University of

"1l Kent Academic Repository

Simon, Axel and King, Andy (2002) Analyzing String Buffers in C. In: Kirchner,
Héléne and Ringeissen, Christophe, eds. International Conference on Algebraic
Methodology and Software Technology. Lecture Notes in Computer Science,
2422 . Springer, pp. 365-379. ISBN 3-540-44144-1.

Downloaded from
https://kar.kent.ac.uk/13750/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-45719-4 25

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Also see http://lwww.springer.de/comp/Incs/index.html

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13750/
https://doi.org/10.1007/3-540-45719-4_25
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Analyzing String Buffers in C

Axel Simon and Andy King

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK

Abstract. A buffer overrun occurs in a C program when input is read
into a buffer whose length exceeds that of the buffer. Overruns often lead
to crashes and are a widespread form of security vulnerability. This paper
describes an analysis for detecting overruns before deployment which is
conservative in the sense that it locates every possible buffer overrun.
The paper details the subtle relationship between overrun analysis and
pointer analysis and explains how buffers can be modeled with a linear
number of variables. As far as we know, the paper gives the first formal
account of how this software and security problem can be tackled with
abstract interpretation, setting it on a firm, mathematical basis.

1 Introduction

Although C programs are ubiquitous, occurring in many security-critical, safety-
critical and enterprise-critical applications, they are particularly prone to inex-
plicable crashes. Many crashes can be traced to buffer overruns [14]. A buffer
overrun occurs when input is read into a buffer and the length of the input ex-
ceeds the length of the buffer. Buffer overruns typically arise from unbounded
string copies using sprintf(), strcpy() and strcat(), as well as loops that manip-
ulate strings without an explicit length check in the loop invariant [15].

Unchecked input which overflows a buffer can overwrite portions of the stack
frame. Hackers have exploited this effect to redirect the instruction pointer in
the stack frame to malicious code within the string and thereby gain partial or
total control of a host [17]. Buffer overruns are a particularly widespread class of
security vulnerability [5] and the National Security Agency predicts that overrun
attacks will continue to be a problem for at least the next decade [20]. Finding
security faults, such as string handling that may overrun, has been likened to the
problem of finding a needle in a hay-stack [11]. This paper describes an abstract
interpretation scheme that does not attempt to find the needle, but rather aims
to prune the hay-stack down so that it can be searched manually.

1.1 Design space for overrun analysis

One (surprising) tradeoff that is applied in program analysis is that of sacrificing
soundness for tractability [24]. In the context of detecting overruns, one poten-
tial tradeoff in the design-space is that of achieving simplicity by, say ignoring
aliasing, at the cost of possibly missing real errors and possibly reporting spu-
rious errors. Whether this is acceptable depends on whether the analysis aims

to detect most errors [12,13,23] (debugging) or detect every error [8] (verifi-
cation). One point in this design-space is represented by LCLint. LCLint is an
annotation-assisted static checking tool founded on the philosophy that it is fine
to “accept a solution that is both unsound and incomplete” [12]. This enables, for
example, loops to be analyzed straightforwardly using heuristics. Its annotation
mechanism achieves both compositionality and scalability. However, as [12,13]
point out, it seems optimistic to believe that a programmer will add annotations
to their programs to detect overrun vulnerabilities. Another point in the design
space is the constraint based analysis of [23] which can detect potential over-
runs in unannotated (legacy) C code. This analysis ignores pointer arithmetic
and is therefore unsound, but it is fast enough to reason about medium-sized
applications without assistance. For speed and simplicity, the analysis is flow
insensitive which means that it cannot reason about (non-idempotent) library
functions such as strcat() which are a frequent source of overruns [15].

The work of Dor, Rodeh and Sagiv [8] is unique in that it attempts to formu-
late an analysis that is conservative in the sense that it never misses a potential
overrun. This is a particularly laudable goal in the context of security where
there is a history of elite hackers levering inconspicuous and innocuous features
into major security holes. Our work builds on the foundation of Dor et al [8] and
is a systematic examination of the abstractions and analyses necessary to reason
about overruns in a truly conservatively way.

1.2 Conservative overrun analysis

The buffer abstraction of Dor et al [8] is essentially that of Wagner [23] but spec-
ified as a program transformation. Each buffer is abstracted by its size, alloc,
and the position of the null character, len. This two-variable model, however,
is not rich enough to accurately track the null position. Suppose, for example,
if two pointers p and ¢ point to different positions within the same buffer, then
altering the len attribute of p (by writing a null character to the buffer) might
alter the len attribute of g. Dor et al [8] therefore introduce special p_overlaps_q
variables to quantify the pointer offset and thereby model string length inter-
action. This tactic potentially increases the number of variables quadratically
which is unfortunate since relational numeric abstractions such as polyhedra [4]
become less tractable as the number of variables increase. This is an efficiency
issue. More subtle is the correctness issue that relates to pointers that definitely
or possibly point to the same buffer. This is illustrated in the following code:

if (rand()) g=s; else g=t;/* p[10] q[5,10] s[5] t[10] */
strcat(q,"to Réunion"); /* p[10,20] q[15,20] s[5,15] t[10,20]*/

1 char *p, *q, s[32], t[32];

