Rob Hierons and Thierry Jéron (Eds.)

Formal Approaches to
Testing of Software

FATES'02
A Satellite Workshop of CONCUR’02

Brno, Czech Republic, August 24th 2002
Proceedings






Preface

Testing is an important technique for validating and checking the correctness of soft-
ware. However, the production and application of effective and efficient tests is typi-
cally extremely difficult, expensive, laborious, error-prone and time consuming. For-
mal methods are a way of specifying and verifying software systems by applying tech-
niques from mathematics and logic. This enables the developer to analyze system
models and reason about them with mathematical precision and rigour. Thus both
formal methods and software testing can be used to improve software quality.
Traditionally, formal methods and testing have been seen as rival approaches. How-
ever, in recent years a new consensus has developed. Under this consensus, formal
methods and testing are seen as complementary. In particular, it has been shown that
the presence of a formal specification can assist the test process in a number of ways.
The specification may act as an oracle or as the basis for systematic, and possibly au-
tomatic, test synthesis. In conjunction with test hypotheses or a fault model, formal
specifications have also been used to allow stronger statements, about test effective-
ness, to be made. It is possible that the contribution to testing will be one of the main
benefits of using formal methods.

The aim of the workshopATES — Formal Approaches to Testing of Softwareis to

be a forum for researchers, developers and testers to present ideas about and discuss
the use of formal methods in software testing. Topics of interest are formal test theory,
test tools and applications of testing based on formal methods, including algorithmic
generation of tests from formal specifications, test result analysis, test selection and
coverage computation based on formal models, and all of this based on different formal
methods, and applied in different application areas.

This volume contains the papers presented mteE'02 which was held in Brno
(Czech Republic) on August 24, 2002, as an affiliated workshopoofcUR02. Out

of 17 submitted papers the programme committee selected 9 regular papers and 1 posi-
tion paper for presentation at the workshop. Together with the keynote presentation by
Elaine Weyuker, from AT& T Labs, USA, they form the contents of these proceedings.
The papers present different approaches to using formal methods in software test-
ing. The main theme is the generation of an efficient and effective set of test cases
from a formal description. Different models and formalisms are used as the starting
point, such as (probabilistic) finite state machines, X-machines, transition systems,



categories, B, Z, Statecharts, UML, and different methodologies and algorithms are
discussed for the test derivation process, ranging from formalization of the manual
testing process to the (re)use of techniques from model checking.

The papers give insight in what has been achieved in the area of software testing with
formal methods. Besides, they give clear indications of what has to be done before we
can expect widespread use of formal techniques in software testing. The prospects for
using formal methods to improve the quality and reduce the cost of software testing are
good, but still more effort is needed, both in developing new theories and in making
the existing methods and theories applicable, e.g., by providing tool support.

We would like to thank the programme committee and the additional reviewers for
their support in selecting and composing the workshop programme, and we thank the
authors for their contributions without which, of course, these proceedings would not
exist.

Last, but not least, we thank Antonin Kucera for arranging all local matters of orga-
nizing the workshop, and the Masaryk University of Brno for giving the opportunity
to organize KTES'02 as a satellite of GNCUR02, INRIA for supporting the printing

and distribution of these proceedings, and the EPSRC Formal Methods and Testing
network.

Brunel and Rennes, August 2002 )
Rob Hierons

Thierry Jéron



Programme committee

Ed Brinksma (University of Twente, The Netherlands)
Rocco De Nicola (Universita degli Studi di Firenze, Italy)
Marie-Claude Gaudel (Université de Paris-Sud, France)

Jens Grabowski (Universitat Lubeck, Germany)

Dick Hamlet (Portland State University, United Kingdom)
Robert Hierons (Brunel University, United Kingdom), co-chair
Thierry Jéron (INRIA Rennes, France), co-chair

David Lee (Bell Labs, Beijing, China)

Brian Nielsen (Aalborg University, Denmark)

Jeff Offutt (George Mason University, USA)

Doron Peled (University of Texas at Austin, USA)
Alexandre Petrenko (CRIM, Canada)

Jan Tretmans (University of Nijmegen, The Netherlands)
Antti Valmari (Tampere University of Technology, Finland)
Carsten Weise (Ericsson Eurolab Deutschland GmbH, Germany)
Martin Woodward (Liverpool University, United Kingdom)
Referees

Boroday Serge, (CRIM, Canada)

Ebner Michael, (Universitat zu Lubeck, Germany)

Jard Claude, (IRISA/ICNRS Rennes, France)

Le Traon Yves, (IRISA/University Rennes |, France)

Marchand Herve, (IRISA/INRIA Rennes, France)

Local organization

Antonin Kucera,
Masaryk University,
Brno,

Czech Republic






Contents

10

11

Thinking Formally About Testing Without a Formal Specification . . 1
Elaine Weyuker

Generating Formal Specifications from Test Information . . . . . .. 11
Thomas J. Ostrand

Testing from statecharts using the Wp method . . . . . . ... .. .. 19
Kirill Bogdanov, Mike Holcombe

Testing Nondeterministic (stream) X-machines . .. ... . 35
Florentin Ipate, Marian Gheorghe, Mike Holcombe, Tudor Balanescu

Complete Behavioural Testing (two extensions to state-machine testing) 51
Mike Stannett

Formal Basis for Testing with Joint Action Specifications. . . . . . . 65
Timo Aaltonen, Joni Helin

Queued Testing of Transition Systems with Inputs and Outputs . . . . 79
Alex Petrenko, Nina Yevtushenko

Optimization Problems in Testing Probabilistic Finite-State Machines 95
Fan Zhang, To-yat Cheung

BZ-TT: A Tool-Set for Test Generation from Z and B using Constraint
Logic Programming . . . . . . . . . . . . . ... 105
F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux,
N. Vacelet, M. Utting

Using a Virtual Reality Environment to Generate Test Specifications . 121
Stefan Bisanz, Aliki Tsiolakis

Towards a formalization of viewpointstesting . . . . . . . ... ... 137
Marius Bujorianu , Manuela Bujorianu, Savi Maharaj

Vil






Thinking Formally About Testing Without a Formal
Specification

Elaine J. Weyuker
AT&T Labs - Research
180 Park Avenue
Florham Park, NJ 07932
weyuker@research.att.com

Abstract

Practitioners test software every day and have to make decisions about what tech-
niques to use to select test data. This paper discusses what it means for one test data
selection criterion to be more effective than another. Several proposed comparison
relations are presented and discussed. Deficiencies are highlighted, and a discussion
of how these relations evolved is presented. The usefulness of empirical studies is
also considered.

1 Introduction

I recently addressed a meeting of roughly 400 software testers. All of them were bright,
experienced, knowledgeable, educated. Most were from the telecommunications world -
land of the state machine. I asked how many of them routinely saw a formal specification.
I included such things as various types of state machines, Statecharts, UML, LOTOS,
Estelle, SDL, and Z specifications, or anything else they themselves classified as a formal
specification. Instead of seeing a sea of hands in the air, [ was instead greeted by a chorus
of laughter. Surely I had told a great joke. I then thought that perhaps I was asking too
much when I used the term “routinely” and so I modified the question to: “How many
have ever seen a formal specification?” One lone person raised their hand - he used to
work in the switching area and saw it in that arena. This was indeed an eye-opening
experience.

It is very common in the telecommunications world to have very high reliability re-
quirements (people often speak of “five nines” or .99999 reliability, although exactly what
that means is frequently unclear) and very high availability requirements (so-called 24-7
or always available). We spend a great deal of time and money and effort testing the
software. We have many testing stages: unit, feature, integration, system, load, stress,
performance, end-to-end, operations readiness to name just some of the levels, and there
is a research literature that tells us how good it would be and what to do with a formal
specification, and yet the real world that spends the time and money doing the testing
doesn’t look at that literature by and large, and often isn’t even aware of it. So there is
a disconnect and it is not clear when or whether this gap will be breached.

Therefore, this paper is not about what people traditionally think about when they
hear the term “formal methods” associated with software testing: namely testing using
a formal specification. Instead it will be about other things that might be formally
assessed without a formal specification, and that desperately need to be assessed relative
to software test case selection strategies. In particular, I will focus on how to compare
the effectiveness of testing strategies to help us determine which is the best approach for
a given program, or for all programs in general. I will describe various false attempts



at defining comparison relations, and describe where we are now. I will discuss why the
proposed relations were not satisfactory. I hope this will challenge some of you to think
about this important issue in new ways, and lead to a renewed interest in the problem,
and some exciting new insights.

2 Comparison Relations

Probably the first suggestion for how to compare software testing strategies used the sub-
sumption relation. Intuitively, subsumption is a very natural way to compare strategies.
It really seems like it captures the essence of what we mean when we say that one testing
strategy is more effective or more comprehensive than another.

Formally, criterion C; subsumes criterion Cy if for every program P, every test suite
that satisfies (7 also satisfies (5.

In [11] and [12], Rapps and Weyuker introduced a new family of dataflow-based test
case selection strategies, and several controlflow-based and dataflow-based criteria were
compared using the subsumption relation. We firmly believed that this relation indicated
that the subsumed relations were less good than the subsuming relations.

However, it was later recognized that subsumption had definite deficiencies when used
to compare testing strategies. The first deficiency was recognized and pointed out by
Rapps and Weyuker in [11], namely that many testing criteria are not comparable using
subsumption, in the sense that neither subsumes the other.

An even more serious limitation associated with subsumption is that it can be mis-
leading. It is easy to come up with examples of testing strategies such that C; subsumes
(5 but there are test suites that satisfy (5, the supposed weaker strategy, that expose
faults, while test suites that satisfy 7, the more demanding strategy, do not expose any
faults. The problem arises because there are typically many different test suites that
satisfy a given strategy and generally there is little or no guidance as to which one to
choose. Therefore, you may be lucky when selecting the test suite for C5 and unlucky
when selecting the C test suite, or it may even be that the “natural” test suite to select
for C's does a better job of uncovering faults than does the “natural” test suite that one
would select to satisfy C.

With this problem in mind, Gourlay [7] introduced the power relation. A criterion is
said to detect a failure if every test set that satisfies that criterion contains an input that
causes P to fail, and there is at least one test set satisfying the criterion for P. Then,
criterion (] is at least as powerful as criterion Cj if for every program P, if Cy detects a
failure in P, then so does (.

Although the intent of this relation was to address subsumption’s deficiencies, the
power relation still has weaknesses. In particular, the incomparability problem remains
since many criteria are still incomparable under the power relation. In addition, the
power relation does not entirely eliminate the situation in which the “weaker” relation
exposes faults while the “stronger” one does not. One problem is that the power relation
is based on the definition of “detecting” a failure which is a very demanding one. If
is at least as powerful as (5, there may still be failures that will more often be exposed
by C5 than 'y even though neither criterion detects them in the formal sense.

It may also happen that P contains faults but neither C; nor C5 detects any failures
because of the stringent requirements of the notion of detection. As discussed relative
to the subsumption relation, most test selection criteria do not require the selection of



specific test cases, so a criterion will be satisfied by many different test sets, some of
which will include inputs that fail, while others will not include any inputs that fail.
Since this is the case, it is possible that the test set selected for the weaker criterion will
expose more faults than the one selected for the stronger one.

Perhaps the most important deficiency is that there is no requirement that the faults
uncovered by Cy and C5 be the same. Therefore, ' might detect nothing but trivial
faults while C5 detects catastrophic faults.

Once again, an attempt was made to address the weaknesses associated with both
the subsumption and power relations. In Reference [15], Weyuker, Weiss, and Hamlet
introduced the BETTER relation. They first defined the notion of a test case being
required by a criterion C' to test a program P, if every test set that satisfies C' must
include that test case. Then, criterion C7 is BETTFER than criterion Cj if for every
program P, if any failure-causing input required by Cj, is also required by C;. They
showed that:

(Cy subsumes Cy) = (Cy BETTER C3) = (Ch at least as power ful as C5)

They also proved that the converse did not hold. It therefore follows that these three
relations are all distinct relations.

Again the newly-defined relation that was designed to solve the previously-defined
relations’ problems, had its own problems. As before, the incomparability problem had
not been solved, and very few criteria actually require the selection of specific test cases.
This means that the set of failure-causing inputs required by a criterion will typically be
empty, even though P contains faults. It is also very difficult to show that one criterion
is BETTER than another directly. Often the easiest or only way to show this is to show
that the subsumption relation holds, and hence by the above theorem, that the BETTER
and power relations hold too.

So we see that although several formal ways of comparing software testing strategies
have been proposed and used to do the comparison, reflection indicates that they don’t
really tell us what we’d like them to tell us about the relative effectiveness of different
strategies.

There is another way of noticing that the above-cited types of comparison relations fall
short of ideal, and this helped us focus our attention in a different direction. Consider
the following simple example. Let P be a program with domain D = {0,1,2,3,4}. Assume
there is only one failure-causing input in the domain, namely 0.

Assume that C7 requires the selection of one test case from the subdomain {0,1,2}
and one test case from the subdomain {3,4}, while C requires the selection of one test
case from the subdomain {0,1,2} and one test case from the subdomain {0,3,4}. Then
six test sets satisfy criterion Cy: {0,3}, {0,4}, {1,3}, {1,4}, {2,3}, and {2,4}, of which
two, ({0,3} and {0,4}), or one-third expose the fault. Nine test sets satisfy criterion Cs:
{0,0}, {0,3}, {0,4}, {1,0}, {1,3}, {1,4}, {2,0}, {2,3}, and {2,4}, of which five expose the
fault, or more than one-half of the possible test sets. Therefore, C'y subsumes Cy but the
probability that a test set selected using C5 will expose a fault is higher than that for a
test set selected by C';. The reason that this happened was that 0, the only input that
failed, occurred in both of C3’s subdomains, but was in only one of C'i’s subdomains.
Therefore 0 could be selected as the representative of either or both of C5’s subdomains,
but as the representative of only one of C’s subdomains.



3 Using Probabilistic Measures

The observation described at the end of the previous section led Frankl and Weyuker to
consider defining relations that would address problems of this nature. Several researchers
had previously used a probabilistic measure M to assess the ability of a testing approach
to uncover faults and determine whether one criterion was more effective at finding faults
than another, including [4, 8, 14]. In Reference [5], Frankl and Weyuker introduced the
covers and universally covers relations and used M as a way of assessing whether testing
strategies related by these relations were guaranteed to be more effective at detecting
faults. M was formally defined for program P whose subdomains are {Dq, Dy, ..., D},
specification S and test selection criterion C' as follows: Denoting the size of subdomain
D; by d;, and letting m; be the number of failure-causing inputs in D;, then

m;
M(C,P,S)=1- i:l—[l(l - E)'
Assuming the independent selection of one test case from each subdomain using a uniform
distribution, M is the probability that a test suite will expose at least one fault.

Frankl and Weyuker formally defined the covers relation as follows: Let € and C5 be
criteria, and let SD¢ (P, S) denote the nonempty multiset of subdomains from which test
cases are selected to satisfy criterion C' for program P and specification S. 'y covers Cy
for (P,S) if for every subdomain D € 8Dco(P,S) there is a collection {Dy,..., D,} of
subdomains belonging to SD¢y (P, S) such that D1U...UD, = D. C} universally covers
(4 if for every program, specification pair (P, S), Cy covers C; for (P, 95).

They showed in [5], that a number of well-known criteria are related by the covers rela-
tion, but that even if C'; covers C; for (P, S), it is possible for M (Cy, P, S) < M(Cy, P, 5).
They showed that this sort of inversion happens when a subdomain of the covering cri-
terion is used to cover more than one subdomain of the covered criterion.

This led Frankl and Weyuker to define a new relation, the properly covers relation, in
Reference [5]. To solve the problem observed for the covers relation, this new relation
requires that this can’t happen. Formally we have:

Let SDci (P, S) ={Di,..., DL}, and 8Dy (P, S) = {D3,..., D2}. Cy properly covers
Cy for (P,S) if there is a multi-set

M=ADi,,...,Di,-. Dy s Dy}
such that M is a sub-multi-set of SD¢4 (P, S) and

2 1 1
D? = Di,u..UDl,

D} = D, ,U...UD},

Informally this says that if C' properly covers C5 then each of C5’s subdomains can be
“covered” by €' subdomains (expressed as a union of some Cy subdomains). In addition,
it must be done in such a way that none of C'y’s subdomains occurs more often in the
covering than it does in SD¢q, thereby preventing the sort of misleading view of the
criteria’s effectiveness that we saw in the earlier example.

C'y universally properly covers Cy if for every program P and specification S, C'y prop-
erly covers Cy for (P, 5).



It was proved in [5] that if C properly covers C5 for program P and specification S,
then ‘2\4(6'1,]37 S) Z M(CQ,P, S)

Thus we can say in a concrete way that criterion 'y is more effective at finding faults
than criterion C, for a specific program P. Generalizing this theorem by using the
universally properly covers relation they showed that there were many well-known test
selection criteria that were related by the universally properly covers relation, and hence
these criteria could in a sense be ranked.

In a follow-up paper [6], Frankl and Weyuker next investigated whether there were
other appropriate ways of assessing the fault-detecting ability of a criterion, and therefore
considered F, the ezpected number of failures detected. Again, letting SD¢ (P, S) =
{D1,...D,}, and assuming independent random selection of one test case from each
subdomain, using a uniform distribution, £ was defined to be:

n mZ

E(C,P,S):Zd—_'.

=1

Frankl and Weyuker proved that it is also true that if C'y properly covers C; for program
P and specification S, then F(Cy, P,S) > F(Cy, P, S).

They also provided examples that showed that in the case in which C; subsumes Cj,
but does not properly cover Cy, this is not necessarily the case.

Thus, by using the universally properly covers relation, Frankl and Weyuker were able
to rank testing criteria using both the probability of detecting at least one fault and the
expected number of faults exposed, and did so for roughly a dozen well-known testing
criteria.

4 Limitations of Formal Analysis

Although the universally properly covers relation is the most natural and promising way
of assessing the effectiveness of testing strategies proposed to date, there are still a number
of limitations associated with any such analysis that should be recognized.

One important problem that was not considered above is that all of these relations were
applied to compare idealized versions of testing strategies which are virtually never used
in practice. In a sense, that is the chronic problem associated with formal approaches
to software processes. | began this talk by discussing my experience with testers saying
that they never saw formal specifications in practice, and therefore, no matter how good
a formal approach to testing might appear to be, it was not of interest to them if it was
predicated on a formal specification which did not match their reality.

Similar types of issues are associated with all of the comparison relations that I dis-
cussed above. For example, one commonly considered testing criterion is branch testing,
also known as decision coverage. Informally, branch testing requires that sufficient test
cases be included so that every branch or outcome of a decision statement in the program
under test be exercised at least once. No mention is made of how those test cases are to
be selected. More formally, in order to prove the sorts of theorems that we’ve discussed
above, it was necessary to make the process more precise. For this reason, the formal
definition of branch testing assumes that the domain is first divided into subdomains,
each containing exactly those members of the input domain that cause a given branch in
the program to be exercised. Then it is assumed that one element of each subdomain is
randomly selected using a uniform distribution.



It is difficult to imagine that this process would ever be followed in practice. Pragmat-
ically, branch testing tends to be used more often as a way of assessing the thoroughness
of testing, rather than as a basis for selecting test cases. A tester typically selects test
cases based on intuition and experience until they believe they have done a comprehen-
sive job. They might then use a branch coverage tool that determines the percentage of
the branches of the program that have been exercised by the test suite they’ve assembled
so far. If the percentage is high, the tester might then see which branches had not been
covered and try to determine an input that would cause each of the uncovered branches
to be exercised. If the percentage was low, then the tester would likely continue to use
ad hoc methods of selecting test cases and then reassess the branch coverage achieved,
iterating until the percentage of branches covered exceeded a prescribed level or the tester
believed that they had done enough.

If branch testing is used in that manner, then we know nothing whatsoever about
how its effectiveness compares to other testing strategies, because we did not assess that
version of branch testing, we assessed an entirely different testing method. The same
is true for all of the testing strategies compared - they were not the real strategies that
testers use to select test cases, they were idealized versions.

Another limitation of the work described above is that there is no provision for human
variability. Each tester comes to the table with their own set of experiences, expertises,
and acquired intuition, and so two different testers using exactly the same approach to
test a given software system will generally select different sets of test cases. This is not
because of the variability due to random selection - it is because of individualized human
behavior and the latitude provided in the selection of elements of a subdomain. How can
we codify this behavior so that we can say meaningful things about the effectiveness of
using different testing methods?

A different kind of issue is related to the appropriateness of relying on the measures
M and F as a basis for feeling confident that one testing strategy does a better job than
another. Neither of these measures differentiates at all between high consequence faults
and trivial faults. Therefore, if criterion C'y, the criterion that properly covers criterion
(5, exposes trivial faults while (5 exposes catastrophic faults, then the fact that the
program was tested using 'y does not really indicate that it is more dependable than it
would have been if it had been tested using C'5. This is true in spite of the fact that more
faults were uncovered using C7, and there was a higher likelihood of exposing faults, since
the ones you were exposing were of little consequence.

And what about the cost of doing the testing itself? Perhaps C does do a somewhat
better job of testing than C5, and exposes more faults of equivalent severity than C5
does. But what if (] costs orders of magnitude more to use than C37 Is the added
benefit worth the added cost?

Perhaps the biggest problem is that when we are done testing the software using a
given criterion, even if it really is the best of the ones being considered, what do we know
about the dependability of the tested software? That problem has not been addressed
at all by this work. Are there concrete ways that we can determine that information?

5 Comparing Criteria Empirically

So far we have discussed formal analytic ways of comparing software testing criteria. It
is also possible to compare these criteria empirically, and, in fact, there are two distinct



sorts of empirical studies that could be performed. The first involves doing a formal
scientific experiment, while the second involves a far less formal case study.

Formal experiments generally involve applying the technique under consideration to a
substantial population of software systems and observing various characteristics of this
application, such as cost, effectiveness, or ease of use. Formal experiments have the
advantage that you can extrapolate from the results observed during the experiment to
other systems, because the subjects of the experiment were supposedly representative of
the larger population which is your universe. But true scientific experiments are rarely if
ever done in this area since it would require that there be a clear understanding of what is
meant by a “typical” program containing “typical” faults, and we generally do not have
that sort of information, even in limited domains such as medical or telecommunications.

In contrast to this, a case study examines the application of a testing strategy or char-
acteristics of testing strategies for one or a few specific systems. Although it is difficult
to do them well, and expensive to design and perform them, it is nonetheless generally
much more feasible to perform carefully crafted case studies than formal experiments.
Unfortunately, however, in most cases it is either difficult or impossible to extrapolate
from results observed for the specific systems that served as subjects of the case study to
systems in general since the subjects were typically not selected because they were espe-
cially representative, but rather because there were project personnel who were willing to
participate in the study, or management support, or because the project itself initiated
the study to find out information about their project.

When doing a case study for a large industrial software system, it is often necessary
to model the system which involves designing a simplified version of the system which is
close enough to reality that the observations made about the model are valid for the full
system, yet simple enough to be tractable. Our experience has been that most software
testers find modeling very difficult to do. In addition, when the case study is completed
for the simplified system, you don’t necessarily have an accurate picture of how the real
system will behave.

In addition to these limitations of case studies, there are general problems that are
similar to those associated with the formal analytic comparison relations. For example,
case studies may also involve the use of idealized ways of using the criterion. In addition
there may not be any provision to account for individualized behavior. If the case study
is just intended to assess the effectiveness of different test case selection strategies, then
cost may not have been assessed during the case study and no cost-benefit study may
have been performed. Similarly, since the fault severity is generally not an integral part
of the test case selection criteria, it would be unusual if a case study designed to compare
the effectiveness of different strategies would even consider this dimension, and for similar
reasons, there is no reason to expect that an assessment of the overall state of the software
will have been made at the end of the case study.

But case studies do have some real positive characteristics too. They can provide a
“proof of concept” which may be sufficient to encourage practitioners to try the technique
being investigated, in the field. It may be considered too big a risk to try a new testing
technique or other software development strategy on a large production software project
because of time and reliability constraints. However, if it can be shown in a case study
that other similar projects have used the technique and gotten better results than the
currently-used process, that might be sufficient to convince management of the usefulness
of the new approach. Additionally, case studies can provide an estimate of the difficulty
of using the test selection criterion. Often it may seem to project personnel that the



learning curve will be too steep to make the adoption of the new technique worthwhile.
By showing how other projects have adopted the use of the criterion, and including a
description of the experience of testers, it might be possible to convince a project to try
using it too.

Another issue that may serve as a roadblock to the adoption of a new test case selection
criterion is the perceived or actual cost of using it. Estimates of this cost can be essential
in convincing management of the practicality or feasibility of using the strategy. Thus,
one test case selection strategy may find 10% more faults than another, but if it costs one
hundred times more, or it is feared that it will cost much more to use, then it might be
dismissed out of hand. A comprehensive case study that includes an accurate assessment
of its cost to use on one or more real projects may be sufficient to win acceptance for the
strategy.

One other useful potential payoff of doing a large industrial case study to determine
the effectiveness of a software test selection criterion relates to modeling. It is often
difficult to determine an effective granularity for modeling the software. When it is nec-
essary to model a system, particularly when the system is large, the task can sometimes
seem overwhelming to practitioners. In these situations, a case study that includes a
description of the level of granularity at which the modeling was done can be extremely
helpful.

Our personal experience has been that large industrial case studies are difficult and
expensive but very valuable for the reasons mentioned above, and therefore well worth the
time and effort. We have performed a number of case studies including those described
in [1, 2, 3, 9, 10, 13] and found them to be extremely helpful for the reasons discussed
above.

6 Conclusions

We have studied a variety of proposed ways of comparing software testing criteria, and
found that many of the formal comparison relations had profound problems associated
with them, even though they initially appeared to be intuitively reasonable. We argued
that the least problematic comparison relation was the properly covers relation, since it
made concrete what it meant for one criterion to do a more effective job of testing than
another. However, even this relation was not without serious flaws.

Of central importance was the fact that all of the criteria that were compared by Frankl
and Weyuker were idealized versions of the way practitioners actually test software. So,
even though we know precisely how these idealized criteria compare based on the expected
number of faults detected and the probability of finding faults, we are not able to state
conclusively how the pragmatically used versions of these strategies stack up.

Also, none of the proposed comparison relations took the cost into account. If we knew
that one criterion was a little better at finding faults than another but that it cost many
times as much, would the more effective strategy still be attractive or even feasible to
use? That would likely depend heavily on the application and its reliability requirements.
And if criterion €'} was deemed more effective than criterion C5 by some relation, but
all the faults that were being detected by C; were trivial faults, but C5 found profound
and potentially catastrophic faults, would we still consider C'; a more effective criterion?
By all the relations we investigated they would be considered stronger, since there is no
way to factor in the severity or consequence of the faults.



