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This paper focuses on the design of adaptive finite reaching time control for first and second order 
dynamic systems with perturbation terms given in a regressive form. The uncertainties considered here 
are assumed to be bounded with unknown bounds. The proposed adaptive finite reaching time 
controllers not only retain robustness to these disturbances, but also are continuous. The proposed finite 
reaching time adaptive control algorithms are interpreted as continuous second order sliding mode 
control laws. Simulation results demonstrate the efficacy of the proposed algorithms. 

Keywords: adaptive control, finite reaching time, second order sliding modes.  

1. Introduction 

Control in the presence of uncertainty is one of the main topics of modern control theory. The design of high 
performance controllers often requires knowledge of the plant dynamics. The most desirable control systems 
are those that perform well amidst modeling inaccuracies, parametric uncertainties and external disturbances. 
Sliding mode control (SMC) (Edwards et al., 1998; Utkin et al., 1999; Utkin & Lee, 2007) and robust 
adaptive control (Sastry & Bodson, 1989; Astolfi et al., 2008) remain, probably, the most popular methods 
for handling bounded uncertainties/disturbances and unmodeled dynamics with known (SMC) and unknown 
(adaptive control) bounds. Classical sliding mode control (that is applicable to systems of relative degree 1) 
drives the state variables to the sliding surface in finite time and keep it there thereafter in the presence of 
bounded (with known bounds) matched uncertainties and disturbances. Thus, the system’s dynamics, 
compensated by SMC, are invariant to matched bounded disturbances/uncertainties at the price of high 
frequency switching control. Adaptive classical and second order sliding mode control (that is applicable to 
systems of relative degree 2 with dynamically varying gains, achieve finite time stabilization of the sliding 
variable in the presence of bounded disturbances/uncertainties with unknown bounds. However, the control 
function still involves high frequency switching (see, for instance, Plestan et al, 2010) or the high frequency 
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switching control action is hidden behind an integral term (see, for instance, Bartolini et al, 1999; Shtessel et 
al, 2010c). Classical adaptive control algorithms are robust to disturbances/uncertainties presented in a 
regressive format with unknown bounds (Sastry & Bodson, 1989; Astolfi et al., 2008). Note that classical 
adaptive control is continuous and usually does not contain discontinuous control terms and provides 
asymptotic convergence only. The distinctive feature of second order sliding mode control (2-SMC) is its 
ability to provide finite time convergence to zero not only to the sliding variable, but also to its derivative in 
the presence of bounded disturbances/uncertainties. The main advantage of 2-SMC becomes clear when it is 
implemented in discrete time: the accuracy of the sliding variable stabilization is enhanced and is 
proportional to 2τ , where τ  is the time increment. It is worth noting that 2-SMC, including twisting and 
prescribed convergence law control algorithms (Levant, 2003)), generates high frequency switching control 
or continuous control with high frequency terms hidden behind the integral as in the super-twisting control 
algorithm (Levant, 2003; Bartolini et al, 1999).  Thus, 2-SMC super-twisting control alleviates chattering. 
In this paper, we consider the problem of designing continuous adaptive control for first and second order 
systems that drives the state variable and its derivative to zero in finite time in the presence of bounded 
disturbances presented in a regressive form with unknown bounds (the preliminary results are presented in 
the conference proceedings: (Shtessel et al, 2009, Shtessel et al, 2010a, 2010b)) in order to enhance the 
stabilization accuracy. The control action is not supposed to contain any discontinuous terms and eliminates 
chattering. The designed control law can be interpreted as continuous second order sliding mode control.  
The paper is organized as follows. In Section 2, we define the problem statement. Then in Section 3, we 
discuss a theorem for generating continuous control and its modified version and application with adaptation 
to an arbitrary order system. In Section 4, we present the main results for a class of first order systems. In 
Section 5, we present the results for finite time convergence for a variety of second order systems. In Section 
6, we illustrate the design methodology for all cases via numerical examples, and finally in Section 7, some 
concluding remarks are outlined. 

2. Problem statement 

Consider a single-input-single-output (SISO) uncertain nth order nonlinear system  
( ) ( , )nx f x t u= +         (2.1) 

where x∈  is the output, u∈  is the control function, [ ]1 2, ,..., T
nx x x x=  is a state vector with 

( 1)
1 2, ,..., n

nx x x x x x−= = = , and ( , )f x t ∈  is a differentiable, partially known drift function. The 
partially known function ( , )f x t  is assumed to be presented in a regressive form 

( , ) ( , )Tf x t x tθ ϕ=        (2.2) 

where mθ ∈  is an unknown bounded constant vector of parameters with unknown bounds, and  
( , ) mx tϕ ∈  is a known vector-function. 