2 strcpy(s,"Boat "); /* s[5] */

3 strcpy(t,"Aero"); /* s[5] t[4] =/

4 p = t+4; /* p[4] s[5] t[4] =/
5 strcat(p, "plane "); /* p[10] s[5] t[10] */
6

7

The comments indicate the possible null positions at the various lines. The
strcat in line 7 either updates the s buffer or the t buffer (but not both)
depending on the random value. The transformation described by Dor et al [8]
does not have a mechanism for dealing with possible changes to a buffer — only
definite changes are tracked. In particular the transformation does not correctly
reflect that the null is either at position 5 or 15 in the s buffer. Our remedy to
this is to infer that q possibly shares with s and t so that both 5 and 15 are
possible null positions for s and symmetrically both 10 and 20 are potential null
positions for t. Thus possible sharing information is used as an aid to correctness.
Conversely, definite sharing information is used to increase precision. It enables
a write to a buffer through one pointer to destructively update the null positions
for those pointers that definitely share the same buffer. For example, the strcat
at line 5 changes the null position of the t buffer from 4 to 10. The information
that t and p definitely share is needed to infer that the null position in t is
no longer 4. Moreover, possible sharing is also required to deduce that no other
buffers are affected. To summarize, our work makes the following contributions:

— It gives the first formal account of buffer overrun analysis. A buffer abstrac-
tion map is proposed that specifies how to model a buffer. This abstraction
is then used to formalize the correctness of the analysis. This means that a
programmer can be confident that every possible overrun is detected.

— It shows that any string buffer overrun analysis that is both accurate and
correct needs to reason about pointer aliasing. Inter-procedural points-to
analysis [1,21] is required to ascertain which pointers possibly point to the
same buffer. The paper also shows how to improve precision by employing a
definite sharing analysis [9].

— It explains how buffers can be modeled with three variables per pointer and
shows how the need for p_overlaps_q is finessed by sharing analysis, thereby
avoiding quadratic blowup. The paper thus describes a practical foundation
for analyzing string buffers.

Section 2 introduces the language String C to formalize operations on string
buffers. Section 3 explains how polyhedra and sharing domains can be used to
describe buffer properties, and then Section 4 explains how these properties can
be tracked by analysis. Sections 5 and 6 and present the related and future work
and Section 7 concludes. Proofs are omitted because of lack of space.

2 The String C language and its semantics

The analysis is formulated in terms of a C-like mini language called String C that
expresses the essential operations on buffers.
2.1 Abstract syntax

Let (n €) N denote the set of non-negative integers and (I €) Lab denote a set
of labels which mark program points. Let (z,y €) X and (f €) F denote the

[skip] p I (skip, o)—0

[num] p F (z = n,0)—0.[p(z) — n] ifneN
ifnl,...,nm eN
fstr] pF{x="n1...n,",01)— Ala,a+m+1]Ndom(o:1) =0
o2.[p(z) — (a,a,a +m + 1)] Ao2=0o1]a+i— niga]l,t
[a+m — 0]

[var] p = (z = y,0)—=0.[p(z) — 0.p(y)]

[add] p F {(z = y1 + y2,0)—0a.[p(z) — v] ifo.p(y;)) =viANviBuv=v
[sub] p F (z = y1 — y2,0)—0a.[p(z) — v] ifo.p(y;)) =viANviBuoa=v

if o1.p(y:) = v;
A v1 Bvg = (ap, a, ae)
N oo = (71.[p(£13) — o1 (a)]

{02 if ap < a < ae
{02 ifay <a<a if o1.p(y;) =viANor.p(z) €N

[arri] p = (@ =y [yo], 00) = err otherwise

A vy Bog = (aw, a,ac)
N oo = O'1.[l1 = le(m)]
if o.p(y) =v
A [b,b+v]Ndom(c) =0
A oz =[b+ i+ rand()]i=o
A o3 = [o.p(z) = (b,b,b+ v)]

[arr2] p = (nlyz] = @, 01) err otherwise

[malloc] p (z = malloc(y), o1)—01.02.03

Fig. 1. Concrete semantics for simple statements. The function rand() returns random
values and models malloc’s behavior to allocate uninitialized memory

(finite) sets of variables and function names occurring in a program. F' includes
the symbol main to indicate the program entry point and each function f € F
has an associated variable f,. € X to return values from functions in Pascal-style.

Cu=f(z1,...,20)L;C | &
Lu=[skip]' | [z =n]' [[z="n1...n,,"]" | [z = y]' | [= y1 + y]'
[z =91 —v2l' | [z = ni[y2]]' | [y1lye] = 2]' | [= malloc(y)]'
|[if = then L) else Lo]' | [while = £] | [£1; Ls]" | [return]’ | [z = f(y1,- - - ¥n)]!

The language £(C) defines the set of valid String C programs. Given a fixed
program, the map ¢ : F — (U;enX') x £(L) retrieves the formal arguments
(z1,...,2,) and body L for a function f. String C does not distinguish between
integers and unsigned chars because reasoning about buffers of different sized
objects increases the number of cases in the abstract semantics and obscures the
underlying ideas. String C can be enriched following the ideas detailed in [1, 18].