Perhaps most important is that there is no indication whatsoever of how dependable
the software will be when it has been thoroughly tested according to some criterion. Even
knowing that criterion 'y always does a more effective job of testing than criterion Cj,
does not imply that C'; does a good job of testing.

So what are the implications of all this? First, this is a call for new thought and more
important, new types of thought to be put into attacking this problem. We saw that the
initial proposals for comparison relations seemed reasonable at first glance, but turned
out to be flawed because they really did not properly capture the essence of what it
means for one testing strategy to be more effective at finding faults than another. Then
there was the insight that using probabilistic measures would be more appropriate, and
in fact they are more appropriate. But there are still serious flaws. I do not see a way to
address the problem that we are comparing idealized versions of the testing strategies.
It is very difficult to imagine how to formalize what is in practice a very individualized
process.

I also see a very important role for empirical studies. They can tell us things that
all the theorems in the world cannot tell us - how something really works in practice. |
see comparing and assessing software testing strategies as a very important and essential
problem that must be solved in order to elevate the practice of testing. I think the best
hope for a solution will be the combination of carefully thought out theory, done by
people who understand both theory and practice, along with carefully thought out case
studies. It will involve a great deal of thought, a great deal of ingenuity, and a great deal
of effort, but hopefully it will all be worth the trouble.

References

[1] A. Avritzer and E. J. Weyuker. The Automatic generation of load test suites and
the assessment of the resulting software, IFEFE Trans. on Software Engineering, Sept
1995, pp.705-716.

[2] A. Avritzer and E. J. Weyuker. Deriving workloads for performance testing Software
Practice and Fzperience, Vol. 26, No.6, June 1996.

[3] A. Avritzer and E. J. Weyuker. Metrics to assess the likelihood of project success
based on architecture reviews. Fmpirical Software Eng. Journal, Vol. 4, No. 3, Sept.
1999, pp.197-213.

[4] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE Transactions
on Software Engineering, SE-10(7):438-444, July 1984.

[5] P. G. Frankl and E. J. Weyuker. A formal analysis of the fault detecting ability of
testing methods. IEFFE Transactions on Software Fngineering, pages 202-213, Mar.
1993.

[6] P. G. Frankl and E. J. Weyuker. Provable improvements on branch testing. IFEFE
Transactions on Software Engineering, 19(10):962-975, Oct. 1993.

[7] J. S. Gourlay. A mathematical framework for the investigation of testing. IFEFE
Transactions on Software Engineering, SE-9(6):686-709, Nov. 1983.



[8] D. Hamlet and R. Taylor. Partition testing does not inspire confidence. IFFFE Trans-
actions on Software Engineering, 16(12):1402 — 1411, Dec. 1990.

[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness
of dataflow- and controlflow-based test adequacy criteria. Proceedings of the 16th
International Conference on Software Engineering, May 1994, pp.191-200.

[10] T.J. Ostrand and E.J. Weyuker. Collecting and categorizing software error data in
an industrial environment. J. Systems and Software, Vol.4, 1984, pp.289-300.

[11] S. Rapps and E. J. Weyuker. Data flow analysis techniques for program test data
selection. In Proceedings Sizth International Conference on Software Fngineering,
pages 272-278, Sept. 1982. Tokyo, Japan.

[12] S. Rapps and E. J. Weyuker. Selecting software test data using data flow information.
IEEFE Transactions on Software Engineering, SE-14(4):367-375, Apr. 1985.

[13] E. J. Weyuker and A. Avritzer. A metric to predict software scalability. Proc. 8th
IEEFE Symposium on Metrics (METRICS02), June 2002, pp.152-158.

[14] E. J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEFE Transac-
tions on Software Engineering, 17(7):703-711, July 1991.

[15] E. J. Weyuker, S. N. Weiss, and D. Hamlet. Comparison of program testing strate-
gies. In Proceedings Fourth Symposium on Software Testing, Analysis, and Verifica-
tion, pages 1-10. ACM Press, Oct. 1991.

10



Generating Formal Specifications from Test Information
Position paper for FATES’02

Thomas J. Ostrand
AT&T Labs — Research
180 Park Avenue
Florham Park, NJ 07932
ostrand@research.att.com

Abstract

When experienced testers write test cases for programs, they choose the specific test case values
to represent sets of similar inputs that they expect the program to receive. Although testers
may start by thinking of individual test cases, or groups of related test cases, gradually their
understanding of the program increases to a point where they have much more knowledge of the
program’s behavior than is expressed in a finite set of test cases. We propose using the Category-
Partition Method of writing a test specification to capture this more general knowledge, and make
it usable as a formal description of the functionality of a program. A Category-Partition test
specification consists of clauses that describe sets of values for input parameters, state variables
and results of the program. These clauses fulfill two purposes: they can be compiled by a suitable
processor into a set of actual test cases for the program, and they also serve as a description of
the program’s functionality. The latter purpose is the subject of this paper.

1 Introduction

The usual viewpoint of formal approaches to testing is to derive test cases from a formal specifi-
cation of the software. This can be difficult to implement in practice because most software does
not have a formal specification, and most software engineers and test designers lack training in
formal methods.

In this paper we reverse the usual direction, and consider the possibility of generating formal
specifications from test cases and more general information available to the tester. Although
at first glance this may seem like doing things in the wrong direction, there are many reasons
why it can be useful to generate a formal specification after the system has already been built
and tested. The specification can be used as the basis for the next version of the system, which
could then be built using more disciplined techniques. Once the formal specification is at hand,
additional test cases could be derived from it. The specification can be the basis for preparing
user documentation, and can be used to explain the system to potential users and customers.
Finally, a formal specification can be a basis for analyzing and verifying the system’s properties;
even after a thorough set of tests has been executed with correct results, it may be discovered
that the wrong system has been built.

For many systems, not only formal specifications, but any type of complete and unambiguous
specifications are lacking. Many systems are designed only on the basis of high-level requirements,
plus the ideas in the designers’ heads of what the proper functionality, behavior, and appearance
of the working product should be. These ideas are supported by specific instances that illustrate
the desired behavior, and the collection of these instances may be as close as the system ever gets
to a specification.

How is such a system tested? The first test cases are the specific instances that were used to
design the system in the first place. Obviously, if the system is to be even close to correct, it must
operate as expected on these cases. As the testers and developers become more familiar with
the system, additional tests are developed, perhaps with the cooperation of the system’s eventual
users. A common method of creating these tests, especially for interactive systems, is by defining
scenarios or use cases, which are examples of the system’s behavior. Other cases may be created
by observation of the existing cases; the system’s behavior on a specific case may suggest some

11



small variations in the inputs or the system state that could affect the test’s outcome, and these
variations become new test cases.

After the system is placed in operation, a new source of tests arises out of failure reports
from the field. After a failure-causing fault has been repaired, the inputs and system state that
produced the failure are added to the growing test base. As successive versions of the system are
produced, regression testing becomes important, and a common policy is to leave all fault-induced
test cases in the regression suite.

We propose that the test cases developed for a system can be the foundation of a formal
specification for the system. The expected outputs of tests define key values of the program’s
input/output relation. Test cases that run successfully can delineate the bounds of the program’s
valid input space; cases that do not run successfully point out places that are outside the normal
space. Tests that run successfully, but are treated differently from the majority of successful
inputs, define discontinuities or inflection points of the software.

Any set of test cases specifies part of the behavior of the system, namely the finite set of
input-output pairs of the tests. To be more generally useful, however, a finite set of tests must
be capable of being generalized to specify behavior that is not explicitly given by one of the test
cases. One way of doing this is through program inference [Wey83]. Weyuker proposed using
program inference as a means of assessing the adequacy of a set of test cases. This approach
suggested that a set of test cases could be considered adequate to test the behavior of a program
if the program inferred from the test cases were equivalent to the actual program being tested.
Although this is an appealing theoretical framework for characterizing test adequacy, it faces two
daunting problems that are in general undecidable, and in practice always difficult to accomplish:
inferring a program from samples of its behavior, and determining program equivalence.

However, much can be gained from the test writing process short of a complete characterization
of the program. When a tester defines a test case, he is frequently thinking not of the one set of
specific values of the test, but rather of a range of values that the single case represents. This
is the basis of the equivalence class approach to test generation [GGT75, WO80, WJ91], probably
the most fundamental concept in testing.

The category-partition test specification [OB88, BHO89] captures exactly this type of more
general description of equivalence classes of test data, and is a natural formalism for representing
the program’s behavior.

2 Converting Informal Requirements into Formal Specifi-
cations

Consider the following natural language description of some of the features of a lending library
system.

The library has three different classes of members: regular members, junior members, and child
members. Child members are ages 3-9, junior members are ages 10-14, and regular members are
ages 15 and up. In addition, regular members who meet certain requirements can apply for a
privileged membership.

Each book in the library is classified as a regular book, a reference book, or a restricted book.
Reference books do not circulate, and restricted books either circulate for a shorter than normal
time period, or can be borrowed only by a privileged member. To encourage young people to
read, a child or junior member may take out books for longer than the normal time as long as
they do not owe any fines.

If borrowed books are returned past their due date, the library assesses a fine on the borrower
of .25 per day. Borrowers owing more than $5.00 are considered major delinquents, and are not
permitted to borrow any further books until their account is settled. No member is allowed to
borrow more than 10 books at any one time.

Software is to be written that will manage the needed functions of the library. Some of the
required operations that handle the interactions of users with the library are Join and Leave the
Library, Borrow and Return a Book, Reserve a Book, and Send Bill. Other operations pertain to
managing the library collection, such as Enter New Book, Retire Existing Book, Classify Book.

12



As with many requirements documents, this description leaves many questions unanswered.
What are the requirements for privileged membership? What is the basis for classifying a book?
What is the circulation time for normal books and for restricted books? If a privileged member
borrows a restricted book, does it circulate for the normal time, or for the shorter restricted
time? Does the 10-book maximum apply to each instance of visiting the library to borrow books,
or does it mean that the total number of books currently being borrowed by a member cannot
exceed 107

Obviously these and many other questions must be answered before the software can be suc-
cessfully released; the system architect, the designer, or possibly the developers must seek the
answers from the customers. Further, the developed system obviously can’t be tested or validated
without the answers, since there would be no way of knowing whether the system is doing what
it’s supposed to do.

The ambiguities of informal requirements are brought to the surface by attempts to formalize
the requirements. Instead of asking software engineers to use a formal specification language
like Z or VDM, we propose the use of the test specification language of the Category-Partition
test design method (CPM). With CPM [OB88, BHO89, A094, Bin99], the tester analyzes the
available information about a function, and writes information describing the function’s inputs,
the environment in which it operates, and the results that the function produces. The written
information constitutes a test specification, which can be processed to produce test cases for the
implemented software.

The CPM language is quite simple to learn, and testers are already familiar with the activity
of designing test cases. Over the past 24 years, the author has been associated with three major
software-producing companies. The goal has always been to produce correct, efficient software
that supports the company’s products. To the best of the author’s knowledge, formal specification
techniques have not been used in any of their software development processes, but there have
always been dedicated testing organizations in place. While the testers are usually quite good at
their jobs, and usually employ systematic approaches and current automation tools, they always
have a desire for a more structured and more complete approach. To meet this need, the category-
partition method was introduced at one of these companies, and was employed successfully in
several projects [OW92], proving its viability in a commercial software development environment.

3 The Category-Partition Method

A category-partition test specification is in effect a program written in a Specification Language
for Test Generation. The output produced by executing the test specification program is a set
of test cases for the function. The specification contains two main parts, the Input Section
and the Result Section; they are described below informally. There is presently no compiler
available for the test specification language, although early versions have been written and used
[BHO89, OW92]. To illustrate the method, we develop a test specification for the Borrow-Book
function of the library system. At various points where the given requirements are not specific,
we shall make assumptions about the proper behavior of the system.

The Input Section

Creating the input section starts with identifying the distinct attributes, called categories, of
the input and state space that affect the behavior of each function. After a category has been
identified, the tester partitions it into disjoint sets of values, called classes; the goal is that each
class should represent a set of values that have the same effect on the function’s behavior, so each
value in the class should be equivalent for testing purposes.

In general, inputs and state conditions can affect a function’s behavior individually or in
combination with each other. After the categories have been partitioned, the tester then specifies
how the different classes interact when the function executes: the tester specifies valid and invalid
input and state combinations, and the resulting outputs and state changes that occur with each
combination.

13



The information produced as a result of this analysis can be used to define test cases that
include all combinations of the input and state condition classes. The test cases can be produced
manually from the category-partition information, but it is far more productive and effective to
use an automated tool. When a tool is available, the information is written in a structured test
specification that provides a blueprint for how the values in the categories are combined to form
test cases for the function.

Suppose the Borrow-Book function has two inputs, a book-id and a member-id. The book-id
has at least two categories: the book’s type and its status in the library. The member-id has at
least three categories: the member type, the member’s delinquency status, and the number of
books the member is currently borrowing. We start with the outline of a test specification for
these two inputs, giving only logical names for the categories and the classes within each category.

Input Section for Borrow-Book

Book-id
Book-type
invalid
regular book
restricted book
reference book
Status
book checked out
book available
book non-circulating
Member-id
Member-type
invalid
regular
Jjunior
child
privileged
Delinquency
none
minor
major
Number-out (number of books currently borrowed)
none
at least 1, less than maximum
maximum

Input section categories can be static or changeable. Book-type and Member-type are static
attributes; for a given book or member, their values do not change. Status, Delinquency, and
Number-out are changeable, state-based attributes; their values are maintained by the system and
may change as a result of executing the function. The state-based attributes can appear again as
categories in the Result section of the test specification, with conditions that describe how they
change as a result of executing the function.

The cross product of the input categories defines the entire potential input space for test cases.
For the Borrow-Book specification, there are 4x3x5x3x3 = 540 possible input combinations. The
specification language permits classes to be annotated with restrictions or limits that reduce the
number of combinations that are produced. For example, the tester may decide that an invalid
Book-type will be sufficiently tested with a single member-id, rather than the 45 (= 5x3x3)
combinations that are defined in the specification. This could be accomplished by placing the
restriction

[ Member-type = regular & Delinquency = none & Number-out = none ]

on the invalid class of Book-type. As a result, three tests would be generated, corresponding to
the three classes of the Status category. The annotations are described in more detail in [BHO89).
14



To generate actual test inputs from the Input Section, each class is annotated with a range of
values. For example, the Delinquency category’s classes could be specified as follows:

Delinquency
none ($0.00)
minor ($0.01 .. $4.99)
major ($5.00 .. )

The notation implies that a suitable value for the none class is $0.00, for minor anything
between $0.01 and $4.99, and for major $5.00 and greater. The test specification processor would
generate specific input values using these ranges. Similar range information could be supplied
for the other input categories. The Book-type and Member-type ranges would depend on the
particular format of the id’s that are used by the library. The Book-id Status is a Boolean value
for each class, and Number-out has the ranges (0) for none, (1 .. k) for at least 1, and (k) for
maximum. According to the informal specification, the value of k is 10, but the tester might want
to vary k to test the program more thoroughly.

The Result Section

Results describe the outputs and state changes produced by the function; they are categorized
and partitioned just like the inputs. The tester must decide what characterizes the function’s
results, and then come up with categories that capture the function’s behavior. For the Borrow-
Book function, the key result is the actual Borrowing: can the member take the book out; if
so, for what period of time; if a book is borrowed, how is the member’s information updated?
These aspects of the Borrow result are captured in the categories Borrow-permission, Length-of-
loan, and Number-out. Borrow-permission is a Boolean value that states whether the Borrow is
permitted. Length-of-loan is a numeric value giving the number of days the book may be kept
by the member. If the member is permitted to borrow the book, the number of books presently
out for the member increases by 1, represented by the Number-out category. The Result category
Number-out represents the same state-based attribute as the Input category Number-out. The
Result category will later be annotated with conditions that describe how the category changes
in terms of the input values.

Besides managing the details of the Borrow operation, the system might also generate a notice
for the borrower, describing the result of his transaction with the library. This notice output
is captured in the Notice-to-Member result, with the single category Borrow-notice, which is
partitioned into 4 classes that characterize the result of the Borrow attempt.

Result Section for Borrow-Book

Borrowing
Borrow-permission
yes
no

Length-of-loan
regular period
short period
long period

Number-out
none
1 < k < maximum
maximum

Notice-to-member

Borrow-notice
Borrow ok; date due
Book out; date due
Can’t borrow: reference book
Can’t borrow: owe more than $5

15



The format of the category-partition specification permits easy modification when it becomes
necessary to test for other characteristics of the output. For example, a later version of the
software might deliver to the library user a memo listing upcoming events at the library, such
as speakers, musical programs, films, or special book sales. This could be easily grafted into the
Notice-to-member result by adding a new category Events notice, and partitioning it into the
classes mentioned.

After determining the Results and their categories, the next step is to write expressions that
characterize the conditions under which each class of a result partition will occur. These expres-
sions are written in terms of the categories and classes of the input parameters, and will become
the basis for creating the oracle part of the test cases. Below, we show the result part of the test
specification, with the addition of the conditional expressions. Conditions! can be attached to
both the category and to the classes within a category. A category condition must be satisfied
by every class of the category, while a class condition is satisfied only by the individual class.

Borrowing
Borrow-Permission

yes  [id # invalid & book-status = available & delinquency #
major & number-out < max & (book-type = regular |
(book-type = restricted & id = privileged)) ]

no [id = invalid | book-status = out | delinquency = major
| number-out > max | book-type = reference
| (book-type = restricted & id # privileged)]

Length-of-loan [Borrow-Permission = yes]
regular period [delinquency # major ]
short period [book-type = restricted & id = privileged ]
long period [(id = child | id = junior) & book-type = regular &
delinquency = none]
Number-out
none [Number-out = 0 & Borrow-permission = no ]
1<k <max [ (Number-out = k-1 & Borrow-permission = yes) |
(Number-out = k & Borrow-permission = no) |
maximum [ (Number-out = maximum-1 & Borrow-permission = yes) |
(Number-out = maximum & Borrow-permission = no) |

Notice-to-member
Borrow-notice

Borrow ok; date due [Borrow-permission = yes]
Book out; date due [Book-status= checked-out]
Can’t borrow: reference book [Book-type = reference]

Can’t borrow: owe more than $5 [Delinquency = major]

The Length-of-loan category illustrates the use of conditions attached to both a category and
its classes. Any of the classes in the Length-of-loan category are produced only if the Borrow-
permission result is yes, which implies that the user has a proper id, the book is available, and
the user is not delinquent. The conditions on the individual classes are further restrictions that
define when those specific results occur.

The use of the result category Borrow-permission in the Length-of-loan and Number-out condi-
tions is like a macro call that will be replaced by the atomic conditions in the Borrow-permission
classes.

The CP specification is created by a human, based on the tester’s knowledge of the system,
and experience in designing test cases. As with any human-created artifact, it is subject to errors
of omission and commission. In particular, with a complex system, it may be difficult to assure
that the result conditions are consistent and complete. A specifier might, for instance, write

! Conditions are surrounded by square brackets [ ]. “&” represents logical AND.
OR.

“|” represents logical

16



non-disjoint conditions for two different classes of a category, implying that some specific input
combination produces two different results. If this happened, then any test case that satisfied the
conditions for both classes would be expected to produce both results. Running an actual test
case that satisfies the two conditions would reveal the discrepancy.

Completeness is a more difficult problem. Just as a major issue of testing is deciding whether a
set of test cases provides “complete coverage” of the functionality to be tested, there is no general
way to know if a CP specification is a complete description of the function. The tester could omit
a disjunct or conjunct from a condition, with the result that the test cases are under-constrained.
Omitting the id # invalid element from the Borrow-permission yes class could yield test cases
with an invalid member-id allowed to borrow a book.

4 Test Specification as Formal Specification

The CP specification above has all the elements of a standard formal specification. The Input
Section categories describe the function’s inputs, and delimit the value ranges of the inputs. The
Result section describes the function’s possible outputs; the conditions on an individual class of
a category are pre-conditions for performing the operation to yield a value within that class. The
classes themselves act as post-conditions that specify the value of the category after performing
the operation. Thus,

[Length-of-loan = Short-period]
is a post-condition that should hold after Borrow-book is executed with the pre-conditions
[Borrow-permission = yes & Book-type = Restricted & Member-id = privileged].

The CPM supplies two benefits when it is used to help generate a formal specification. First, by
focusing on the test cases, the specifier has concrete values in mind, enabling clear descriptions
of the input categories, and the conditions that lead to the results. Test execution provides
more opportunity to arrive at an accurate and correct formal specification. Although the usual
assumption is that the test specification is a correct description of the desired functionality,
and that a discrepancy between the expected result (the test case) and the actual result (the
implementation) indicates a mistake in the implementation, this may not be the case. Test results
may indicate a need to change the specification to bring it in agreement with the implementation.

The second benefit is the CPM’s “divide-and-conquer” approach of analyzing the individual
parameters and state variables separately. In actual use, we have found this approach makes
it easier to write the specification, and is an aid to understanding the overal behavior of the
function.

5 Summary

The proposal of this paper is to use test cases and test specifications as a means of arriving at a
formal specification of a program’s functionality. Writing test cases is frequently the first action
of a programmer after software has been implemented; in fact, a good programmer may write
the test cases before the code. A thorough set of test cases should characterize the program’s
functionality well enough to allow a reader to determine the program’s behavior in additional
cases. This is, of course, exactly what is achieved by a formal specification.

We have used the category-partition formalism to express test cases, and shown how this
formalism can resemble a traditional formal specification. Many issues remain open. Major
problems include determining whether the test specification is complete and consistent.

References

[AO94] P. Ammann and J. Offutt, Using formal methods to derive test frames in category-
partition testing, Proc of COMPASS 94, Gaithersburg, MD, June 1994, 69-80.
17



[BHOS9]

[Bin99)]
[OB&S]
[Wey83]
[WJI91]
[OW92]
[GGTS]

[WOS0]

M. Balcer, W. Hasling, T. Ostrand, Automatic generation of test scripts from formal
test specifications, Proc of SIGSOFT 89, Third Symp. Software Testing, Analysis,
and Verification, Dec 1989, 210-218.

R.V. Binder, Testing Object-Oriented Systems, Addison-Wesley, Reading, MA 1999,
419-426.

T. Ostrand and M. Balcer, The Category-partition method, Communications of the
ACM, Vol 31, No 6, June 1988, 676-686.

E. Weyuker, Assessing test data adequacy through program inference, ACM Trans-
actions on Programming Languages and Systems, Vol 5, No 4, Oct 1983, 641-655.

E. Weyuker and B. Jeng, Analyzing partition testing strategies, IEEE Transactions
on Software Engineering, Vol 17, No 7, Jul 1991, 703-711.

T. Ostrand and J. Wood, Industrial applications of the category-partition method,
Proc Pacific NW Software Quality Conference, Portland, OR, Oct 1992.

J.B. Goodenough and S.L. Gerhart, Toward a theory of test data selection, IEEFE
Transactions on Software Engineering, Vol 1, No 2, June 1975.

E.J. Weyuker and T.J. Ostrand, Theories of program testing and the application of
revealing subdomains, IEEE Transactions on Software Engineering, Vol 6, No 3, May
1980, 236-246.

18



Testing from statecharts using the Wp method

K.Bogdanov, M.Holcombe

emails:{K.Bogdanov, M.Holcombp@dcs.shef.ac.uk
tel: +44(0)114 2221847, fax: +44(0)114 2221810
Department of Computer Science, The University of Sheffield
Regent Court, 211 Portobello St., Sheffield S1 4DP, UK

Abstract

An existing testing method for Harel statecharts with hierarchy and concurrency is
based on what is known as the Chow’s W method. This paper presents an extension
of this statechart testing method to build on the Wp method, making a test set smaller.
Subject to some specific conditions and subsequent testing not revealing faults, both
the original and the extended testing methods make it possible to prove the correct
behaviour of an implementation of a system to its specification.

Keywords: specification-based testing, formal methods, software testing, finite-state
machines, statecharts.

1 Introduction

At present, a variety of methods for test generation from state-based models of software
are available. Most of the methods perform a coverage of varying kind [18, 2, 25], gen-
erate tests from a test purpose [23, 21, 3] or a conformance relation [29, 26, 11]. Such
tests can be effective at finding faults but they do not make it possible to decide when to
stop testing. Finite-state machine based testing methods [9, 12] consider behavioral equiv-
alence of state machines as a conformance relation and produce a finite test suite to check
it. The amount of testing depends on an a-priori known upper bound on the number of
states in an implementation automaton. The inability of finite-state machines to represent
data without a state explosion can be solved by using functions (further t¢altield on
transitions, which can access and modify global data. This has given rise to notations such
as X-machines (also known as extended finite-state machines). Finite-state machine testing
methods have been adapted to X-machines by treating labels on transitions symbolically
during test generation, i.e. by generating test cases in terms of sequences of labels and then
converting them to sequences of inputs to attempt to drive an automaton of an implemen-
tation through these sequences [17, 19]. Further, the X-machine testing method has been
adapted to test hierarchical and concurrent Harel statecharts [5], where a test suite is built
by incrementally following the structure of a specification. Both X-machine and statechart
testing methods preserve the complete test guarantee of the original finite-state machine
testing method, but introduce a number of restrictions X-machine and statechart specifica-
tions and implementations have to comply with. The original statechart testing method was
ultimately based on the Chow’s W method [9]; this paper describes what needs changing in
it to make use of the Wp method [12]. The advantage is a reduction in the size of a test set
without weakening of the results obtained by testing. Statecharts are introduced in Sect. 2,

19



followed by the description of the original testing method for statecharts in Sect.3. The
extension of it is given in Sect. 4; concluding remarks can be found in Sect. 5.

2 Statecharts

Statecharts [13, 14] is a specification and design language derived from finite-state ma-
chines by extending them with arbitrarily complex functions on transitions, state hierarchy
and concurrency. Consider a simple tape recorder capable of playback, rewinding, fast
forwarding and recording as well as changing a side of a tape when the Ipldipis
pressed during playback or when a tape ends. The statechart to be presented models the
control portion of this tape recorder, interpreting user’s button presses and sending ap-
propriate commands to a tape drive mechanics. The inputs to this controller are events
play, stop rec, rew, ff andtapeend Most of them have intuitive meanings; the last event

is issued by the tape mechanism when a tape stops. Output variabl@geaationand

ff direction giving a command and a tape direction to the tape mechanism respectively.
Theunderlinefont is used to denote input and output variables and events (variables with a
special property described in Sect. 2.2), transition labels are givtalias and state names

are CAPITALISED.