Consider an augmented system defined as  
( ) ( , )

ˆ

n Tx x t uθ ϕ

θ ω

⎧ = +⎪
⎨
⎪ =⎩

             (2.3) 

The problem is to design an adaptive continuous state feedback control law  
ˆ ˆ( , ), ( , )u u x xθ ω ω θ= =        (2.4) 

that drives ( 1)( ), ( ), ........, ( ) 0nx t x t x t− →  or 1 2( ), ( ),........, ( ) 0nx t x t x t →  in finite time. 

3. Finite reaching time continuous control 
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In the work of (Bhat & Bernstein, 2005), a continuous finite convergence time nonlinear control was 
developed for non-perturbed arbitrary order systems. This result is formulated in the following theorem: 

THEOREM 1: Let , .... 01 2k k kn >  be such that the polynomial 1 ... 2 1( ) n ns k s k s kns −= + + +Δ
 
is Hurwitz, 

and consider the system 

1 2

2 3
................

x x

x x

x un

=

=

=

              (3.1) 

then there exists a constant ( )0,10ε ∈  such that for every 0(1 ,1)iα ε∈ − , the origin is a globally finite time 
stable equilibrium for the system (3.1) under the feedback law 

1 sgn ..... sgn1 1 1
nu k x x k x xn n n

α α= − − −       (3.2) 

where the coefficients , ....1 2 nα α α
 
satisfy 

1 , 2,....,1 2 1

i i i ni
ii

α α
α

α α
+= =− −+

      (3.3) 

with 11nα =+ and nα α= . 

COROLLARY 1: Let , ..., 01 2k k kn >  and , ..., 01 2 nγ γ γ >  be such that the polynomial 

1
2 1

1 ...( ) , i
n i i i i

n ns s s ks x α γμ μ μ μ −−= + + + +Δ = +    (3.4) 

where 0, 1, 2,...,i ix i nε> > = , 
 
is Hurwitz, then the control law 

1 sgn ..... sgn ...1 1 1 1 1 2 2
nu k x x k x x x x xn n n n n

α α γ γ γ= − − − − − − −   (3.5) 

provides finite time stabilization to the origin of system (3.1). 

Sketch of the proof.  The rational behind replacing the finite time convergent control law (3.2), (3.3) by the 
the control law (3.3), (3.5) is that the control law (3.5) is more receptive to the large initial conditions of the 
system’s (3.1) states. The advantage of the proposed control format is that the linear control terms xi iγ  will 

dominate over the corresponding nonlinear control terms sgnii i ik x xα−  for 1ix >  that yields faster 
asymptotic convergence of the states xi  driven by the control law (3.5) rather then by the control law (3.2). 

On the other hand, the nonlinear control terms sgnii i ik x xα−  will dominate over the linear ones xi iγ  for 

1ix <  that yields finite time convergence in accordance with Theorem 1. Analyzing system’s (3.1), (3.3), 
(3.5) dynamics the 2 cases are considered.  
Case 1. Assume 1, 0, 1,2,...,i i ix i nε ε≤ << > = . The control law (3.5) can be presented in a form 

1
( 1 )i

n

i i
i

u k x xi i
α γ

=
= −

− +∑ . Then, the choice of the gains 1 ii i ik αγ ε −>>  (these conditions are not 

conservative and are easy to fulfill, since iε  are small positive numbers) provides the domination of the 

nonlinear terms sgni
i i ik x xα−  that yields finite time convergence in the domain 

1, 0, 1,2,...,i i ix i nε ε≤ << > =  in accordance with Theorem 1.  
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Case 2. Assume i ix ε> . Linearizing system (3.1) in the points i ix x= , i ix ε>  we obtain a characteristic 
polynomial of compensated system (3.1) as 

1
2 1

1 ...( ) , i
n i i i i

n ns s s ks x α γμ μ μ μ −−= + + + +Δ = +  

Let the gains of this polynomial ( , ) 0i i ikμ γ >  be such that the polynomial is Hurwitz. Then the 

corresponding gains ,i ik γ  are to be selected accordingly. The conditions 1 ii i ik αγ ε −>>  also must be taken 

into account. It was stated before that these conditions are easy to fulfill, since iε  are small positive 
numbers. Then 0ix →  as time increases. As soon as i ix ε≤  the nonlinear terms start dominating and the 

finite time convergence is provided (see Case 1). It is worth noting that for 1, 1,2,...,i i nα = =  the 

polynomial (3.4) becomes ( ) ( )2 1
1( ) ... 2 1n

n ns s k s k s knγ γ γ−Δ = + + + + + + + . Then the control law (3.5) 

provides only asymptotic convergence. The detailed study of the control law (3.5) for 1n =  using the 
Lyapunov function technique is provided in the proof of Theorem 2 that is presented in Section 4. 