2.2 Instrumented operational semantics

The semantics of String C instruments each pointer with details of its underlying
buffer. Specifically, the set of pointer values is defined as Pnt = {{(ap,a,a.) €
N® | ap < a.}. The interpretation of a triple (as,a,a.) is that the a; and a.
record the first location within the buffer and the first location past the end of
the buffer. The address a records the current position of the pointer within the

[ifi] p F (if z then Ly else Ly, 0)— (L1, o) if o.p(x)
[if2] p F (if z then Ly else Ly, 0)—(La, o) if o.p(x)
[while1] p F (while L, o) —(L; while z L, o) if o.p(z)
[whiles] p F (whilex L,0)— o if o.p(z)
[seql] p}_ <L1a01>_><L2a02>
P = (Ll; L3,0’1>—)<L2; L3,0’2>
P = <L1,0'1>—)02
[seq,] p b (L1; L2,01)— (L2, 02)
p2 = (L1, 01)— (L2, 02)
p1 F {env ps in L1,01)—(env p2 in Lo, 01)
P2 = <L,0’1>—) 02
p1 F {env p2 in L,01)—02
[ret] p F (return; L,0)— o

[envy]

[enva]

if ¢(f) = (z1,.-.,2n, L)
fcall] ! oz =f(y1,..-,yn),01)— A p2 = [zi = aliz
(env p1.p2.[fr = p(x)] in L,02.01) A dom(o1) Nrng(p2) =0
Aoz = [ai = o1.p1(yi) |71

Fig. 2. Concrete semantics for control statements

buffer. For a valid buffer access ap < a < a, must hold. The set of values is then
defined as Val = N U Pnt whereas the set of environment and store maps are
defined Fnv = X — N and Str = N — Val respectively. The following (partial)
maps formalize address arithmetic.

Definition 1. The functions B, : Val®> — Val are defined as follows:

i B 5 = i+ i B8 j = i-j

i Bﬂ<bbaba be>: <bb7b+iabe> i B<bbaba be>: 1
<abaa7a8>Ba .7 :<ab7a+jaae> <ab7aaa’€>5 .7 :<ab7a_j7ae>
<ab7aaae>aa<bbab7 be>: uE <abva7a€>5<bbvb7 b€>: a—"b

Figures 1 and 2 detail the operational semantics for simple statements and the
control statements. In Figure 2, dom(f) and rng(f) denote the domain and
range of a mapping f and . denotes function composition defined such that
g-f(z) = g(f(z)). The env statement introduced in Figure 2 models scoping.

3 Abstract domains

3.1 Linear inequality (polyhedral) domain

Let Y denote the variables {yi,...,yn}, let Liny denote the set of (possibly
rearranged) linear equalities Y .., m;y; = m and (possibly rearranged) non-
strict inequalities Y. ; m;y; < m and >, m;y; > m where m,m; € Z. Let
Eqgny denote all finite subsets of Liny. Note that although each set E € Eqny
is finite, Eqny is not finite. Define [e] = {(z1,...,z,) € R* | X, mjz; ©® m}

where ® € {<,=,>}. Then define [E] to be the polyhedron [E] = N{[e] |
e € E} if E € Eqny. Eqny is ordered by entailment, that is, Fy E FEy iff
[E1] C [E2]. Equivalence on Egny is defined Fy = Es iff Ey | E3 and Ey |
E;. Let Polyy, = Eqny/ =. Polyy inherits entailment = from Egny. In fact
(Polyy, =,M,) is a lattice (rather that a complete lattice) with [E]=M[Ez]= =
[E1 U Es)= and [E1]= U [E2]= = [E]= where [E] = cl(conv([E1] U [E2])) and
cl(S) and conv(S) denote the closure and convex hull of a set S € R™ respectively
[19]. Note that in general conv([E1] U[E2]) is not closed and therefore cannot
be described by a system of non-strict linear inequalities as is illustrated below.

Ezample 1. Let Y ={z,y}, Ey ={z =0,y =1} and E2 = {0 < z,z —y = 0}
so that [E1] = {(0,1)} and [E2] = {(z,y) | 0 < x Az = y}. These polyhedra
are illustrated in the left-hand graph. Then conv([E1]U[E-2]) includes the point
(0, 1) but not the ray {(r,y) |0 <z Az + 1 =y} and hence is not closed. This
convex space is depicted in the right-hand graph.

Yy Yy
3 (k2] 3
2 2
[E1]1 1
0 0
01 2 3 x 01 2 3 T

It is useful to augment M and L with three operations: projection, minimization
and maximization. The minimization and maximization operations are respec-
tively defined min((my, ..., m,),[E]l=z) = min{} -, mz; | (z1,...,2,) € [E]}
and max((m1,...,my), [E]=) is defined analogously. The vector (m1,...,m,) is
written as)., m;y; for brevity. Note that min(}"; , m;y;, [E]=) € RU{—o0}
whereas max() ., m;y;, [E]=) € RU{+oc0}. Projection is defined 3,,([E]=) =
[E']= where [E'] = {(z1, ..., Zi—1, %, Tit1,...,Zn) | ® € RA(21,...,2,) € [E]}.
For brevity, let 3y, . 4, ([Elz) = 3y, (.. Jyi, ([E]z)...). The variable set for
[E]= is defined var([E]=z) = N{var(E') | E = E'} where var(E’) is the set of vari-
ables (syntactically) occurring in E’. Let false = [{0 = 1}|= so that [false] = 0.