2.1 State hierarchy

| TAPERECORDER |
MAIN
D PLAY <P RECORD
direction la pause
.gstop play o RECORDING PAUSE
continue
STOP o
stop
. SEARCH
’g rew_or_ff
IDLE REW_FF
stop_rew_ff

Figure 1: The tape recorder statechart

The statechart is shown in Fig. 1. It consists of two parts running concurrently, MAIN
and SEARCH. The first one describes the playback and recording behaviour of the tape
recorder and the second one is responsible for forward advance and rewind, making it
possible to skip portions of music during playback. Concurrent parts are separated by a
dashed line. The TAPERECORDER state containing them is called an AND state. Every
concurrent part of it behaves similarly to a finite-state machine with functions on transitions
except that some states can have a behaviour defined in them. For instance, the behaviour
of the RECORD state is a two-state machine describing whether a tape recorder is actively
recording or waiting for a user command. Only one state in any non-concurrent state can
be active. While a statechart is idle in the MAIN state, this could be state STOP; during
recording this is RECORD in MAIN and RECORDING in RECORD. Non-concurrent
states with behaviour in them are called OR states and those without any, such as PLAY
and RECORDING — BASIC ones.

20



Initial states in any OR state of a statechart are pointed at by transitions from blobs. For
the MAIN state this is STOP, for RECORD and SEARCH — RECORDING and IDLE re-
spectively. Thereis no need to do this for AND states as every substate of TAPERECORDER
has to be entered whenever TAPERECORDER is. When a transition to an OR-istate
taken, it is followed by a transition from a blob in that state. If the initial statei®fin OR
one, a further transition will be taken; entering an AND-state involves entering the initial
state of every concurrent part of it. Consequently, taking a single transition in a statechart
typically involves following it with a number of further transitions. The whole set of tran-
sitions taken is called &ll compound transitionabbreviated FCT; the abovementioned
blobs aredefault connectorand transitions from them -default transitions

In the example transition labels are named to reflect user actionplagaccurs when
a user presses thpay button,rew_or_ff occurs if eitherew or ff buttons are pressed. To
simplify the presentation, details of transitions’ behaviour are not shown on the diagram.
A precondition which has to be satisfied for a label to be able to fire is caliégiger; an
operation carried out by a label on a transition when that transition executes is called an
action A transition with a triggered label may only occur when a statechart is in its source
state; such transitions are referred toeagsbled Thedirectiontransition is triggered by
theplay button to change the side of a tape and byttpe endevent when the side being
played back ends. If the MAIN statechart is in the STOP state and a user pusséisen
bothplayanddirectionlabels will be triggered, but only th@ay transition from STOP will
be enabled and thus taken by the statechart.

play

" Lo

play
pause’\-stop
rec A -play
STOP RECORDING _
stop continue/A-stop
A -play

stop

Figure 2: The flattened statechart of the MAIN state

A statechart within a state is left when a transition from that state is taken. For example,
the RECORD state is left when the controller takes dtaptransition, regardless of the
substate, RECORDING or PAUSE, it was in. The equivalent statechart to the MAIN state
in Fig. 1 is shown in Fig.2 where the state hierarchy is removed. To do that, the state
RECORD has to be replaced by its contents; the outgoing transiitopsplay and the
incomingrec one have to be replaced by the five corresponding transitions. The hierarchy
of states imposes priorities on transitions in that those at a higher level have priority over
lower-level ones; to retain these priorities, labels of transitions between RECORDING and
PAUSE states have been appropriately modified in Fig 2.

Full statecharts [14] contain considerably more constructs than those introduced above.
Specifically, there could be multiple transitions from default connectors with labels on them
while this paper considers a simplified problem where there is exactly one non-interlevel
transition from every default connector with no label. Taking labelled default transitions
into account appeared to make testing significantly more complex [5]. A variety of con-
nectors, connecting parts of transitions are considered syntactic sugar and are thus not
elaborated upon; history can be represented by default transitions to every state and test
generation for it is left for future work.

21



State hierarchy of a statechart can be viewed as a tree; the one for the tape recorder
(Fig. 1) is shown in Fig. 3. Theoot state is the implicit top-level state; it was introduced
because TAPERECORDER is an AND-state and statecharts require the top-level state to be
an OR one [14]. The parent-child relationship between states in the tree is given using the
p function, similar to [24].p provides a set of substates of a given sta{RECORD =
{RECORDING PAUSE}. An opposite tg is parent such thaparen{RECORDING =
RECORD. Thescopeof a transition is the lowest-level OR-state above all source and target
states of it. For example, the scope of all transitions with lapkalgis MAIN and the one
with pause— RECORD.

[ TAPERECORDER (AND) |

SEARCH (OR)

RECORD PLAY STOP REW_FF IDLE
(OR) (basic) (basic) (basic) (basic)
RECORDING PAUSE
(basic) (basic)

Figure 3: The state tree of the tape recorder

Sets of states which are left and entered by full compound transitions are catied
figurationsand consist of states a statechart can be in simultaneously. For example, if the
statechart enters the PAUSE state, RECORD should also be entered since it is a parent of
the PAUSE one in the state hierarchy. Additionally, if an OR-state is entered, exactly one of
its substates must be entered too, for instance, the controller cannot be in the RECORDING
and PAUSE states at the same time. Every substate of an entered AND-state has to be en-
tered, so that a possible configuration in Fig. 3risot, TAPERECORDERMAIN,

SEARCH RECORD PAUSE REW_FF}. A configuration is uniquely determined by a set
of basic states in it [24, 5]. Every state in a flattened statechart corresponds to a configura-
tion in the original one. The formal definition of a configuration is given in [24, 7, 5].

Static reactions are a special case of transitions which may occur within a state, without
leaving it or entering it again (thus no states are left and no default transitions fire when
static reactions are taken). Interlevel transitions are transitions which cross levels of hier-
archy. For instance, if the controller had a transition from PAUSE to STOP, it would be
interlevel. Interlevel transitions are not considered in this paper. Sequences of labels of
transitions (not necessarily those which could be taken) are qadléhdin this paper.

2.2 Step semantics

Assume that an environment the statechart is running in generates some events or changes
variables which enable transitions. Transitions which reside in concurrent states, such as
rew_or_ff andplay, can be taken together, but rewbpandplay. Such a decision is based on
whether the lowest common ancestor of scopes of two transitions is an AND-state [7, 27].
Priorities of transitions mentioned above are formally related to their scopes in that a tran-
sition with a higher scope w.r.t state hierarchy has a higher precedence than any transition

22



with a lower scope. Among the enabled transitions which cannot be taken together, one
can eliminate from consideration those which have a lower priority to any enabled one. If
scopes of any two enabled transitions are the same (such pejaandrec), there is no

rule to prefer one over another one, which implies a nondeterministic choice. In the paper
it is assumed that such a situation never occurs in both a specification and an implemen-
tation. The set of transitions resulting from elimination is taken by the system. Enabled
static reactions in states which were not left or entered by transitions in this set will also be
executed. The execution of transitions and static reactions selected as described above, is
called astep Transitions taken may in turn generate events and make changes to variables.
All changes, including those by the environment, are collected during a step and applied
after the step has ended; all events active in the step which were not generated again are
discarded. The possible loss of value is what differentiates an event from an ordinary vari-
able. Statecharts considered also have to satisfy the condition that no pair of transitions
or static reactions taken in a step modifies the same variable. This implies that actions of
transitions and static reactions taken in a step can be executed in any order and justifies the
word ‘set’ used above to describe a collection of them.

Unlike the synchronous time semantics just described, the asynchronous one allows a
statechart to perform more than one step in response to actions of an environment, within
the same instant of time. This is accomplished by taking steps until no transition or static
reaction is enabled. Since this behaviour severely limits observability and controllability of
a statechart under test (Sect. 3.4), it is prohibited for a specification and an implementation
during testing. For the same reason transitions from states are not allowed to have labels
with empty triggers, i.e. those which are always triggered.

3 Test generation for statecharts

In this section the X-machine testing method and its application to statecharts with state
hierarchy and concurrency are described following [5, 6, 8]. Initially, the method is given
for flat statecharts, followed by the description of testing for hierarchical and concurrent
ones. The testing method is primarily aimed at testing an implementation against a detailed
specification or a design, although it could be used with minor changes to test from a
relatively abstract specification [6].

3.1 Test case generation for statecharts without state hierarchy

With restrictions introduced in Sect. 2, statecharts which do not contain state hierarchy or
concurrency are behaviourally-equivalent to X-machines [5] so that the X-machine testing
method [19, 17] can be used for testing them. The method is founded on the Chow's W
method [9] and relies on a separation of function and transition diagram testing (similar
ideas are mentioned in [4]). The method concentrates on testing of the transition diagram;
behaviour of the labels of transitions is assumed to have been tested in advance, for exam-
ple, using the disjunctive normal form (DNF) approach [10, 15]. As a result of testing not
revealing faults, an implementation is proven to be behaviourally-equivalent to its spec-
ification [19]. The approach to testing of a transition diagram is very similar to testing
of labelled-transition systems [28]. The main difference is the reliance of this work on
an input/output behaviour of transitions rather than on deadlocks to tell a tester whether a
transition with a given label exists from a particular state in an implementation or not. This
is addressed in more detail in Sect. 3.4.

For a systematic construction of a set of test cases, auxiliary sets have to be built.
Here the MAIN state is used for an illustration, without consideration of the structure of

23



the RECORD state. The set of transition labels (denote@®)is the set of labels of a
statechartp = {stop play, rec, direction}. State cover (denoted I) is a set of sequences

of transition labels, such that one can find an element from this set to reach any desired
state starting from the initial on€ = {1, play, rec}. Herel denotes an empty sequence

of labels. A characterisation set (denotedWy allows a tester to check the state arrived

at when a transition fires. For every pair of states, it is possible to construct a path which
exists from one of them and not from the other. Such paths for every pair of states comprise
a characterisation saty = {stop play}. Each element of this particul&Y is a sequence
consisting of a single label. F& andW to exist, a specification of a system has to contain

no states having the same behaviour as some others or states with no transitions leading to.
This property is referred to aminimality.

According to the method, every state has to be entered @iagd verified viaw.
Additionally, every label has to be attempted from every state and in case a transition cor-
responding to that label fires, the entered state has to be checked. For instance, in order
to test theplay transition from the state RECORD to PLAY, one should begin by entering
RECORD from the initial state STOP. This can be accomplished by generatingregent
in responsegperationshould change teec, assuming that it means a command to a tape
mechanism to start recording. Afterwards, lapkly has to be attempted by generating
play and observingperationchanging toplay. Finally, one needs to test that the PLAY
state was entered. This can be done by generatingafiesendevent to triggedirection
because transitiodirection exists only from the PLAY state. After triggering it, the mod-
ification of theff .directionvariable has to be observed. In addition to tesptay between
those two states, it is necessary to test its existence between STOP and PLAY as well as
to make sure that no transition labelled by it exists from any other state. The latter test is
needed because in a faulty implementation a transition labglsccould exist from some
state other than RECORD and STOP. The described testing approach yields a set of test
caseL x WU C x ® « W using the notatior « B to denote set multiplication. For some
sets of sequenceésandB, Ax B = {ab| a € A b € B}, whereabis a concatenation of
sequencea andb. * has a higher precedence than set operatigmsand\.

For implementations potentially containing more states than the corresponding specifi-
cations, longer sequences of transitions have to be tried from every state in order to exercise
extra states. Letbe the number of states in a specification emé- the estimated maximal
number of states in an implementation. Assuming the possibiliyrof n) extra states,
the set of test cases following [17] is

T = Cx({l}udud?u...ud™ ™ xw. (1)

3.2 Test case generation for state hierarchy

The most simple approach to testing state hierarchy is to flatten a statechart, i.e. turn it into
a behaviourally-equivalent one without AND or OR states. For example, Fig. 2 depicts a
result of flattening of the MAIN state in Fig. 1. Such a transformation results in a simple
but, in practice, huge statechart. Flattening is essentially what is done by [22]. As an alter-
native, an approach of an incremental test case development using the hierarchical structure
of statecharts is proposed. It has the advantage of following the development process and
thus the set of test cases can be continuously updated to reflect specification changes made,
avoiding the ‘big bang’ in test case generation. Moreover, if certain parts of a statechart
are implemented separately and do not share any labels, one does not have to test for faults
where labels from one part are used in another one and vise-versa, significantly reducing
the size of a test set [8, 5].

24



Test case generation begins with the construction of a {dpl€, W), called aest case
basis(abbreviated TCB) for every non-basic state considering all its substates as basic ones.
Afterwards, one has to walk the state hierarchy bottom-up, merging TCB tuples at every
level. The idea of merging is to produce a TCB which could be generated from a flattened
statechart. The result of merging for the top-lescait state(®M , CM WM ) can thus be
used to generate a set of test cases for the whole system following Eqn. 1. When transitions
are added, removed or substates are removed from a state in the process of development,
only its own TCB has to be recomputed and merged with TCBs of the higher-level states;
addition of non-basic states additionally requires computation of merged TCBs for them.

The elements of the test case basis for the RECORD state are given by
Drecoro = {pauUsecontinug, Ceecoro= {1, pause, Wiecoro = {pausé. TCB for the MAIN
state is®, = {play, stop direction rec}, Cyan = {1, play, rec}, Wy = {Stop play}.

The rule forC constructs paths to all configurations in MAIN, i.e. for every basic state
in it, C should have a path leading to itC,,., contains paths for basic states directly
underneath MAIN an€C! . — for all basic states underneath RECORD, starting from
the boundary of RECORD. Consequently, taking all sequenc€&safand prefixing all
those fromCM__.. with a path inC,,, to enter RECORD vyields the expected

CM . = Cua U {pathinC,,, to enter RECORD = CM___ = {1,play,rec} U {rec} *
{1,pausé = {1,play, rec,rec pausé. W, distinguishes between any pair of states in

MAIN and WM ___ — between states in RECORD; uniting the two sets gives
WM = W UWM = {stop play, pausg, identifying all configurations in MAIN.
oM = @, UM = {play, stop direction rec, pausecontinug is clearly a set of all

the labels in MAIN and its substates.
3.3 Test case generation for concurrency

Testing of concurrency follows the same approach as testing of state hierarchy, except that
multiple transitions are attempted. The elements of the test case basis for the top compo-
nent, MAIN, have been constructed above; those for the bottom one are built similarly:
oM .= {rew.or ff, stoprewff},CM . = {1 reworff}, WM _ = {reworff}.In or-
der to visit all configurations and consider all transitions as well as their combinations, sets
C have to be multiplied anw sets be unitedp™ has to contain a label of every possible
set of transitions with orthogonal scopes [7].

Q'I'\'/lAF’ERECORDER = ({1} U (PMAIN)X({]'} U QQ/JEARC!-D \ {1} = {play7 Stop dlreCtlon rec)

pausecontinue rew_or_ff, stoprew_ff, play-rew_or_ff, stoprew_or_ff,

directionrew_or_ff, rec-rew_or_ff, pauserew_or_ff, continuerew_or_ff,
play-stoprew. ff, stop-stoprew.ff, direction-stoprew.ff,
rec-stoprew._ff, pausestoprew_ff, continuestoprew ff },

M M M
Charerecoroer. = Cuan*Caeancn = 11, play, rec, rec pauserew_or _ff, play-rew_or ff,
rec-rew_or_ff, rec-rew_or_ff pausé,
M M M
WTAPERECORDER = WMAIN U WSEARCH = {Stop play7 pause reW—Or_ﬁ }

AxB = {aob| a € Ab € B} wherea < b means that sequencasindb are taken side-

by-side withith element ofa andb taken in the same step. Notation-wise, in order to take
several transitions in the same step, these sets of sequences have to be considered to be sets
of sequences of sets with elements of inner sets shown delimited with a dash (-). For exam-
ple, (pause stope rew_or_ff = pauserew_or_ff stop (pause stope 1 = pause stopHere

dash means th@auseandrew_or_ff are taken in the same step, whilldp(separated by a

space) — in the one after it. Multiplicationis used forC construction in order to produce

25



the shortest possible sequence of transitions by taking as many of transitions as possible in
the same step. A sequential multiplicatierould be used instead, leading to longer test
sequences. For the tape recorder under the assumption of an implementation containing no
more states than the specification, test case generation prdifixcesquences. It is later
contrasted with the size obtained using the Wp method.

Static reactions can be transformed into ordinary transitions through a well-known
transformation of a statechart. The idea is to consider static reactions as ordinary transitions
executing concurrently with the behaviour of states, with which these static reactions are
associated. For example, a static reaction in the TAPERECORDER state can be expressed
by adding a third concurrent part to it with a single state and a transition looping in this
state. In order to represent static reactions in other states, such as RECORDING, those
states have to be converted to AND-states. With this transformation, static reactions can be
tested similarly to ordinary transitions.

3.4 Test data generation

Since the aim of the statechart testing method is to test a transition diagram, it is assumed
that all labels are implemented correctly. Thus, an implementation may contain a different
number of states, transitions traversing them in any way but labels of implemented transi-
tions behave the same as those in a specification. Since sequences of labels generated by
the test method are often not related to those taken by a system during routine operation, it
is necessary to force those labels to be triggered through changes to externally accessible
variables and all other labels — not to be triggered, even if they become such as a con-
sequence of actions of some transitions. In addition, for every executed transition some
output changes have to be observed, giving evidence that a transition with the expected
label was actually taken by the implementation under test. The requirement of being able
to trigger, the one of the input-output pair to identify a transition label, a requirement of ab-
sence of shared labels between states of a specification, and the one that transitions cannot
directly enter default connectors, comprise tlesign for testondition. Under assump-

tion that labelgec, pauseandcontinueare triggered by the santec event and an output

from them makes it possible to uniquely identify them, the controller satisfies these require-
ments. More complicated statecharts may have to be designed in the first place to satisfy
this condition; it is always possible to add extra inputs, outputs [20], slightly modify labels

[6] and re-route transitions to default connectors [5] to satisfy design for test.

Reference [28] considers labelled transition systems; such a system deadlocks if no
transition with a label attempted by a tester exists from its current state. The method pre-
sented in this paper converts labels to inputs; in response to an input triggering a label with
no corresponding transition from its current state, a statechart would either take a different
transition, a static reaction or simply ignore such an input. An output from an implementa-
tion (or absence of any) would then indicate which transition or static reaction (if any) has
been executed.

If these requirements, those provided in Sect. 2.2, as well as the assumptions of the
minimality (Sect. 3.1) of every OR-state in a specification, availability of a reliable reset
(for both a specification and an implementation) and a known upper bound on a number of
states in an implementation are satisfied, a test set can be generated, applied and provide a
provable compliance of the behaviour of an implementation, to that of a specification [5].

It is important to stress the requirement of the synchronous behaviour of statecharts postu-
lated in Sect. 2.2. Its purpose is to prevent uncontrollable sequences of transitions taken by
a system under test. As a consequence, communication between concurrent states has to be
absent. For some statecharts, it could be possible to test the core transition structure with
transitions which do not trigger others and then test the remaining part of it, following the

26



approach described in [16].

4 Testing of statecharts using the Wp method

This section describes changes to the above testing method for statecharts, so as to use the
Wp method as a foundation.

4.1 Description of the Wp method

The Wp method [12] is an improvement of the W one, targeted at the reduction of a number
of test sequences. Instead of using a sigleet, multiple smaller sets are introduced, each
identifying a specific configuration. By ending test sequences with smaller sets, the number
of test sequences is reduced. Unfortunately, in a faulty implementation small identification
sets may fail to identify configurations correctly. To cope with this, a two-phase approach
is taken where the first stage tests a part of a statechart and checks whether the small sets
identify configurations; the rest of the statechart is tested at the second stage.

Formally, for a configuratiogonf, anidentification set S} is a set allowing one to
distinguish betweeronf and all other configurations in a statechart. The purpose of the
root in the superscript ofv will be explained later.

The first phase of the Wp method corresponds to the part of the W method where every
configuration is entered and verified using the fll= UgontW2S% set. Consequently, each
configurationconf is also checked whether it could be identified by the smallen&gt.

The set of test cases used in the first phase can be written as

T=CM«({1yuaMu@)’u...u@")™ ") W

This differs from the full test set (Egn. 1) in that the highest powe®'$fis m — n rather
thanm—n+ 1.

In addition to configuration verification, this phase also tests many transitions with la-
bels used inC. Specifically, transitions labelled by singleton sequenceS get tested
(between the respective configurations), since both their initial and final configurations are
verified with the fullW set. For non-singleton sequences, sucheapausethe interme-
diate configuration does not necessarily get verified and thus in general none of the two
transitions get tested during this phase. If, howeverrghdabel exists inC as a singleton
sequence, the intermediate configuration is verified Witland thus both transitions get
tested. This can be generalised, such that for a prefix-clogéar every sequencge C,

C contains all prefixes o) all transitions traversed @ get tested between their respective
configurations. This holds for the tape recorder.

At the second phase all transitions which were left out in the first phase are tested, using
small setsv2% to identify configurations and therefore create less test cases compared to
the W method while still providing the same level of confidence in the result of testing.
Let the initial configuration of a statechart be denotedbyf,;. The set of test cases for
the second phase of the Wp method (without leaving out already tested transitions) is the

following:
Ty = U {path} * Wr((:)(E)Epath,contni,)
pathe TS
whereTS=CM % &M « ({1} U @M U (8™)* U... U (™)™ ™) andCE stands for Config-
uration EnteredCE(path, conf) is the configuration entered after taking a pp#thfrom
a configuratiorconf. For instance, witttonfy; = {STOPIDLE }, ercog}recpausatonfmt) =

WT{OP%SHDLE} (only basic states in these two configurations are shown).

27



4.2 Merging rules for identification sets

In this subsection setg°® for every states of a statechart, merging rules for them and the
construction ofv°% are described.

Letw; ; denote a set of paths which distinguishes between statedj in the same flat
statechart. For exampleisrosray = {play}. For a states € p(st), anidentification seis
defined asvs = (i o(sy Ws,i» Which is a set allowing one to distinguish between a particular
statesin a statechaﬁtand all other states st (but generally not those in a different state).
For the controller these sets ar;o. = {Stop}, Weay = {direction}, Weecoro = {play, rec},
Weewer = {reW_0r ff }, Wrecorome = {PaAUSE, Wense = {CONtinug. The characterisation set
W can be expressed in termswaf; as

Wet = U Wsi = U Ws (2

sjiep(st) sep(st)

Rules to construct a characterisation ¥éf for a statechart involve mergind/yan

of the main statechart and merg@d' sets for every non-basic stasen it. The same
approach can be applied to merging of identification sets. As defined above, atdtate
some statechart can be identified witly; usingSto denote this statechart, it is possible
to write W = Ws. In order to obtain the identification sef for a states contained in
st of a higher-level stat& (assuming the last two are OR states) one has to ideniify
standstin S This givesw§ = w5, UwS. Consequentiws = w§ UWE U ... UwWS
wheres; ... s, are such thas, € p(9),s € p(s1),...,S € p(S-1),S e p(Sn). For
Fig. 1, Wi, = wialt UWE=CoRP = {stop play, continug. The proposition in the following
subsection describes how to reduce this set. The general rule for mergingetd can be
written as follows:

@ if S= sorSis an AND-state.

WS W if s€ p(S) andSis an OR-state,
s wherews identifiess within its enclosing oné&.
WS, U WE for somest € p*(S) ands € p(st).

Above, p™(S) means a set of children, grandchildren and so oB.ofdentification of a
statesin the whole statechart is accomplished usii§".

The identifying set for a configuratioronf can be defined as a union of identifying
sets of basic states in the configuration, i.e.

oot __ oot
WI:onf - U Wrs

scconf, sis basic

Applying this to the tape recorder, the size of the set of test cases for the first phase of the
Wp method is 32 and the second one — 306, resulting in 338 sequences which is a half of
the set provided in Sect. 3 above; the reduction could be much bigger for complex systems,
where the number of transitions to verify is high.

4.3 Optimisation of state identification sets

AboVe, Weecoroms aNd Wesse Were merged withwiecorp €vEn though it was not necessary
as Weecoroms aNd Weyse @lready identify states in the flattened MAIN state. Note that if
Wrecoroms = {CONtinug was used, there would be no way to tell STOP and RECORDING
apart in the merged statechart because transitions wittotiénuelabel exist from neither

of them. These considerations give rise to the following proposition.

28



Proposition Merging rules for state identification setg within an OR state pare(s) can
be simplified to §° = w8**"™ if the following holds:

e Labels used in any state of a statechart are not used in any other one.

e For all states s of a statechartwnly contains labels which exist on transitions from
s (described above).

The first condition of this proposition implies, for instance, that cannot be used
inside the RECORD state as it is used in the MAIN one. This condition holds due to the
requirements for the statechart testing method described in Sect. 3.4; the second one can be
made true by construction 8f. Using the proposition,
WA, e = {PaUSE, Wist, = {continug.
4.4 Optimisation of configuration identification

Consider the configuration with basic states PAUSE and IDLE. The identification set
for it is Wpaseey = {continugrewor ff }, but it could be reduced to a single element
continuerew_or_ff by taking the two transitions in the same step. The rule for construction
of an identifying set for a configuration can thus be optimised as follows:

ws UWS, if Sis an OR-state, wheree p(S) N conf,
i.e. the only substate @&in the configuratiorconf.

Woot = ¢ @ if Sis a basic state.
WL W2 UL uwg cif Sis an AND-state,
for n substates 0§, 5 € p(S) N conf.
WhereW?imeW?Om = {Seq& © Seq | Seq € Wz:)nf U {1},seq, € W(S:bonf U {1}} \ {1}!

such thaseg andseg, can be taken in the same step. The purposeZgf; is to identify

a part of a configurationonf underneatts, thus it is assumed thats, = vvfonfmp+ 9"
For example, when applied to the configuratibgwith basic states PAUSE and IDLE, the

above definition becomes

\Nroot — \Nroot U \\TAPERECORDER U TAPERECORDER
cfg TAPERECORDER {MAIN,RECORDPAUSE} = {SEARCHIDLE }

I I
WMAIN | j \p/RECORD \\/SEARCH

RECORD PAUSE IDLE
The aim of the rule is to take as many sequences in the same step as possible. For sets
optimised as described in Sect. 4.3, all pairs of sequences from any twasetsnv,
(sa, % € p(9)) can be taken in the same step, but applicability of configuration identifi-
cation does not depend on whether state identification sets are optimised or not. To avoid
redundant sequenceswg,  for an AND-stateS, every element of the identification sets
W, has to be used only once (not shown in the definition). One obéug andseg,
above is allowed to be empty (denotBdo accommodate pairs of sequences which cannot
be taken in the same step as well as to handle varying numbers of sequences in the sets to
beU-ed.

4.5 Merging rules for the characterisation set

The definition ofwW (Eqn. 2) for the case of mergedcan be shown to be consistent with
merging rules folW, such that after using the provided merging rules to constfet,

it is possible to unite these sets afterwards (Eqn. 2) and obtain the rulé ¢onstruction
(sections 3.2 and 3.3). The proof [5] is omitted from the paper. For exaMpfer the
MAIN state of the tape recorder in Fig. 1Wg = WA UWR Y UWEAN  UWRAR o ndJWiae =
{stop direction, rew_or_ff, pausecontinug. This W set and the reducess were used in
the computation of the size of the set of test cases in Sect. 4.2.

