FunCAPTCHA adapted to the success
rate of our attack. In those cases when the attack kept solving
correctly the gender classification challenges composed of only
1 test, FunCAPTCHA almost never served us the more difficult
3-test or 5-test challenges. For this reason, we ran each experi-
ment in two versions for each one of ML algorithms used:

• the regular one already described (basic), in which we try
to solve all gender classification tests presented to us by
FunCAPTCHA, and

• the difficult one, in which we randomly answered all 1-test
challenges thus failing most of them, in order to receive more
3- and 5-test challenges.

With the many restrictions on speed as not to overload the
servers, our lengthiest experiments consisted of various series
of around 255 full challenges for each one of our experi-
ments. The 255 challenges were seldom reached, as we
frequently run into time-outs, errors downloading informa-
tion, or with the on-screen iteration.

Table 5 presents the success rate of the attacks to
FunCAPTCHA by different classification algorithms. This table

is relevant to know the success rate of our attack in the current
FunCAPTCHA implementation. In this table, the first column
is the Weka classifier name, the second column shows the clas-
sifier accuracy during the attack, and the third column shows
the success rate of the attack itself.

The classifier accuracy during the attack is measured per
full CAPTCHA challenge, independently of if they are 1-, 3- or
5-test challenges.

FunCAPTCHA is typically going to serve to us more 3- or
5-test challenges the more 1-test challenges we fail. Then a
slightly worse classification rate in 1-test challenges triggers
a feedback mechanism that can have a major effect on the clas-
sification accuracy rate, as it is here measured by full CAPTCHA
challenge.

The second half of Table 5 answers the question “what would
be the success rate of our attack if FunCAPTCHA used only the
harder 3-test or 5-test challenges?”. It presents the success rate
of the attacks to FunCAPTCHA by different classification al-
gorithms.We can see that MultilayerPerceptron and IBk are among
the top overall performers. We can also see that the differ-
ence in success rate between classifier and attack is higher than
in the first half of the table, as each challenge now involves
more communications with the server and thus is more prone
to errors.

Fig. 2 shows a combined result of both attacks, summing
the results obtained during both the basic and difficult set-
tings in order to obtain more 3- and 5-test challenges. The bars
indicate the success in a scale from 0% to 100% for each subtype.
Each bar is divided in two: the classifier success identifying the
correct one and only one woman in each of the n groups of 8
images for the whole challenge, and the attack success for the
whole n-test challenge. Along with each bar, we show the con-
fidence interval, estimated for a binomial distribution using
the Wald method. The multi-layer perceptron can solve 94.53%
of the 1-test challenges, 91.23% of the 3-test challenges and
82.05% of the full 5-test challenges (68.09% attack success).This

Table 5 – Attack results by classifier, for the basic and difficult attack. This table shows the success rate of our attack
against the current FunCAPTCHA implementation (basic attack) and answers the question of how successful would our
attack be if FunCAPTCHA were to use only their harder challenges (difficult attack).

Basic attack

Classifier % Classifier % Attack Number of n-test challenges

1 3 5

IB1 94.02 ± 0.02 90.42 ± 0.03 448 58 0
KStar 93.15 ± 0.03 89.19 ± 0.04 252 1 0
IBk 92.61 ± 0.03 88.15 ± 0.04 264 98 0
MultilayerPerceptron 94.68 ± 0.03 85.27 ± 0.04 266 6 1
Logistic 77.3 ± 0.05 76.05 ± 0.05 248 51 9
FT 80.59 ± 0.05 72.9 ± 0.05 251 2 0
kNN 55.65 ± 0.06 54.07 ± 0.06 70 69 107

Difficult attack

MultilayerPerceptron 88.35 ± 0.03 82.69 ± 0.04 110 46
IBk 83.07 ± 0.04 72.97 ± 0.05 98 48
KStar 75.83 ± 0.05 62.43 ± 0.05 116 47
IB1 53.63 ± 0.04 29.35 ± 0.04 72 255
FT 38.70 ± 0.05 28.98 ± 0.05 125 48
kNN 36.80 ± 0.05 23.71 ± 0.04 72 119
Logistic 24.18 ± 0.03 18.20 ± 0.03 236 132
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means that even if FunCAPTCHA designers decided now to use
only their most secure 5-test challenges, this attack would break
their CAPTCHA 68.09% of the time.

8. Proposed improvements

In this section we will discuss some possible improvements
to the FunCAPTCHA both in general and against this particu-
lar attack.