Projection can be computed using the Fourier algorithm [3], min and max
using Simplex [3], M is straightforward to compute whereas LI can either be
calculated using the point, ray and line representation [4] or by using constraint
relaxation techniques [7]. Let s = }_.* | m;y;. Then entailment can be tested by:
P = {s < m} iff max(s, P) < m (even though {s < m} is strict); P = {s < m}
iff max(s, P) <m; P |={s =m} iff P = {s <m} and P |= {s > m}. Moreover,
PlE{e,...,ex}iff P|={e1} ... P |= {ex}. Henceforth, whenever unambiguous,
[E]= will be written as E for brevity. Finally note that Polyy does not satisfy
the ascending chain condition, that is, chains P, | P> | ... exist for which
U;~oP; does not exist.

Ezample 2. Let P; be an equilateral triangle, P, a hexagon, Ps; a dodecagon and
so forth such that the vertices of P; are contained within those of P;y;. Then
P, = P, E Ps...1is an ascending chain which converges onto a circle which

itself is not a polyhedron. Thus widening is required to enforce termination in
polyhedral fix-point calculations [4].

3.2 Polyhedral buffer domain

Let X,, X, and X, denote sets of variables such that z € X iff =, € X,,
z, € X, and xs € X and suppose that X, X,,, X, and X, are pair-wise disjoint.
Let PBx = Polyx x,ux,ux,- The lattice (PBx,|=,1,U) is used to describe
numeric buffer properties salient to overrun analysis. In particular, suppose an
environment p maps the variable z € X to the address p(z) = b and a store
o maps b to a pointer triple o(b) = (ap,a,a.). Then the variable z, € X,
describes the number of locations between a; and a. (the size of the underlying
buffer); z, € X, represents the offset of a relative to a; (the position of z within
the buffer); and z, € X,, captures the first location between a; and a. whose
contents is zero (the position of the null when the buffer is interpreted as a
string). If P € PBx describes the pair (p,c), then P captures the numeric
relationships between x;, x, and x,. This idea is formalized below.

Definition 2. The polyhedral concretization map v5? : PBx — p(Env x Str)
is defined v£2 (P) = {{p,0) | a5 ({p, o)) M X ((p, o)) = P} where

0% ((p o)) ={z = 0:p(z) |2 € X N op(x) € N}
Tom @by | e XA o.p(z) = {ap,a,ac) A

PR)= E e =0 in{a} U fn € fap,a. 1] o(n) = 0})

If zero does not occur within the buffer then {n € N|a, < n < a. Ao(n) =
0} = 0 so the {a.} element is used to ensure the map is well-defined. It also
records the definite absence of a zero (and thereby enables certain definite errors
to be found). An abstraction map af” : p(Env x Str) — PBx cannot be
synthesized from %P since PBx is not complete. In particular, U{a5((p, o)) N
a8 ((p, o)) [{p,o) € M} is not well defined for arbitrary M € p(Env x Str). To
put it another way, M does not necessarily have a best polyhedral abstraction.

Tracking the first zero (rather than, say, every zero) keeps the number of
variables in the model low which aids simplicity and computational efficiency.
However, there are unusual combinations of string operations where just tracing
the first null can lead to a loss of precision and hence false warnings.

Ezample 3. Consider the following (synthetic) C program that zeros the buffer
located by s, then and writes the buffer character by character.

char *s = malloc(10), t[4];
memset (s,0,10);

s[0]1="0"; s[1]="k’;
strcpy(t, s);

The call to memset will set s, = 0, i.e. the first null position is 0. After the
first write the analysis can only deduce s, > 1 since the first null (if it exists)
must occur to the right of the >0°. Likewise after the second write the analysis
infers s,, > 2. The write to the 4 character buffer t is safe if s,, < 3. However
Sn > 2 does not imply s, < 3 and therefore the call to strcpy generates a
spurious warning. Inserting s[2]=’a’; s[3]=’y’; in front of the call to strcpy
will yield a definite error since s,, > 4 implies that s,, < 3 cannot be satisfied.
On the other hand, writing the same four characters to the same positions in
reverse order only leads to a warning: s,, = 0 holds valid until s[0] is written
which then updates the null position to s, > 1.

3.3 Possible and definite buffer sharing domains

Let PSx = p(X?) and DSx = p(X?). The complete lattices (PSx,C,N,U)
and (DSx,2,U,N) are used to express (pair-wise) possible buffer sharing and
definite buffer sharing respectively.

Definition 3. The abstraction maps af® : p(Env x Str) — PSx and of% :
p(Env x Str) — DSx and concretization maps 7§% : PSx — p(Env x Str)
and 729 : DSx — p(Env x Str) are defined as follows:

af® (M) = H{ax'((p,0)) | (p,0) € M} aR5(M) ={aX'((p,0)) | (p,0) € M}
757 (8) ={{p,0) | a¥({p,0)) €S} 4R¥(D) ={{p,0) | D S a¥'({p,0))}

where o ((p, 7)) ={(z,y) € X? | 0(p(2)) = (@b, @z, ac) Ao (p(y)) = (av, ay, ac)}-

The intuition is that each D € DS x captures the certain presence of sharing in
that if (z,y) € D then (z,y) € a3 ((p,o)) for all (o, p) € vR%(D). Conversely,
each S € PSx describes the certain lack of sharing, that is, if (z,y) € S then
(z,y) & a3t ((p,0)) for all (o, p) € vL5(S). This is the negative interpretation
of S. The positive interpretation of S is that S describes the possible present
of sharing, that is, if (z,y) € S then there exists (o,p) € v{%(S) such that
(,9) € agt((p,).