29



The described optimisation of configuration-identifying sets by taking multiple tran-
sitions at the same time may lead to a bigiérset than that constructed using thé
method. For example, in the controller every configuration can be identified by a pair of
transitions from its basic states. Optimised identification sets could use pairs of such tran-
sitionscontinuerew_or _ff, pauserew_or_ff and so on, a union of which is
{stop direction, pausecontinug x{rew_or_ff, stoprew_or_ff }, containing 8 elements as op-
posed to 4 foW constructed from unoptimised identification sets. Such a growtl of
causes the number of sequences in the first phase of the Wp method to increase to 64 but
in effect actually leads to a reduction in the total size of the set of test cases. This follows
from thewcons Sets being reduced twice and thus halves the size of the second phase. In the
overall, the reduction is by 36% from the Wp method without optimisatiow.gf; (but
with optimisation of state identification) and by 68% from tlWenethod.

4.6 Usage of status information

In some statecharts, it is possible to detect a state not by taking transitions but by observing
values of some variables such as dashboard lights. This could lead to a considerable reduc-
tion of the size of a test set. Information obtained by observation is further btk
information. Its usage is not new - most state-based object-oriented testing methods rely
onit, such as [1, 30].

Status variables have to be correctly implemented and their usage restricted in the same
way as labels: if some variable is used to identify a group of states, all those states should be
within the same higher-level state. For example, information about whether a tape moves
or not, cannot be used as a status as it is present in both PLAY andREMéates (which
belong to different higher-level states) because one cannot independently identify states in
MAIN or SEARCH with it.

Since status makes it possible to identify groups of states without taking any transitions,
when constructingys for a states, it is necessary to distinguish it only from members of the
group it belongs to. More precisely, when identifying states, one could resfatng, to
identify groupsgr of states and then constrwes 4 for states within each group. This leads
to usage of a paifstatug,, wsgr) instead of a setvs. For example, in the tape recorder
a tester can see whether a head is close to a tape; this is assumed to be unaffected by
the state in the SEARCH statechart, which only controls the speed of tape movement.
The head position permits an introduction of giatusheadclosdoolean status variable,
considered to be true in the PLAY and RECORD states of the MAIN statechart and define
Wsrop = ({—Statusheadclosg, @). = means that the output should be negative from the
status. The negation sign is not actually used in the set of test inputs but is shown here
for clarification of the expected output. Note that the proposition in Sect. 4.3 is easily
applicable to status variables. Here the length of test sequences for identification of the
STOP state as well as the length of those inheet of the first phase is reduced by one.

There could be more than a single status variable; for example, if one can observe
the red ‘recording in progress’ light, the RECORD state can be assumedfgfid=
({statusheadclose- statusrecordinglight, ). Here both STOP and PLAY states are
identified without taking any transitiongv,,y = ({statusheadclosestatusrecordinglight,
{pausé) can be used for testing of the statechart. The speed of tape movement could also
be used to tell REWFF from the IDLE state. In the example, status information only
reduces the size of the first phase of the Wp method, however in complex systems with
configuration identification sets containing a number of labels, one could expect it to re-
duce the complexity of testing significantly.

Having constructedtatug, and the correspondingsq state identification set, it is
necessary to integrate them. Since one can check all status variables in a single step, they

30



all can be united into a singleton sequence, the only element of it performing all status
reporting. Variables and sequences of transitions used to identify states can be merged
to identify configurations using the rules described in Sect. 4.2—4.4. Semantics of Harel
statecharts makes it possible to observe status variables at the same time as applying the first
element of a sequence from a state identification set. In practice, however, a tester is more
likely to make a separate step devoted to observation of a status report. A configuration
conf can be identified by a sefstatusont} *Wig,s . cont iNStead of a largenly,. Here
statugons is the set of status variables, used in the identification of this configuration; if

a particular value otatugons does not single outonf, Wts - ot IS USed to identify it
among configurations satisfying that valuestditug,ns. Thex operator is used instead of

x in order to observe status and take a transition labelled by the first element of sequences
iN WOSs...cont &t the same time.

Certain aspects of consistency of statecharts can be verified by testing. For exam-
ple, it is possible to ascertain that if a state is entered, its parent state is entered too. For
the tape recorder, one could verify RECORDINGp(RECORD by usingWeecorome =
({statusrecordlight}, {pausé), sinceWsecorp = ({statusrecordlight}, &) and from the
proposition in Sect. 4.8vecorone = (&, {pause). Status information provides a ‘free’

way to do this type of checking.

5 Conclusion

The Wp method can be applied to statecharts in a similar way to the W one [6, 5, 8], by
extension of merging rules for identification of a configuration. Due to the complexity
of statecharts, the Wp method can be expected to provide a significant reduction in the
size of the set of test cases, compared to the W method. Further, rules were provided
for different optimisations of such sets, allowing additional reduction in the complexity of
testing. Direct observation of state information can lead to further reduction of the size
of a set of test cases and can be applied together with the other optimisations described.
Usage of status variables also permits verification of state properties of a statechart, such
as whether a parent of an entered state is itself in a configuration.

The most important limitations of the presented extension are lack of handling of inter-
level transitions, requirement for labels not to be shared between states and a need to force
sequences of transitions during test execution. For the first of these, one might consider
interlevel transitions to belong to their scope states; shared labels can be overcome either
by partial flattening of the structure of a statechart or by making TCB construction sensitive
to shared labels. The work on these two issues is close to completion. For the last problem,
constraint logic programming [23] could potentially be used to derive sequences of test
inputs without resorting to artificial test inputs. This is a possible direction for future work.

Theoretical foundations of the usage of W and Wp testing methods for statecharts have
been shown to be correctin [5].

Acknowledgements

This work was funded by the DaimlerChrysler Research Laboratory (FT3/SM), Berlin,
Germany.

31



References

[1] T. Ball, D. Hoffman, F. Ruskey, R. Webber, and L. White. State generation and

(2]

(3]

(4]

(5]

(6]

(7]

(8]

automated class testingSoftware Testing, Verification and Reliability0(3):149—
170, September 2000.

M. Benjamin, D. Geist, A. Hartman, G. Mas, R. Smeets, and Y. Wolfsthal. A fea-
sibility study in formal coverage driven test generation.36th Design Automation
Conference (DAC'99)June 1999.

M. Blackburn. Using models for test generation and analysisDigital Avionics
Systems Conference (DASC’'98998.

M. Blackburn, R. Busser, and J. Fontaine. Automatic generation of test vectors for
SCR-style specifications. I2th Annual IEEE Conference on COMPuter ASSurance,
COMPASS '9718-19 June 1997.

K. Bogdanov. Automated testing of Harel's statechart8hD thesis, The University
of Sheffield, January 2000.

K. Bogdanov and M. Holcombe. Statechart testing method for aircraft control sys-
tems. Software testing, verification and reliabiljt§1:39-54, 2001.

K. Bogdanov and M. Holcombe. Properties of concurrently taken transitions of stat-
echarts. IrSemantic Foundations of Engineering Design Languages (SFEDDR.

K. Bogdanov, M. Holcombe, and H. Singh. Automated test set generation for stat-
echarts. In D. Hutter, W. Stephan, P. Traverso, and M. Ulimann, editqgslied
Formal Methods - FM-Trends 9&olume 1641 ofLecture Notes in Computer Sci-
ence pages 107-121. Springer Verlag, 1999.

[9] T. Chow. Testing software design modeled by finite-state machiisE Transac-

(10]

(11]

(12]

(13]

(14]

tions on Software Engineerin§E-4(3):178-187, 1978.

J. Dick and A. Faivre. Automating the generation and sequencing of test cases from
model-based specifications. In J.C.P. Woodcock and P.G. Larsen, eBMES93:
Industrial Strength Formal Methogdsolume 670 ofLecture Notes in Computer Sci-
ence pages 268-284. Formal Methods Europe, Springer Verlag, April 1993.

J.-C. Fernandez, C. Jard, T. Jeron, and G. Viho. Using on-the-fly verification tech-
niques for the generation of test suitescture Notes in Computer Sciend402:348—
359, 1996.

S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state moddIEEE Transactions on Software Engineering
17(6):591 — 603, June 1991.

D. Harel, H. Lachover, A. Nammad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. STATEMATE: A working environment for the devel-
opment of complex reactive systemdEE Transactions on Software Engineerjing
16(4):403-414, April 1990.

D. Harel and A. Naamad. The STATEMATE Semantics of Statech&A®M Trans-
actions on Software Engineering and Methodoldif#):293—-333, 1996.

32



[15] R. M. Hierons. Testing from a Z specificatiafournal of software testing, verification
and reliability, 7(1):19-33, 1997.

[16] R. M. Hierons. Testing from semi-independent communicating finite state machines
with a slow environmentlEE Proceedings on Software Engineeriig4(5-6):291—
295, 1997.

[17] M. Holcombe and F. IpateCorrect Systems: building a business process solution
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, September 1998.

[18] H. Hong, Y. Kim, S. Cha, D. Bae, and H. Ural. A test sequence selection method for
statechartsSoftware testing, verification and reliabiljt§0:203—-227, 2000.

[19] F. Ipate and M. Holcombe. An integration testing method that is proved to find all
faults. International Journal on Computer Mathematié3:159-178, 1997.

[20] F. E. Ipate.Theory of X-machines and Applications in Specification and Ted8hD
thesis, University of Sheffield, July 1995.

[21] A. Kerbrat. Automated test generation from SDL/UML specifications. Obtained
privately, March 1999.

[22] Y. Kim, H. Hong, S. Cho, D. Bae, and S. Cha. Test cases generation from UML state
diagrams.EE Proceedings - Softwaré46(4):187-192, August 1999.

[23] H. Lotzbeyer and A. Pretschner. Testing concurrent reactive systems with constraint
logic programming. Ir2nd Workshop on Rule-based constraint reasoning and pro-
gramming, Singapore&september 2000.

[24] E. Mikk, Y. Lakhnech, C. Petersohn, and M. Siegel. On formal semantics of state-
charts as supported by StatemateB@S-FACS Nothern Formal Methods Workshop
pages 0-13, Craiglands Hotel, lIkley, West Yorkshire, U.K., July 1997.

[25] J. Offutt and A. Abdurazik. Generating tests from UML specifications Sécond
International Conference on the Unified Modeling Language (UML99), Fort Collins,
CO, October 1999.

[26] J. Peleska and M. Siegel. Test automation of safety-critical reactive systems.
http://www.informatik.uni-bremen.de:80/ ~jp/papers/
sacj97.ps.gz  , August 1996.

[27] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In
T. Ito and A. Meyer, editorsint. Conf. TACS'91: Theoretical aspects of Computer
Software volume 526, pages 244—-264. Springer-Verlag, September 1991.

[28] Q. M. Tan, A. Petrenko, and G. von Bochmann. Checking experiments with labeled
transition systems for trace equivalence. IRiP 10th International Workshop on
Testing of Commnication Systems (IWTCS'&0byea, 1997.

[29] J. Tretmans and A. Belinfante. Automatic testing with formal methods.Eun
roSTAR’99: 7" European Int. Conference on Software Testing, Analysis & Review
Barcelona, Spain, November 8-12, 1999. EuroStar Conferences, Galway, Ireland.

[30] B. Tsai, S. Stobart, N. Parrington, and |. Mitchell. Automated class testing: Using
threaded multi-way trees to represent the behavior of state maclkinaals of Soft-
ware Engineering8:203-221, 1999.

33






Testing Nondeterministic (stream) X-machines

Florentin Ipate
Faculty of Sciences, Pitesti University
Str Targu din Vale 1, 0300 Pitesti, Romania

Marian Gheorghe
Department of Computer Science, Sheflield University
Regent Court, Portobello Street, Sheffield, S1 4DP, UK

Mike Holcombe
Department of Computer Science, Sheffield University
Regent Court, Portobello Street, Sheffield, S1 4DP, UK

Tudor Balanescu
Faculty of Sciences, Pitesti University
Str Targu din Vale 1, 0300 Pitesti, Romania

Abstract. Introduced by Eilenberg, X-machines (or Filenberg machines) were proposed
by Holcombe in 1988 as a basis for a possible specification language and since then a num-
ber of further investigations have demonstrated the value of this idea. A number of classes
of X-machines have been identified and studied, most importantly the class of stream X-
machines. A theory of testing based on stream X-machines has also been developed. This
allows the generation of test sets that are proved to guarantee the correctness of imple-
mentation against the specification under certain circumstances. A recent paper generalises
this theory to the general X-machine model and, furthermore, the results proven can form
the basis of two distinct testing strategies. This paper generalises these recent results to
the non-deterministic case. The generalisation is non-trivial and it can cope with all types
of non-determinism that can be found in an X-machine model.

Keywords: Testing, finite state machine, (stream) X-machine, formal specification
CR Categories: D.2.2, D.2.4

1 Introduction

One of the strengths of developing a formal specification of a system is the fact that it can act as
a reference point for the project development, it can define, in the form of a quasi-legal statement,
the required outcome of the project and it can also be a source of information that can be used to
establish that the implementation is correct. In recent years there has been some interest in trying
to use the information in a formal specification as a basis for test set generation. Testing is all about
finding faults and very seldom the issue of the number of faults that remain in the implementation
after testing is discussed. Bernot et al. [6] and Dauchy et al. [11] consider the generation of test
sets from algebraic specifications, here there is a more comprehensive framework (the ”hypothesis”)
which allows for the issue of test effectiveness to be discussed but the test generation process does
not exploit this particularly.

The problem of test effectiveness is best addressed if the test set can be guaranteed to find all
faults of the implementation. One approach is to consider two algebraic objects (the specification
and the implementation), each of them characterised by an input/output behaviour, and to prove
that, if the behaviours of these objects coincide for any input in the test set, they will coincide
for any input in the domain. Thus, the specification and the implementation will be guaranteed to
have identical behaviour provided that they behave identically when supplied with the inputs in the
test set. Obviously, such an approach would only be applicable to certain systems and specification

35



languages; it will not be applicable to an arbitrary computer system (an arbitrary Turing machines),
otherwise the halting problem for Turing machines, for example, will be contradicted.

This approach has been employed in the area of test generation for the software modelled by
finite state machines (FSM) [10], [30], [14], [21]. The best known testing methods based on FSM
specifications are transition-tour (T-) method [31], [34], unique-input-output (UIO-) method [33],
[34], distinguishing sequence (DS-) method [15], [34] and characterizing set (W-) method [10], [34].
The purpose of any testing method is to come up with at least two requirements: (a) the test
suite should be relatively short and (b) the test suite should cover as much as possible all faults
[14]. Concerning fault coverage, the last two methods cover all faults. Shorter test suite has been
obtained for UIO-method in the case of UIO sequences with overlapping [35], or either when the
FSM has reset capacity (there is an input that takes every state to the initial state) or has loops
(transitions with the same initial and final states) [1], or when the FSM contains either invertible
transitions [16] or invertible sequences of transitions [17]. A variant of W-method called ’partial
W-method’” (or Wp-method) yields shorter test suites than the W-method [14]. All these methods
assume that the control aspects of the software are separated from the system data and can be
modelled by a FSM. However, in some situations it is very difficult to separate the system control
from its data [10], so a more complex specification model that integrates these two aspects is
needed.

Such a model is the X-machine (or Eilenberg machine), a blend of FSMs, data structures and
processing relations (or functions). In its essence an X-machine is like a FSM but with one important
difference. A basic data set, X, is identified together with a set of basic processing relations (or
functions), @, which operate on X. Each arrow in the finite state machine diagram is then labelled
by a relation (or function) from @, the sequences of state transitions in the machine determine the
processing of the data set and thus the relation or function computed. The data set X can contain
information about the internal memory of a system as well as different sorts of output behaviour
so it is possible to model very general systems in a transparent way. Introduced by Eilenberg [12]
in 1974, X-machines are proposed by Holcombe [19] as a basis for a possible specification language
and since then a number of further investigations have demonstrated that the model is intuitive
and easy to use [21], [24], [25], [13].

A number of classes of X-machines have been identified and studied [21], [23]. Typically, these
classes are defined by restrictions on the underlying data set X and the set of basic processing
relations (or functions), @, of the machines. Among all these, the class of stream X-machines
(SXM) has received the most attention. Particular types of SXMs, having stacks [22], or sequences
of symbols [3] as memory, or output sequences instead of single output symbols [2], have also been
considered.

Thus SXMs are generalisations of finite state machines, similar to extended finite state machines
(EFSM) [29], [9]: here, the variables are replaced by a memory and the sets of predicates and
assignments are replaced by a set of processing relations (or functions).

A testing strategy for systems specified by stream X-machines has also been developed [23], [20],
[21]. Here, a number of transition are grouped into processing relations (or functions) and these
are assumed to be implemented correctly. Thus, testing the SXM reduces to testing its transition
diagram (the associated automaton of the stream X-machine). The correctness of the processing
relations (or functions) is checked by a separate process: depending on the nature of the relation
(or function), these can be tested using the same method or alternative functional methods [21],
[24]. Furthermore, the method can only be applied if the processing relations (or functions) meet
some ”design for test conditions”, completeness and output-distinguishability. The method was
first developed in the context of deterministic stream X-machines [23] and then extended to the
non-deterministic case considering test for equivalence [26] or conformance [18].

A recent paper [27] generalises the existing stream X-machine testing theory in more than one
way. Firstly, it considers the general X-machine model and secondly, the results proved can give
rise to two distinct testing strategies. These results and their corresponding testing strategies are
then particularised to the stream X-machine class. One of these strategies is a slightly stronger
form of the result given in [23].

However, this generalization is only aimed at deterministic X-machines. On the other hand,
there is a practical need for testing non-deterministic models. Non-determinism and concurrency

36



are two important features of formal specification languages for communicating software, in par-
ticular communication protocols. All major specification languages for communication software -
e.g. LOTOS [8], SDL [5] - support non-determinism. Moreover, a system of communicating deter-
ministic X-machines may have non-deterministic behaviour [4].

This paper generalises these recent results to the non-deterministic case. The generalisation is
non-trivial and it can cope with all types of non-determinism that can be found in an X-machine
model. The paper is structured as follows: section 2 contains concepts from FSM theory and
FSM testing; section 3 introduces the (non-deterministic) X-machine model and related concepts;
sections 4 and 5 present the two testing strategies and the corresponding theoretical concepts and
results; these are then particularised to the stream X-machine class in section 6, finally conclusions
are drawn in section 7.

2 Finite state machine concepts

This section defines the automaton or recognizer and the finite state machine [28] and presents
related concepts and results that will be used later in the paper.

Before we go any further, we introduce the notation used in this paper. When considering
sequences of inputs or outputs we will use A* to denote the set of finite sequences with members
in A. X\ will denote the empty sequence and AT = A* — {A}. For a,b € A*, ab will denote the
concatenation of sequences a and b. For U,V C A*, UV = {ab | a € U,b € V}. For a non-empty
sequence a = a ...a, with a1,...,a, € A*,n > 1, rear(a) = a, denotes the rightmost element of
the sequence; rear(A) is undefined.

For a relation (or a partial function) f : A +— B, dom(f) denotes the domain of f. For
U Cdom(f), f(U)={b| Ja € U with afb}. For two (partial) functions f : A — B, g: B — C,
gof:A— C is a function defined by g o f(a) = g(f(a)) Va € A.

For a finite set A, card(A) denotes the number of elements of A.

Definition 1. An automaton is a system A = (X,Q, F, qo,T) where:
3. Q,T are the finite set of inputs, states and final states, T C Q; F' is the next state function,
F:QxX — 29, and qo € Q is the initial state.

For the testing purposes all the states are final states, T = @, and thus the set T will be
ignored.

Note 1. In general, an automaton may be non-deterministic in the sense that for each state ¢ and
input o there may be more than one next state. An automaton is called deterministic if F is a
(partial) function F: Q x ¥ — Q.

Definition 2. Ifq,¢' € Q, 0 € X and ¢’ € F(q,0) we say that o is an arc from q to ¢' and write
o:q9q— 4. If q,4' € Q are such that there exist ¢1,...,qnt1 € Q, n >0, with ¢1 = q, gny1 = ¢
and o; @ q; = ¢i+1 for all 1 < i < n, we say that we have a path s = o1 ...0, from q to ¢' and
write s : ¢ > ¢'. For ¢ € Q, Ly = {s € X* | 3r € Q such that s : ¢ — r} is called the language
accepted by A in q. If ¢ = qo then L, is simply called the language accepted by A and is denoted
by Ly.

Two automata A and A’ are called U—equivalent, U C Z* if LyNU = Ly NU. U = X*
then A and A’ are called equivalent.

Definition 3. A finite state machine (FSM) is a system M = (X,0,Q, F,\) where:
X.0,Q are finite, non-empty sets of inputs, outputs and states, respectively; F is the next state

function as in Definition 1 and X\ : Q x X' —> O, is the output function.

Definition 4. Given a set of input sequences U C X*, two states p,q are called U— equivalent if
p and q respond with identical output sequences to each input sequence in U.

37



Two FSMs M and M' are called U—equivalent, U C X* if their initial states are U —equivalent.
Two FSMs are equivalent if they are U—equivalent for any set U of input sequences.

We now turn our attention to FSM testing and in particular to the generation of test sequences
from a FSM specification. Let us consider the automaton associated with an X-machine (see Note
3). This automaton is deterministic, but in general not completely specified. The testing theory
based on FSMs, that interests us, deals in general with FSMs deterministic, minimal, completely
specified and refers to an equivalence relationship between specification and implementation (see
[10], [14] and [32] for a review on FSM testing). According to this theory, once we have a specifi-
cation S modelled as a FSM with the above properties we may construct a test set U and when
applied to the implementation I is able to find all errors if the implementation I is assumed to be
modelled as a FSM [10], [14]. Formally if both S and I are modelled as FSMs and satisfy some
conditions, such as those previously mentioned, then they are equivalent iff they are U —equivalent,
for U a test set as above. When dealing with an X-machine, an automaton A(P) (see Note 3) may
be always defined. For two X-machines P and P’, we are interested in finding a set U over $*, such
that whenever their underlying automata A(P) and A(P') are U—equivalent, see Notes 3, then
they equivalent. There have been suggested some ways of getting a FSM from an automaton [7].
According to [7] an incompletely specified automaton is transformed into a completely specified
FSM by considering for every transition of the automaton an output 1; for all new transitions
introduced for missing inputs and going to a dead state, an output 0 is associated with. For the
obtained FSM, which must be deterministic and minimal, a test set U may be built according
to a given testing strategy [10], [14]. Further on, U may be used to prove the equivalence of the
two automata representing the underlying state machines of the specification and implementation
X-machines.

3 X-machine concepts

This section presents the X-machine model and illustrates it with an example.
Definition 5. An X-machine is a system P = (X, Q, P, F, qo, c,d, 0, 0) where:

— X is a (possibly infinite) set called the data set;

— @ 1s the finite set of states;

— & is the set of basic processing relations, a finite set of partial functions f: X +— X

— F is the next state function, a (partial) function F : Q x & — 2%;

— qo € @ is the initial state;

— c 1is the stopping condition of P, a predicate on X;

— d is the testing domain of P, a function d : & — 2X such that Vf € & d(f) C dom(f);

— O is the output set;

— 0 is the output function of P, a (partial) function o : X — O with dom(o) D dom(P), where
dom(®) = U;cg dom(f)

Compared with the previous definition of an X-machine [21], the above definition includes
some specific elements introduced for testing purposes: stopping condition (¢), testing domain (d),
output function (0); d determines the doamain values of each processing function that can be used
in testing, o the output that can be observed, whereas c replaces the set of final states that usually
appears in previous definitions of an X-machine.

Note 2. For an X-machine P as above, o is extended to a free-semigroup morphism o : X* — O*.
Thus o(A) = A, and o(z1...2p) = o(®1)...0(zp),p > 1. In what follows we will refer to this

extension.

It is sometimes helpful to think of an X-machine as an automaton with the arcs labelled by
symbols from .

Note 8. For an X-machine P as above, the associated automaton is A(P) = ($,Q, F, ).

38



Ezxample 1. Let us imagine a computer program that, when supplied with a string containing any
letter, digit and the blank character, counts the number of words for which the first character is 1,
all prefixes have a number of 1s that is greater than or equal to the number of Os and characters
others than 0 or 1, may count as either a 0 or an 1. Words are separated by one or more blanks.
For example, the input sequence '10a¢10$$01601$111’ where $ denotes a blank, can be split into the
following words '10a10’, '01601" and '111’. If the character a in the first word counts as an 1’ then
the program will count two such words, otherwise, it will count only one word. An X-machine model
of this program is given next. @ is {qo, q1,92,93} and F' is defined by F(qo,%) = g3, F(gs3,€) = ¢q,
F(gs, f1) = a1, F(as, fs) = a3, F(q1, fo) = @, Fla1, fs) = a3, F(q1,9) = a1, Fa2, o) = g3,
F(g2,h) = ¢2. X = X* x N' x N, where ¥ = {0,1,b}, N' = NU {-1, -2, -3, —4}. The data set
of the machine comprises tuples (s,n,k),s € X*, n € N', k € N, where s is the string supplied
to the system, n represents the difference between the number of 1s and the number of Os in the
current word and k the number of words. For reasons that will be explained later, n may also
have the ”dummy” values —1, —2, —3 or —4. & = {i, e, fo, f1, f», 9, h}, where the definitions of the
processing relations are as follows:

y k)e(s,—1,k), where s € X*, k € N, y is any character other than 1,
0s,0,k) fo(s,—2,k — 1), where s € X*, k € N,k > 0,
1 k)fi(s,1,k+ 1), where s € X*, k,n € N,
$s,m, k) fp(s,0,k), where s € * k€ N,n € N'\ {-4},
g(s,n +y,k), where s € X* k,n € N, (n >0, z € {0,c} and y = —1) or (z € {1,¢}
and y = 1), where ¢ denotes any character other than 0 or 1,
(zs,n,k)h(s,—3,k), where s € X*, ke Nyne N'\ {-4},z € X.

We take O = N’ x N, o(s,n, k) = (n,k), s € X*, n,e N', k € N; ¢(A\,n,k) = true for all
n € N', k € N, otherwise false.

It may be observed that g is a relation associating to any element (cs,n, k), where ¢ is any
character other than 0 or 1, either (s,n — 1,k) or (s,n + 1,k) and ($s,n,k) € dom(h) N dom(fp).
Both of the above conditions are different forms of non-determinism as we will show further on.

Definition 6. If q,¢' € Q, f € &, and ¢’ € F(q, f) we say that f is an arc from q to ¢' and
write f 1 q = ¢'. If q,¢' € Q are such that there exist q1,...,qn+1 € Q, n > 0, with ¢1 = q,
Gn+1 = ¢ and fi 1 q; = qiv1 for all 1 < i < n, we say that we have a path pt = fi...f, from
q to ¢ and write pt : ¢ — ¢'. Fach path pt = f1 ... f, gives rise to a relation (the path relation)
fot : X «— X where xfx’ if and only if 31, ..., 2n41 € X such that z; fiziy1 for all1 <i<n,
where T1 = T, Tpy1 = .

