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Abstract 

Future multiservice networks will be extremely large and complex. In this 
environment, Active Services will be needed to enable the rapid service evolution 
demanded by users. Active services also enable service management to be delegated 
to network users as a large set of independent small-scale management systems, thus 
minimising management costs. However, novel management solutions will be 
required to enable efficient multi-user management of the sites where the active 
services are run. We present an architecture for management of a network offering 
active services, which uses a combination of policies and adaptive algorithms to 
enable multi-user management of network based service components. 
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1. Introduction 
New Internet services and features are currently being introduced more slowly than 
users require, since existing human-intensive processes cannot cope with the rate of 
change.  Active services [1, 2] are based on programs supplied by the users of the 
services.  The programs run on devices owned by network operators or network 
service providers (such as caches, mirrors, conference controllers and firewalls).  The 
aim is to enable users to have access to the services they require (custom services), 
whilst avoiding any requirement for operators and providers to manage large 
numbers of services.  Active services should prevent the current problems being 
exacerbated by increased diversity of demand, but will not in themselves solve the 
current difficulties.  A future network providing active services will be unbounded in 
both scale and function, since an enormous range of services will develop and evolve 
at an unprecedented rate.  In order to fully realise the intended flexibility it will be 
necessary to combine active services with a highly automated management and 
control system.  A ‘global state’ of the system will be impossible to ascertain due to 
its massive scale.  In cases, such as this, conventional methods of control and 



management do not apply and adaptive methods of control must be used [3].  In this 
paper we provide a brief description of our active service network implementation, 
based on an extended version of the application layer active networking (ALAN) 
proposal [1].  This is followed by a description of the management architecture we 
have designed for ALAN.  The first part of the architecture description provides 
details of a flexible, policy driven system for the creation and distribution of 
management information using a combination of policies, messaging and active 
programming.  The second part describes how the degree of automation of the system 
can be increased using an adaptive control mechanism. This uses a novel distributed 
algorithm, partly inspired by observations of bacterial communities [4].  Finally we 
present some initial results that demonstrate the effectiveness of our proposal.  The 
management system we describe is to our knowledge the first to successfully 
combine, policies, active programming and adaptive control, as we believe is 
required for future active service networks. 
 
2. ALAN 
ALAN [1] is based on users supplying java based active code (proxylets) that runs on 
edge systems (dynamic proxy servers - DPS) provided by network operators.  It is 
assumed that many proxylets will be multiuser, and most requests will be to “run” a 
proxylet that already exists in the network.  Messaging in the extended version uses 
HTML and XML and is normally carried over HTTP.  ALAN is primarily an active 
service architecture, and the discussion in this paper refers to the management of 
active programming of intermediate servers.  Figure 1 shows a schematic of a 
possible ALAN node.  The arrows represent the possible information flows.  Objects 
should be thought of as peers (no explicit hierarchy is intended).   
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Figure 1.  Schematic of proposed ALAN node design. 

 
We have designed and partially implemented an active management solution for 
active service networks based on role-driven policies [5,6]. The management system 