1B3.1 The known-parameter finite reaching time controller design 

Assuming that the parameter vector θ  is initially known, and then the control law can be designed for system 
(2.3) in the form 

1
1 1 1 1 1 2 2sgn ... sgn ... ( , )n

n n n n n
Tu k x x k x x x x x x tαα γ γ γ θ ϕ= − − − − − − − −    (3.6) 

It is easy to see that the compensated dynamics of system (2.3) in an thn  order differential equation format 
becomes 

( ) ( 1) ( 1) ( 1)1 sgn ..... sgn ...1 21
n

n
n n n nx k x x k x x x x xn

αα γ γ γ− − −= − − − − − − −  (3.7) 

and the origin is a globally finite time stable equilibrium in accordance with Corollary 1 of Theorem 1 if the 
coefficients , ..., 01 2k k kn >  and , ..., 01 2 nγ γ γ > are selected in such a way that the polynomial (3.4) is 
Hurwitz. 

2B3.2 Adaptive nonlinear control law with finite time convergence 

Assume that the known function ( , ) mx tϕ ∈  does not depend explicitly on time, i.e. ( , ) ( )x t xϕ ϕ=  and can 

be factorized as 1/ 2( ) ( )x x xn nϕ ψ= , where ( ) mxnψ ∈  is a known vector-function. Introduce an 

estimated parameter θ̂ , and the adaptation vector function ( ) mxnβ ∈  , such that the adaptive control law 
is constructed as 

1/2ˆ ˆ 1( , ) ( ) ( ) sgn ..... sgn ...1 1 1 1 2 21
T nu x x x x k x x k x x x x xn n n n n n n n

α αθ θ β ψ γ γ γ⎡ ⎤=− + − − − − − − −⎣ ⎦  (3.8) 

Introduce an auxiliary variable mz∈  according to 
ˆ ( )z xnθ θ β= − +             (3.9) 

where ( )nxβ β=  is a vector-function to be determined. Its dynamics are given by 
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( )
1

1

1/ 2 1/ 2

1 1 1 1 1 2 2

1/ 2
1 1 1

1 1 2 2

( ) ( )ˆ ˆ ˆ[ ( ) ( ) ( )

sgn ..... sgn ... ]
( )ˆ [ ( ) sgn ..... sgn

... ]

n

n

TTn n
n n n n n n

n n

n n n n n

Tn
n n n n n

n

n n

d x d x
z x x x x x x

dx dx

k x x k x x x x x
d x

z x x k x x k x x
dx

x x x

αα

αα

β β
θ θ θ ψ θ β ψ

γ γ γ

β
θ ψ

γ γ γ

= + = + − +

− − − − − − −

= + − − − − −

− − −

  (3.10) 

Define the following adaptation law for the parameter θ  
( )ˆ 1[ sgn ..... sgn ... ]1 1 1 1 2 21

d xn nk x x k x x x x xn n n n ndxn

β α αθ γ γ γ= + + + + + +          (3.11) 

Then the compensated dynamics of the auxiliary variable z  are 

( ) 1/2( )
d xn Tz x x zn ndxn

β
ψ

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
                       (3.12) 

Stability of the auxiliary variable compensated dynamics (3.12) can be achieved by selecting ( )nxβ β=  so 
that  

( )
( ) ( ) 0

d xn T x Q x
dxn

β
ϕ = ≥        (3.13) 

where ( ) m mQ x ×∈  is a positive semi-definite matrix. For instance, if the vector-function ( )xnβ  is defined 
as 

( ) ( )1
4 0

d x xn n
dx xn n

β ϕ
γ

= ⋅         (3.14) 

then the semi-definite matrix m mQ ×∈  in eq. (3.13) has the form 

1( ) ( ) ( )
4 0

TQ x x xn n nψ ψ
γ

= ⋅ ⋅        (3.15) 

Finally, the dynamics of the adaptive system in (2.3), governed by the adaptive control law in (3.8), (3.11), 
(3.14) can be written as 

1
1/ 2( ) 1( ) sgn ..... sgn ... ]1 1 1 1 1 2 2

( )

n T nx z x x k x x k x x x x xn n n n n n n
z Q x zn

α αψ γ γ γ= − − − − − − − −

= −
 (3.16) 

3B4. Adaptive control law with finite time convergence for first order system 

In this subsection we study system (2.3) in the special case when 1n = . The adaptive control law in (3.8), 
(3.11), (3.15) can be written in the form 
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1/ 2
1 1 1 1 1 1 1

1
1 1 1

1 1
0 11/ 2

0 1

ˆ ˆ 1( , ) ( ) ( ) sgn1 1
( )ˆ 1[ sgn ]1 1

( ) ( )1 ,
4

T
u x x x x k x x x

d x
k x x x

dx
d x x

dx x

αθ θ β ψ γ

β αθ γ

β ψ
γ γ

γ

⎧
⎪ ⎡ ⎤= − + − −⎣ ⎦⎪
⎪⎪ = +⎨
⎪
⎪

= ⋅ =⎪
⎪⎩

 (4.1) 

Therefore, the dynamics of the adaptive system in (3.16), with 1n =  and with the adaptive control law in 
(4.1) becomes 

1 1 1 1 1 1

1

1/ 2 1( ) sgn1 1
( )

Tx z x x x k x x
z Q x z

αψ γ= − − −

= −
    (4.2) 

THEOREM 2: For the system given in (4.2) ( ), ( ) 0x t x t →  in finite time, while ( ) 0z t →  as time increases.  