A machine computation takes the form of a traversal of a path in the state space and the
application, in turn, of the path labels (which represent basic processing relations). This gives rise
to the relation computed by the machine, as defined next.

Definition 7. The relation computed by P, f¥ : X «— X is defined by xf¥x' if and only if
Jq € Q and a path pt : go — q such that x fpz' and c(z') is true.

In general, an X-machine may be non-deterministic, in the sense that the application of an initial
data value £ may produce more than one value of the data set. An X-machine is deterministic if its
associated automaton is deterministic, & is a set of partial functions rather than relations, any two
processing functions that emerge from the same state have disjointed domains and no processing
function can process values for which the stopping condition is true.

Definition 8. An X-machine P is called deterministic when F : Q x & — Q; ® is a set of partial
functions rather than relations; for any two distinct processing functions f,g € @, if g € Q such
that (q, f) € dom(F) and (q,g) € dom(F) then dom(f) Ndom(g) = 0; for any processing function
I, if © € dom(f) then c¢(x) = false.

According to the previous definition an X-machine can have 4 types of non-determinism:

— state non-determinism if there exist ¢ € Q, f € & with card(F(q, f)) > 1.

39



— operator non-determinism if some elements of ¢ are relations instead of partial functions.
— domain non-determinism if there exist ¢ € Q, f1, f2 € @ with (g, f1), (q, f2) € dom(F), f1 # f2
and dom(f1) N dom(f2) # 0.

— termination non-determinism if there exist z € X, f € @ with z € dom(f) and ¢(z) = true.

The X-machine in Example 1 has domain and operator non-determinism but not state or termi-
nation non-determinism (i.e. the fact that c¢ is true only for (A, n,k) values avoids termination
non-determinism).

In general state non-determinism and termination non-determinism are not really necessary
since they can be removed by rewriting the X-machine. Indeed, state non-determinism can be
removed by using standard algorithms that take a non-deterministic automaton and produce an
equivalent deterministic automaton. The transformation does not preserve the domain determin-
ism, as can be seen in Example 2.

Ezample 2. Let us consider an X-machine having the following next state function: F(0, f) =
{1,2},F(1, f1) = 3,F(2,f2) = 3 where dom(f1) N dom(f2) # 0. It is state non-deterministic
but domain deterministic. An equivalent deterministic automaton is F'(0, f) = 12, F'(12, f1) =
F'(12, f2) = 3. The new equivalent X-machine is state deterministic but domain non-deterministic.

Lemma 1. For any X-machine P an equivalent termination deterministic X-machine P' may be
constructed.

Proof. If P is termination non-deterministic then P' will have the data set X' = X x {0, 1},
where X is data set of P, and the same set of states with P. All the processing relations of P' will
be defined on subsets of X x {0}: &' = {f' | 3f € &,Vz,y € X if zfy then (2,0)f'(y,0)}; ¢'(z)
will only be true iff x € X x {1}. For each state ¢ € @), new loop-back transition will be added.
All these transitions will be labelled by a relation t, that translates every (x,0) € X x {0} into
(z,1) € X x {1}. Consequently, F' : Q x &' — Q is defined by r € F'(q, f') iff r € F(q, f) and
F'(q,t) = {q} for all ¢ € Q. The testing domain d' is defined by d'(f') = {(z,0) | z € d(f)} and
d(t) = {(z,0)} for a particular z, € X. Finally o'(z,0) = o(z), for all z € dom(o).

According to this lemma termination non-determinism can be transformed into domain non-
determinism.

From this note it follows that we may easily transform any X-machine into a new one having
associated stopping conditions to every state. This observations shows that the above transforma-
tion is on the one hand consistent with the testing hypothesis asking for all states being final states
and on the other hand proves that stopping conditions may be ignored. Subsequently we will con-
sider X-machines which are state and termination deterministic and without stopping conditions
specified. According to this observation since now on any X-machine as introduced by Definition
5 will have the next state function of the form F': Q x & — @ no stopping condition at all.

Domain non-determinism and operator non-determinism cannot be removed by rewriting the
X-machine, so there seems no good reason to outlaw these types of non-determinism and, as
illustrated in Example 1, they can be useful.

4 The breakpoint test set of X-machines

We turn now our attention to testing. As stated in the introduction, the approach used is to consider
two X-machines and to generate a finite set of sequences that, when applied to the two machines
with identical observable results, guarantees that the two machines have identical behaviour. This
is formalised next. The section also introduces the concepts that are required in the testing process
and shows how a test set can be generated.

Definition 9. For an X-machine P, a partial function hp : X* — X* called a a breakpoint
computation of P is defined as hp(x1...%n) = Y1...Yn, if there exists a path fi ... fn from qo
such that z; fiy;, x; € d(f;), 1 <i<n,n >0.

Note 4. The elements z; for all 2 < 4 < n in the above definition for which z; # y;_1 are called
breakpoint values of hp.

40



That is, a breakpoint computation associates a sequence of data values with the sequence
of data values produced when a path in the machine is traversed. Not that, in general, for a
non-deterministic X-machine, many paths may be traversed by one sequence of data values and
furthermore a path may produce many sequences of data values, so a breakpoint computation may
not be uniquely defined, as illustrated by the following example.

Ezxample 3. For P as in Example 1 and

z1 = (11a0%1, —4,0), 2, = (11a0$1,0,0), 3 = (1a0$1,1,1), 24 = (a0$1,2,1), 25 = (0$1,0,1),
Te = ($17 _270)7 T7 = (17070)

we may get either y = y1y2ysyaysyeyz, or
quently we may define hp(z) =y or hlip(x
obtained as follows:

Y = Y1Y293Y1YsYeYr, if path i f1ggfofsfi is used. Conse-
) =4', where £ =z ...27. The values y;, 1 < i <7 are

y1 = (11a081,0,0) (z1iy: and F(qo,i) = q3),

y2 = (1a081, 1, 1) (w2 fry2 and F(gs, f1) = q1),

ys = (a081,2,1) (z3gys and F(q1,9) = q1),

ya = (081, 3 1) yi = (001,1,1), (z49y4, T4gys and F(q1,9) = q1),
Ys = ($ T 7 )7 (5U5foy5 and F(q17f0) = q2)7
ye = (1,0,0), (26 foys and F(go, fo) = q3),
yr = (A 1,1), (z7 fryr and F(gs, f1) = q1).

It may be observed that z5 is a breakpoint value of both hp and hlp (x5 # Y4, x5 # y})-

In order to test non-deterministic implementations, one usually makes a so-called complete-
testing assumption, [30] which says that it is possible, by applying a given sequence of data values
s to a given implementation a finite number of times, to exercise all the paths of the implemen-
tation that can be traversed by s. Without such an assumption, no test suites can guarantee full
fault coverage for non-deterministic implementations. In terms of X-machines, this means that the
application of a set of sequences I to the implementation a finite number of times will result in a
(breakpoint) computation of the implementation.

A set of sequences of data set values I will detect all the faults of an implementation P’ against
a specification P if the application of I a sufficient number of times (i.e. to exercise all the paths
of P and P’ that can be traversed by I) to P and P’ with identical output results guarantees that
P and P’ will behave identically for any sequence of data set values. Such a set will be called a
(breakpoint) test set of P and P'.

Definition 10. Two X-machines P and P’ are called testing-compatible if their data sets, sets of
basic processing relations, and output functions coincide.

Definition 11. Let P = (X,Q,®,F,q,d,0,0) and P' = (X,Q",®,F’,q},d,0,0) be two X-
machines that are testing-compatible. Then a finite set I C X* is called a breakpoint test set
of P and P' if whenever there exist hp and hp: two breakpoint computations of P and P’, respec-
tively, with 0o hp(x) = 0o hp(z), © € I we have fF = fF'.

Note 5. For two X-machines P and P’, if A(P) and A(P') are equivalent automata then f£ = f¥'.
However, the converse implication is not true, as it is easy to construct two testing compatible X-
machines that compute identical relations and have non-equivalent associated automata.

Similar to the deterministic case [23], [27], the idea of our method is to prove a stronger
requirement, that is that the two associated automata are equivalent. In this way, in order to test
the two X-machines we can use the test sets of the associated automata. However, this idea can
only work if it is possible to distinguish between any two processing relations using appropriate
values.

Definition 12. An X-machine is called weak output-distinguishable if for any f,g € D, if there
exist ¢, ), 2y € X with zfz!,xgzl, and o(z)) = o(z)) then f =g.

An X-machine is called strong output-distinguishable if for any f, g € ®, if there exist x, x|, z}, €
X with zfx}, zgzl and o(z}) = o(xh) then f = g and = = b,

41



The X-machine in Example 1 is strong output-distinguishable; in order to meet this property
the dummy values —1, —2, —3 and —4 were used in the definitions of e, fo, h and 4, respectively.

Obviously, if & is a set of (partial) functions rather than relations, weak output-distinguisability
and strong output-distinguishability coincide. In this section only the ”weak” condition will be used,
the ”strong” condition will be required in the next section.

We now need a mechanism for translating sequences of processing relations into sequences of
data. This is a test function, as defined next.

Definition 13. Let P = (X,Q, %, F,qo,d,0) be an X-machine. Then a function t¥ : & — X*
recursively defined as follows:

- t") =X\
— for p > 0, consider t¥ defined for any string fi ... f, € ®*; then for any string fi ... fpfpt1,
tP(f1... fofpi1) is either of:
o if fi...fp is a path in P that emerges from the initial state qo then t¥'(f1... fpfp+1) =
t"(fi- - fp)Tpi1, where zpi1 € d(fpi1)
o otherwise t¥'(f1... fpfor1) =tF(f1... fp).

is called a test function of P.

In other words, for any sequence of processing relations pt = fi ... f,, t¥'(pt) is a sequence of
data that exercises the longest prefix of pt that is a path of the machine and also tries to exercise
the processing relation that follows after this prefix, if this exists. Note that a test function is not
uniquely defined, there may be many test functions of the same X-machine.

Example 4. For the X-machine in Example 1, a test function for the sequence i f1ggfo fohh can be
constructed as follows:

t(Z) = I t(Zfl) = I1T2 t(iflg) = T1T23 t(iflgg) = T1T2X3T4 t(iflggfo) = T1X2X3X4T5
t(if199fofs) = T17223247576 1(if199fofoh) = T1T2T3T4T5T6T7
— t(if199fofohh) = 2172737475767

where z1, z2, T3, T4, Ts5, Te, 7 are those in Example 3. The construction is correct since z1 € d(4),

z2 € d(f1), 23 € d(g), 74 € d(9), 25 € d(fo),vs € d(fy),z7 € d(h), ifiggfofs is a path from gy but
1199 fofoh is not a path from gp.

Definition 14. A test function t¥ is called n natural, n > 2, if for any f1,...,f, € &, T1,...,2, €
X foralll<p<mn,iftP(fi...fp) =21...3p then z;fiz;11 for all 1 <i<p-—1.

That is, a test function is n natural when, for any sequence of basic processing relations of length
at most n, the values produced by the test function are chosen such that the next value is obtained
from the current value through the application of the corresponding processing relation. Example
4 shows the construction of a 4 natural test function which is not 5 natural (since z5 ¢ g(z4)).

Theorem 1. Let P = (X,Q, 9, F,q,d,0,0) and P' = (X,Q",®,F',¢,d,0,0) be two X-machines
that are testing-compatible and weak output-distinguishable, let t¥ be a test function of P U C &*
and I = tP'(U). If there exist hp and hp' two breakpoint computations of P and P', respectively,
with oo hp(x) =00 hp(x), x € I then A(P) and A(P') are U-equivalent.

Proof. Let f1 ... f, € U. We prove that f1 ... f, is a path in P iff f1... f, is a path in P'.

— if f1... fn is a path in P then from Definition 13 it results that there exist x; € dom(f;) for all
1 <i<n suchthatt'(fi... fn) = 21 ...2, and there exist yy, ...,y € X such that z; fiy; for
all 1 < i < n. According to Definition 9 we may define a breakpoint computation function hp
such that hp(z1 ...%n) = Y1 - .. Yn. If there exists hp: as stated in the hypothesis of this theorem,
such that oo hp(zy...xn) = 00 hp(Z1 ...2,) then it follows that there exist yi,...,y, € X
such that 0 o hp(x1...2,) = yi...yh,. Consequently there exist fi,...,[f) € ® with z;f]y;
for all1 < i <mn, and o(y1-..yn) = o(y; --.y),). Since ® is weak output-distinguishable and
o(y:) = o(y}), by induction on 1 < i < n, it follows that f; = f] and hence f1 ... fn is a path
in P'.

42



— 4f fi...fn is not a path in P then let k € {0,...,n — 1} be the largest number for which
fi...fr is a path in P. Then according to Definition 13 we have t¥'(f1 ... fn) = T1 ... TpTpy1
for some x; € X, 1 < i < k+ 1. Let us assume that fi... fry1 is a path in P'. Then there
exist Y1,---,Yk+1 € X such that z;fiy;, x; € d(f;), for all 1 < i < k+ 1 and hp with
hpr (21 ... Teq1) = Y1---Yrs1- Then there exist fi,...,fr 1 € D,u1,---,Ypy1 € X such that
fi- - frpy 85 a path in P and x;fy; for all1 <i < k+1 and o(y1 ... Yr41) = 0(y1 - - Yppq)-
Hence o(y;) = o(y}) for all 1 <i < k+ 1. Since  is weak output-distinguishable, by induction
onl<i<k+1, it follows that f; = f! and hence f1 ... fx+1 is a path in P which contradicts
our assumption. Thus fi ... fry1 is not a path in P'.

Corollary 1. Let P = (X,Q,®, F,qo,d,0,0) and P' = (X,Q’, P, F',q},d, 0, 0) be two X-machines
that are testing-compatible and weak output-distinguishable and let t¥ be o test function of P. If U
is a test set of A(P) and A(P') such that exist hp, hp: two breakpoint computations of P and P,
respectively, with oo hp(z) = 0o hp(z), x € tF(U), then t¥(U) is a breakpoint test set of P and
P

Proof. Indeed from Theorem 1 it follows that A(P) and A(P') are U-equivalent and according
to [21] it follows that they are equivalent and consequently f¥ = f¥ "

Thus, Corollary 1 can be used to generate a breakpoint test set of P and P’; this is I = tF(U),
with U a test set of A(P) [10], [34], [14].

Note that the test set defined in this section consists of a number of sequences of data set
elements. Each such sequence exercises a path of the machine and each element of the sequence
is applied to the processing relation that labels the corresponding arc, regardless of the result
computed by the previous arc. That is, the application of the test set happens as though after
processing an arc the machine stops and receives a new data value from the test set. We call this
the breakpoint testing strategy for X-machines.

Although not unusual in practice, the need to place breakpoints after each arc of the machine is
processed will obviously complicate the testing process. Ideally, only the initial value of the data set
will have to be supplied to the machine, the subsequent values will be computed by the processing
relations that make up the path followed by the machine (this is also the idea behind the concept
of an n natural test function defined above). This may not always be possible, since in general not
all the paths of the machine can be exercised by appropriate initial values of the data set.

However, if a value can be obtained by applying the appropriate processing relation to the
previous value in the sequence then there is no need to supply that value to the machine, since
it will be simply computed by it. Thus the sequence needs not contain that value, and this can
be replaced by a symbol that indicates this. This idea leads to the concept of extended test set as
presented next.

5 The extended test set of X-machines

Let us first consider some notations and definitions. If e ¢ X and X, denotes X U {e}, then for
z € X, y € X we denote by nvl(z,y) either z, if z e or y, if z = e.

An extended breakpoint computation will be further on considered as a natural extension of
breakpoint computation hp, introduced by Definition 9.

Definition 15. For an X-machine P, a partial function hp : XX — X* called an extended
breakpoint computation of P is defined as hp(x1...Tn) = Y1 -..Yn, if there exists a path fi ... fn
from qo such that x1 fiy1, z1 € d(f1), and nvlc(x;,yi—1) fivs, nvle(zi,yi—1) € d(fi), 2 < i < n,
n > 0.

_ Like hp defined in the previous section, for a non-deterministic X-machine, the partial functions
hp are in general not uniquely defined.

Ezample 5. For P as in Example 1, z;, y;, 1 < i < 7, yj, and a path v = ifiggfofsfi as in
Example 3, if z. = z1eeexsee, we may contruct hp,h'p : X, X* — X*, such that hp(z.) =y
and W p(z.) = y', where y = y1y2y3YaysY6yr, ¥ = Y1Y2Y3Y1YsY6y7-

43



The breakpoint test introduced in Definition 11 may be in a natural way extended in this
context by an extended breakpoint test set I, C X X} by replacing the partial functions hp, hps
with hp and hpr respectively. A test set I, that is a subset of X{e}* will be called a natural test
set.

That is, a natural extended breakpoint test set is made up of sequences whose all elements,
except the first, are e. This corresponds to the situation where only the initial data value of each
sequence is supplied to the two machines.

Lemma 2. If I € X* is a breakpoint test set of P and P’ then I is also an extended test set of P
and P'. B
Proof. Follows directly from the fact that I, = I and hp = hp.

Definition 16. A partial function E¥ : X* x * — X X is called an input extention of P if for
any T1,..., 2, € X, f1,..., [ €D, k+1>n >0, E¥(1...%n, f1... fr) = T1,e.. . Tne € XX}
as follows:

— T1e =171
—forl<j<mn
o if fi...fj_1 is a path of P that starts at qo and x;_1 € d(fj_1) thenz;, =e ifxj_1 fj_1%;
and zj. = x; otherwise;
o elsex;c =14 j<i<n.

That is, if ; can be computed by applying the corresponding processing relation to z;_; then
z;. = e, otherwise 7, = z;. Thus EF provides values different from e only when the corresponding
processing relations cannot be exercised by using the previous computed values.

Note that, in general, for a non-deterministic stream X-machine E¥ may not be uniquely
defined. Also, for U C &*, I, = Uy EF (tF(u),u) is a set included in XX, so an extended

—P
computation h; may be defined.

Ezample 6. For P,z,y as in Example 3 and u, z. as in Example 5, we may observe that tf(u) = =,
EP(z,u) = z, and exist hp, hp such that hp(z) = hp(z.) i.e. hp(tF(u)) = hp(EF (tF(u),u)).
This is a more general result as shown next.

Lemma 3. Given an X-machine P = (X,Q,®, F,qo,d,0,0), t¥ a test function of P and U C &*,
for any hp there exists hp with hp(EF (tF (u),u)) = hp(tf (u)) for all u € U.

Proof. Letu=f1...fn €U, x1...2 =tF(u), ¥1¢... 7k = EX(tF (u),u) and hp an arbitrary
extended breakpoint computation such that Ep(a:l,e o The) = Y1...Yk. According to hp definition
we have z1,¢ € d(f1), T1,efiyn and nvle(Xie,yi—1) € d(fi), nvle(Xie,yi—1)fiyi for all 2 < i < k.
We prove now that x; € d(f;),z;fy; for all 1 < i < k. We prove this by induction on 1 <i < k.
This is obviously true for i =1 since z1, = x1. We assume that the property holds for 1 < j <i. If
Tit1,e # € then x;41 . = ;41 and the property holds for j + 1 as nvle(zi41,Y;) = Tg41. Otherwise
we have Tiy1 = yi, $0 y; € d(fiy1),Yifir1vir1 and again the property holds for j + 1. Hence we
may define a breakpoint computation hp such that hp(z1 ...xE) = y1...Yk, and according to the
construction above has the property hp(ET (t¥ (u),u)) = hp(tF (u)) for all u € U.

Theorem 2. Let P = (X,Q,9, F,qo,d,0,0) and P' = (X,Q', P, F', q.,d, 0, 0) be two X-machines
that are testing-compatible and strong output-distinguishable and let t¥ be a test function of P,
U C &*, EY an input extension of P and I, = Uycu EF (t¥ (u),u). If there exist hp and hp two
extended breakpoint computations of P and P', respectively with oo hp(z.) = 0o hpi (), Te € I,
then A(P) and A(P'") are U-equivalent.

Proof. We prove that if oohp(x.) = oohp: (x.) then there exist hp and hp with oohp = oohpr,
on I, where I = tP(U). The result we are after will then follow from this assertion and Theorem
1.

Let Pto be the set of all paths of P that start at go and Pt], the set of all paths of P' that start at
gy Letu=fi...fn€U, z=z1...0 =t"(u), e = T1,... 7k, = EF(tF(u),u), k < n. Then it
follows that an extended breakpoint computation hp exists such that hp(z.) =y =y1 ...yr. Then
from Lemma 3 there exists hp with hp(x) = hp(z,.) = y.



From oo hp = 0o hpr, over I, it follows that y = y1...yx € hp(x), y' = Yi---yp € hpr(z.)
with o(y) = o(y").

Thus fi ... fx € Pty and x; € d(f;),x; fiyi for all 1 <1 < k if and only if there exists fi ... f, €
Pty with x1 € d(f]),z1,efiy; and nvle(x;e,yi_q) € d(f]),nvle(Tie,yi_1) fiy; for all 2 < i < k.
From o(y;) = o(y}) for all 1 < i < k, and using the strong output-distinguishability property of P,
by induction on 1 <1i < k it follows that f; = f! for all 1 <i <k and z; = nvl.(z;e,y}_;) for all
2<i<k.

Thus fi...fr € Pto and x; € d(fi),xifiyi for all 1 < i < k if and only if fi... f; € Pt
and x; € d(f]),zifly} for oll 1 < i < k, and o(y) = o(y'). Hence we may build hp: such that
oo hp(x) =oohp(x), z € I. Applying now Theorem 1 it follows that A(P) and A(P') are U—
equivalent.

Corollary 2. Let P = (X,Q,9, F,q,d,0,0) and P' = (X,Q",d, F', q},d, O, 0) be two X-machines
that are testing-compatible and strong output-distinguishable and let tp be a test function of P
such that exist hp, hp: two extended breakpoint computations of P and P', respectively, with
oohp(x) = 0o hp (x), x € tF'(U), and EF an input extension of P. If U C &* is a test set
of A(P) and A(P') then and I, = Uycy EY (t¥ (u),u) is an extended breakpoint test set of P and
P'.

Proof. See Corollary 1.

Theorem 3. Let P = (X,Q,®,F,qo,d,0) and P' = (X,Q',D,F',qy,d,0) be two X-machines that
are testing-compatible and strong output-distinguishable. If there exists t¥ an n natural test function
of P for n sufficiently large, then there exists a natural extended breakpoint test set I, of P and
P

Proof. Let U be a test set of A(P) and A(P'), n the length of the longest sequence in U and
t an n natural test function of P. From Corollary 2 it follows that I, = Uycy ET (¥ (u),u) is an
extended breakpoint test set of P and P'. Since t¥ is n natural, from Definition 16 it follows that
I, C X{e}~.

That is, the existence of an n natural test function for n sufficiently large will ensure that any
path in U can be exercised using as initial data values the head elements of the sequences in I,.
Thus, I, is a natural extended breakpoint test set of P and P’.

6 Stream X-machines and stream X-machine testing

This section introduces the stream X-machine and particularises the results given in the previous
sections to this class of X-machines.

Definition 17. An X-machine P = (X, Q,®, F, qo,d, I',0) is called a stream X-machine (SXM for
short) if the following are true:

— X =TI x M x X*, where M is the (possibly infinite) memory, X is the finite input alphabet
and I' is the finite output alphabet;

— if f € @ then dom(f)N(I™* x M x {A\}) = 0 and there exists a relation ¢pg : M x ¥ <— I' x M
such that Vg € I'™*,m,m' € M,s € X*,~v € I'oc € X (g,m,s0)f(gy,m',s) if and only if
(m, )7 (7,m');

—VgeTI* me M, c(g,m,s) = true if and only if s =

— 0is a function o: I't x M x X* — I defined by o(g, m,s) = rear(g),g € I'*,m € M,s € X*
(o returns the rightmost element of any non-empty output sequence).

The output set O used in the definition of an X-machine is now I" in the above definition.
Please note that I" is a finite set.

An SXM may have state non-determinism, operator non-determinism and domain non-determinism

but not termination non-determinism. As for the general X-machine model, only operator and do-
main non-determinism will be considered in what follows.

45



Note 6. For simplicity, in what follows we will consider processing relations of the form f : M x
Y +— I' x M (i.e. we will use ¢ instead of f from Definition 17). Similarly, we will consider that
the testing domain of the machine is a function d : & — 2M**_ An SXM will be denoted by a
tuple P = (X, I',M,®, F, qo,d).

Note 7. An SXM is weak output-distinguishable if for any f,g € @, if there exist m,m!,m} €
M,o € X,y € I with (m,0) f(y,m}), (m,o)g(y,m;) then f = g.

Note 8. Two stream X-machines are testing compatible if their input alphabets, output alphabets,
memory sets, sets of processing relations and testing domains coincide.

Ezxample 7. Even though the X-machine in Example 1 processes a sequence of input symbols, it
is not an SXM (i.e. ¢ does not process the input sequence in an SXM fashion and the data set
does not include explicitly an output alphabet). However, it can be easily rewritten in this faghion,
as shown next. So X = I' x M x X* with ¥ = {c | ¢ is letter or digit } U {@,$} ($ is the
blank character and @ is a symbol used to mark the start of the input sequence), M = N x N,
I'={os|o€ X, fed}, ®=1{ice, fo, 1, fv,9, h}, where the definitions of the processing relations
(written in the fashion of Note 6) are as follows:

((0,0), @)i(@;, (0,0)),

((0,k),c)e(ce, (0,k)), where k € N, c € X'\ {1,Q, $},

((0,k),0) fo(0y,, (0, — 1)), where k € N,k > 0,

((07 k)7 1)f1(1f17 (17k + 1))7 where k € N,

((nak):b)fb(bfba (Oak))a where k,n € N,

((n,k),z)g(zg,(n +y,k)), where k,n € N, (n > 0, z € {0,c} and y = —1) or (z € {1,c} and
y=1), where c € X'\ {0,1,Q, $},

((n, k), z)h(zh, (n,k)), where k,n € N, z € X'\ {Q@}.

The definition of F remains unchanged.

Please note that the values o7(0c € X, f € &,) are considered in I" in order to keep the machine
output-distinguishable. Also note that the ?dummy” values —1,—2, —3, —4 used in example 1 are
no longer needed and have been removed.

Definition 18. For an SXM P, a partial function h'p : (M x X)* — I'* called an input-memory
computation of P is defined as hp(®1 ... 2p) = Y1 ... Vn, if there exists a path fi ... fn from go and
m; € M, 1 <1 <n, such that z; € d(f;), z;fi(vi,m;), 1 <i<m,n>0.