supports a conventional management agent interface that can respond to high level 
instructions from system operators.  This interface is also open to use by users (who 
can use it to run programs/active services by adding a policy pointing to the location 
of their program and providing an invocation trigger).  Typically the management 
policies for the user programs are included in an XML metafile associated with the 
code using an XML container, but users can also separately add management policies 
associated with their programs using HTTP post commands.  In addition the agent 
can accept policies from other agents and export policies to other agents. Our system 
provides an extensible monitoring and configuration service that enables users to 
specify their configuration, monitoring and notification requirements to network 
devices using policies.  Each policy specifies a subject (the policy interpreter), a 
target list (the objects to be changed if the policy is activated), an action list (the 
things to be done to each target), a grade of service statement, and the authorisation 
code, id and reply address of the originator.  The policies are named using a universal 
policy name, which is also part of the policy. The names currently take the form 
upn:originator id.subject.target_list.last_modified_time and are likely to be globally 
unique.  The actions take the form of conditionals, some of which will be true on first 
reading and false thereafter.  Others will be true when some trigger event occurs that 
the policy interpreter can detect.  The policies can carry enclosures (e.g. the code 
required to execute an action, or a pointer to it) embedded in the action list, so we 
describe the management system as 'Active'.  The enclosures can obviously be 
instances of active services, i.e. proxylets.  We refer to policies containing active 
services as service execution policies. Normally an execution policy would contain a 
pointer to a proxylet rather than the proxylet itself, but the policy and the proxylet 
will often be part of the same notification, especially if the notification is a request to 
run a service originating from an end user.  A notification is implemented as an XML 
entity that must contain a policy (or a pointer to an appropriate policy if the policy 
was sent before) with at least one action such as ‘store the enclosed data’ or ‘run the 
enclosed service’, and an appropriate data enclosure.  The enclosure may include 
several additional policies targeting different local entities, the code (or pointer) for a 
proxylet, or an event report.  This extends the usual TMN definition of notification to 
include all management information that needs to be disseminated, rather than just 
event reports.  The notifications are multicast to relevant hosts (using an appropriate 
anycast or multicast address), where they are received by a management agent, and 
any enclosed policies are stored in a local policy store if the appropriate key is 
present (i.e. a key associated with a role authorised to supply policies to the target 
device). The management agent has an extensible table of authorisation policies to 
enable this decision.  Roles are allocated using a public key infrastructure.  If a 
notification addressed to the management agent encloses a number of component 
policies, each component policy must specify the subject (normally an object 
oriented program) intended to use it as part of their rule-base.  The local policy store 
has a table of policies for each registered subject and the management agent will 
store the component policies in the appropriate parts of the database. 



Our approach avoids many information handling problems by using a lightweight 
scalable mechanism for notification transfer.  The Information Management System 
[7] consists of a hierarchy of ‘store and forward’ notification stores, with 
notifications being classified by their propagation characteristics and storage 
duration. Two types of these information stores are used, their selection depending on 
the complexity of querying required against storage availability. While simple but 
fast stores offer a load balancing and traffic controlling function, more complex 
stores permit management information analysis.   

The DPS also has an autonomous control system that performs management 
functions delegated to it via policies (scripts and pointers embedded in XML 
containers). This autonomous control system is intended to be adaptive, and is 
integrated with the conventional agent by sharing policy stores.  

 
Not shown in the figure are some low level controls required to enforce sharing of 
resources between users, and minimise unwanted interactions between users.  There 
is a set of kernel level routines [8] that enforce hard scheduling of the system 
resources used by a DPS and the associated virtual machine that supports user 
supplied code.  In addition the DPS requires programs to offer payment tokens before 
they can run.  In principle the tokens should be authenticated by a trusted third party.  
At present these low level management activities are carried out using a conventional 
hierarchical approach.  We hope to address adaptive control of the operating system 
kernel supporting the DPS in future work. 
 

3. Management agent services 
The management agent receives notifications from any entities that send them, and 
interprets the policy named in the notification wrapper.  If authorised by the sending 
entities' role (identified in the wrapper policy) it stores any embedded events in the 
event log, and any embedded code in the proxylet cache.  In addition it places any 
embedded policies in the policy store, informs the subject(s) and associated 
management facilities of the update to the store and generates an event recording the 
change in an event log.  The subject will then activate the policy and either enact it 
immediately or await the trigger condition.  For example the policy may specify the 
management agent must record each usage instance for a particular interface that it 
supports.  The default target is the local event log so the agent must forward the 
usage data to an event logger, and provide the event logger with a policy for handling 
the data (this policy would be embedded in the action list of the first policy).  The 
action to install the embedded policy is immediate, but the action to forward data is 
triggered by use of the interface.  When data is forwarded the event logger will 
generate an event from the base data, adding a timestamp, a sequence number, an 
event class, a time to live, the source object name (management agent) and the 
generating policy name(s).  The agent must also inform any entity nominated in the 
triggered policy that the event has occurred, using a notification service. The address 
list is identified using a name server.  The name server maintains a list of subjects, 



targets, policies, and manager ids registered at the local node.  Each list resolves to 
the address(es) of the entities.  In the case of managers, such as the agent, the address 
could be a multicast address the manager obtained from the information management 
system. 

