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State and Parameter Estimation for Nonlinear Delay
Systems Using Sliding Mode Techniques

Xing-Gang Yan, Sarah K. Spurgeon and Christopher Edwards

Abstract—In this paper, a class of time varying delay nonlinear
systems is considered where both parametric uncertainty and structural
uncertainty are involved. The uncertain parameters are embedded in
the system nonlinearly. The bound on the structural uncertainty takes
nonlinear form and is time delayed. A sliding mode observer is proposed
to estimate the system state and an adaptive law is proposed to
estimate the unknown parameters simultaneously. Using the Lyapunov-
Razuminkhin approach, sufficient conditions are developed such that
the error system is uniformly ultimately bounded. A simulation on a
bioreactor system shows the effectiveness of the approach.

Index Terms—adaptive estimation, nonlinear system, time delay, sliding
mode, state estimation.

I. INTRODUCTION

Time delay widely exists in reality and is frequently a source of
instability. Sometimes even a small delay may affect the system
performance greatly. The study of time delay systems is mainly
based on the Lyapunov Razumikhin approach and the Laypunov
Krasovskii approach [3], [15]. As pointed out in [3], there is perhaps a
general preference to use Lyapunov Krasovskii functionals for delay-
independent criteria and Lyapunov Razumikhin functions for delay
dependent results. However, the Lyapunov Razumikhin approach does
not impose restrictions on the derivative of the time delay [6] and is
a powerful tool for systems involving time-varying delay, specifically
when the time-varying delay is nondifferentiable or uncertain [15],
although the approach usually leads to slightly conservative results
[6], [9]. For a delay system, imposing a sliding mode dynamics
without considering delay effects may lead to unstable or chaotic
behaviour or a high level of chattering [8]. Therefore, the study of
time delay system is very important.

Recently, sliding mode approaches have been successfully applied
for control of time delay systems [12], [15], [20]. However, the
application of sliding mode techniques to the observer problem is
much less mature — especially for time delay systems [17]. Results
concerning observer design for time delay systems using sliding mode
techniques are very few. Niu er al proposed a sliding mode observer
for a class of linear systems with matched nonlinear uncertainties [12]
where the sliding mode observers are mainly designed for control
purposes, and thus strong limitations are unavoidably required to
guarantee that the theoretical proofs are tractable and the closed-
loop controlled systems have the desired performance. A high order
sliding mode observer was given for a class of systems with special
structure in [4] but time delay is not considered. Jafarov proposed a
sliding mode observer for both delayed and non-delayed systems in
[8] where only matched uncertainty and matched nonlinearities are
considered. In the very limited literature available for sliding mode
observer design for time delay systems, it is usually required that
the distribution matrix of the uncertainty satisfies a strong structural
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condition (see, e.g.[12], [8]) and the uncertain parameters appear
linearly or affinely (see, e.g.[21], [18]).

In this paper, a robust observer is designed for nonlinear time delay

systems based on sliding mode techniques. The unknown parameters
are embedded in the system in a completely nonlinear way, and are
estimated using an adaptive law. The only limitation on the structural
uncertainty is that a bound on the uncertainty is known, which is
employed in the design to reduce the effects of the uncertainty.
A variable structure dynamical system is designed to estimate the
system states. Then, a sliding surface is proposed for the error system
between the system considered and the dynamical system which
forms the observer. The associated sliding mode dynamics, which
are time delayed and nonlinear, are studied using a Razuminkhin
Lyapunov approach, and a reachability condition is given under which
the error system is driven to the sliding surface. Mild conditions are
developed to guarantee that the error system is uniformly ultimately
bounded. Unlike the existing work, it is not required that the uncertain
parameters appear linearly or affinely, and strong structural conditions
are not required. The bound on the uncertainty has general nonlinear
form and is time delayed. Simulation results reflect the effectiveness
of the approach proposed.
Notation: For a square matrix A, A > 0 denotes a symmetric positive
definite matrix, and Amin(A) (Amax(A)) denotes the minimum
(maximum) eigenvalue of A. For matrices A1, ..., A, the symbol
diag{A1,..., A} denotes a block diagonal matrix. The symbol I,
represents the nth order unit matrix and R™ represents the set of
nonnegative real numbers. The set of n X m real matrices will be
denoted by R™*™. The Lipschitz constant of a function f will be
written as L. Finally, ||-|| denotes the Euclidean norm or its induced
norm.