Proof. The proof is split into two steps. In the first step we will show that ( ) 0, 0Tz x xψ → →  as time 
increases. In order to do this the following Lyapunov function candidate is introduced. 

1
1 ,1 2 22

TV V z z V x= + =             (4.3) 

Its derivative is calculated on the trajectory of eq. (4.2) as 

( )

1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

( )
11/ 2 1( ) ( ) ( ) ( )1 1 4 1

211/ 2 1( ) ( ) ( )1 14 1
21 1 1/ 2 1( ) ( )1 121

TV x sign x z z

T T Tz x x sign x x k x z x x z

T Tz x x sign x x z x k x

Tz x x sign x k x

αψ γ ψ ψ
γ

αψ γ ψ
γ

αψ γ
γ

= ⋅ +

= − − − −

= − − − −

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

  (4.4) 

Based on (4.3) and (4.4), it can be observed that 1 1( ) 0, 0Tz x xψ → →  as time increases. Furthermore, ( )z t  
remains bounded due to (3.12) and (4.2).  Also, it is not imperative that 1( ) 0xψ →  as 1 0x →  . However if 

we assume the entries of the vector-function 1( )xψ  are linearly independent, then 1 1( ) 0, 0Tz x xψ → →  

yields 1 0V <  , and hence 0z →  as time increases.  

 Next, we will prove that 1 0x →  in finite time. Indeed, since 1( ) 0Tz xψ →  asymptotically, there 

exists a time instant 1t  such that 1
Tz kψ η≤ −  1t t∀ ≥  where η  is a positive scalar satisfying 1kη < . 

Consider 2 1V x=  as a candidate Lyapunov function to demonstrate finite time convergence of 1x  in eq. 
(4.2) to the origin. 

             
1 1 1 1 1 11

1 1 1 1 1 1 1

1/ 2 1( ) ( ) ( )2 1 1
1/ 2 1/ 21 1( ) ( )1 1 1

TV x sign x z x x sign x x k x

T Tz x x x k x z x x k x

αψ γ

α αψ γ ψ

= ⋅ = − − −

≤ − − ≤ −
  (4.5) 

Since it is proven that 1 0x →  as time increases, then there exists a time t τ=  such that 1 1x t τ≤ ∀ ≥ . 

Therefore, bearing in mind that 0 0.51α< ≤ , it follows that  1 1 1
1/ 21 11 1k x k x xα− ≤ − ∀ ≤  

Now inequality (4.5) yields 1t t τ∀ ≥ >  
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( )1 1 1 1 1 1 1 1
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2( ) ( )2 2

T TV z x x k x z x k x x Vψ ψ η η≤ − ≤ − ≤ − ≤ −  (4.6) 

It follows that 1( )x t  converges to the origin in finite time rt  that is estimated as: 

1/ 2
2

2 (0)rt V
η

≤         (4.7) 

From eq. (4.2), as soon as 1( )x t  reaches zero, 2 1( ) ( )x t x t=  reaches zero as well. Consequently Theorem 2 is 
proven. 

4B5. Adaptive control law with finite time convergence for second order system: Case 1 

 In this subsection, system (2.3) is studied with 2n = . For such a system, the target finite convergent 
time compensated dynamics are obtained from eq. (3.7) as             

 
1 2

1 1 1 2 2 1 1 1 2 2 2

2 1

sgn sgn x x x k x x k x x
x x

α αγ γ⎧ = − − − −⎪
⎨

=⎪⎩
     (5.1) 

The adaptive control law in (3.8), (3.11), (3.14) can be written in the form 

1 2

1 2

1/ 2
1 2 2 2 2 1 1 1 2 2 2 1 1 2 2

2
1 1 1 2 2 2 1 1 2 2

2

2 2
1/ 2

2 0 2

ˆ ˆ( , , ) ( ) ( ) sgn sgn

( )ˆ [ sgn sgn ]

( ) ( )1
4

T
u x x x x x k x x k x x x x

d x
k x x k x x x x

dx
d x x

dx x

α α

α α

θ θ β ψ γ γ

β
θ γ γ

β ψ
γ

⎧
⎪ ⎡ ⎤=− + − − − −⎪ ⎣ ⎦
⎪
⎪ = + + +⎨
⎪
⎪

= ⋅⎪
⎪⎩

 (5.2) 

and the dynamics of the adaptive system becomes 

 

1 2
1/ 2 1 2( ) sgn sgn2 2 2 1 1 1 2 2 2 1 1 2 2

( )

x x

Tx z x x k x x k x x x x

z Q x z

α αψ γ γ

=⎧
⎪⎪ = − − − − −⎨
⎪ = −⎪⎩

  (5.3) 