Figure 2 illustrates the overall design of the Event and Notification services 
supported by the management agent at a single node. 
 
A Notification Provider is any entity (including other management agents) that 
requests the export of information in the form of notifications.  The receiving agent 
(a notification consumer) distributes any policies embedded in notifications to the 
local Event Service Elements or Notification Service Elements as required. There can 
be any number of local Event/Notification Service Elements in the system, some of 
which could be proxylets (or groups of proxylets) that implement the custom 
management services required by VPN customers. Based on the policies supplied, 
the Event Service Elements generate events and pass them to the Notification Service 
Elements, which in turn dispatch them to Notification Consumers identified by the 
notification policies. A Notification Consumer is any entity that accepts notifications. 
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Figure 2. Relationship between Event and Notification Service Elements. 

 
It is possible for an Event/Notification Service Element to receive multiple policies 
whose targets overlap. In this case, for each target the service element needs to 
determine which policy takes precedence over the others. This is achieved by 
considering first the local scope of role of the policy creator and then the local scope 
of the policy targets. A policy whose creator has higher authority (at the object where 
the conflict occurs) will take precedence; for instance, a policy created by a manager 
will usually supersede one created by a user, if the manager has configuration 
authority over the object, but the precedence order can be altered for each object if 
required (using a further policy generated by the root administrator for the object). 
For policies whose creators have equal role scope, the one whose scope of targets is 



larger (i.e. includes the targets specified by the other) will take precedence. In 
circumstances where the scope of targets overlap, but one is not a superset of the 
other, the overlapped set will be the target of both policies. 

3.1 Event Service 
The Event Service is realised via Event Service Elements (ESEs) as shown in figure 
3. Operation of the service is initiated when an authorized entity, such as a user or 
administrator, requests the monitoring and generation of events by sending an event 
policy to one or more ESEs. The policy can contain information such as: 
• The entities and attributes that need to be monitored  
• The processing (e.g. aggregation, averaging, threshold detection, etc.) required 
• Event destination (logged locally or exported in the form of notifications). 
In addition, it is possible to perform actions on a policy already running in an ESE: 
• De-activate: stops all interpretation of a policy. 
• Activate: activates a de-activated policy.  
• Delete: deletes a de-activated/active policy.  
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Figure 3. Components of an Event Service Element (within dotted line). 

 
The role of each component is now described. 
• MO: Managed objects whose attributes are being monitored to detect 

occurrences. 
• Event Generator: polls managed objects periodically to detect the occurrences. 

Alternatively, the objects may send occurrence reports asynchronously to the 
event generator. According to the event policy, once the Event Generator has 
formatted the occurrence into an event, it either stores the events in the Event 
Log, sends them to Event Filter or delivers them directly to the Notification 
Service.  

• Event Filter: receives events and filters them according to the event policy.  



• Policy Database: The active, deactivated and deleted policies are held in the 
policy database. The change of status (e.g. from active to deactivated, etc.) for 
each policy is time stamped.  

• Event Logger: Stores the events sent to it in the event log (a database) 
 
Each event policy contains sub-policies for each component of the Event Service 
Element. It is possible that some of these sub-policies might be null. An event policy 
has the following form:   
if subject then  

load Sub-Policy-1 to Event-Generator 
load Sub-Policy-2 to Event-Filter 

endif 
Here subject identifies the management agent (acting for an ESE) that is expected to 
receive and store the policy. Therefore, the management agent should first check 
whether it is the intended subject before commencing loading the sub-policies. It is 
also possible that the same policy may need to be sent to more than one ESE. In this 
case, the policy sender may use a group name for the subject. The group name will 
represent all the intended policy recipients. The policy can be distributed to the 
recipients via multicast. Upon receiving a policy, the policy receiver should check 
whether it is a member of the group represented by the group name. 
 