II. SYSTEM DESCRIPTION AND ASSUMPTIONS

Consider a nonlinear time delay system described, in suitable
coordinates, by

&(t) = Az(t) + f(z(t), z(t — d),u(?)) + g(y(t), u(t),0) (1)
+Af(t,z(t), z(t — d))
y(t) = Cx(t), 2)

where z € R", u CU € R™ (U is an admissible control set) and
y € Y C RP (Y is the output space) are the state variables, inputs
and outputs respectively; A € R™*™ and C' € RP*™ are constant
matrices of appropriate dimension with C' being of full row rank,
and § € R" are unknown constants. The nonlinear function f(-) is
known, and the term Af(-) represents all the structural uncertainty
including modeling errors and external disturbances which satisfy

[Af(t =(t), 2(t = d)I| < p(t, z(t), 2(t — d)) €)

where p(-) is known and Lipschitz with respect to z(t) and z(t —
d) for all t € RY; d := d(t) is the time-varying delay which is
assumed to be known, nonnegative and bounded in R, and thus
d := sup,cr+{d(t)} < co. The initial condition associated with the
delay is given by

z(t) = (1),

where C denotes the space of continuous functions mapping [—d, 0]
into R™. Note that system (2) explicitly involves the output y and
is described by a linear term plus nonlinear terms. Such a class of
systems has been widely studied (see, e.g. [14], [4], [16]).

In this paper, the objective is to design a dynamical system and
an update law such that the corresponding error dynamical systems
are uniformly ultimately bounded by using sliding mode techniques.

te[-d,0, o¢ccC )
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The local case will be treated in this paper but the results developed
are straightforward to extend to the global case.

Assumption 1. The matrix pair (A4, C) is observable.

Assumption 2. The known term f(x(t),z(t — d), u(t)) is Lipschitz
with respect to the variables z(t) and x (¢ — d) uniformly for v € U,
and g(y,u, @) is differentiable and Lipschitz with respect to 6 for
y€Yand u € U.

It is assumed that all the functions in this paper are continuous
in their arguments to guarantee the existence and uniqueness of the
system solution for any u € U.

From Lemma 1 in the Appendix, it follows that under Assump-
tion 1, there exists a nonsingular matrix 7% such that in the new
coordinates w := Tz, system (2)—(2) can be described by

O] =[a ][ me ]+ reowws
+T {f(a:(t), a(t —d),u) + Af(t,x(t), z(t — d))} G
y(t) = Cows (t) (6)

where w = col(w1,ws2) with w1 € R"™P, the square matrix C> is
nonsingular and the pair (A1, A3) is observable. Thus there exists a
matrix L € R("~P)*? such that A — LA3 is Hurwitz stable, which
implies that for any @ > 0, the Lyapunov equation

(A1 — LA3)" P+ P(A1 — LA3) = —Q )

has a unique solution P > 0. For system (5)—(6), introduce a linear
nonsingular coordinate transformation 75 : w — z = Thw as follows

L zZ1 _ In_ —L w1
| —
Ts

where z1 € R"7P. Let T = T>T1. Then system (2)—(2) and system
(5)—(6) in the new coordinates z = Tz, can be described by

21(t) = (A1 — LAs)z1(t) + (As — LAy + (Ay — LA3)L) % (t)
+f1(2(1), 2(t — d),u) + g1(y,u, 0) + Afi(-) ©)