Note 9. The test function introduced by Definition 13 will be

- tPN) =X
— for p > 0, consider t¥ defined for any string fi ... f, € ®*; then for any string fi ... fpfpt1,

tP(fi... fpfps1) is either of:
e if fi...f, is a path in P that emerges from the initial state go then t*(f1 ... fpfpi1) =

tP(f1 ... fp)Tpy1, where zp11 € d(fpt1), with zp41 = (m,0), m € M, and o € X.
e otherwise t*(f1... fofpr1) =t (f1.. fp)-

In this case t¥'(U), U C ¢* contains sequences of pairs (m,o) € M x X.

Example 8. For P as in Example 7, with u = if199fofo f1 and z = 21202324252627, where

21 = ((O:O)a$)a 22 = ((070)71)a 23 = ((171)71): 24 = ((Za l)ab)a 25 = ((0: 1),0), 26 = ((070)7b):
7 = ((0,0),1)

we can construct hp such that h's(2) =y, where v = @;17,1,b,04,87,1,.

Definition 19. Let P = (X, I, M,Q,®,F,qq,d) and P' = (X, I M,Q",®, F', q},d) be two stream
X-machines that are testing-compatible. Then a finite set I C (M x X)* is called an input-memory
test set of P and P’ if whenever there exist h'p and h'p: two input-memory computations of P and

P', respectively, with h'p(z) = h'p/ (z), x € I, we have f¥ = fr.

46



Theorem 4. Let P = (X, I'M,Q,®,F,q,d) and P' = (X, I, M,Q',P,F', qj,d) be two stream X-
machines that are testing-compatible and weak output-distinguishable and let t¥ be a test function
of P. If U C ®* is a test set of A(P) and A(P') such that exist h'p and h'p, two input-memory
computations of P and P', respectively, with h's(z) = hlp, (z), = € tF(U), then t¥(U) is an input-
memory test set of P and P'.

Proof. Follows directly from Theorem 1 and Definition 18.

Definition 20. For an SXM P, a partial function h'P,m : X% — I'™* called an input computation
of P in m € M is defined as hp,,(01...00) = 71...7n, if there exists a path fi...f, from
g and my,m;, € M, 1 < i < n-—1, mg,m, € M, mg = m, such that (m;—1,0;) € d(fi),
(mi-1,0:) fi(yi,mz), 1 <i<mn,n>0.

Note 10. The test function t¥ will be defined similar to Note 9 where the definition of t(f; ... f,
fp+1) when fi... f, is a path in P will be replaced by t¥'(fi ... fpfp+1) =tF(f1-.. fp)0p+1, Opt1 €
X, if exists myy1 € M such that (mpy1,0p41) € d(fp+1). In this case tF(U), U C &* contains
sequences of input symbols o € X.

Definition 21. Let P = (X, I, M,Q,d, F, qy,d) and P' = (X, I, M,Q",®,F',q{,d) be two stream
X-machines that are testing-compatible. Then a finite set I C X* is called an input test set of
P and P' if whenever there exist m € M, hlp,, and h'p, ,, two input computations of P and P,

respectively, in m with hp . (z) = h'p, . (x), € £*, we have f¥' = 1.

Theorem 5. Let P = (X, I, M,Q, 9, F,q,d) and P' = (X, I, M,Q",d,F',q,d) be two stream
X-machines that are testing-compatible, weak output-distinguishable and let t¥ be a test function
of P. If U C &* is a test set of A(P) and A(P') such that ezist m € M and hlp,,, h'p: ,,, two input
computations of P and P', respectively, in m with h'p . (z) = h'p: ,,(2), T € tP(U), then tF(U) is
an input test set of P and P'.

Proof. It follows directly from Theorem 1 and Definition 20.

Note 11. Similar to n natural test function we may allow a slightly modified condition which
says that if fi,...,fn € @ and exist 0; € X, v, € I, m; € M, 1 < i < n, my € M with
(mi_l,oi)fz-('y,-,mi), 1 S ) S n, then tP(f1 .. fn) =01...0p-

In this case we recapture the test function definition used in [21] as an weak n natural test
function with n greater than or equal to the length of the longest sequence of U.

7 Conclusions

The paper provides the theoretical basis for the generation of test sets from non-deterministic X-
machine specifications. A test set is a finite set of sequences of elements that guarantees that two
machines have identical behaviour when the application of this set to the two machines produces
identical results. In fact, the implication is stronger: not only the behaviours of the two machines
coincide, but also their associated finite state machines. Thus the approach is to generate sequences
of arcs that can test this equivalence (using the existing testing theory for finite state machines)
and to exercise these using appropriate sequences of elements in the data set. Two approaches are
investigated. The first is to supply each arc in a path with a suitable value of the date set and this
corresponds in practice to placing breakpoints after each relation has been processed. This gives
rise to the breakpoint test set. The extended test set strategy eliminates the breakpoints whenever
this is possible by reusing values from the previous computation. Ideally, only the first value in the
sequence would be supplied, this corresponds to the case when an n natural test function can be
constructed for a sufficiently large n.

These two approaches are then particularised to the stream X-machine class and the conditions
in which a stream X-machine admits an n natural test function are identified. The theoretical
results in this paper are generalisations of the results in [26].

47



8

Acknowledgements

We would like to thank the anonymous reviewers for their very helpful comments, allowing us to
improve the quality of this paper. We are also garteful to the EPSRC projects MOTIVE (grant
GR/M56777) and FORTEST (GR/R43150) for partially funding our work.

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

Aho, A.V., Dahbura, A.T., Lee, D. and Uyar, M.U. (1988) An optimization technique for protocol
conformance test generation based on UIO sequences and Rural Chinese Postman Tours. Proceedings
of Protocol Specification, Testing, and Verification VIII, 75-86, Atlantic City, North-Holland.

T. Balanescu, Generalised stream X-machines with output delimited type, Formal Aspects of Comput-
ing, 12, 473-484, 2000.

T. Balanescu, M. Gheorghe, M. Holcombe, Deterministic stream X-machines based on grammar sys-
tems, in Words, Sequences, Grammars, Languages: where Biology, Computer Science, Linguistics and
Mathematics meet, volume 1, C. Martin-Vide and V. Mitrana eds., Kluwer, 2000.

J. Barnard, J. Whitworth, M. Woodward, Communicating X-machines, Information and Software
Technology, 38, 401-407, 1996.

F. Belina, D. Hogrefe, The CCITT-specification and description language, Computer Networks and
ISDN Systems, 16, 1347-1356, 1989.

G. Bernot, M. Gaudel and B. Marre, Software testing based on formal specifications: a theory and a
tool, Software Engineering Journal, 6, 387-405, 1991.

K. Bogdanov, Automated testing of Harel’s statecharts, PhD thesis, Sheffield University, UK, 2000.
T. Bolognesi, E. Brinksma, Introduction to the ISO specification LOTOS, Computer Networks and
ISDN Systems, 14(1), 25-59, 1987.

K.-T. Cheng and A.S. Krishnakumar, Automatic functional test generation using the extended finite
state machine mode, Proc. DAC, 1-6, 1993.

T. S. Chow, Testing software design modelled by finite state machines, IEEE Transactions on Software
Engineering, 4, 178-187, 1978.

P. Dauchy, M Gaudel and B. Marre, Using algebraic specifications in software testing: a case study on
the software of an automatic subway, Journal of Systems Software, 21, 229-244, 1993.

S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, 1974.

M. Fairtlough, M. Holcombe, F. Ipate, C. Jordan, G. Laycock and Z. Duan, Using an X-machine to
model a video cassette recorder, Current Issues in Electronic Modelling, 3, 141-161, 1995.

S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou and A. Ghedamsi, Test selection based on
finite state models, IEEE Transactions on Software Engineering, 17, 591-603, 1991.

G. Gonenc, A method for the design of fault detection experiments, IEEE Transactions on Computer,
19, 551-558, 1970.

R.M. Hierons, Extending test sequence overlap by invertibility, The Computer Journal, 39, 325-330,
1996 .

R.M. Hierons, Testing from a finite state machine: extending invertibility to sequences, The Computer
Journal, 40, 220-230, 1997.

R.M. Hierons, M. Harman, Testing conformane to a quasi-non-deterministic stream X-machine, Formal
Aspects of Computing, 12, 423-442, 2000.

M. Holcombe, X-machines as a basis for dynamic system specification, Software Engineering Journal,
3, 69-76, 1988.

M. Holcombe, F. Ipate and A. Grondoudis, Complete functional testing of safety-critical systems, Safety
and Reliability in Emerging Control Technologies: A Postprint volume from the IFAC Workshop on
Safety and Reliability in Emerging Control Technologies, Daytona Beach, Florida, USA, 199-204, 1-3
November 1995.

M. Holcombe and F. Ipate, Correct Systems: Building a Business Process Solution, Springer Verlag,
Berlin, 1998.

F. Ipate and M. Holcombe, Another look at computability, Informatica, 20, 359-372, 1996.

F. Ipate and M. Holcombe, An integration testing method that is proved to find all faults, International
Journal of Computer Mathematics, 63, 159-178, 1997.

F. Ipate and M. Holcombe, Specification and testing using generalized machines: a presentation and a
case study, Software Testing, Verification and Reliability, 8, 61-81, 1998.

F. Ipate and M. Holcombe, A method for refining and testing generalised machine specifications,
International Journal of Computer Mathematics, 68, 197-219, 1998.

48



26

27.
28.
29.

30.

31.

32.

33.

34.

35.

. F. Ipate and M. Holcombe, Generating test sequences from non-deterministic generalised stream X-
machines, Formal Aspects of Computing, 12, 443-458, 2000.

F. Ipate, M. Gheorghe and M. Holcombe, Testing (stream) X-machines, submitted.

Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill Book Company, 1978.

D. Lee and M. Yannakakis, Principles and methods of testing finite state machines - A survey, Pro-
ceedings of the IEEE, 84, 1090-1123, 1996.

G. Luo, G. v. Bochmann and A. Petrenko, Test selection based on communicating non-deterministic
finite-state machines using a generalised Wp-method, IEEE Transactions on Software Engineering,
20, 149-161, 1994.

S. Naito and M. Tsunoyama, Fault detection for sequential machines, Proc IEEFE Fault Tolerant Com-
put. Conf., 1981.

A. Petrenko, Fault model-driven test derivation from finite state models: annotated bibliography, in
Modelling and Verification of Parallel Processes, F. Cassez, C. Jard, B. Rozoy, M.D. Ryan eds., LNCS
2067, 196-205, 2001.

K.K. Sabnani and A.T. Dabhura, A protocol testing procedure. Computer Networks and ISDN Systems,
5, 285-297, 1988.

D.P. Sidhu and T.-K. Leung, Formal methods for protocol testing: a detailed study, IEEE Transactions
on Software Engineering, 15, 413-426, 1989.

Yang, B. and Ural, H. Protocol conformance test generation using multiple UIO sequences and overlap-
ping, ACM SIGCOMM 90: Communications, Architectures and Protocols, Twente, The Netherlands,
September 24-27, 118-127, 1990.

49



50



Complete Behavioura Testing
(two extensions to state-machine testing)

Mike Sannett
MOTIVE Research Associate
Verification and Testing Research Group
Dept of Computer Science, University of Sheffield
Regent Court, 211 Portobello Sreet, Sheffield S1 4DP, United Kingdom.
m.stannett@dcs.shef.ac.uk

Abstract. We present two extensions to state-machine based testing. The first allows
us to extend Chow's W-method (CHow) to machines with non-final states, thereby
including infinitely many more specifications within the scope of the method. The
second is a radical extension to Holcombe and Ipate’'s 1998 stream X-machine
testing method (sxmT), itself an extension of cHow. This method involves the
construction of a bespoke model of computation, the behavioural machine
(B-machine), which extends Eilenberg's 1974 X-machine concept. Examples of
[S-machines include X-machines, stream X-machines, semi-automata and automata,
and even some concurrent system specifications. Despite this generality, we
demonstrate an algorithm for generating complete behavioural test sets for systems
specified by S—-machines.

Keywords. Algebraic models of computation, Chow's W-method, complete
functional testing, concurrent systems, object-oriented testing, software testing,
stream X-machine (SXM).

Acknowledgement. This research is sponsored by the UK-EPSRC through the
project, MOTIVE (GR/M56777: Method for Object Testing, Integration and
Verification; principal investigator: Dr Anthony J. Simons; co-investigator: Prof W.
Mike L. Holcombe).

1 Introduction

This paper describes a unified approach to testing sequential and concurrent systems, which
extends both Chow’s W-method (cHow) for verifying designs presented as state machines
[Cho78], and Holcombe and Ipate’'s SXMT test-generation method [HI98] for the stream X-
machine (SXM) [Lay93]. In addition to covering more classes of specification model, our
methods also allow the coverage of more machines within each of the standard classes. Both
CcHOw and SXMT require the system specification to be aminimal completely specified machine,
in which every state is final and precisely one state isinitial, and these constraints ensure that
infinitely many specifications are untestable within the method. In contrast, we present asimple
technique, super-minimisation, that allows machines with non-final states to be put into aform
that satisfies the CHOw- and sSXxMT-style preconditions. Moreover, super-minimisation resultsin
amachine with up to 50% fewer states than the standard minimised variant of the original semi-
automaton. Because the number of tests required to characterise a machine's behaviour depends
on the size of the underlying state set, our technique can result in significantly smaller test sets.

Although there are differences between cHow and sXMT, these are essentially imposed by the
different natures of the systems being modelled (automata and stream X-machines,
respectively). We present a unified model for state-machine-style specifications, which we call
the behavioural machine (8-machine). This model includes many standard sequential models as
instances, including automata, stream X-machines and standard X-machines, but also applies to
concurrent models. Moreover, S-machines can be equipped with a general purpose test-
generation method of which cHow and sSXMT are instances. Just as SXMT can be used to

51



generate complete functional tests of sequential systems, so the S-machine method (S-method)
can be used to generate complete behavioural tests for S—machines of any sort.

1.1 Sructureof the paper

In Section 2, we illustrate our simple super-minimisation technique for including machines with
non-final states within the remit of cHow and sSXMT. In Section 3 we present our unified
behavioural model, the S-machine, for state-machine-style computations. We show that X-
machines [Eil 74, Hol89, $ta90], automata, and even some concurrent specifications are all types
of S-machine. In Section 4, we summarise and extend cHow and sSxMT. We demonstrate an
algorithm for generating test-sets for S-machines, and prove that they are behaviouraly
complete.

1.2 Notation and conventions

Finite state machines can be defined both with and without outputs. Following [LP84], afinite
state machine (FSM) without output will be called a semi-automaton, and an FSM with output
will be caled a automaton. Throughout this paper, F denotes an FSM with input alphabet A
(also denoted In), output alphabet Out (if F is a semi-automaton, we take Out = In and regard
each label a as the input/output pair a/a), state set S initial state set | 0 S and final (aka
terminal) state set T 0 S Given any UOS and alJA*, we write U= to mean that there exists a
path in F, labelled a, starting at some sJU. Likewise, U =% V means there is a path labelled a
fromastatein U to astatein V. If a = (a) is a string of length one, we write - 2 in place of =%
and if U = {s} is a singleton, we write s=% in place of {s} =% F is completely specified (or
complete) if, for each SIS and alJA, there is at least one transition s— 2, and deterministic if
there is at most one such transition. A language L O A* is a (state) cover for F if, for each state
s, there is some alJL with I=°s. Given any language LOJA*, and any integer n, we define L™ =

O{L*| 1< k< n}O{e}, where ¢ is the empty string over A. For n<0, this reducesto L™ = {&}.

If F has at least one cover, we say that F is accessible. If, given any states s # t, we can find a
with s =% t, then F is said to be (strongly) connected; any connected machine is accessible.
Conversely, if an accessible machine F has only one initial state and is equipped with a ‘reset’
action which returns the system to this state on demand (i.e. if thereisatransitions - "** | from
each state s), then F is strongly connected.

2 Testing semi-automata with non-final states

Consider the simple semi-automaton (FSM without output) shown in Figure 1a. We can think of
this as the specification of a system which is allowed to perform any combination of as and bs,
provided the last operation it performs it definitely an a (for example, industrial machinery
might carry the specification “power must be turned off at the end of the shift”). The figure
shows the minimal machine for the relevant language A*a, where A={a,b}. It has two states, of
which the one on the right is final and the one on the left initial (but not final).

Jx@mmiont

Figure 1a. Minimal semi-automaton for A*a

52



We can regard any semi-automaton as an automaton by interpreting each symbol a as the
input/output pair a/a, so it's meaningful to consider this machine in relation to cHow. In fact,
however, neither Chow’s W-method nor its functional extension, the SXM testing method, can
be used to generate tests for systems with this sort of specification, because these test methods
require al states in the minimised specification machine to be final, and here we have a non-
final state. The minimal versions of infinitely many specifications fail the very stringent
conditions of these methods.

To overcome this problem, we need to re-express the specification as a minimal machine in
which all states are final. We do this by super-minimising the machine. Rather than representing
each symbol a as the pair a/a, we instead append a ‘fake’ output symbol to capture the
termination behaviour of the relevant transition. If the transition ends at afinal state we add the
‘output’ T (true), and otherwise F (false). The initial arrow is labelled €/F (in this example) to
indicate that € is not deemed a member of the behaviour. The distinction between final and non-
fina states is now superfluous, because all of the relevant information is encoded by the T/F
components of the transition labels (Figure 1b). We can therefore declare all states in this
‘transducer’ representation to be final, without losing any information.

alT
e O ar
<+—
elF b/F
Figure 1b. Generated machine for A*a

Because we have imposed a new state configuration, there is scope for further minimisation.
Minimising this particular machine yields the minimal machine in Figure 1c, with just one state.

biF Q D alT
elF

Figure 1c. Super-minimised S—machine for A*a.

Consequently, we have achieved a 50% reduction in the state set, even for a very simple
machine that was already minimal. Thisis a significant saving, and has the important corollary
that Chow’s W-method can now be applied to a behaviour that was previously untestable by this
method. To see how to use the method, suppose we are given a 2-state implementation to test. In
this case the implementation under test (IUT) has one more state than the (super-minimal)
specification. We use Figure 1c to choose a cover, say C = {¢€}, and a characterisation set W =
{a} and construct the CHOW test-set TS= CA®W, i.e.

TS={ a, aa, ba, aaa, aba, baa, bba}
Looking at the specification, we see that the accept/reject responses for each of these stringsis

a T aaa | TTT
aa | TT | aba | TFT
ba |FT |baa|FTT

bba | FFT

Have we successfully generated atest set? To find out, suppose Imp is a 2—state semi-automaton
with the accept/reject patterns specified. Call the states L (Ieft) and R (right), with L initial. It is
clear that transitions L -2 and L —° must exist, because there are extensions of these 1-

53



transition paths that are accepted. Moreover, the first clearly leads to an acceptance state and the
other to aregjection. There are only two layouts that meet these criteria

b(?;@ aq?b%@

Looking at the length-2 patterns in the test set allows us to compl ete the diagrams (again we use
the acceptance of length-3 paths to determine that the second b transition must exist)

COT0Ds Q0D

The languages accepted by these machines differ only as to whether they include €. We contend
that “testing €” is a meaningless activity, because no test based on the empty input string € can
be assured of generating any observable output. This is why we require the designer to specify
explicitly whether or not € is to be included in the language. In this case we have the
specification €/F, so we reject the right-hand machine.

Clearly, the only 2-state semi-automaton that satisfies our test-set requirements is the machine
we started with, so our 2-state-machine test set is indeed working. The reason it works is
straightforward: the super-minimal machine precisely captures the accept/reject behaviour of the
original semi-automaton. Consequently, any machine constructed to match the behaviour of the
super-minimal machine automatically matches that of the specification machine itself.
Moreover, we can obviously extend the method to alow testing of more complex machine
types. So, for example, we can generate tests for automata or stream X-machines with non-final
states by extending Out to include the T/F information, and likewise, by adding T/F information
to the fundamental datatype X, we can generate test sets for X-machines with non-final states
(see below for an explanation of X-machines and stream X-machines).

One word of caution. We have seen how we can regard semi-automata as automata with T/F
outputs, where a transition emits T if and only if it leads to afina state, and emits F otherwise.
Chow’s method applies to this automaton, and hence to the underlying semi-automaton, but we
have to be very careful when applying the method, because the behaviour of the machine F is
different when viewed as an automaton, as compared with its behaviour when viewed as a semi-
automaton. As a semi-automaton, all that matters when we supply an input string a is whether or
not it is recognised. But as an automaton, we also have the history of acceptance/rejection
decisions as the string was submitted. This extra information is vital to Chow’s method, so we
need to make it available. We accordingly require of any test set that it be downward closed.
That is, if aisin the test set, so is every prefix of A. To make this unambiguous, we will write
L! to denote the downward-closure of the language L. Obviousdly, if L is finite, soisLl. The
extent to which the need to use downward closures matters is open to debate. In the example
just considered, for instance, it is clear that the information obtained from the input strings T
and TT is aso available in the output recorded for the longer string TTT. So while downward
closure is necessary as a theoretical precaution, it may have little relevance to practical test
generation.



3 Behavioural frameworksand S-machines

Whenever we draw a state-machine diagram, we implicitly make certain assumptions about the
symbols used to label the transitions. These labels can vary considerably in agebraic
sophistication, but always share certain key properties. To put thingsin context, let’s review the
difference between automata, semi-automata, X-machines and stream X-machines,

All four machine types are based on the standard finite state machine, but differ asto the labels
they associate with transitions. Rather than deal with large numbers of definitions, we'll assume
instead that F is a semi-automaton with alphabet A, and that B is some set of behavioural 1abels
that we' re going to associate with transitions. In other words, each symbol a becomes the name
of a behaviour in B, and we can represent this by supposing the existence of some labelling
function \: A= B.

Loosely speaking, the labelling involved in each of the modelsis as follows. For semi-automata
the labelling is the identity map, A(a) = a, and for automata we essentially take B = InxOut. For
an X-machine (XM), the labelling maps A into R(X), the set of all relations of type X X. For a
stream X-machine (SXM), we map A into a set of relations of type InxMem« MemxQOut, where
Memis a potentially infinite auxiliary set called the machine’s memory.

The basic operations involved in representing languages by semi-automata are concatenation
and aggregation. Concatenation occurs when one transition follows another. Thus, for example,
when we regard the two transitions - “- " as asingle path =", we are implicitly assuming that
the labels u and v can be concatenated to yield the string uv. Notice that the type of uv differs
from that of u and v themselves. This is unacceptable for our purposes, because we want to
build amodel of behaviour which is self-contained. The concatenation of two behaviours should
be another behaviour — it should have the same type. We can overcome the problem easily by
thinking of u and v as the strings (u) and (v) of length one. Now, behaviours are represented as
strings, and the concatenation of the two strings (u) and (v) is again astring. Aggregation occurs
when we combine the various successful paths through a machine and regard them as a single
language. Again, this seems to violate our principle that all behaviours should be of the same
type, because we are operating on strings and generating sets of strings. Fortunately there is
again a simple solution. Wherever we have a string u, we regard it as a language {u} with a
single element. Looked at in this way, aggregation is simple set-theoretic union. Given these
interpretations, we see that semi-automata can be modelled by taking a labelling of the form
A(@@) ={(a)}, which replaces each symbol a with the singleton language containing the single-
character string (a). This is important for our purposes because we now have a model of FSM
computation in which all components are of the same basic type (in this case [0 A*), and this
typeis closed under concatenation and aggregation.

More generaly, we take B to be any algebraic structure that satisfies the following conditions.
These simply express basic rules that can be established to be necessary by considering FSM
transition diagrams, and asking the question “what must be true for B to be closed in this
situation?’

3.1 Regular setsover monoids

Suppose (B,0) isamonoid, i.e. asemigroup with an identity element 1. Given any al phabet A of
the same cardinality as B, we set up a 1-1 correspondence A: A - B. This extends to a monoid
homomorphism A*: A* - B given by A(g) = 1g, and A(by,...,b,) = b, O ... O b,. Thisin turn
extends to afunction A**: LANG(A) — [ B given by A**(L) ={ A*(a) |alL}. If L isaregular
language over A, we'll say that A**(L) is aregular subset of B. The set of al regular subsets of
B will be written REG(B). It includes 0 = A**(0) and all finite subsets of B.

55



Notice that [J B isitself amonoid, with identity element { 15}, where we defineU O V = {ulv |
udJU, vV}, so it is meaningful to discuss regular subsets of [1 B. Moreover, REG(B) is aso a
monoid with these choices of operation and identity.

3.2 Definition (Behavioural framework)
We will say that atriple B=(B,0,%) is a(behavioural) framework provided
1. (B,0) isasemigroup, with a2-sided identity element, 15. We call [J concatenation.
2. 2:REG(B)- Bisafunction, called (regular) aggregation, satisfying
a 20=1g
b. Z{b} =b
c. ZbdZb=Z{b0Ob}
d. Oregular {V;|iOl'} OREG(B): ZO{V; |i01} = Z{ 2V, |iOl}

If B isaframework, we can define a commutative binary addition O by udv=2{u,v}. m

Frameworks are ubiquitous in theoretical computer science and mathematics. The distributive
laws (2.c) means that frameworks are closely related to algebraic rings, though the concepts are
not identical because 0 need not allow inverses. In particular, if X is any datatype, the monoid
R(X) of al relations X - X is aframework, when we take 0 to be relational composition, and [
to be set-theoretic union. Likewise, if we treat X as inf and O as sup, then every frame (hence,
every topology) is a framework, but again the converse is not true, because we don't require O
to be commutative.

3.3 Déefinition (B—machine)

A behavioural machine (S-machine) is a pair (F,\), written F, where F is a semi-automaton
over some alphabet A, and A: A- Bisafunction, where B is a behavioural framework.

Given a string a recognised by F, the path behaviour computed by a is the behaviour A(a),
where we define A(g) = 1z and A(a;...a,) = A(@) O ... O A(ay). The behaviour of F" is the
aggregate of its path behaviours, |F"|= Z{ A(@) |a T |F|}.

34 Examples

34.1 LANG(A)

The set LANG(A) of languages over A is a framework, where O is standard language
concatenation, and Z is set-theoretic union.

3.4.2 MAZURKIEWICZ TRACE LANGUAGES

(Mazurkiewicz) trace languages were introduced in [Maz77; see also CF69] as a tool for
modelling Petri net behaviours. They have since become one of the most popular models for
concurrent semantics [Gas90, Arn91, KS92, Sta94, DR95, DG98, DG02].

Each trace language can be viewed as a quotient A*/=, where = is a congruence on A*. That is,
whenever a = b, we also have ac = bc and ca = cb, for al c. This congruence ensures that

56



concatenation of traces is well-defined, and we can construct languages (subsets of A*/=) just as
we could construct LANG(A).