Each event will carry the following information: 
• Time-stamp: indicates event creation time. 
• Event Sequence Number: uniquely identifies each event generated within an 

ESE. The sequence numbers generated by different ESEs may overlap.  
• Management Agent Name: identifies the agent that has generated the event. 
• Source Distinguished Name: identifies the attribute/resource about which the 

event is reported. 
• Attribute Type: indicates the type of the attribute about which the event is 

reported. For instance, integer, character, etc. 
• Attribute Value: value of the attribute, interpreted according to the attribute type. 
• Time-to-live: indicates the length of time (after event generation) that the event 

is valid. This is used to mark those events that lose their informational value after 
a period of time. If an event is received after its time-to-live has expired it can be 
deleted without any processing. 

• Policy class/id: identifies the policy resulting in the generation of the event. 
• Requesting Manager: names the entity, which has issued the policy resulting in 

the creation of the event. This is useful, for example, when the event recipient 
itself has not requested the creation of the event.  

• Version Number: identifies which version of ESE generated the event. 
 
A key type of event records payments as its attribute value, and associates payments 
with the policy that resulted in the payment.  Such events are stored in a special 
section of the event log known as the payment log. 



3.2 Notification Service 
The Notification Service is responsible for transmission of management information 
and associated data between management agents. The information could be event 
reports, policy distributions and updates, service code distributions and updates, or 
any combination of these.  The Notification Service is realised via Notification 
Service Elements distributed across the system.  Figure 4 illustrates the components 
of a Notification Service Element. 
 
The role of each component in the diagram is now described. 
• Information Receiver: receives management information from an information 

source (e.g. an ESE or a policy generator), or extracts it from a log if there is an 
appropriate authorization policy. The information is forwarded to the Notification 
Filter component.  

• Notification Filter: filters information received by the information receiver 
according to the criteria specified in a notification policy.  

• Notification Encryptor: encrypts the information according to the notification 
policy. The policy can either refer to the default encryption algorithm provided by 
Encryptor, or alternatively, provide its own algorithm. 

• Notification Wrapper: adds a notification wrapper.  
• Notification Dispatcher: receives notifications from the Notification Wrapper 

and sends them to destinations identified by the notification policy. The 
notifications may also be logged locally. 
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Figure 4. Components of a Notification Service Element (within dotted line). 

 



Each notification policy identifies the Notification Service Element (NSE) that it is 
destined for, and also contains sub-policies for each component of the NSE. Some of 
these sub-policies might be null. A notification policy has the following form: 
if subject then   

load Sub-Policy-1 to Event Receiver  
load Sub-Policy-2 to Filter 
load Sub-Policy-3 to Encryptor 
load Sub-Policy-4 to Dispatcher 

endif 
Here subject identifies the management agent (acting as an NSE) that is expected to 
receive and interpret the policy. The information provided by the sub-policies for the 
NSE’s components are as follows:  
Information Receiver: Identification of which entities are allowed to send 
information to the Information Receiver. The policy may specify that the information 
reciever should extract the information from a named datastore such as a log. 
Notification Filter: Any processing/selection which needs to be performed on 
information. For example, it may be required to report only a single event of a certain 
type during a time-period to some consumers. 
Notification Encryptor: The encryption algorithm to be applied.  
Notification Wrapper: Whether a recipient should acknowledge the receipt of 
notification, and the priority level to be assigned to each notification type. 
Notification Dispatcher : List of notification recipients, and their notification 
attributes, e.g. immediate/deferred, transport protocol choice, time to live  
 
Each notification can be considered to consist of two parts, a data part and a 
notification wrapper part. The notification wrapper is an XML container with the 
following mandatory tags:  
• Management Agent Name: uniquely identifies the agent (and NSE) that has 

generated the notification. 
• Notification Sequence Number: uniquely identifies each notification generated 

by a NSE. 
• Reply Needed Flag: indicates whether the recipient is expected to return an 

acknowledgement. 
• Priority (low, medium, high): indicates the notification’s priority. This can be 

used to categorise the notifications and determine the resources required for their 
processing. For instance, high priority notifications may be placed on high 
priority output queues, and hence, transmitted quicker.  