2(t) = Aszi(t) + (As + AsL) 22(t) + fa(2(t), 2(t — d), w)
+92(y, u, 0) + Afa(t, 2(t), 2(t — d)) (10)

y(t) = szz(t) (11)

where z := col(z1, z2) with z1 € R" 7P and 22 € R?, and

[0 | g1(°)
[ 1) } =T Leerrs { g2()

ARC) T
{ Afa() ] '*T{Af(tvm(t),x(t—d))}

where fi(-) € R"7P, g1(-) € R" P and Afi(-) € R"7P.
Remark 1. Since 77 can be obtained using matrix elementary
operations and 7% has been given in (8), the transformation z = Tz
can be obtained directly. Thus the transformed system (9)—(11) is well
defined with a structure to facilitate sliding mode observer design. A
similar transformation is also used in [10], [19]. Note there is no
structural requirement on the uncertainty Af(-) and only its bound
as shown in (3) is required to be known.

From (3), it is straightforward to find a continuous function po(-)
such that

] =Tg(y,u,0) (12)

13)

z=T-1z

|Af2(t, 2(8), 2(t — d))|| < po(t, z(t), 2(t — d))

where po(t, z(t), z(t — d)) is Lipschitz about z(¢) and z(t — d) for
all t e RT.

(14)

Remark 2. Like much of the existing work [4], [16], [2], it is required
in this paper that the nonlinear terms satisfy the Lipschitz condition.
From (11), in the new coordinates z, the bound p(-) defined in (3)
can be expressed as p(t, z1(t), Cy 'y(t), z1(t — d), C5 'y(t — d)).
Thus the limitation that p(-) is Lipschitz with respect to x(t) and
z(t — d) can be relaxed to that of p(-) is Lipschitz with respect to
z1 and z1(t — d). This is also true for the nonlinear term f(-).

Let g2(-) := (ga1, -+, 92p)" and 6 := col(fy,---,06.).
From the notation in Lemma 2 in the Appendix, the term
392(97“’99721"“’992,9) . 9920)

50 50
UxRP x- - x RP.
—_—————

is a p X r matrix defined in Y X

Assumption 3. There exists a continuous function matrix =(u,y) €
R"*P such that for any 0y,, € R? fori=1,2,...,r and (y,u) €
Y xu,

(g @920\ Dga()

G) = (_<y, w2, ) 2.0 %5 > 0
Remark 3. The unknown parameters appear in a nonlinear way as
9(y, u, 0) and the Assumption 3 is an extension of the condition used
in [19]. The formulation considered here includes the existing work:
for example [18], [21], [19] as special cases, where it is required that
the unknown parameters appear affinely in the form g(-)0 [18], [19]
or linearly as B(t)0 [21].

(15)

III. SLIDING MODE OBSERVER DESIGN

Section II has shown that a nonsingular transformation z = T’z is
available to transfer system (2)—(2) to (9)—(11). This structure will
be used as a basis for the analysis which follows.

A. Error dynamical system formulation
For system (9)—(11), construct the following dynamical system
él(t) = (A1 — LA3)?31 (t) =4 (A2 — LA+ (A1 — LA3)L)
Cgly(t) + fl (21 (t)7 Cgly(t)7 Z1 (t - d)7

Cy 'y(t — d),u) + g1 (y, u, 0) (16)
22(t) = Asz1(t) + (Aa + AsL) 22(t) — K (y(t) — 9(t))

+f2(21(), Co ty(t), 21t — d), Co Hy(t — d),w)

+g2(y, u, 0) 4+ v(t, u,y, 2) 17)
g(t) = Caza(t) (18)

where 2 := col (21, 22). The gain matrix K is chosen such that
As+ Az L+ K C5 is symmetric negative definite (clearly this is always
possible because C5 is nonsingular). The function v is defined by

N R 10)
O = ey = sl

where k() is a positive scalar function to be determined later, and
the vector 6 is given by the following adaptive law

y() —g(t) #0  (19)