THEOREM 3: For the system given in (5.3) 1 2( ), ( ) 0x t x t →  in finite time, while ( ) 0z t →  as time 
increases.  
Sketch of the proof. The proof largely follows the steps of the proof for Theorem 2. In the first step we can 
show that 2 1 2( ) 0, 0, 0Tz x x xψ → → →  as time increases using the Lyapunov function 

1 , , 01 1 1 2 2 1 22
TV c x c x z z c c= + + > . In the second step, it can be proven that 0, 01 2x x→ →  in 

finite time by using another Lyapunov function candidate 2 1 2V x x= + . 

Remark 1. Note that the adaptive control law (5.2) can be interpreted as adaptive continuous second order 
sliding mode control since 1( ), ( ) 01x t x t →  in finite time in the presence unknown bounded disturbance term 

( )
2

T xθ ϕ  with unknown bound. 

5.1 Adaptive non linear control law for a second order system: Case 2 
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In this subsection, we study a special class of second order systems, where the single control u  is split into 
two controls 1u and 2u , each appearing separately in the equations governing the system. 

Consider the following second order system 

1 2 1

2 2 2( )

x x u

Tx x uθ ϕ

= +

= +

⎧⎪
⎨
⎪⎩

       (5.4) 

where [ ]1 2, Tx x x=  is the state vector, [ ]1 2, Tu u u=  is the control vector, mθ ∈  is a bounded unknown 

vector of parameters with unknown bounds, and 2( ) mxϕ ∈  is a known vector-function. Assume 2( )xϕ  can 

be factorized as 1/ 2
2 2 2( )= ( )x x xϕ ψ , where 2( ) mxψ ∈  is a known vector-function. 

5B5.1.1 The known-parameter nonlinear controller design.  

 Consider the cascade dynamics 
1

2

1 2 1 1 1

2 2 2 2 2

( )

( )

a

a

x x x sgn x

x x sgn x x

α

α γ

⎧ = −⎪
⎨

= − −⎪⎩
      (5.5) 

where ( ) ( ]1 2 1 2, 0, 0,1 , 0,0.5a aα α > ∈ ∈ .  

It is easy to see that equation 2 ( )2 1 2 2 2
a

x x sgn x xα γ= − −  is finite time convergent, i.e. , 02 2x x →  in 

finite time 1t . Then equation 1 ( )1 2 1 1 1
a

x x x sgn xα= −  becomes 1 ( )1 1 1 1 1
a

x x sgn x t tα= − ∀ ≥   which 

is also finite time convergent, i.e. 1 1, 0x x →  in finite time 1 2ft t t= + . Therefore, 1 2 1 2, , , , 0x x x x →  and 

system (5.5) can be considered as a finite time convergent compensated target system for (5.4).  
If the parameter θ  is known, the corresponding control law 1 2( , , )u u x x θ=  can be designed as 

  
1 ( )( ) 1 1 11 1 , , , 01 2( , , ) 22 1 2 ( ) ( )2 2 2 2 2

ax sgn xu x
u au x x T x x x sgn x

α
α α γ

θ θ ϕ γ α

⎡ ⎤−⎡ ⎤ ⎢ ⎥= = >⎢ ⎥ ⎢ ⎥⎣ ⎦ − − −⎢ ⎥⎣ ⎦

  (5.6) 

6B5.1.2 Adaptive nonlinear control law with finite time convergence.  

Now suppose the parameter θ  is unknown. Introduce the estimated parameter θ̂ , and the adaptation vector-
function 2( ) mxβ ∈  so that the control law 2 2 1 2( , , )u u x x θ=  in eq. (5.6) is constructed as 

          ˆ ˆ 2( , , ) ( ) ( ) ( )2 1 2 2 2 2 2 2 2
T au x x x x x x sgn xθ θ β ϕ γ α⎡ ⎤= − + − −⎣ ⎦   (5.7) 

As before, introduce an auxiliary variable mz∈ , where 

2
ˆ ( )z xθ θ β= − +        (5.8)  

and thus  
( ) ( )2 2ˆ ˆ 2( ) ( )2 2 2 2 2 2
2 2

d x d x aTz x z x x x sgn x
dx dx
β β

θ θ ϕ γ α⎡ ⎤= + = + − − −⎢ ⎥⎣ ⎦
 (5.9) 

Introduce the following adaptation law for the parameter θ  
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  ( )( )2ˆ 2 ( )2 2 2 2
2

d x ax sgn x x
dx
β

θ α γ= +      (5.10) 

The compensated dynamics of the auxiliary variable z  are given by 

  2
2

2

( )
( )Td x

z x z
dx
β

ϕ
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

        (5.11) 

The stability of the auxiliary variable compensated dynamics in (5.11) can be achieved by selecting 

( )xβ β=  so that 2
2 2

( )
( ) ( ) 0Td x
x Q x

dx
β

ϕ = ≥ , where 2( ) m mQ x ×∈  is a positive semi-definite matrix. For 

example, if 
2 2

2 2

( ) ( )1
4

d x x
dx x
β ϕ

γ
= ⋅   

then 

2 2
1 ( ) ( )

4
TQ x xψ ψ

γ
= ⋅ ⋅ . 