Proposition 1. of® and 7§ are monotonic; af%(v§{%(S)) C S for all

S € PSx;and M C ~{5(af¥(M)) for all M € p(Env x Str).

Since p(Env x Str) and PSx are complete lattices, it follows that the quadruple
(p(Env x Str),v§5, PSx,ak®) is a Galois connection between p(Env x Str)
and PSx. Likewise (p(Env x Str),v2%, DSx,aR®) is also a Galois connection.

The overrun analysis presented in this paper pre-supposes possible and def-
inite buffer sharing information. The inter-procedural flow-insensitive points-to
analysis of [21] can be adapted to derive the former whereas intra-procedural
analysis is likely to be sufficient for the latter. The sharing abstractions S! and
D! are introduced to abstract away from a particular sharing analysis.

Definition 4. S' and D' are defined so that (p,02) € v&5(S%) N AR5 (DY) if
pF {x = main(),o1) —* (L', 03) where p = [+ 0], 01 = [0 — n] and n € N.

3.4 Domain interaction

A polyhedral abstraction can be used to refine a possible sharing abstraction
whereas a definite sharing abstraction can improve a polyhedral abstraction.

Definition 5. The operators gop : PBx — PBx and pp: PSx — PSx are
defined QD(P) =Pn {mn =Yn,Ts = Ys | <.’13,y> € D} and

_ PEz,<ynVPEy,<zpV
Qp(S)—S\{<w7y>ES‘P':ms<ys \/P':ys<$s

Proposition 2. op(P) = P, v¥5(D) N 7R (P) = v25(D) N 7E2 (on(P)),
0p(S) C 8 and 55 (S) N 752 (P) = 75 (00(5)) N7EE (P).

4 Abstract semantics for String C

This section presents an analysis for detecting string buffer overruns; it is not
intended to verify that a program conforms to the ANSI C standard — it is simply
designed to alert the programmer to potential overruns.

4.1 Assignment
The starting point for the construction is a polyhedral operator for assignment.

Definition 6. Let © € {<,=,>}, s = }7_ mjy; and t ¢ var(P M {z @ s}).
Then destructive update, >, and additive update, >, are respectively defined:

Przes=3(F(PN{tes})N{z=1t}) P>zes=PU(P>z0Os)

If does not occur in s, that is « ¢ var({¢t ® s}), then 3, (P {t ® s}) =
3,(P)MN{t® s} and hence P>z ® s = 3,(P) M {x ® s}. This version of update
requires few operations, is more efficient, and also suggests that P > = ® s can
be used to simulate destructive update. In fact this is precisely the role of the
> operator. The > operator, additive update, is used to model a destructive
update that may or may not have been applied. Safety follows because in the
former case P>z ® s = P>z ® s whereas in the latter case P|E P>z ® s.

Ezample 4. Let P = {x = z,x <y + 1} and consider P > {x = « + 1}. Observe
that t € {z,y, 2} = var(PM{z = z+1}). Since I,({z = z,z < y+1,t = x+1}) =
{t=z4+1Lt<y+2}and Z({t=z+Lt<y+2,z=t}))={z=2+1,z <
y + 2}) it follows that P> {z =z + 1} = {z = 2+ 1,2 < y + 2}). Moreover,
Pr{z=z+1}=PU{z=24+1lz<y+2}={z<z<z+1,z<y+2}

It is not unusual for a concrete operation to modify several attributes of a poly-
hedra together and thus it is useful to introduce a concept of parallel update. In
particular, let 7 € {1,...,k} and consider e¢; = {z; ®; s;} where ®; € {<,=,>}
and s; = m; + E;Zlmi’jyi’j. Define P > {(e1,...,ex) = (P>e€1)...>ex) and
likewise P> {ey,...,ex) = ((P>e1)...>eg). The following proposition explains
how Pr>(ey,...,ex) and P> (ey,...,ex) are independent of the evaluation order.