0 = E(y,u)(As21(t) + (As + AsL)Cq 'y + fa(21(8), O3 'y,
£t = d), Cy 'yt = d), ) + g2(y,u, 0) = C; 14(1))  (20)
where Z(-) € R"*P is a design parameter which satisfies Assumption
3. Obviously, both the dynamical system (16)-(17) and the update
law (19) are time delayed. For any given constant y > 0, the initial
condition associated with the time Adelay d for system (16)—(20) is
chosen as any continuous function ¢(-) defined in [—d, 0] such that

IT(t) = (1)) < @21
where ¢(-) is given in (4).
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Let e = 21 — 21, 9 = 0 — 0 and ez = 25 — %5. Since 0 is
constant, then, from (20) and by comparing system (9)—(11) with
system (16)—(18), it follows that

é1(t) = (A1 — LAg)ex(t) + 0(f1, f1) + g1 (y, u, 0)
—g1(y,u, 0) + Afi(t, 2(t), 2(t — d)) (22)
éo(t) = E(y,u)(Aszer(t) + 6(f2, f2) + g2(y,u, 0)
_92(y7u7é) +Af2(t7z(t)7z(t_d))) (23)
é2(t) = Aser(t) + (As + AsL + KCs) e2(t) + 8(f2, f)
+92(y,u,0) — g2y, u, 0) + Afa(-) — v() (24)
where v(-) is defined by (19), and
§(f1, f1) : = fuiz(8), 2(t — d), )
) —f1(21(1), 22(¢), 21(t — d), 22(t — d),u) (25)
6(f2, f2) : = fa(2(1),2(t — d), u)
7f2(A1(t)a Z2(t)7 21(t - d)7 Zz(t - d)a U’) (26)
For the error system (22)—(24), consider a sliding surface
S = {(61,62,69) | €2 = 0} (27)

where ex = C5 *(y(t) — §(t)) = 22(t) — 2(¢). From the structure
of system (22)—(24) and the definition of the sliding surface (27),
it follows that the sliding motion associated with the sliding surface
(27) is governed by system (22)—(23).

B. Stability analysis of sliding motion

Theorem 1. Suppose that Assumptions 1-3 hold and

sup{p()|IE(")||} < +oo. Then, system (22)- (23) is uniformly

ultimately bounded if ;ng {Amin(W(-))} > 0 where the symmetric
X

function matrix W (y, u) is defined by

| Amin(Q) — 2€Lpy, I'()
W)= r() Muin(G()) — 222y, | O
where /1 := 1+ \/’Y4>\max(P)/>\min(P) and /5 := ’Y4/)\min(P)

for some constant y4 > 0, I'() := —Lpg, —[|2(y, u) As|| 1 L=f, —
l2Lpy, and the matrices P and () satisfy (7).
Proof: For system (22)-(23), consider a candidate Lyapunov function

V(ei(t) eo(t) = ei (t)Pei(t) + g (H)eo(t)

where P > 0 satisfies (7). The time derivative of V' along the
trajectories of (22)—(23) is given by

V = el (t) (AL — LA3)" P+ P(A; —
S(f1, f1) + 2e1 P(g1(y,u, 0) — g1(y,u, 0 )+2e1 PAfi(+)
+2e4 (1)2(y, u) Asen (t) + 2¢4 () E(y, u)3(f2, f2)
+ep (t) (E(yw)(gz(yw 0) — g2(y, u, 0) ))

(20w (20,0.0) — g2(.,0)) ) eolt)
+2e5 (E(y, w) AL () (29)

where §(f1, fl) and §(f2, fg) are defined by (25) and (26) respec-
tively. Since z = Tz is nonsingular, and f(z(t),z(t — d),u) is
Lipschitz about x(t) and z (¢ — d) for all u € U, it follows from (25)
and (26) that

|Ps(f, )] <
=26 wo(s, f2)]| <

LA3)) 61 + 26’{P

Lpyg (llex
Lzy, (lex

Ol + llex(t = D)
Ol + llex(t = )

(30)
€1V

where Lpy, and L=y, are functions of y and w. The fact that the
Lipschitz coefficient is a function has been employed in [7], [20],
and enlarges the classes of allowed functions.