Finally, the dynamics of the adaptive system in (5.4) becomes          

1 ( )1 1 1 1 2
a

x x sgn x xα= − +       (5.12) 

1/2 2( ) ( )2 2 2 2 2 2 2
aTx z x x x x sgn xψ γ α= − − −     (5.13) 

( )z Q x z= −         (5.14) 

It is easy to see that the adaptive system dynamics in (5.13), (5.14) coincide with the dynamics of adaptive 
system (4.2).  Therefore, the following theorem is formulated by analogy to Theorem 1: 

THEOREM 4: For the system given in (5.12), (5.13) and (5.14) 1 2 1 2( ), ( ), ( ), ( ) 0x t x t x t x t →  in finite time 
while ( ) 0z t →  as time increases. 
Proof. The finite time convergence ( ), ( ) 02 2x t x t →  and the convergence ( ) 0z t →  as time increases, can 
be proven by analogy with the proof of Theorem 1. As soon as 2 ( ) 0x t =  rt t∀ ≥  , (5.12) becomes 

1 ( )1 1 1 1
a

x x sgn xα= − and 1( ), ( ) 01x t x t →  in finite time. Theorem 4 is proven. 

It is worth noting that the cascade dynamics in (5.5) are not the only possible smooth second order dynamics 
with finite convergence time. Different smooth 2nd order finite time convergent dynamics are used next as 
the target system and this yields another adaptive finite time convergent control algorithm. 

Remark 2. Note that the adaptive control law (5.7) can be interpreted as adaptive continuous second order 
sliding mode control since 1( ), ( ) 01x t x t →  in finite time in the presence unknown bounded disturbance term 

( )
2

T xθ ϕ  with unknown bound. 

5.2 Finite reaching time adaptive nonlinear control for the second order system: case 3  
The dynamics in system (5.4) is modified using a relative degree approach while introducing a scalar control 

function u  instead of the vector control function ,1 2
Tu u⎡ ⎤⎣ ⎦ .  A presentation of the system’s dynamics in this 

way makes sense, since it can be easily generalized for uncertain input-output dynamics with an arbitrary 
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relative degree. The following uncertain second order input-output dynamics are obtained by differentiating 
first equation in eq. (5.4): 

( , )1 1 1
Tx x x uθ ϕ= +               (5.15) 

where 1x ∈  is the state, 1 2u u u= + ∈  is the control function, mθ ∈  is a bounded unknown vector of 

parameters with unknown bounds, and 1 1( , ) mx xϕ ∈  is a known vector-function. Assume 1 1( , ) mx xϕ ∈  

can be factorized as 1/ 2
1 1 1 1( , )= ( )x x x xϕ ψ , where 1( ) mxψ ∈  is a known vector-function. 

7B5.2.1 Known-parameter nonlinear controller design.  

Equation (5.5) represents the finite time-convergent compensated target system for eq. (5.4). Therefore, we 
use eq. (5.5) to obtain the target system for eq. (5.15) by differentiating first equation in eq (5.4). Finally, the 
cascade finite time-convergent dynamics (5.5) is transformed to a finite time-convergent 1 1, 0x x →  second 
order differential equation  

 
( ) ( ) ( )( )
( )( )

1 21 1 11 1 1 1 1 1 2 1 1 1 1 1 1 1 1

1 01 1 1 1

aa a ax a x sgn x x x x sgn x sgn x x sgn x

ax x sgn x

α α α α

γ α

−⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

+ + =

 (5.16) 

where ( ) ( ], 0, 0,1 , 0, 0.51 2 1 2a aα α > ∈ ∈ .  

Given that the parameter θ  is known, the corresponding control law 1 1( , , )u u x x θ=  can be designed for 
system (5.15) as 

 
( )( )

( ) ( )( ) ( )( )

1

2
1 1 1

1
1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1

( , ) aT

aa a a

u x x a x sgn x x

x x sgn x sgn x x sgn x x x sgn x

θ ϕ α

α α α γ α

−= − −

− + + − +
  (5.17) 

Additional constraints needs to be imposed on the coefficients 1a  and 2a , otherwise the term 

( )111 1 1 1 1
aa x sgn x xα −⎛ ⎞

⎜ ⎟
⎝ ⎠

 can become discontinuous at 1 0x = . Thus, as soon as 

( )1( ) 02 1 1 1 1
ax t x x sgn xα= + →  in finite time, the variable 1x  satisfies equation ( )11 1 1 1

ax x sgn xα= −  

and hence ( )111 1 1 1 1
aa x sgn x xα −⎛ ⎞

⎜ ⎟
⎝ ⎠

= ( )2 12 11 1 11
aa x sgn xα −

−     (5.18) 

Ensuring the following inequality  
  ( ) ( ], 0, 0.5,1 , 0, 0.51 2 1 2a aα α > ∈ ∈      (5.19) 

retains the continuity of the control function (5.17) at 1 0x =  while preserving the finite time convergence. 