8.1. Answer space

In general, FunCAPTCHA should never serve 1-test or even 3-test
challenges, only challenges composed of 5-tests. 5-tests chal-

lenges are the only viable option to make it resilient to brute
force attack, also preventing the attacker from easily obtain-
ing automatically labelled images using FunCAPTCHA as an
oracle.

As our attack can break the 1-test challenge 91% of the time,
if we want to reach a success rate lower than 0.4% (Zhu et al.,
2010), we would need to repeat this test log0.91(0.004) = 58.54
times.

If FunCAPTCHA authors add more possible answers, as our
best classifier is able to correctly differentiate the gender 99.19%
of the time, that is, correctly solve a 8-image test 99.198 = 93.7%
of the time (actually it is 94.5%, but here we are extrapolating
using our off-line results), we would need to have
log0.9919(0.004) = 678 faces among which to pick one female.That
seems a little bit too much from a usability point of view.

Fig. 2 – Success rate by classifier and challenge type, for both the basic and difficult attack. Each column corresponds to one
classifier. There are three bars per classifier, one per type of challenge (1, 3 and 5-tests). These bars are subdivided each in
classification accuracy (for 8-images tests) and attack success rate (lower, as it includes any additional problem during the
attack). They show the corresponding confidence interval at 95%. The table below shows the same information numerically.
The numbers are the classification success for the whole (1/3/5) 8-images tests, and the numbers between parenthesis are
the attack success rate for the same challenges.
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8.2. ML analysis

There are some ways to try to prevent the ML attacks that we
have presented here. An obvious one would be to use a much
larger number of models. This would allow for a bigger chance
of collision of the metrics used. The models themselves can be
studied using the commented ML algorithms to discard those
that are too easily classified automatically.

Model rendering parameters could also be wider. It might
be possible that there exists a sweet spot in the rendering pa-
rameters (angle, light, etc.) in which ML classification does not
perform well while human classification still performs well due
to a number of reasons (clues about hair, etc.).

It is also possible to include measures to distort or homog-
enize the result of basic statistics from the images (i.e. histogram
of grey scales). The aim would be to render the most common
and/or trivial statistics completely useless for ML classification.

8.3. Resilience

Nothing prevents the authors of FunCAPTCHA from having new
models in their reserve to make A/B tests, either in general or
against a particular client This strategy would allow not only
to automatically detect attacks but to reply to them in real time.

If a large-enough number of models is present, this could
mean that in reality the CAPTCHA would be able to detect and
adapt to attack scenarios.

By everything mentioned above, it is unclear to us at this
point whether these measures would render FunCAPTCHA
secure against this kind of attack. After a new redesign, a full
new security analysis should be done. Even if the redesign can
cope with this attack and variants of it, it is certainly unclear
whether this subset of the gender classification problem would
be secure against the recent advances in image classifica-
tion, more precisely Deep Convolutional Neural Networks
(Ciregan et al., 2012; Krizhevsky et al., 2012; LeCun et al., 1998).

9. Conclusions

In this paper, we analyse the security of a production CAPTCHA
called FunCAPTCHA. It is the first commercial proposal to our
knowledge to implement the idea of gender classification as
the basic way to tell computers and humans apart. We analyse
its current implementation as of July to October 2015. The
authors of FunCAPTCHA claim it to be broadly used, never
broken, and with a high security level.

We analyse its security and find possible flaws in its design.
These weaknesses give a hint that the problem posed by the
CAPTCHA designers might be a small subset of the general
problem, not carefully chosen, and not representative.

To analyse whether this is the case, we use a general method
based on extracting simple and generic metrics and analyse
then using ML algorithms to try to find correlations between
the challenges and their correct answers.

We see that the particular problem proposed by
FunCAPTCHA can be solved. We confirm this through an attack
that can bypass FunCAPTCHA 90% of times. Even if the authors
of FunCAPTCHA would only use their most difficult 5-test chal-

lenges, this attack would be able to pass it at least 68% of the
time. Our attack does not solve the general gender classifica-
tion problem but exploits design weaknesses.

This is an unexpected result given the apparent complexity
of the base AI problem (at least when using the most demand-
ing examples) and the simple attack methods used.We thus find
the security of their CAPTCHA to be unexpectedly low.We present
some possible ways to partially solve these design flaws.

The security analysis we present is very generic and can be
applied to other CAPTCHA designs with minor variations. It con-
stitutes a low-cost way to check for flaws that would allow side-
channel attacks against them. We plan on using similar security
analysis techniques and ideas to test the security of other HIPs.
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