From Lemma 2 in the Appendix, there exist 6,
1,2,...,p such that

eg(t) (E(y7 ’LL) (g2(y, u, 0) - gQ(ya u, é))) .
+(E(yv u)(92 (yv U, 0) — 92 (yv U, 0)))T69 (t)

€ RP for i =

0 yu, 05, .65 ..., 0%
_ e@T(t)E(y,u) 92(y 92109922 921))69
0 Ju, 07, 07 ... 07
te Z;(E(y, w) 92(y gz159922 g2p)> eolt)

= —eg ()G()ea(t) < —Amin(G())|leo]”

where G(-) is defined in (15) which, from Assumption 3, is negative
definite. It is clear that

2ei PAf1() + 2e4 (D)Z(y, w) A fa(-)
¥ et =t} | 3700 |
Substituting (30)—(33) into (29),

V < ain(@)llex()1* + 2L, (lex @) + llex (@) lllext — D))
+2Lpg, [lex(®)]] llea () + 2|E(-) As]| llea () || [[ex (£)]]
+2L=p, (ler ()]l lleo @) + llea (@)l llex (t = d)II) = Amin(G(-))
Nlea@)” +2p() || [ef (t) s ()] || lldiag{P,EC}TI (34
where (3) and (12) have been employed to obtain inequality (34).

If the inequality V' (e1(t—d), es(t—d)) < vaV(e1(t),eq(t)) holds
for any d € [0, d] and some ~y4 > 1, then,

llex(t = d)[| < (6x = Dlex @) + L2 eal

where ¢ := 1+ \/74)\,,,ax(P)/)\min(P) and lp :=
Substituting (35) into (34), it follows that
V < = Amin(@Q) — 20:Lpg) lex(t)]|* +2(Lpg, + |I2() As||
+01Lzg, + Leg ) [len ()]l les]] — (Amin(G())—

2aLzp,)llea(t)|]? +2p(-) |[ding{ P, E()}T| { H%H }

(32)

= 2[ef (33)

(35)
'74/)\min (P)

—XTW ()X + 27| X||

< = (it O} IXT = 290) 1X]
= (X1 - 2y Jof, Oumin (WX
;gfz;{ {)\mm(W)} yxu
where X := [|lex]| [lea]l]”, 7o := sup {p(")||diag {P,E(")} T||}.

WE)Nr>0.  #
Remark 4. A sufficient condition is presented in Theorem 1, where
the design parameters () and L which affect P, the design function
matrix =(y,u) and constant [ > 0 appear in the matrix W defined
in (28). There is no general constructive approach to choose these
parameters such that W is positive definite due to the complex nature
of W. Note that G(-) defined in (15) is independent of L and Q and
Lpg, < Amax(P)Lg,. Considering the structure of the matrix W,
one choice is to find L and the matrix ) to minimise “““ ((g)) The
associated discussion is available in [13].

Remark 5. Theorem 1 shows that system (22)—(23) is uniformly
ultimately bounded under certain conditions, which implies that there
exist positive constants o1 and w2 such that for any ¢ € Rt

Hence, the conclusion follows from inf {Amin(
yxu

let®)] < and  flea(t)]| < w2 (36)
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To estimate the upper bounds w; and w2 is not trivial, but one
possibility is to use the Gronwall-Bellman inequality (see [19]). By
applying (21), it follows that

lex(t — d)|| < max{p, @1} := po 37)

Inequalities (36) and (37) will be used in the reachability analysis
described later in the paper.

Remark 6. It should be noted that Z(u,y) in (20) is a design
parameter and Assumption 3 provides a limitation on the parameter
which is necessary to guarantee that W > 0 in (28). For linear
systems, the developed condition is usually attributed to a series
of LMIs. In this paper, the condition that W > 0 implies that
the condition (15) holds. To some extent, the role of the matrix
inequality (15) for system (22)—(24) is similar to that observed in
the corresponding LMIs for linear systems.