[skip'] (skip, P)—'P
[num'] (z =n, P)—='3s, 00,0, (P) > {z = n} ifneN
[str'] (x ="n1...nn", P)='3o(P) > {20 =0,z = m + 1,z, = m} ifn; €N
inzo,zs (P) > {z =y} ify € sc(P)
[var'] (x =y, P)=' { 3o(P) > {@n = yn, To = Yo, Ts = ys} else if y € bf(P)
Jo,2n20,0s (P) otherwise
(x=y+ 2 P)='
Jop 20,26 (P) > {z =y + 2} ify,z € sc(P)
[add'] Ao (P) > {Zn = 2n, %o =Y + 20, s = 25} else if y € sc(P) A z € bf(P)
A2(P) > {Zn = Yn,To = Yo + 2,25 = ys} else if y € bf(P) A z € sc(P)
Fe 2 20,2 (P) otherwise
(x=y— =z P>_>I
Fop o0, (P) > {z =y — 2} if y, z € sc(P)
[sub’] A2(P) > {Zn = Yn,To = Yo — 2,2s = Ys} else if y € bf(P) A z € sc(P)
Jonwo,0s(P) > {T = yo — 20} else if y, 2 € bf(P)
e n 20w (P) otherwise
err if P = {yo+ 2 <0}
err else if P = {yo +2z > ys}
, ,] warn else if P 0<yo+2<ys
farrt] (@ =y P> 03 (p) o o = 0} else if P P'i }yo el }
Elxn,:zo,zS (P) > {I Z 1} else if P ': {yo +z< yn}
Je 2,202, (P) otherwise
err if PE={yo+2<0}
! l)) err else if P Yo + 2> ys
[arrs] ([y[] = 2], P)— warn else if P L:é }0 <Yo+z i Ys}
P" > {v; = yn | v; € V} otherwise
[malloc’] {(z = malloc(y), P)—'3:(P) > {zn > 0,2, = 0,2, = y}

Fig. 3. Abstract semantics for simple statements where W = {w, | (w,y) € D'},
P'=opi(P),V = {vn | (v,y) € op/(S")}\W and P" = gpi (update, , . (Iw\ (y,} (P))-

Proposition 3. Let 7:{1,...,k}—{1,..., k} be a permutation, ¢; = {z;©;s;},
8; = m; + E;L;'lmivjyiyj and z; ¢ var(e;) for all ¢ # j. Then P > (e1,...,ex) =
Pr <e7r(1)a' . '7€7r(k)> and P> <617' "aek> =PDk <e7r(1)a' . '7€7r(k)>‘

For brevity, define P>{e1,...,ex} = P> (e1,...,ex) if z; & var(e;) for all ¢ # j.
Proposition 3 ensures that Pt>{ey, ..., e} is well-defined whereas Proposition 4

explains how > can be used to approximate > when a polyhedra can be updated
with different combinations of equations (and possibly not at all).

Proposition 4. P> FE' = P> FE forall E' C E.

4.2 Non-array statements

To construct abstract versions of the non-array statements, the sc and bf maps
are introduced to detect whether an object is a scalar or a pointer. The following

proposition states an invariant of any correct analysis: a polyhedra cannot si-
multaneously record scalar and buffer attributes for a given variable. The lemma
then asserts correctness for the abstract semantics of the non-array statements.

Definition 7. The maps sc : PBx — p(X) and bf : PBx — p(X) are defined
sc(P) = X Nvar(P) and bf(P) = {z € X | {zpn, To,xs} Nvar(P) # 0}.

Proposition 5. If sc(P) N bf(P) # () then v{7(P) = 0.

Lemma 1. Suppose L = [skip]! | ... | [t = y — 2]'. Then if p F (L, 01) — 09,
(p,o1) € K2 (P) and (L, P;)—'P, it follows that (p, 02) € Y57 (P).

4.3 Array statements

To reason about array statements that can error, the store is extended to EStr =
Str U {err} where err denotes an error state. Likewise, the polyhedral domain is
extended to EPBx = PBx U{L,err,warn}. (EPBx, =<, A,Y) is a lattice where
the ordering < is defined by L < P and P < warn for all P € EPBx whereas
for all P, € PBx, P, < P, iff P, = P,. Moreover, A and Y are given by:

P NPyif Pi,P, € PBx P UP, if P,,P, € PBx

err else if Py = P, = err err else if P = P, = err
Py A P, =< P else if P, = warn P Y P, = Py elseif P, = |

P, else if P; = warn Py elseif P, =

1 otherwise warn otherwise

The following (extended) concretization map explains how the abstract objects
err and warn represent definite errors and possible errors in the concrete setting.

Definition 8. The concretization map v¥'? : EPBx — p(Env x EStr) is
defined: v2PB (L) = 0, v&FB (err) = Env x {err} vEPB (warn) = Env x EStr
and v¥PB(P) = 4£B(P) if P € PBx.

The abstract semantics for array read generates an error (warning) if the read
is definitely (possibly) outside the buffer. Array write is more subtle since a
write action through one pointer can effect the null position attribute of all the
pointers directed at the same buffer. The following operator details the way in
which the null attribute is effected by the write.

Definition 9. The operator update, , , : PBx — PBx is defined:

update, , .(P) = PA P
Py if P|:{y0+z>yn} (yn—yo+z)
Pyelseif PE{z>0,y,+2 < yn} > (Yn = Yo + 2)
Pgelseif P={x=0,y,+2 < yn} > (Yn > Yo +2+1)
Poelse if P = {yo+ 2z < yn} > (Yn > Yn)
Ppelseif PE{z >0} Aw, =n =wy PF PC’ M{yn < min{n,,w,}}
Ppelseif P {z =0} ANw, =n;, = w; Pg=PP (yn > yo + 2)
Pg else if P = {z > 0} wl [min(y, + 2z, P)]
Pyelseif PE{z =0} Am<w<n,<w, = |max(y, + 2, P) |
Pp else if P = {z =0} = [min(y,, P)]
Pg otherwise Ny = [max(yn, P)]

3 L 2, 2 2% 2 2%
Ry Ry 0, 'Y, v, Y, v,
O\/(07(/§ 4 74 4 4
eT A ?oa h ?o?(?20 h }2& ZO@
2, 2 3, 3, Ve, Yo Ny,

e COlCT wa | |) o | W | i] |
Pro-o(8 (A 0 s 9| 8 a [
Pre>ol [ACA |C®L_®|C®[% L&

otherwise || QLA | SIL_SIL_<©L_<|C_¢&

Fig. 4. Graphical representation of the update function.