• Version number: identifies which version of the Notification Service has 
generated the notification. 

• Policy location: The policy may be part of the data enclosure or in the policy 
store of the receiving agent.   

• Policy name: Points to the policy for processing the notification.  Any data 
enclosures in the notification must conform with the implicit expectations of the 
policy’s action list.  Normally the data enclosure is also an XML document  



4. Autonomous controller 
The system described above will rapidly generate large numbers of policies and as it 
grows, the need for user intervention will tend to grow even faster.  It is thus 
imperative to combine the policy based management approach with a significant 
improvement in management automation.  Given the nature of the problem domain 
this can only be done using adaptive control.  Conventional control of dynamic 
systems is based on monitoring state, deciding on the management actions required 
to optimise future state, and enforcing the management actions.  Adaptive control [3] 
is based instead on learning and adaptation.  The idea is to compensate for lack of 
knowledge by performing experiments on the system and storing the results 
(learning).  Commonly the experimental strategy is some form of iterative search, 
since this is known to be an efficient exploration algorithm.  Adaptation is then based 
on selecting some actions that the system has learnt are useful using some selection 
strategy (such as a Bayesian estimator) and implementing the selected actions.  
Unlike in conventional control, it is often not necessary to assume the actions are 
reliably performed by all the target entities.  This style of control has been proposed 
for a range of Internet applications including routing [9], security [10,11], and fault 
ticketing [12].  As far as we are aware the work presented here is the first application 
of distributed adaptive control to service configuration and management. 

 
Holland [13] has shown that Genetic Algorithms (GAs) offer a robust approach to 
evolving effective adaptive control solutions.  More recent work [14] has 
demonstrated the effectiveness of distributed GAs using an unbounded gene pool and 
based on local action (as would be required in a multi-owner internetwork).  In 
addition Ackley and Littman [15], demonstrated that to obtain optimal solutions in an 
environment where significant changes are likely within a generation or two, the 
slow learning in GAs based on mutation and inheritance needs to be supplemented by 
an additional rapid learning mechanism.  Our bacterial algorithm [4] is a distributed 
GA with an additional rapid learning mechanism, and forms the basis of the 
adaptation performed by the autonomous controller in our architecture.  In this paper 
we aim to identify the role of autonomous control in our policy driven management 
system and describe how the autonomous controller is integrated and provide only a 
brief sketch of the bacterial algorithm.   
 
One of the most distinctive features of bacterial genetics is the process of plasmid 
interchange, in which one bacterium accepts copies of genes exported by another.  
This process is in effect a learning mechanism, and enables bacteria to acquire new 
capabilities (such as antibiotic resistance) extremely rapidly.  In our controller we 
treat policies as though they were genes, and policy exchange between entities as 
plasmid interchange. If the controller is programmed (like a bacterium) to 
autonomously export policies that improve its performance, and de-activate policies 
that degrade performance, useful policies will spread and poor policies will cease to 
be executed (until conditions change).   
 



In fact the controller monitors all the execution policies in the policy database that 
name it as subject, and autonomously deactivates those that are generating the least 
revenue (as recorded in the payment log).  The payment events are recorded in the 
log by the event service.  In order for a service to be autonomously controlled its 
execution policy must include an action that loads a polling policy into the event 
generator in addition to the expected actions ‘do procedure’ or ‘run service instance’.  
We assume that control will not be needed for all actions, only those with a high 
resource cost, so we only apply control to execution policies, i.e. policies that contain 
at least one action with the semantic ‘load and run a programme’.  We also assume 
that services (or some other entity specified in the polling policy that can provide 
payment on behalf of the service) will be polled for payment, as this allows the 
charging regime to be localised.  In addition the controller exports to its immediate 
neighbours in the network graph (via the notification service) the policies generating 
the most revenue when the node fitness function (revenue - cost) is high.  Exported 
policies have one or more remote autonomous controllers as subject. A receiving 
management agent simply stores them as de-activated policies in the appropriate part 
of the policy store.  Whenever the autonomous controller deactivates a policy it will 
examine all the deactivated policies and activate a random selection, to compensate.  
It will also inform the originator of the policy that it has been deactivated (if the user 
defined the appropriate grade of service when he wrote the policy).  This allows user 
to increase the level of payment and avoid permanent deactivation if the policy has a 
high priority.  The autonomous controller has two further capabilities: it will shut 
down the DPS if fitness has been low for some time, and copy the DPS to a nearby 
vacant site if fitness has been high for some time.  Policies that are never useful will 
tend to disappear completely, since nodes that possess them will be more likely to 
shut down.  Policies that are useful for some demand but not for others will persist 
but may not always be activated.  Since the active services can only run if a policy 
pointing to them is triggered or interpreted, this effectively means that useful active 
services will spread, and useless ones will disappear, i.e. service deployment, 
configuration and withdrawal have been automated. 
 