8B5.2.2 Adaptive nonlinear control law with finite time convergence  

 As before, introduce the estimate parameter θ̂  and the adaptation vector-function 1( ) mxβ ∈  so 

that the control law 1 1
ˆ( , , )u u x x θ=  in (5.15) is constructed as 
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( )

( ) ( )( ) ( )( )

1ˆ ˆ 1( , , ) ( ) ( )1 1 1 1 1 1 1 1 1

21 1 12 1 1 1 1 1 1 1 1 1 1 1 1

T au x x x x a x sgn x x

aa a ax x sgn x sgn x x sgn x x x sgn x

θ θ β ϕ α

α α α γ α

−⎛ ⎞⎡ ⎤=− + −⎜ ⎟⎣ ⎦ ⎝ ⎠

− + + − +

 (5.20) 

Next, introduce an auxiliary variable mz∈   
ˆ ( )1z xθ θ β= − +            (5.21) 

It can be observed that its dynamics satisfy 

 
( )

( )

( ) ( ) 11 1ˆ ˆ 1[ ( )1 1 1 1 1 1 1
1 1

2 1( )];2 2 2 2 2 1 1 1 1

d x d x aTz x z x a x sgn x x
dx dx

a ax x sgn x x x x sgn x

β β
θ θ ϕ α

γ α α

−⎛ ⎞= + = + − −⎜ ⎟
⎝ ⎠

− − = +

   (5.22) 

Let   

 ( )( ) 11ˆ 1 2[ ( ) ]1 1 1 1 1 2 2 2 2
1

d x a aa x sgn x x x sgn x x
dx
β

θ α α γ−⎛ ⎞= + +⎜ ⎟
⎝ ⎠

   (5.23) 

and hence  
( )1 ( )1
1

d x Tz x z
dx
β

ϕ
⎡ ⎤

= − ⎢ ⎥
⎢ ⎥⎣ ⎦

        (5.24) 

Select  

( )xβ β=  so that 
( )1 ( ) ( ) 01 1
1

d x T x Q x
dx
β

ϕ = ≥      (5.25) 

where 1( ) m mQ x ×∈  is a positive semi-definite matrix.. For instance,  

1 1

1 1

( ) ( )1
4

d x x
dx x
β ϕ

γ
= ⋅  and 1 1

1 ( ) ( )
4

TQ x xψ ψ
γ

= ⋅ ⋅ . 

Finally, the dynamics of the adaptive system (5.15), (5.19), (5.20), (5.23), (5.25) can be presented as  

 

( )

( )

11( )1 1 1 1 1 1 1

2 1( );2 2 2 2 2 1 1 1 1
( )1

aTx z x a x sign x x

a ax x sign x x x x sign x

z Q x z

ϕ α

γ α α

−⎧ ⎛ ⎞= − −⎜ ⎟⎪ ⎝ ⎠⎪
⎪ − − = +⎨
⎪ = −⎪
⎪⎩

    (5.26) 

The adaptive system dynamics in (5.26) are equivalent to the dynamics of the adaptive system (5.12), (5.13), 
(5.14) presented in a different basis. Hence, the following theorem is formulated by analogy to Theorem 4.  
THEOREM 5: For the system given in (5.26) 1 1( ), ( ) 0x t x t →  in finite time while ( ) 0z t →  as time 
increases. 
Proof.  This can be shown by analogy to the proofs of Theorems 1 and 4. 

Remark 3. Note that the adaptive control law (5.20) can be interpreted as adaptive continuous second order 
sliding mode control since 1( ), ( ) 01x t x t →  in finite time in the presence unknown bounded disturbance term 

( )
2

T xθ ϕ  with unknown bound. 
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6. Simulation examples 

The first and second order systems using adaptive control are simulated using a numerical example. The 
parameter θ  remains unknown.  However a value of 10θ =  is taken for simulation purposes for every case. 

6.1 9BFinite convergence time adaptive SOSM control for the first order system 

The first order control system (2.3) with 1n = becomes 

( , )Tx x t uθ ϕ= +                 (6.1) 

The system is simulated using (3.12), (3.16) with 1n = and the function 2( , )x t xϕ = . The function β  is 

selected as the solution of the differential equation 1 sgn
4 1

d x x
dx
β

γ
=  , which is 1 2

8 1
xβ

γ
= ,while the 

other parameters are selected as 1
ˆ1 / 2, 1, 1, (0) 3, (0) 01 1k x= = = = =α γ θ . 