34.3 REG(A)

The set REG(A) O LANG(A) of regular languages over A is a sub-framework of LANG(A). Thisis
not obvious — indeed, our formulation of behavioural frameworks was originaly motivated by
the related question: under what circumstances is a union of regular languages again regular?
Obviously, an arbitrary union of regular sets need not be regular, because any non-empty
language is the union of its (necessarily regular) singleton subsets. The framework concept
embraces one answer to this question: any regular union of regular languages is again regular.
This is what we now prove. We need to do this in any case, to verify that our choice of
aggregation operator 2 iswell-defined. In general, aggregation is represented by the operator 2
REG(B) — B, and since we are taking B = REG(A), our aggregation operator must have signature
2! REG(REG(A)) — REG(A). By hypothesis, we are taking Z to be set-theoretic union, [, so we
need to verify that whenever we are given aregular set of regular languages, their union isagain
aregular language.

Theorem. Any regular union of regular languages is regular. Formally, suppose that {L; | il }
isaregular subset of REG(A), and let L = O{L; | il }. Then L [0 REG(A).

Proof. By definition, there is some regular language L, over some alphabet A, and some
labelling function Ag: Ay —» REG(A) with Ag**(Lo) ={L; |i0l }. Because Ly isregular over A, it
can be generated by a regular expression €, over just finitely many of the symbols in Ay, so
without loss of generality we can assume that A, is finite. We can also assume that A, is non-
empty, since otherwise L would be finite and we'd have nothing to prove. Without loss of
generality, then, we can write Ag = {aq,, ..., 8n} for some finite non-zero n. Setting Lg = Ao(a0i),
we observe that each L isaregular language of A, so we can choose regular expressions ey, ...,
€, all defined over A, where each ¢ generates the corresponding L. Let e be the expression
over A obtained by simultaneously replacing every occurrence of each symbol ag in e with the
corresponding expression €. Then e is a regular expression over A. It is now straightforward
(though rather tedious) to show that e generates the required union, L = O{L; [iTJI} = OAg**(Lo).
SoLisregular. m

344 AUTOMATA

As we saw in the introductory preamble, semi-automata are simply S-machines over B =
REG(A). Automata are slightly more complex, but essentially straightforward. We won’t prove
the details here, because the methods are identical to those used in the more difficult case of
stream X-machines, below.

3.45 X-MACHINES

The X-machine is a computational model introduced by Eilenberg [Eil74], that forms the basis
for many subsequent models of computation [Sta90, Sta91, Lay93, LS93, BeH96, BCG+99,
Sta01]. At its heart, an X-machine is essentially a semi-automaton whose transitions are labelled
by operations of type X~ X. Each successful path through the machine corresponds to an
operation obtained by composing the relations on the various transitions, and the behaviour of
the entire machine is defined to be the union of the path behaviours. Clearly, thisisjust a special
case of the S-machine construction, where we take B to be the relational monoid R(X) of all
relations on X, with [J equal to relational composition and % equal to set-theoretic union.

57



34.6 STREAM X-MACHINES

Stream X-machines were introduced by Laycock [Lay93] as a version of the X-machine
equipped with the stream handling capabilities of an automaton. The SXM captures the idea that
a system handles inputs by changing its internal memory states; an SXM is given by a semi-
automaton whose transitions are labelled by operations of type Memxin « OutxMem. If the
system memory is currently mem, and the input in is received, then crossing a transition labelled
¢ causes the machine to change memory state to new_mem and to generate some output out,
where (out, new_mem) O ¢(mem, in). Clearly, all automata (hence all semi-automata) can be
modelled as SXMs with unchanging memory. In fact, all SXMs can be modelled as standard X-
machines.

Given an SXM with operations of type MemxIn « OutxMem, we represent it as an X-machine
with type X = Out* x Mem x In*. Each relational label ¢: MemxIn « OutxMem is represented
asthe associated relation @*: X X given by

@* (out, mem, in::in) ={ (out::out, new_mem, in) | (out, new_mem) O @(mem, in) }

In thisformit’s easy to see where the name comes from. The behaviour of an SXM causes input
streams to be converted into output streams, with the exact conversions being mediated by an
embedded X-machine of type Mem. Since all X-machines are S—machines, the same is true of
SXMsand automata. m

4 A general test method for f-machines

A key motivation behind Laycock’s introduction of the SXM was the existence of ageneral test-
generation technique for automata. Chow's W-method is based on the idea that states in an
automaton can be characterised by input-output behaviours.

41 Chow'sW-method

We presuppose that a system is specified as an automaton, Spec, and that a second automaton,
Imp, has been generated as an implementation. We have complete knowledge of Spec, and can
therefore assume that it is minimal (if not we minimise it). For technical reasons, we heed to
assume that Spec and Imp are defined on the same al phabet A, and that we can reliably estimate
the number of extra statesin Imp. Our goal is to determine whether or not |lmp| exactly matches
|[Spec], and our lack of knowledge of Imp's internal structure forces us to make this
determination by supplying various input streams, and observing the corresponding outputs. The
basic strategy of Chow’s method is as straightforward as it is elegant. We supply a set of input
sequences that take us to each state of the machine in turn, and check, once we get there, that it
admits precisely the right set of ‘next-state’ transitions. In this respect it has much in common
with other early test techniques [M 0056, Koh78].

4.1.1 DEFINITION (CHARACTERISATION SET FORAUTOMATA)

Recall that Sis the state set of the machine F. Given any W I In*, we can define afunction fy: S
- [Wo Out*] by

out if s> T
fw(s)(w) = . . .
undefined  if no such path exists

58



If the function fy is 1-1 and each of the relations fu(s) is actually afunction fy(s): W - Out* (so
that each input stream w generates a single well-defined output stream out), then W is a
characterisation set. m

Remark. For F to have a characterisation set, it must be minimal. For if F is not minimal, there
will be states s # s which cannot be distinguished by their contributions to input-output
behaviour, and under such circumstances we must have fy(s) = fu(s'): so W would fail to be a
characterisation set.

Characterisation sets alow us to decide what state the machine must have been in, and can be
used to check that test sequences have caused the machine to migrate to a required home state.
To construct a test set, we first choose a cover C for F (this requires F to be accessible and
deterministic), and then a characterisation set, W (requires F to be minimal). To test an
implementation we use C repeatedly to visit each state in turn (this typically requires F to be
connected, i.e. to have a reset mechanism); then we supply each symbol in A (requires F to be
complete), so as to exercise every transition; then we check that the transition took us to the
appropriate next-state using W.

412 THEOREM (CHOW)

Suppose that Spec and Imp are automata over the same alphabet A. Suppose, moreover, that
Spec is minimal, complete, connected and deterministic (so it has precisely oneinitial state), and
that all states are final. Let C be a cover, and W a characterisation set, for Spec. Suppose |mp has
no more than n more states than Spec. Then Spec and Imp are equivalent if and only if they
generate the same output string for every input string in CA™ W, m

Remarks. (1) In its original form Chow’s theorem takes the test set to be of the form TA®W,
where T is a ‘transition cover’ for F. In order to keep things simple, our statement of the
theorem uses the fact, for complete machines, that CAY is a transition cover whenever Cis a
state cover, so that a suitable test set is CAYA™PW = CA™PW. (2) Recalling our method for
machines with non-final states, it is clear that Chow’s method can be extended to infinitely
many more specifications than currently included.

4.2 SXM Testing

The strong similarity between SXMs and automata was the original motivation for their
introduction; Laycock [Lay93] recognised that Chow’s method could be extended to cover
systems specified by SXM. The technique was largely perfected in [1pa95, IH97, HI98] and has
been extended more recently to include non-deterministic specifications [HHO1a, HHO1b]. It
has been applied both theoretically and in practical system testing [FHI+95, BHO1, Van01], and
support tools are becoming available [EK00, KEK00a, KEK0ODb].

As with Chow's method, we assume the existence of a minimal, complete, connected and
deterministic SXM specification Spec, and an SXM implementation Imp, and need to decide
whether or not they have the same behaviour. The basic strategy involves constraining Soec so
that the equivalence of Spec and Imp follows from that of their underlying automata.

Recall our basic requirement that Spec and Imp should be defined over the same alphabet. In the
present context, this means that they should use the same transition relations, or equivalently,
that they use the same labelling, A.

In Chow’s method, characterisation is used to identify machine states, and relies on the fact that
individual |etters can easily be distinguished (the output streams out; and out, are distinct if and
only if they differ in one or more letters, so we only need to be able to distinguish the

59



latter).This principle no longer applies for SXMs, because it isimpossible to guarantee a priori
that distinct label relations can be distinguished. For example, suppose two relations differ only
at one particular (mem, in) pair. Unless we know a priori that we need to test the relations with
this particular (mem, in) combination, we could wrongly conclude that the correct relation is
implemented when in fact it is not. This is a particular problem because Mem may well be
infinite and even uncountable, so we cannot exhaustively test all (mem, in) pairs. Consequently,
we strengthen characterisation by requiring output distinguishability; there should be a priori
known (mem, in) pairs that can be used to distinguish between the relations used to label the
transitions of the machine.

The concept of cover now needs to be strengthened as well, because it is not enough to ensure
that we reach every state in turn. When we reach a given state s, we need to be certain that mem
has taken on a value suitable for characterisation to be possible — we have to arrive at s with
mem appropriately set for firing transitions with the key (mem,in) input pairs. Thisis typically
established by imposing the (somewhat stronger) requirement that for each mem, thereis some a
priori known input in for which (mem, in) can be processed and at the same time contribute to
the characterisation process. This can be regarded as the SXM version of completeness, though
it is not quite the published Holcombe/lpate “test completeness’ property [HI98, p. 181], which
omits the contribution-to-characterisation requirement.

Finally, of course, it is not enough just to know that Imp is giving the correct responses, because
this could occur by accident. If the implementation is written in a programming language whose
compiler is faulty, we could well be generating the correct responses for each of the key (mem,
in) test inputs, and yet still not have a correct system. We therefore impose the requirement that
the relation label s themselves must be a priori correct.

421 THEOREM (HI98, P.185)

Suppose that Spec and Imp start with the same initial memory value, use the same set of relation
labels @, and that ® is output distinguishable and complete [in our sense, above]. Assume that
the associated automaton of Spec is minimal, complete, connected and deterministic (so it has
precisely one initial state), and that all states are final. Suppose also that the associated
automaton of Imp has no more than n more states than that of Spec. Then TSis a test set for
|Spec] where TSis Chow’stest set. m

It is normally stated that the correctness of labels can be determined recursively, by applying
this same technique to the labels themselves (see e.g. HI98, chapter 8). This is only partially
true, however, because we have assumed extra properties for these relations as part of the price
for using them during testing. It is not enough simply to prove that the label relations are correct
in their own terms, because they also have to satisfy the consequences of our completeness and
output distinguishability criteria. This means we have to prove properties that hold for all values
of Mem, and this may not be a tractable, or even a possible, problem. For example, the function
test: N - BOOL given by the program {while(n>1){ if (even(n)) n=n/2; elsen = 3*n+1;} return
true;} is clearly computable, and we can even prove that it correctly calculates a particular
specification of interest to number theorists, Consequently, we can (by traditional arguments)
use test as a valid label in an SXM, because it is correct in its own terms. But thisis not valid,
because no-one currently knows whether test is a partial or a total function — we can prove its
correctness in its own terms, but we may not necessarily be able to prove the extra requirement,
totality, entailed by our completeness criteria.

60



4.3 General behavioural testing

It is clear that the SXM test method relies on properties that can be expressed entirely in
framework-theoretic language. It is not surprising, therefore, that the method can be extended at
astroke to include all behavioural frameworks.

Henceforth, suppose that B = (B, O, X) is a framework, and that F" is a S-machine with
alphabet A. Write ® = A(A) [ B. We call the members of ® behavioural labels. Recall aso that
theoretical caution requires us to regard test sets as downward closed; this is reflected in our
statement of Theorem 4.3.3 below.

The first step is to define what we mean by a characterisation set for a S-machine, because we
can no longer rely on the output language Out* for characterisation purposes (it isn’t part of the
general framework definition).

4.3.1 DEFINITION (CHARACTERISATION SET FOR SEMI-AUTOMATON)
Given any W 0 A*, we can define afunction fy: S - W- BOOL by

ifs=*T
fw(s)(a) =

if no such path exists

If the function fy is 1-1, we call the language W a characterisation set for F. If, in addition, for
each sthereis at least one al]W for which fy(s)(a) = T, we call W a positive characterisation set.
If F, G are semi-automata over A, we say that two states slIF and tLJG are W-equivalent if fi(S)
= fu(t), wherefy(s) isevaluated in F and fy(t) in G. m

It is worth recalling that characterisation sets can only be constructed for minimal machines,
because non-minimal machines contain indistinguishable states. We can generally construct a
positive characterisation set piecewise. That is, we first find languages that distinguish s; from
S, for each pair (s1,$), and then take the union of al of these component languages. In general
this is less efficient than constructing a global characterisation set, but may be simpler in
practice.

4.3.2 DEFINITION (DISTINGUISHABLE BEHAVIOUR LABELS)

Letd: ® - [B - BOOL] be the function which maps each @® to the predicate
o(@(b)=(b=9)

We call d the distinguishing function for @. If d(¢) is decidable for al @I®, we say that P is

distinguishable. m

In general, this is the best we can do, because the actual proof that 0 generates decidable
predicates will depend on the exact nature of B. For SXMs, for example, we avoid the
requirement that 0(g) be decidable by imposing the stronger requirement of output-

distinguishability instead.
4.3.3 THEOREM (COM PLETE BEHAVIOURAL TEST SETS)

Suppose that Spec” and Imp” are S-machines over the same framework with the same ®, and
that @ is distinguishable. Suppose that Spec is minimal, complete, connected and deterministic
(so it has precisely one initial state), and that all states are final. Let C be a cover and W a

61



positive characterisation set for Spec. Suppose Imp has no more than n more states than Spec.
Suppose also that the initial termination behaviours of Spec and Imp are identical (i.e. the
unique initial states of the two machines are W-equivalent). Then Spec” and Imp” have the same
behaviour if and only if they generate the same behaviour for every input string in (CA™"W). .

Proof. We will show that Chow’s theorem can be applied to the F/T automaton representing
Soec. To this end, we have to choose some a O CA™DW and consider the stream translation
function f* defined as follows, where f = fA«(7) and | isthe initial state of Spec.

*(ay, ..., &) — (f(a), f(ad), ..., f(ay, -..,an) )

In other words, the sequence on the right simply gives the acceptance/rejection history of the
string, as it evolves one symbol at atime. Thisis the automata-style behaviour of Spec, and we
need to show that it is the same as the automata style behaviour of Imp. It will then follow
immediately that |Spec| = |Imp|, and that, therefore, |Spec”| = Imp’.

By hypothesis, Spec” and Imp" behave identically on al prefixes of a. In particular,
|Spec’|is defined for the prefix u if and only if Imp”|is aso defined for u, and this occursif and
only if ud|lmp|. Consequently, the corresponding stream translation function for Imp

g*(ay, ..., @) = (9(a), g(adr), .-, 9(ay, --..a) )
satisfiesf*(u) =T = g*(u) =T asrequired, and f*(u) = g*(u). m

5 Summary

We have provided two extensions to state-machine testing theory. The first allows us to extend
Chow’s W-method and the SXM testing method to include specifications given by machines
with non-final states, by first encoding semi-automata as automata with output aphabet BooL.
The second part of the paper demonstrates a general extension to these test methods, that applies
to any system that can be specified by a behavioural framework. Although a novel concept, the
frameworks in question occur ubiquitously in computer science, with examples occurring in
both sequential and concurrent machine theory. We show that Eilenberg’'s X-machine concept
can be extended to give behavioural machines, which are essentially semi-automata whose
transitions are |labelled by elements of a behavioural framework. The SXM test method extends
automatically to behavioural machines, provided we recognise the different natures of semi-
automaton and automaton behaviours. Accordingly, we need to use the downward closure of
Chow’'stest set to generate the test-set for a semi-automaton-based S-machine.

There is clear scope for future work in thisfield. In particular, we are studying the feasibility of
modelling object oriented systems using S-machines, by incorporating both the sequential and
concurrent representational capabilities into a single framework. Given that tools are becoming
available for SXM testing, we are hopeful that tools can likewise be developed for S—-machine
testing, though any such tools will require considerable built-in user support.

6 References
[Arn91]  Arnold A. (1991) ‘ An extension of the notion of traces and asynchronous
automata.” Theoretical Informatics and Applications 25, pp. 355-393.

[BCG+99] Balanescu, T., Cowling, T., Georgescu, H., Gheorghe, M., Holcombe, M. and C.
Vertan (1999) ‘ Communicating stream X-Machine systems are no more than X-
machines.” J.U.C.S 5(9), pp. 492-507.

62



[BeH96]

[BHO1]

[CF69]

[Cho78]

[DGYS]

[DGO2]

[DR95]

[Eil74]

[EKO00]

[FHI+95]

[Gas90]

[HHO14]

[HHOLb]

[HI98]

[Hol8g]

[1H97]

[Ipad3)]

[KEK004]

Bell, A. and M. Holcombe (1996) “ Computational models of cellular processing” in
R. Cuthbertson, M. Holcombe and R. Paton, eds., Computation in Cellular and
Molecular Biological Systems. Singapore: World Scientific.

Bogdanov, K. and M. Holcombe (2001) ‘ Statechart testing method for aircraft
control systems.” Software Testing, Verification and Reliability 11, pp. 39-54.

Cartier, P. and D. Foata (1969) Probleémes combinatoires de commutation et
rearrangements. (Lecture Notesin Mathematics 85), London & Berlin: Springer-
Verlag.

Chow, T. (1978) ‘ Testing software design modelled by finite state machines.” |EEE
Transactions on Software Engineering SE-4(3), pp. 178-187.

Diekert, V. and P. Gastin (1998) ‘ Approximating traces.” Acta Informatica 35, pp.
567-593.

Diekert, V. and P. Gastin (2002) “ Safety and Liveness Properties for Real Traces
and a Direct Trandation from LTL to Monoids’ in W. Brauer et a., eds., Formal
and Natural Computing (Lecture Notesin Computer Science 2300), London &
Berlin: Springer-Verlag; pp. 26-38.

Diekert, V. and G. Rozenberg, eds. (1995) The Book of Traces. Singapore: World
Scientific.
Eilenberg, S. (1974). Automata, Languages and Machines, Vol. A. Academic Press.

Eleftherakis, G. and P. Kefalas (2000) Model Checking X-Machines: Towards
integrated formal development of safety critical systems. Technical Report, Dept of
Computer Science, CITY Liberal Studies, Thessaloniki, Greece.

Fairtlough, M., Holcombe, M., Ipate, F., Jordan, C., Laycock, G. and Z. Duan
(1995) ‘Using an X-machine to model a Video Cassette Recorder.” Current issues
in Electronic Modelling, 3, pp. 141-161.

Gastin, P. (1990) ‘ Un modéele asynchrone pour les systemes distributes.’
Theoretical Computer Science 74, pp. 121-162.

Hierons, R. and M. Harman (2001) ‘ Testing conformance to a quasi-
nondeterministic stream X-machine.” Formal Aspects of Computing (Special Issue
on X-machines).

Hierons, R. and M. Harman (2001) ‘ Testing conformance of a deterministic
implementation against non-deterministic stream X-machine.” Working Paper, Dept
of Computer Science, Brunel University, UK.

Holcombe, M. and F. Ipate (1998) Correct Systems: Building a Business Process
Solution. London & Berlin: Springer-Verlag.

Holcombe, M. (1989) ‘ X-machines as abasis for dynamic system specification.’
Software Engineering Journal 3(2), pp. 69-76.

Ipate, F. and M. Holcombe (1997) ‘ An integration testing method that is proven to
find al faults.” International Journal of Computer Mathematics 68, pp. 159-178.

Ipate, F. (1995) Theory of X-machines with Applications in Specification and
Testing. PhD Thesis, Dept of Computer Science, Sheffield University.

Kefelas, P., Eleftherakis, G. and E. Kehris (2000) Communicating X-Machines: A

Practical Approach for Modular Specification of Large Systems. Technical Report
CS-09/00, Department of Computer Science, CITY Liberal Studies, Thessaloniki,

Greece.

63



[KEKOOb] Kehris, E., Eleftherakis, G. and P. Kefalas (2000) “Using X-Machinesto Model and

[Koh78]

[KS92]

[Lay93]

[LP84]

[LS93]

[Maz77]

[Moo56]

[Stag0]

[Stag1]

[Stao4]

[Sta01]

[Van01]

Test Discrete Event Simulation Programs’ in N. Mastorakis, ed., Systems and
Control: Theory and Applications. Singapore and America: World Scientific and
Engineering Society Press; pp. 163-168.

Kohavi, Z. (1978) Switching and finite automata theory. McGraw-Hill.

Kwiatkowska, M. and M. Stannett (1992) “On Transfinite Traces” in V. Diekert
and E. Ebinger, eds., ASMICS Workshop on Infinite Traces, Bericht 4/92,
Universitdt Stuttgart Fakultét Informatik; pp. 123-157.

Laycock, G. (1993) The Theory and Practice of Specification-Based Software
Testing. PhD Thesis, Dept of Computer Science, Sheffield University, UK.

Lidl, R. and G. Pilz (1984) Applied Abstract Algebra. London & Berlin: Springer-
Verlag.

Laycock, G. and M. Stannett (1993) X-machine Workshop. Technical Report, Dept
of Computer Science, Sheffield University, UK.

Mazurkiewicz, A (1977) Concurrent program schemes and their interpretations.
Technical Report DAIMI PR-78, Aarhus University, Denmark.

Moore, E. F. (1956) ‘ Gedanken-experiments on sequential machines.” Automata
Sudies, (Annals of Mathematics Studies, no 34). Princeton University Press; pp.
129-153.

Stannett, M. (1990) ‘ X-machines and the Halting Problem: Building a super-Turing
machine.” Formal Aspects of Computing 2, pp. 331-341.

Stannett, M. (1991) An Introduction to post-Newtonian and non-Turing
Computation. Technical Report CS-91-02, Dept of Computer Science, Sheffield
University, UK. Available online from

http://www.dcs.shef .ac.uk/research/resmems/.

Stannett, M. (1994) ‘ Infinite Concurrent Systems — |. The Relationship between
Metric and Order Convergence.” Formal Aspects of Computing 6, pp. 696-715.

Stannett, M. (2001) Computation over arbitrary models of time. Technical Report
CS-01-08, Dept of Computer Science, Sheffield University, UK. Available online
from http://www.dcs.shef.ac.uk/research/resmems/.

Vanak, S. K. (2001) Complete Functional Testing of Hardware Designs.
Preliminary PhD Report, Dept of Computer Science, Sheffield University, UK.



Formal Basis for Testing with Joint-Action
Specifications*

Timo Aaltonen and Joni Helin
Tampere University of Technology, Institute of Software Systems
P.O.BOX 553, FIN-33101 Tampere, Finland
Tel: +358-3-31153951, fax: 4+358-3-31152913
email: {timo.aaltonen, joni.helin}@tut.fi

July 3, 2002

Abstract

A new method for formal testing of reactive and distributed systems
is presented. The method is based on having a joint-action specification
of the implementation under test. A testing hypothesis is made to allow
assigning formal meanings to correct and incorrect implementations. Uti-
lizing these we formulate meaning of finding errors in implementations in
a strict way.

1 Introduction

Traditionally testing and formal methods have had little to do in common.
However, recently it has been realized that these two need not be exclusive but
they can complement each other. Rigorous specifications give an excellent basis
for testing: notions like correct and erroneous implementations can be assigned
an exact meaning and descriptions of test cases become more precise.

One difficult field for testing are reactive and distributed systems. Reactive
systems obtain stimuli from the environment and react to them. The behaviour
of a distributed system is not very predictable. Little changes in timings of their
complex interactions with the environment and between components make the
system behave in non-deterministic manners. Therefore testing them thoroughly
is extremely difficult. Formal specifications allow us to deal with this non-
determinism in an exact way.

In this paper we attack problems of testing reactive and distributed systems
by utilizing joint-action specifications which are introduced in Section 2. Sys-
tems are first modelled with them and then they are implemented. We make

*This work was supported by Academi of Finland under project 510005.

65



a testing hypothesis which claims that there exists a joint-action model for ev-
ery implementation. If an implementation is correct then this model can be
achieved from the specification as a legal refinement. Testing is searching for
a counterexample to this refinement relation. These aspects are discussed in
Section 3. In Section 4 an example of utilizing the proposed testing method is
given. Finally Section 5 concludes the paper.

2 Joint-Action Specifications

Joint actions were introduced by Ralph Back and Reino Kurki-Suonio in [4,
5]. The intention with them was to describe the behaviours of reactive and
distributed systems at a high level of abstraction. By abstracting the details
of communication, a joint action models what several parties of the system do
together, not how the desired behaviour is achieved.

Basic building blocks of our joint-action specifications are class and action
declarations. Formally a class is a set of similar objects sharing the same struc-
ture. Classes can be inherited in an object-oriented fashion. Then an inherited
class forms a subset of the base class. Besides class definitions, record types can
be declared. Unlike objects of classes, values of record types have no identity.

The state of an object means evaluation of its attributes. The states of
objects can be changed only by executing multi-object joint actions. A joint
action consists of a name, a set of roles (in which the objects can participate), a
boolean-valued guard (which must evaluate to true for the participating object
combination) and a body (which is a parallel assignment clause assigning new
values to the attributes of the participating objects). When such a combination
of objects exists that the guard of an action is satisfied, an action is said to be
enabled (for the satisfying object combination). Selection of the next action to
be executed is non-deterministic among the enabled ones. Actions are atomic
units of execution which are executed in an interleaving manner. This is an
abstraction of parallel executions of operations.

States of all objects constitute the global state of the system. A new global
state is obtained form the current one by executing an action which is enabled
in the current state. A sequence of global states starting from an initial state
sg is called a behaviour: o =< sq, 81, 82, ... > where sg is an initial state of the
system and each state sx41 is obtained from state s; by executing an action
enabled in state s;. The method is not sensitive to stuttering in behaviours. In
other words a behaviour is considered the same even if its states are arbitrarily
repeated. A joint-action specification induces potentially an infinite set of be-
haviours whose initial states are legal initial states of the specification and new
states are obtained by executing the actions of the specification.

As an example we give a specification of counters. Objects belonging to class
Counter hold the value they count in attribute val, which can be incremented
by executing action inc. The action can be executed for objects having value
less than two in val; the body of the action increments val by one. It is assumed
that all counters are initialized to zero:

66



specification Cntrs = {
class Counter = {val: integer}
action inc(c: Counter): c.val < 2 ->
c.val’ = c.val + 1;

}

From the infinite set of behaviours the specification induces we show two. In
the first one just one counter has been instantiated, the value of attribute val
is given in parenthesis: < (0), (1), (2),(2),- - >. The second behaviour consists

ot comtes: <(0). (1), (2), (2). (2). () - >

Formal properties of behaviours are often divided into two categories: safety
and liveness properties. The former are such their violation can be detected
in a finite prefix of a behaviour. In terms of temporal logic[10, 13] an example
of safety property is [lp, which states that proposition p holds in every state.
For example, (Ve : Counter :: cwal < 3) holds for specification Cntrs, if
counters are initialized to zero. On the other hand liveness properties are those
whose violence cannot be detected in a finite prefix. An example of such is (g
which states that eventually ¢ will hold. In this paper we concentrate on safety
properties.