C. Reachability analysis

In this section, the k(-) in (19) will be designed such that the
reachability condition holds.
Theorem 2. Under Assumptions 1-3, system (22)—(24) is driven to
the sliding surface (27) in finite time and maintains a sliding motion
on it if the gain k(-) in (19) satisfies

k() = @l Asll + (L5, + Lpg) (@1 + po) + @2Lg, +
po(t, 21(t), C3 y(t), 21(t — d), C5 'y(t — d)) +n (38)

where po(-) satisfies (14) and 7 is a positive constant.
Proof: From the error system in (24),

e (t)éa(t) = e3 () (Aser(t) + (As + AsL + KCh)es(t) +
3(f2, f2) + g2(y. . 0) — ga(y, u, 0) + Afa() = v() (39)
Then, from the definition of J( f2, fg) in (26), it follows that

16(f2, F2)|| < L5, (lex(®)l] + llex (t — d)|)) (40)
Further, from Assumption 2,
g2y, u, ) — g2(y, u, 0)|| < Lgy les]| (41)

where L, is a function of y and wu.
By applying inequalities (40) and (41) to equation (39), it follows
from (19), (36) and (37) that
ez (t)éa(t) < @il As lle2(t)l] + €3 (£)(Aa + AsL + KCa)ea(t)
Ly (@1 + po)lle2 ()| + @2 Lgs [[e2()]
€3 (t)ea(t)
k() ===
lle2(®)l
Since, by design, A4 + AszL + K is symmetric negative definite,
it follows that e3 (¢)(As + A3L 4+ KC3)ea(t) < 0. Therefore,

+po(t; 2(t), 2(t — d))le2(t)]| —

ez (t)éa(t) < (wil|As|l + Ls, (@1 + o) + @2Lg, || + po(-))

ez = kC)llez()l (42)
Since po(-) is Lipschitz, it follows that
lpo(t, =(t), 2(t — d)) = po(t, 21(1), C 'y(t), 21t — d),
Cy y(t—d))l
< Lpg([[21(E) = 20| + (|21 = ) = 21(t = d)]])
< Loy (w1 + o) (43)

Then, applying (38) to (42), it follows from (43) that e3 (t)éa(t) <
—n|le2(¢)|]. This shows that the reachability condition holds and thus
the error system is driven to the sliding surface in infinite time. Hence
the conclusion follows. #

By combining Theorems 1 and 2, it follows from sliding mode
theory that system (22)—(23) is uniformly ultimately bounded. Since
z = Tz is a nonsingular coordinate transformation, it is easy to see
that £ = T'Z gives an estimate of the states x of system (2)—(2) where
Z is given by (16)—(17).

IV. AN APPLICATION EXAMPLE—BIOREACTOR

Consider a simple model of a bioreactor described in [11] which
is based on classical mass balances for biomass, sulphate (substrate)
and sulphide (product) concentration as follows:

&1 = —ziu+ h(z)x: (44)

g2 = (Yin —22)u— h(m)% (45)

i3 = —asut hza)t (46)
&

where x1, 2 and x3 represent biomass concentration (g/1), sulphate
concentration (g/l) and sulphide concentration (g/1) respectively. Fol-
lowing the well known Monod model [11], h(z2) = hf;r{z where
h1 and hs are constants. The control « is the dilution rate (1/hour),
&1 and & are yield coefficients and +;, is the influent sulphate
concentration. It is assumed that the sulphate concentration z2 and
sulphide concentration x3 can be measured by sensors.