0 2 4 6 8 10-10

0

10

20

30

T i m e ( s e c s )

x
dx/dt

4 6 8
-0.4
-0.2

0
0.2

 
FIG.1. Time history of the state variable and its derivative in the first order system 

0 2 4 6 8 10-20

-10

0

10

T i m e ( s e c s )

u

FIG.2. Time history of the ASOSM control in the first order system  
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0 2 4 6 8 100

5

10

15

T i m e ( s e c s )

θ

estimated parameter

 
FIG.3. Time history of the parameter adaptation in the first order system 

 

6.2 10BFinite convergence time adaptive SOSM control for the second order system, Case1 

The second order control system (2.3) is studied with 2n =  where 
1 2

( , , )2 1 2

x x
Tx x x t uθ ϕ

=

= +
       (6.2) 

and the function 2( , , )1 2 2x x t xϕ =  .The adaptation function is selected as 1 2
28 0

xβ
γ

= , while the value of 

the parameters are ˆ1/ 3, 1/ 2, 1, 10, 10, (0) 5, (0) 2, (0) 01 2 0 1 2 1 2 1 2k k x xα α γ γ γ θ= = = = = = = = = − =   . 

0 2 4 6 8 10-5

0

5

10

15

T i m e ( s e c s )

x1
x2
d(x2)/dt

5 6 7 8 9

-0.5

0

0.5

 
FIG.4. Time history of the state variable, its first and second derivative in the second order system 



  14

0 2 4 6 8 10-15

-10

-5

0

5

T i m e ( s e c s )

u

 
FIG.5. Time history of the ASOSM control in the second order system 

It is clear from Figs. 4-5 that 1 2 2, , 0x x x →  in finite time and stay at the origin thereafter in the presence of 
the bounded disturbance with the unknown bound, while the finite convergent-time adaptive control law is 
continuous/smooth.  

6.3 11BFinite convergence time adaptive SOSM control for the second order system, Case2 

Figs.6-8. show the response of the second order control system given by (5.4), (5.6), (5.7), (5.10) and 

simulated with the function 2
2 2( )x xϕ = . The adaptation function 2( )xβ β=  is selected as 21

212
x=β

γ
, 

while the parameter values are ˆ2 / 3, 1/ 3, 1, 3, 3, (0) 5, (0) 1, (0) 01 2 1 2 1 2a a x xγ α α θ= = = = = = = = .  

0 2 4 6 8 10-5

0

5

10

T i m e ( s e c s )

x1
x2

2 4 6 8
-0.2

0
0.2
0.4

 
FIG.6. Time history of the state variables in the second order system, Case 2 
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0 2 4 6 8 10-30

-20

-10

0

10

20

30

T i m e ( s e c s )

d(x1)/dt
d(x2)/dt

 
FIG.7. Time history of the derivatives of the state variables in the second order system, Case 2 

0 2 4 6 8 10

-40

-20

0

20

40

T i m e ( s e c s )

u1
u2

 
FIG.8. Time history of the adaptive controls in the second order system, Case 2 

It is clear from Figs. 6-8 that 1 1 2 2, , , 0x x x x →  in finite time and stay at the origin thereafter in the presence 
of the bounded disturbance with the unknown bound, while the finite convergent-time adaptive control laws 
are continuous. This means that the proposed adaptive nonlinear control law 2u∈  is a continuous vector 
SOSM control. 

 
6.4 Finite time adaptive SOSM control for the second order system, Case 3. 
The second order control system given by (5.15), (5.20), (5.23) is taken with the function 2

1 1 1( , )x x xϕ = .  

While 2
1

1
8

x=β
γ

, the other parameters are 2 / 3, 1/ 3, 1, 6, 8, (0) 1, (0) 41 2 1 2 1 2a a x xγ α α= = = = = = = . 

The simulation of the second order system is shown in Figures 9-10. As can be seen from Fig.9, 

1 1 1, , 0x x x →  in finite time and the system stays at the origin thereafter in the presence of the bounded 
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disturbance. The corresponding continuous control law u∈  (Fig. 10) can be interpreted as continuous 
SOSM control. 

0 2 4 6 8 10-10

-5

0

5

10

T i m e ( s e c s )

x1
d(x1)/dt

d2(x1)/dt2

 
FIG.9. Time history of the state variable and its first and second order derivatives in the second order 

system, Case 3 

0 2 4 6 8 10-30

-20

-10

0

10

20

T i m e ( s e c s )

u

 
FIG.10. Time history of the adaptive control in the second order system, Case 3 

0B7. Conclusion 
Adaptive continuous finite convergent-time second order sliding mode control laws have been proposed for 
first and second order dynamic systems. These control algorithms completely eliminate chattering, since they 
do not contain any discontinuous terms, while providing robustness to bounded disturbances with unknown 
bounds.  
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