The operator reduces to a case analysis of the write position relative to the null
position. The various cases are depicted in Figure 4 in which the striped bars

MEMM (hollow bars |::|) represent a range that includes the write (first
null) position. In case A the null position is not altered. In B, the null position
is refined to coincide with the write position. In C, the write possibly resets the
null, hence the additive update. In D, the first element in the range of possible
null positions is overwritten with non-zero. This may overwrite the actual null,
hence the range is extended without bound at the end and shortened by one at
the beginning. In F, the additive update P> (y, > y,) extends the null position
to the right to capture a possibly overwritten null. In F', case B is refined so
that the null exceeds neither upper bound. Finally G provides a conservative
approximation when the update value is not known.

The abstract semantics for array write first inspects D' — the definite sharing
abstraction for program point [— to collect together those program variables W
that definitely share with y. The polyhedra P is refined using D' to obtain P’.
V is constructed from gp:(S') — the possible sharing abstraction for program
point [refined by P’ — to obtain those variables which possibly share with y, but
do not definitely share with y. Information on null positions of those variables
of W (except y) is then removed from P’. The update is applied to revise the
null attribute for y, and then this change is reflected to other variables of W.
Additive update is used to propagate the update to the variables in V since they
may or may not have been affected by the write. This step-wise construction
enables correctness to be established, and given correct sharing abstractions D*
and S! for point [(see Section 3.3), the following correctness result is obtained.

Theorem 1. Suppose L = [skip] | ... | [z = malloc(y)]. Then if p - (L,01) —
o2, (p,01) € Y{P(P) and (L, P;)—'P; it follows that (p,02) € YEFB(P).

Note that if P, = err, then a definite overrun is detected (if [is ever reached);
if P, = warn, then a possible overrun may occur at l; whereas if P € PBx then
no overrun can occur at [.

Ezample 5. The consecutive updates of Example 3 correspond to case D in the
table. The reverse writing of the first three characters corresponds to fourth
column and second row and thus to case E. The last write is again a D update.

[if}] if z then Ly else Lo, P)—'(L1, PT {1 < z})

(
[if5] (if z then Ly else Lo, P)—' (L1, P {z < —1})
[if3] (if z then Ly else Lo, P)—'(L2, P11 {z = 0})
[whilej] (while z L, P)—'(L; while x L, P11 {1 < z})
[whileb] (while z L, P)—'(L; while x L, P {z < —1})
(

[whilej] while z L P)—) Pn{z =0}
(L1, P1)='(Ls, P2)

!
[seqs] (L1; Lz, P\)—'(L2; L3, P2)

[seq'] <L17P1>—)’P2
2 (L1; La, P1)—'(L2, P2)
[ret’] (return; L, P)—'P
(0(21) = y1; -5 0(2n) = yn; O(L), P1)—=""Ps
[call’] (= f(y1,-.-yn), Pr)="(z = 0(fr), P2)

ife(f) = (21,...,2n,L) Avar(8(c(f))) Nvar(P1) =0

Fig.5. Abstract semantics for control statements where 6 denotes a renaming (bi-
jective) substitution.

4.4 Control statements

Figure 5 details the abstract semantics for the control statements. Note how
the if and while branches restrict the polyhedron, possibly collapsing it to false.
The main safety result, Theorem 1, can be lifted to full String C by induction on
the number of steps from main in a sequence of abstract reductions. Of course,
an analysis will have to address finiteness issues, by applying widening [4], and
efficiency issues, by combining function call and exit with projection so as to
minimize the number of variables considered in the analysis of each function.

5 Related work

Apart from those static analyses already discussed [8,12, 13, 23], most of pro-
posals for detecting overruns are either based on lexical analysis [22], testing
[11] or stack protection mechanisms [2,10]. ITS4 [22] is a lexical analysis tool
that searches for security problems using a database of potentially dangerous
constructs. Lexical analysis is fast and calls to problematic library functions can
be flagged. Such a limited approach, however, will fail to find problematic string
buffer manipulation that is hand coded.

FIST [11] finds possible overruns by automatically perturbing the program
states, for example, appending or truncating strings, or by mangling the stack.
The developer or analyst selects buffers to check, and then FIST injects a state
perturbation to generate a possible overrun. Manual analysis is required to de-
termine whether the overrun buffer can actually occur.

StackGuard protects from stack smashing by aborting the program if the
return address is over-written [10]. The StackGuard compiler, however, does
not bar overruns and any overrun has the potential of side-effecting a variable

and thereby altering access and privileges. Baratloo, Singh and Tsai [2] also
describe a mechanism for checking the return address before the jump. Any
run-time approach, however, will always incur an overhead (of 40% in the case
of StackGuard [10]). Moreover, as pointed out in [12], these run-time systems
effectively just turn a buffer overflow attack into a denial-of-service attack.