In order to illustrate the approach developed in the paper, the
influent sulphate concentration ;. := 6 is assumed to be an unknown
constant. Similar to the work in [1], assume that there exist delay
effects on the sulphide concentration x3. Then system (44)—(46) is
described by

hi 0 0 0 r

T = —% 0 0 |x+ 0u—y1u]

’g; 0 0 —aysu

A g()

—ou - L
+ 51(22%&-112) Wi +Af() 47)
—(1-a)zs(t —d)u — =]
)
0 1 0

where the parameter a € [0, 1] is the retarded coefficient and the
limits @ = 1 and a = 0 correspond to no-delay and full delay terms
respectively. The term

Af() = [Afor() Afoa(r) Afos()]"

Afa

includes all the disturbances which componentwise satisfy
|[Afo1(+)] < 0.05cos?(z2(t —d)), |Afo2(-)] < 0.05sin?(z2(t — d))
and |Afo1(-)] < 0.lexp{—t}|sin(z1(¢))|. The parameters are
chosen as in [11]: h1 = 0.035, ho = 0.90, & = 0.25 and &2 = 0.26
while @ = 0.75 is as in [1]. Importantly, concentration can never be
negative. It is straightforward to check that Assumptions 1 and 2
hold. It is clear that (47)-(48) is in the form of (5)-(6) with

A 4 0.0350 [0 0] ol1 o
A A |=] 060 0, [0 Gl= | o
° 0.1400 |0 0

Choose L = [—1 0] and @ = 1. Then, the solution to the Lyapunov
equation (7) is P = 5.0193. Under the coordinate transformation
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. 2 110 1
[ Zl } =201 |=l0 1 0 T2 (49)
2 z22 0 0 1 T3
~—_———
T

system (47)—(48) has the same form as (9)—(11) with

) [ —(21 = z20)u + gore) (21 — 221)
A0 (A IPIGTEEETY]
f2() - 0.94221
—0.2525 (t — du — 212CL2221)
. [ Ou—2y1u
a) | 773/1
) = Ou — y1u
200 | —0.75y0u
' [ Afor() + Afoa(-)
{ ARG | = Afoa(")
Afa(- o
f2( ) ] i AfOS() I
It is straightforward to verify that Assumption 3 is satisfied with
E(-) = —[0.14 0.1346](1 + 1) for all u € U := {u | 0.0001 <

u < 0.1840}. By direct computation, it follows that
Lrp() = | —ut $BE], £ () = L) = u, 204 =0
G(-) = 0.1400(1 + u), £1 = 2.0005, £5 = 0.4585, L=z, (") =0
p2(-) = 1/0.0025 sin? (222 (t — d))

+0.01 exp{—2t} sin? (21 (t) — 221 (¢))

and the conditions in Theorem 1 hold. Finally, choose k() to satisfy
(38). Then system (16)—(17) with the adaptive law (20) is well
defined, and is an observer of system (47)—(48) in z coordinates.
For simulation purposes, the control signal is chosen as uw =
0.004(2y1 + y2) and the parameter § = 0.15. The initial conditions
are chosen as zo = (0.12,5,0.16) or zo = (5.16,5,0.12) as in
[11] and 6o = —5. The delay is chosen as d(t) = 2 + sint and
the initial value associated with the delay is chosen as ¢(t) =
[2—cost 1 2+sint]T. Figure 1 shows the estimates for the

4 6
2 I
S 4
g of— —- £
SR 5
, E
@ 2 3,
_4 /
-6 0
0 20 40 60 80 0 20 40 60 80
time [hour] time [hour]
4 2
3 o Of ==
3 g g
£2 g -2 /
= g |/
2] < /
1 & -4y
|
0 -6
0 20 40 60 80 0 20 40 60 80
time [hour] time [hour]
Fig. 1. The evolution of system states « and parameter 6 (solid line) and

the estimates & and 0 (dashed line)

system states and the parameter. The simulation results show the
effectiveness of the proposed approach.