The autonomous controller is thus acting as a configuration manager, distributing 
policies/services (remember services or pointers will be embedded in notifications 
containing execution policies) to where they are needed and activating them on 
demand, without needing any knowledge of what the demand is or what the policies 
represent.  It is also acting as a low-level account manager since all the policies it 
controls, that point to services, will not execute unless payment events are generated 
by the service they point to.  This is very convenient since an active services network 
must respond rapidly to the introduction of new services, enabling them to spread to 
wherever there is demand, whilst providing a stable quality of service for existing 
services.  When a user develops a new proxylet, or an improved version of an 
existing proxylet, he should not be required to identify all the locations where it 
should be stored and/or run.  Typically the user lacks both the time and the 
knowledge to make such a decision for himself and in any case cannot predict 
demand from other users of his program.  At the same time if a user introduces a new 



service he should not be able to access his service until he has paid the appropriate 
fee. In our system the user introduces the policy to a default home server (e.g. the site 
of the web cache he is using) and the placement/distribution of the service is then 
fully automated.  Given that the number of DPSs will be large, and the number of 
proxylets unbounded, the correct configuration algorithm will be one, like ours, that 
needs as little human/manual intervention as possible, as the manual optimisation of 
proxylet placement soon becomes untenable.  
 
5. Experiments 
To test our approach, and demonstrate the automated deployment, distribution and 
withdrawal of a service using only the autonomous controller, an event service and a 
notification service, we simulated a community of 400 DPSs, each of which was 
controlled by an adaptive management agent as described in the architecture above.  
The network supported a range of 8 active services and the traffic distribution was 
random in both space and time.  An execution policy enabling a new service (service 
h) was then introduced to one node (using a notification), along with some simulated, 
network wide demand for the service provided by the corresponding proxylet.  
Initially the users did not offer payment for this new service.  It can be seen (Figure 
5) that for a brief period some requests are handled (hence the success rate is briefly 
>0) but the network soon fails to execute any of the requests for the new service.  
This is because any proxylets for this service are not earning their DPS any revenue 
(no payment events are generated), and the execution policy is therefore being 
replaced by more lucrative policies.  This illustrates how the autonomous controls 
deal with the introduction of malicious code intended to defraud the operator.  Once 
the users start to pay for the new service the request dropping rate decreases and the 
proxylet autonomously spreads around the network using the notification service.  
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Figure 5.  Service provisioning consequences of introducing a new service. 
 
Figure 6 shows the results of the same experiment expressed in terms of handling 
latency. When the service gene for service h is introduced, a few requests are handled 
without affecting the latency of existing services, and the new service quickly dies 



out as no users are offering payment. Subsequently no latency is given for the new 
service as no nodes are processing it (all the requests are dropped). Later, when users 
start paying for the service there is a period of high latency as the plasmid distributes 
around the network but soon the latency of the new service is similar to that for the 
other services.  
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Figure 6.  Latency Consequences of introducing a new service. 

 
In figure 7 we show the average request drop rate across the network of bacteria and 
compare the performance with a number of alternative methods of distributing the 
active services.  The alternatives are: 
a) Random static placement of services at network nodes 
b) Caching of requested services with a random replacement algorithm (Cache I) 
c) Caching using a least recently used replacement algorithm (Cache II) 
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Figure 7. Request drop rates for different distribution mechanisms. 