Finally, the AST ToolKit [6] has been used to detect errors in string manip-
ulation, though details on this work are sparse [8].

6 Future work

One direction for future work will be to investigate the extent to which poly-
hedral sub-domains [16] impact on the precision of buffer overrun analysis; a
programmer might be willing to trade extra warning messages for an analysis
that scales smoothly to large applications. For brevity, the analysis omits how
to recover from an error or warning state. Future work will thus investigate how
to safely reshape the polyhedron to satisfy the requirements of an operation so
as to avoid an unhelpful error cascade. Future work will also address how to
extend the analysis to Unicode buffers and other problematic buffer operations.
For example, pointer difference ¢ = s — t is well defined iff s and ¢ point to the
same buffer. Moreover, the analysis can be enriched to flag an error if s and ¢
do not possibly share and raise a warning if s and ¢ do not definitely share.

7 Conclusions

This paper has formalized the buffer overrun problem by following the method-
ology of abstract interpretation. First, an instrumented semantics for a C subset
was presented that captures those properties relevant to overrun detection. Sec-
ond, polyhedral and buffer sharing domains were proposed and then connected
with the concrete semantics via concretization maps. Third, the instrumented
semantics was abstracted to synthesize an analysis for detecting both definite
and possible overruns. Fourth, correctness results were reported. The paper pro-
vides an excellent practical foundation for overrun analysis since it explains how
buffer sharing and buffer overrun interact and how sharing analysis can be used
to trim down the number of variables in a polyhedral buffer abstraction.

Acknowledgements We thank Florence Benoy, John Gallagher, Les Hatton
and Jacob Howe for interesting discussions.

References

1. L. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, Datalogisk Institut Kobenhavns Universitet, 1994.

2. A. Baratloo, N. Singh, and T. Tsai. Transparent Run-Time Defense Against Stack-
Smashing Attacks. In Ninth USENIX Security Symposium, 2000.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

24.

V. Chandru and M.R. Rao. Linear programming. In Algorithms and Theory of
Computation Handbook. CRC Press, 1999.

. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Constraints among

Variables of a Program. In Proceedings of Principles of Programming Languages,
pages 84-97. ACM Press, 1978.

. C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows: Attacks

and Defenses for the Vulnerability of the Decade. In Information Survivability
Conference and Ezposition, volume II, pages 154-163. IEEE Press, 1998.

. R. Crew. ASTLOG: A Language for Examining Abstract Syntax Trees. In Con-

ference on Domain-Specific Languages, pages 229-242. USENIX Association, 1997.

. B. De Backer and H. Beringer. A CLP language handling disjunctions of linear

constraints. In International Conference on Logic Programming, pages 550-563.
MIT Press, 1993.

. N. Dor, M. Rodeh, and M. Sagiv. Cleanness Checking of String Manipulations in

C Programs via Integer Analysis. In Static Analysis Symposium, volume 2126 of
LNCS, pages 194-212. Springer-Verlag, 2001.

. M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural analy-

sis in the presence of function pointers. In Programming Language Design and
Implementation, pages 242—256, June 1994.

C. Cowan et al. Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In USENIX Security Symposium, pages 63—78, 1998.

A. Ghosh, T. O’Connor, and G. McGraw. An Automated Approach for Identifying
Potential Vulnerabilities in Software. In IEEE Symposium on Security and Privacy,
pages 104-114. IEEE Computer Society, 1998.

D. Larochelle and D. Evans. Statically Detecting likely Buffer Overflow Vulnera-
bilities. In Tenth USENIX Security Symposium. USENIX Association, 2001.

D. Larochelle and D. Evans. Improving Security Using Extensible Lightweight
Static Analysis. IEEE Software, 19(1):42-51, 2002.

B. Miller, L. Fredrikson, and B. So. An Empirical Study of the Reliability of UNIX
Utilities. Communications of the ACM, 33(12):32-44, 1990.

T. C. Miller and T. de Raadt. strlcpy and strlcat — Consistent, Safe, String Copy
and Concatenation. In USENIX Annual Technical Conference, 1999.

A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices.
In Programs as Data Objects, volume 2053 of LNCS, pages 155—-172, 2001.

A. One. Smashing the Stack for Fun and Profit. Phrack Magazine, 7(49).

N. Papaspyrou. A Formal Semantics for the C Programming Language. PhD
thesis, National Technical University of Athens, 1998.

R. T. Rockafellar. Conver Analysis. Princeton University Press, 1970.

B. Snow. Panel Discussion on the Future of Security. In IFEE Symposium on
Security and Privacy. IEEE Computer Society, 1999.

B. Steensgaard. Points-to Analysis in Almost Linear Time. In Principles of Pro-
gramming Languages, pages 32—41. ACM Press, 1996.

J. Viega, J. T. Bloch, T. Kohno, and G. McGraw. ITS4: A Static Vulnumerability
Scanner for C and C++ Code. In Sizteenth Annual Computer Security Applications
Conference, 2000.

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First Step Towards
Detection of Buffer Overrun Vulnerabilities. In Network and Distributed System
Security Symposium. Internet Society, 2000.

D. Weise. Static Analysis of Mega-Programs. In Static Analysis Symposium,
volume 1694 of LNCS, pages 300-302. Springer-Verlag, 1999.