Remark 7. Note that the term (19) appearing in the observer
(16)—(18) is discontinuous which may result in chattering. In the

simulation, the discontinuous function (19) has been replaced by
the saturation function to avoid chattering [5]. It should be noted
that in the simulation example, the matrix Z(-) is chosen as
[0.14 0.1346](1 + 1) due to the term fu in (47), which may result
in large gain in the adaptive law (20) when u is very small. As is
usual for practical implementation, physical limits on the available
control would need to be incorporated.

V. CONCLUSIONS

In this paper, a sliding mode observer with an update law has
been proposed to estimate the system states and unknown parameters.
Coordinate transformations are used to explore the system structure
and the features of the sliding mode approach are fully used to reduce
conservatism. Both parametric uncertainty and structural uncertainty
are considered. The system plant and the derived error dynamical
system are time delayed and nonlinear. Furthermore, the unknown
parameters are embedded in the system in a nonlinear fashion. The
developed results is applicable to a wide class of systems.

APPENDIX

Consider a matrix pair (A, C') where A € R™*", and C € RP*"
is full row rank with p < n. The following result can be obtained.
Lemma 1 If a matrix pair (A, C) is observable and the matrix C' is
full row rank, then there exists a nonsingular matrix 7% such that

A AQ}

A3 Ag O =[0G

TIAT] ' = [ (50)
where A; € ROPX(=P) the matrix Cy € RP*P is nonsingular
and (A1, As) is observable.

Proof: From the fact that C' is full row rank, there exists a nonsingular
matrix 77 such that

CT ' =0 Oy (51)

where C2 € RP*? is nonsingular. Partition T ATf1 in a compatible
way with CT;1 in (51) as

(52)

TlATl_l _ |: A1 As }

Az As

where A; € R(*P)X("=P) Then, it is only required to prove that
(A1, As) is observable. By direct verification, it follows from (51)
and (52) that for any complex number s,

Iy O
|: S]nc,_A :| _ Tfl |: 0 —Ip :| 0 ]
IP
SInfp — A1 —A2
A3 —SIP + A4 Tl
0 Ca

and thus for any complex number s,
s, — A sIn—p — A1
rank([ C }) = rank([ As

Since (A, C) is observable and Cz € RP*? is nonsingular, from the
PHB rank test,
)=o-

SIn_p — A1
rank( [ As

Again, from the PHB rank test, equation (54) implies that the matrix
pair (A, As) is observable. Hence the conclusion follows. #

Let Z,2 € R™. A convex set associated with Z and % is defined
by

} ) + rank(C2) (53)

(54)

Dz, &) :={pz+ (1 - |0<p<1}

which is a subset in R"™.
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Lemma 2 Let f(z) = [fi(z) fo(z) -+ fp(z)]” where z € R™ and
the function f; : R™ — R is differentiable in R" fori =1,2,...,p.
Then for any z € R" and & € R", there exists 2}, € D(z,%) C R"

fori=1,2,---,p such that
Of (x% ,x%, -, %
£@) - p(a) = LT ) gy ss)
oz
where the notation 5({;2) represents a p X n function matrix defined
by
Of (x% ,x%, -, a7 . - T
F(@5, 25, 2,) ::[ on ) o5p(@},) } 56)
ox ox ox
ofi(z}. )

where 0 = [240) 20 L 2] for i =
1,2,...,p.

Proof: From the multi-variable differential Mean Value Theorem,

it follows that for any Z € R™ and £ € R", there exists xz €

D(z,%) C R™ such that
ofi(x},)

1:@) = 1:@) = “5 10 @ - 3),

where the point 2%, depends not only on & € R™ and & € R", but
on f; as well.

i=1,2,...,p (57

(%)
Leta; =[0 --- 0 1 0 --- 0]” which has the i-th entry as 1 and
all other terms as 0. Then
P

£@) - £@) = Y ai(£ita) - (@) 58)
i=1
Substituting (57) into (58) yields
£@) - £@) = Y0 L) 195 (o 2
=1
5]"(%?1,%;2,-”,:6}17) = A
- o -9
where ggi) is defined in (55). Hence the conclusion follows. #
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