The tests were performed at loads of 10% (Low), 40% (Medium) and 80% (High).  
At low loads all the algorithms offer similar performance levels.  As might be 
expected, at medium and high load our algorithm is a significant improvement over 



random placement.  More surprisingly it also significantly outperforms caching.  We 
believe this is due to the small size of the caches.  Each cache holds up to eight 
services (4 live and 4 paged out - the same as the bacteria).  This is intended to 
represent the number of proxylets that can be held in the RAM of a low spec PC, 
such as might be used in a commodity based cluster at a network server farm.   
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Figure 8. Average latency of several approaches to distributing active services. 

Figure 8 shows the average end to end latency experienced by service requests in our 
modelled network (expressed in milliseconds), and compares it with the latency 
experienced using the alternative active service distribution mechanisms listed above.  
As before the adaptive bacterial approach is as good as the other alternatives at low 
loads, and is clearly an improvement over the best alternative (standard LRU based 
caching - CacheII) at medium and high loads.  The simple experiments we have 
shown illustrate that our system can automate key aspects of performance, 
configuration, account and security management of the services in an active service 
network.  It is also clear that the network will adaptively work around faults until 
they either die, or are manually repaired.  
 
6. Discussion 
There has been an extensive study of policy based management undertaken within 
the IETF [www.ietf.org].  Unfortunately the policy schema used in this work is not 
sufficiently expressive to meet the needs of an environment with multiple managers, 
such as an active network, since it does not allow policies to be linked to the role of 
the originator.  We have instead based our notion of policy on the work of Sloman 
et.al. [5].  Our policy schema differs from theirs in a number of ways, in particular; 

a) we do not distinguish between authorization and obligation since many of 
our policies can do both depending on the context in which they are applied 

b) we express constraints as part of the action statements and replace the 



constraint field with a grade of service field.  This is to allow managers to 
customize their priorities for policy handling, and ensure key policies are 
acted even when the system is overloaded 

c) we express policies in XML – a purely pragmatic decision. 
 
The notification and event services were initially implemented in CORBA [16], but 
we found performance was poor and coding was hard.  Since the ethos of active 
services is to make creation of new services easy we moved to XML on the basis that 
coding is straightforward and lightweight.  We have found [17] performance in wide 
area contexts is also rather better since the messaging is asynchronous and there is 
therefore a low probability of blocking whilst awaiting delayed replies.  Of course 
CORBA now provides good support for asynchronous messaging too (it did not at 
the time of the original work) but there is no benefit to be gained from a further 
rewrite in CORBA. 
 
The autonomous controller has not yet been implemented, since we are still tuning 
the algorithm and attempting to identify how much we can usefully manage using it.  
We plan a full implementation in the near future. 
 
To the best of our knowledge, our integration of the bacterial control algorithm [4] 
with conventional management services is entirely novel.  This integration enables 
the retention of well developed and understood techniques for those aspects of active 
service management that require control by the operator, whilst enabling highly 
automated control to be implemented on behalf of end users (who would not wish to 
control the system in detail).  Crucially the application demonstrated enables low cost 
deployment and withdrawal of a large range of new services, as envisaged in an 
active network.  We do not feel this is possible using conventional hierarchical 
manual control.  In addition we feel the autonomous control of policies is an 
extremely promising solution to the explosion in the number of managed entities that 
policy based management entails 
 
7. Conclusions 
Active networks will require extensive use of adaptive control techniques, 
particularly where user supplied code has to be managed.  The most obvious control 
point is the DPS in the ALAN approach. An autonomous adaptive control 
architecture for dynamic proxy servers in an active network has been proposed, based 
on combining a novel genetic algorithm inspired by observation of real bacterial 
communities, with policy based management techniques and active programming of 
management systems.  Simulations have shown that the proposed system can handle 
key aspects of fault, configuration, account, performance and security management 
successfully in a large scale, dynamic environment.   
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