2.1 Refinement

Joint-action specifications are refined towards implementations by superimpos-
ing new layers onto an old specification. A superposition step maps the old
specification to a new one, which is a refinement of the old one. Our variant of
superposition allows adding new attributes to existing classes, introducing new
classes, strengthening the guards of old actions, adding new assignments to old
actions, introducing new actions, but the new assignments are allowed only to
newly introduced attributes.

In terms defined in [8] our variant of superposition is regulative. ILe., the
safety properties of the specification being refined are preserved by construction,
but liveness properties can be violated. This means that if we have an abstract
specification s and its refinement s’ then all behaviours induced by s’ (denoted
beh(s')) are also behaviours of s with respect to variables of s: beh(s") Cyars(s)
beh(s).

As an example, specification Cntrs can be refined by adding running bit to
each counter and introducing actions to set and reset the bit. The guard of
action inc is strengthened with a conjunct stating that running must be true
for the participating counter; the body of the action remains unchanged:

specification Ena refines Cntrs = {
Counter = Counter + {running: boolean}
action enable(c: Counter): not c.running -> c.running’ = true;
action disable(c: Counter): c.running -> c.running’ = false;
action inc(c: Counter) refines Cntrs.inc(c): c.running -> ...;

In a refinement the values of abstract variables can be represented by several
variables distributed in the system. In these cases quantified expressions called
shadow assertions state formally the relationship between the abstract and the

67



concrete variables. To ensure that shadow assertions are not violated they must
be formally verified. When a variable has become abstract then it is not needed
in an implementation.

Several joint-action specifications can be composed into one compound spec-
ification. Applying refinement and composition lead to abstraction hierarchies,
which are directed acyclic graphs.

2.2 Abstraction Function

Remember that our refinement mechanism allows only adding new variables
to the specification and strengthening guards of existing actions and making
such augmentations to the bodies of existing action that assign only to newly
introduced variables. Therefore, if specification s’ is a refinement of s then each
behaviour induced by s’ has an image in behaviours induced by s in terms of s.

To be able to deal with behaviours of one specification in an abstraction
hierarchy at the level of another, we define abstraction function: af;, : B — B,
where s and s’ are specifications and B is the universe of behaviours. The
function is defined if vars(s) C vars(s'), where vars(s) are the variables (at-
tributes of objects) of specification s. The function maps behaviours induced by
specification s’ (more concrete) to behaviours of s (more abstract) by filtering
variables vars(s') Nvars(s) from the behaviour and by computing the values of
shadow variables of s.

For example, behaviours induced by Ena can be mapped to behaviours of
Cntrs simply by filtering the values of attribute running from the behaviour.
More formally

nitrs
alp,, = {(bEnaa ant‘r‘s) |
(Vi € N: (Ve € Counter : c.val(bgna(i)) = c.val(bontrs(1)))) }

where N is the set of natural numbers and c.val(b(i)) is the value of attribute
val in the ith state of behaviour b.

3 Testing with Joint-Action Specification

In this paper implementations are created according to the most concrete spec-
ification (denoted c) in the specification hierarchy. The objective is to produce
an implementation that is a legal refinement of c. Our refinement mechanism is
superposition, thus the implementation should be obtainable by some superpo-
sition step on c¢. Then the implementation can only restrict (not liberate) the
behaviour induced by c¢. In our approach conformance means that an imple-
mentation exhibits only such behaviours that are induced by the specification.

3.1 Testing Hypothesis

A difficulty in this approach is that an implementation is not a formal entity
but lies in the physical reality, consisting of a compiled program written in some

68



programming language, pieces of hardware in which the program slices are run,
an environment with which the actual system interacts etc. No concepts exist
on which the described correctness can be formally based on; we are not able
to validate whether the implementation actually is a refinement of its specifica-
tion. This dilemma is solved by making a testing hypothesis, which states that
every implementation under test (IUT) has such a formal model (my) that if
it and 1UT are both put in a black box which transmits behaviours only at the
abstraction level fixed by m,; then we cannot distinguish 1UT and m,;. Model
myr 1S a joint-action specification. More formally the hypothesis states that

V 1UT € I'mps 3 myyr € Specs : af’[" (beh' (1UT)) = beh(muyr) (1)

where I'mps is the universe of implementations, Specs is a universe of joint action
specifications, beh’ : Imps — 9Behaviours’ maps an implementation to the set
of real world behaviours it induces (Behaviours' is the universe of real world
behaviours), af’[[*" : Behaviours' of TUT + Behaviours of myy projects the
real world behaviours of TUT to the behaviours of model my;r and function beh :
Specs +—» 2Behaviours ymans a joint action specification to the set of behaviours
it induces. Behaviours is the universe of behaviours induced by joint-action
specifications.

Believing that m,yr exists is a leap of faith which cannot be formally justified.
However, it is easy to believe that all real systems can be modelled with joint
action specifications, because their expressive power is reasonably high. For
example, a specification which contains images of all the variables of 1UT and
an action for each atomically executed piece of software works as the required
model.

The testing hypothesis does not require myr to be actually created, it just
assumes that such a model exists. For testing purposes we only need to be able
to produce such behaviours that m;y+ would produce. To be correct, model myr
should be a refinement of c. Therefore, behaviours of m;yr can be mapped to
the behaviours of ¢ by applying abstraction function af;, .

3.2 Definitions for Correct and Incorrect Implementation

Correctness of ITUT can now be defined formally:

IUT is correct <ges (Vb € beh(myyy) : af,

Myt (

b) € beh(c)) (2)

In an ideal case we could produce a perfect model m;; and formally verify
that it is a legal refinement of c¢. Unfortunately, for reasonably sized systems
producing model my; is not an option and, moreover, utilizing it would not be
testing but verification. Instead, we investigate a subset of behaviours induced
by mur and try to catch errors with them. An attempt is to produce behaviour
bee to satisfy the right hand side of Equation (3) below, which is achieved by
negating both sides of Equation (2):

IUT is not correct <> (3 bee € beh(mur) : afy,  (bee) ¢ beh(c)) (3)

69



Behaviour b, is a counterexample for the subset relation which should hold for
behaviours beh(mir) Cyars(c) beh(c).

3.3 Setting

Figure 1 illustrates the setting for testing. Implementation IUT in the bottom
left-hand corner is created based on specification ¢ in the top left-hand corner.
According to the testing hypothesis myr exists and 1UT is correct if and only if
myr is a legal refinement of ¢. Each specification induces a set of behaviours
depicted as ellipses. Arrows from beh/(1UT) to beh(m,yr) model function af’[¥"
which projects real world behaviours to behaviours of my,;, and arrows from
beh(myr) to beh(c) model mapping af}, . Our refinement mechanism enforces
the set of behaviour images of the refined specification to be in a subset re-
lation with the set of behaviours of the specification being refined. Testing is
an attempt to produce a behaviour b.. which is a counterexample to this sub-
set relation: b.. € beh(muwr) A afy, (bee) ¢ beh(c). Behaviour bg* is such a
counterexample in the figure.

induces

Figure 1: The setting for testing.

3.4 Observation Objectives

So far we have discussed what are correct and incorrect implementations and
how errors are detected if some behaviours of m;,; are observed. If 1TUT does
nothing then it definitely does not violate the safety properties of specification c.
Therefore, a set of behaviours must be enforced. Similarly to [16] we define some

70



set of behaviours that we whish to observe during testing. These observation
objectives are given in terms of c.

An observation objective is a set of behaviours that intersects the set induced
by c. Objective o is said to be satisfied if at least one behaviour b, € o is
observed. An objective describes behaviours we whish to observe, but it is not
directly related to the correctness of IUT. An example objective for specification
Ena given Section 2 could be the set of behaviours where the value of some
counter has first been one and later it has been incremented; more formally
objective o = {b | P(b)} where
P(b) = Jiy,i2 € N | i1 < iz : (Ic € Counter : cval(b(i1)) = 1 A cwal(b(iz)) > 1)
where c.val(b()) is the value of attribute val in ith state of behaviour b.

The Venn diagram in Figure 2 depicts different sets of behaviours. The
large square is an infinite universe of behaviours. The horizontal large ellipse
in the middle models the behaviours induced by specification ¢ (these are legal
behaviours); the horizontal small ellipse is an observation objective (these are
the behaviours we wish to observe) and the vertical large ellipse models the
behaviours af;, (beh(my:)) (these are the behaviours 1UT induces). All the
sets are infinite in the general case.

observation objective .
Behaviours

c induces
——

induces
Myt

Figure 2: Venn diagram of behaviours.

4 Example: Distributed List

We have applied the proposed testing method for testing an implementation of
DISTRIBUTED LIST[12]. Our version of the protocol specification consist of two
layers atomic_list and messages.

4.1 Specification atomic_list

DISTRIBUTED LIST is a protocol for maintaining a circular, singly-linked list
of cells. The protocol is an abstraction of a part of a multiprocessor cache
coherence protocol for linked list of processors sharing a cache line. A more

71



comprehensive description of the protocol can be found in [12]. In the list there
is a special cell, called the head cell, which coordinates the addition of cells.

In abstract specification atomic_Tist of the protocol cells can join and
leave the list in synchronous actions. First a base class Cell with two derived
classes HeadCel1 and NormalCell are given. Objects of class Cel1 have attribute
next_a (a for abstract), which is a reference to the next cell in the list or a self
reference if the cell is not in the list. In the initial state there are no cells in
the list. Actions atomicAdd and atomicDelete model joining and leaving the
list, respectively.

Action atomicAdd has two roles: nc, in which the cell willing to join the
list participates, and h, in which the head cell participates. The guard of the
action requires that the object participating in role h is not yet in the list. In
the body of the action reference next_a of the head cell is assigned the reference
to nc and next_a of nc get the previous value of h.next_a:

action atomicAdd(nc: NormalCell; h: HeadCell) is
when nc.next_a = nc do

nc.next_a’ = h.next_a A h.next_a’ = nc;
end;

Detailed description of atomicDelete is omitted for brevity.

4.2 Specification messages

Synchronous specification atomic_11ist is refined to specification messages, which
is an asynchronous implementation of the atomic specification. In the refined
version a cell not in the list may request to be added to the list and successively
to be removed from the list. Communication is message-based over a reliable
but not order-preserving medium. Every cell has a specification variable next_c
(c for concrete), which holds the identity of the successor cell, or its own identity
if the cell is not on the list.

Cells other than the head cell can perform two types of transactions, add
and delete. Addition consists of sending a request message to the head cell,
which results in the cell being added to the list in front of the next cell of head
cell and a reply containing the identity of the new next cell of the requesting
cell.

To delete a cell from the list, knowledge of the predecessor cell is required, so
a message called pred carrying the identity of a cell’s predecessor is circulated.
A cell initiates deletion by sending a message to its predecessor and waits for
acknowledgment. Handling of the deletion message depends on intricate details
about the scenario, but basically the actual predecessor of the requesting cell
updates its next_c variable and acknowledges.

The abstract atomic specification atomic_11ist is superimposed by layer mes-
sages, in which abstract atomic actions are implemented by more concrete ones,
and abstract variable next_a is distributed to several concrete variables. The
transmission medium is represented with singleton class Net holding a set of
Messages. Class Cell is extended with a state machine for message-based im-
plementation of the protocol and variable next_c, which together with fields in

72



at omi cAdd
transaction add

Figure 3: Actions of transaction add.

transmitted messages implement the abstract specification variable next_a. A
set of shadow assertions state their respective relationships.

Distributed implementation of the add transaction consists of three actions
depicted in Figure 3. The transaction begins when a cell is in normal operating
state and wishes to join the list. Action initiateAdd results in an AddMessage
sent to the head cell and the cell entering state waiting for a HeadMessage in
reply. Set manipulations of Net correspond to message send and reception:

action initiateAdd(nc: NormalCell; net: Net) is
when nc.state'normal A nc.next_c = nc do

net.mess’ = net.mess + {AddMessage(src’ = nc, dst’ = nc.theHeadCell)} A
nc.state’ = w_head();
end;

Action processAdd is refined from atomicAdd and locally processed by the head
cell upon delivery of the AddMessage. The action guard ties the sender of the
message to the shadow role’ nc. Action body consists of sending a reply mes-
sage carrying the new value for the concrete variable next_c of the requesting
cell. The concrete variable in the head cell is updated correspondingly with the
abstract variable. Three dots in the guard refer to the guard of the action being
refined, and in the body they refer to the original body:

refined processAdd(nc: NormalCell; hc: HeadCell; net: Net; am: AddMessage)
of atomicAdd(nc, hc) is

when ... am € net.mess A am.dst = hc A am.src = nc do
net.mess’ = net.mess - {am} + {HeadMessage(src’ = hc,
dst” = am.src,
new’ = hc.next_c)} A
hc.next ¢’ = am.src;
end;

Transaction add is finished when the initiating cell executes processHead action.
The cell updates its concrete variable next_c with the value received in the
HeadMessage and returns to normal state:

action processHead(nc: NormalCell; net: Net; hm: HeadMessage) is
when hm € net.mess A hm.dst = nc do

net.mess’ = net.mess - {hm} A nc.next ¢’ = hm.new A nc.state’ = normal();
end;

Implementation of the delete transaction, which is more complicated, is not
described here.

1Shadow role means that only shadow attributes of the role are accessed in the action,
therefore, it can be left out in implementation.

73



4.3 Implementation and Testing

Implementation (dli) of DISTRIBUTED LIST was written in Erlang[l]. As ex-
plained in Section 3, we are not able to really create the model m, but 1UT
is instrumented to demonstrate its behaviour according the the most concrete
specification messages. In other words, we observe such behaviours that could
have been produced by myr and abstracted to behaviours of messages. More
formally:

Vb € observed behaviours : b € af,>>**9* (af ;4 (beh/ (dli)))

The testing was carried out offline — behaviours were first produced and their
correctness were validated afterwards. The actual validation was done with
DisCo ANIMATOR [3], a special tool for animating joint-action specifications.
To be able to exploit ANIMATOR observing just states is not enough but we
must be notified of the executed actions as well.

Execution of the add transaction of the protocol is safe-guarded by a precon-
dition that the next reference of the node in question must point to itself and
the node must be in normal operation state. However, should an implementa-
tion inadvertantly leave the second requirement unenforced, simply relying on
checking the next reference, an error would have been introduced. In that case,
initiating a new add transaction in the midst of the previous add transaction,
before the next reference is updated, would become possible. A scenario de-
picting this situation is given in Figure 4, which contains four states and the
three actions responsible for state changes. In the initial state the network (net
in the scenario) contains pred message and the head cell (hc) and both normal
cells (nci and nes) refer to themselves and operate in normal state. First nc;
wishes to joint the list and, therefore, action initiateAdd is executed; then the
head cell handles its part of the transaction add (action processAdd), but be-
fore completing the transaction by executing action processHead nc; attempts
to initiate joining again. However, action initiateAdd is not enabled in the
third state in the specification and the error is detected.

initiateAdd(ncl, net)  processAdd(ncl,hc,net,Add) initiateAdd(ncl, net)

N N

net({Pred}) net({Pred, Add}) net({Pred, Head}) net({Pred, Head, Add})
hc(he, normal) hc(he, normal) hc(cl, normal) he(cl, normal)

ncl(ncl, normal) ncl(ncl, w_head) ncl(ncl, w_head) ncl(ncl, w_head)
nc2(nc2, normal) nc2(nc2, normal) nc2(nc2, normal) nc2(nc2, normal)

Figure 4: Erroneous scenario.

An actual error in our implementation of the protocol was found during
development when the guard of an action was erroneously enabled. This was a
result of a reference to an incorrect state in the implementation of the guard.
Another error resulted in the consumption of the pred message by a cell in the
midst of add transaction, never to be put to circulation again. Even though this
was a violation of a liveness property, the deadlock was detected by the testing
engineer, because no cell was able to commit the delete transaction.

74



5 Discussion

We have presented a new technique for formal testing of reactive and distributed
systems. The technique is based on joint-action specifications, which model
behaviours of systems at a high level of abstraction. Testing hypothesis asserts
that each 1UT has a model my; which is indistinguishable from 1UT. Now, 1UT
is correct iff myr is obtainable as a legal refinement of the specification for 1UT.
Correctness is defined so that 1UT is correct iff each behaviour induced by myr
belongs to behaviours induced by its specification. Testing is searching for a
counterexample to this relation.

This paper is focused on the ideas behind testing, not how testing is carried
out in practise. Thus, this paper reflects virtually no methodological aspects
of testing. The next step will be on developing a comprehensive method incor-
porating these ideas in actual testing. The main contribution of the paper is
in giving a formal basis for testing with joint-action specifications. Up to our
knowledge joint-action specifications have not been researched from this point
of view.

A significant amount of research has been carried out on formal testing
methodologies for reactive and distributed systems[9, 15, 11]. A well-known
formal approach for conformance testing of concurrent systems is presented
by Tretmans in [15]. First a formal framework for testing is developed and
then instantiated for labelled transition systems (lts). Similarly to our approach
formal testing is justified by a test hypothesis, which enables the consideration
of implementations as formal objects where an implementation relation is used
to link a model of an implementation to its specification.

Compared to our method Tretmans emphasizes the input-output relation
(where internal state changes are abstracted away) in testing, whereas, our
stress is laid on more abstract communication where no distinction is made
between input and output. Therefore, our definition for conformance is some-
what different. In [2] Aaltonen et al. have presented a mapping of joint-action
specification instances to timed automata, which is an lts-like formalism. This
mapping can be utilized for clarifying the differences of the two methods. This
is left as future work.

Automatic generation of test suites containing stimulus to 1UT with the ex-
pected response is a considerably researched topic [6, 15, 14]. For the time being
we do not have any algorithms or methods for generating tests. However, we
believe that by utilizing observation objectives it is possible to create suitable
suites — at least with some guidance by the testing engineer. Presently we are
developing a method for producing tests based on observation objectives.

The method for checking that 1IUT behaves correctly is often called test oracle.
We have developed a toolset for simulating joint-action specifications [3], which
includes COMPILER and ANIMATOR. The compiler produces an engine which
maintains the state of a joint-action specification instance and is utilized by the
animator. This engine can be considered as the test oracle since it verifies the
validity of reached states and execution scenarios. In [7] Dillon and Ramakrishna
develop a generic tableau algorithm for generating oracles from temporal logic

75



specifications.

The abstraction hierarchy of joint-action specifications was not exploited in
this paper. In specifying it is considered as the most essential contribution by
our method. Therefore, utilizing the hierarchy also in testing is one branch for
future work.

To date, research on formalizing testing has been concentrated on finite state
formalisms. We are making an important contribution by taking testing to areas
where theorem proving has been the dominant mean of ascertaining correctness.
However, different approaches have their respective strengths and selection of
an approach should be based on the nature of the problem.

References

[1] Open source erlang project WWW page. At http://www.erlang.org/ on
the World Wide Web.

[2] Timo Aaltonen, Mika Katara, and Risto Pitkdnen. Verifying real-time joint
action specifications using timed automata. In Yulin Feng, David Notkin,
and Marie-Claude Gaudel, editors, 16th World Computer Congress 2000,
Proceedings of Conference on Software: Theory and Practice, pages 516—
525, Beijing, China, August 2000. IFIP, Publishing House of Electronics
Industry and International Federation for Information Processing.

[3] Timo Aaltonen, Mika Katara, and Risto Pitkdnen. DisCo toolset — the
new generation. Journal of Universal Computer Science, 7(1):3-18, 2001.
http://www.jucs.org.

[4] R. J. R. Back and R. Kurki-Suonio. Distributed cooperation with ac-
tion systems. ACM Transactions on Programming Languages and Systems,
10(4):513-554, October 1988.

[6] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with
centralized control. Distributed Computing, 3:73-87, 1989.

[6] Igor Burdonov, Alexander Kossatchev, Alexander Petrenko, and Dmitri
Galter. Kvest: Automated generation of test suites from formal specifica-
tions. In J. Wing, J. Woodcock, and J. Davies, editors, FM’99 — Formal
Methods: World Congress on Formal Methods in the Development of Com-
puting Systems, number 1708 in Lecture Notes in Computer Science, pages
608—621. Springer—Verlag, 1999.

[7] Laura K. Dillon and Y. S. Ramakrishna. Generating oracles from your
favorite temporal logic specifications. In Foundations of Software Engi-
neering, pages 106-117, 1996.

[8] Nissim Francez and Ira R Forman. Interacting Processes — A Multiparty
Approach to Coordinated Distributed Programming. Addison-Wesley, 1996.

76



[9]

Juhana Helovuo and Sari Leppénen. Exploration testing. In Proceedings
of ICACSD 2001, 2nd IEEE International Conference on Application of
Concurrency to System Design, pages 201-210. IEEE Computer Society,
June 2001.

Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, 1994.

H. Létzbeyer and A. Pretschner. Testing concurrent reactive systems with
constraint logic programming. In Proceedings 2nd workshop on Rule-Based
Constraint Reasoning and Programming, Singapore, September 2000.

Seungjoon Park and David Dill. Protocol verification by aggregation of
distributed transactions. In Proceedings of the International Conference on
Computer-Aided Verification, Lecture Notes in Computer Science, pages
300-310. Springer-Verlag, July 1996.

Amir Pnueli. The temporal logic of programs. In In Proceedings of the 18th
IEEFE Symposium Foundations of Computer Science (FOCS 1977), pages
46-57, 1977.

J. Tretmans. Test Generation with Inputs, Outputs, and Quiescence. In
T. Margaria and B. Steffen, editors, Second Int. Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’96), vol-
ume 1055 of Lecture Notes in Computer Science, pages 127-146. Springer-
Verlag, 1996.

Jan Tretmans. Testing concurrent systems: A formal approach. In Proceed-
ings of CONCUR’99 Concurrency Theory, number 1664 in Lecture Notes
in Computer Science, pages 46—65. Springer—Verlag, 1999.

René G. Vries and Jan Tretmans. Towards formal test purposes. In
Ed Brinksma and Jan Tretmans, editors, Proceedings of workshop on For-
mal Approaches to Testiong of Software 2001, pages 61-76, August 2001.

7



78



Queued Testing of Transition Systems
with Inputs and Outputs

Alex Petrenko? and Nina Y evtushenko®

a - CRIM, Centre de recherche informatique de Montreal,
550 Sherbrooke West, Suite 100, Montreal, H3A 1B9 Canada,
E-mail: Petrenko@crim.ca

b - Tomsk State University, 36 Lenin Str., Tomsk, 634050, Russia,
E-mail: Yevtushenko@selefot.tsu.ru

Abstract The paper studies testing based on input/output transition systems, also known as
input/output automata. It is assumed that a tester can never prevent a system
under test from producing outputs, while the system does not block inputs from
the tester either. Thus, input from the tester and output from the system may
occur simultaneously and should be queued in finite buffers between the tester
and system. A framework for a so-called queued-quiescence testing is
developed, based on the idea that the tester should consist of two test processes,
one process is applying inputs via a queue to a system under test and another one
is reading outputs from a queue until it detects no more outputs from the system,
i.e., the tester detects quiescence in the system. The testing framework is then
generalized with a so-called queued-suspension testing by considering a tester
that has several pairs of input and output processes. It is demonstrated that such
a tester can check finer implementation relations than a queued-quiescence
tester. Procedures for test derivation are proposed for a given fault model
comprising possible implementations.

1. Introduction

The problem of deriving tests from state-oriented models that distinguish between input and
output actions is usually addressed with one of the two basic assumptions about the
relationships between inputs and outputs. Assuming that a pair of input and output
constitutes an atomic system’s action, in other words, that a system cannot accept next input
before producing output as a reaction to a previous input, one relies on the input/output
Finite State Machine (FSM) model. There is a large body of work on test generation from
FSM with various fault models and test architectures, for references see, e.g., [Petr01],
[BoPe94]. A system, where next input can arrive even before output is produced in response
to a previous input, is usually modeled by the input/output automaton model [LyTu89], also
known as the input/output transition system (IOTS) model (the difference between them is
marginal, at least from the testing perspective). Compared to the FSM model, this model has
received a far less attention in the testing community, see, e.g., [BrTr01], [Phal93],
[Sega93]. In this paper, we consider the IOTS model and take a close look on some basic
assumptions underlying the existing IOTS testing frameworks.

One of the most important works on test generation from labeled transition systems with
inputs and outputs is [Tret96]. In this paper, it is assumed that a tester (implementing a given
test case) and an IOTS interact as two labeled transition systems and not as IOTS.

79



Accordingly, the LTS composition operator used to formalize this interaction does not
distinguish between inputs and outputs, so the tester need not be input-enabled to satisfy
compatibility conditions for composing 0TS [LyTu89]. The tester seems to be able to
preempt output from the system any time it decides to send input to the system. This alows
the tester to avoid choosing between inputs and outputs, keeping the test process
deterministic. On the other hand, such a tester appears to be able to override the principle
that “output actions can never be blocked by the environment” [Tret96, p.106].

Another assumption about the tester is taken by Tan and Petrenko [TaPe98]. In this work,
it is recognized that the tester cannot block the system’s outputs, it is only assumed that the
tester can detect the situation when it offers input to the system, but the latter, instead of
consuming it, issues an output (a so-called “exception”). An exception halts a current test
run avoiding thus any further non-deterministic behavior and results in the verdict
inconclusive. Notice that the tester of [Tret96] has only two verdicts, pass and fail.

Either approach relies on an assumption that is not always justified in a real testing
environment. As an example, consider the situation when the tester cannot directly interact
with the IUT, because of a context, such as queue or interface, between them. As pointed out
in [dVBF02], to apply the test derivation algorithm of [Tret96], one has to take into account
the presence of a queue context. It also states “the assumption that we can synthesize every
stimulus and analyze every observation is strong”, so that some problems in observing
quiescence occur.

The case when IOTS is tested via infinite queues is investigated by Verhaard et al
[VTKB92]. The proposed approach relies on an explicit combined specification of a given
IOTS and queue context, so it is not clear how this approach could be implemented in
practice. This context is also considered in [JJTV99], where a stamping mechanism is
proposed to order the outputs with respect to inputs, while quiescence is ignored. A
stamping process has to be synchronously composed with the IUT as the tester in [Tret96].

We also notice that we are aware of the only work [TaPe98] that uses fault models in test
derivation from IOTS. In [Tret96] and [VTKB92], a test case is derived from a trace
provided by the user.

The above discussion indicates a need for another approach that does not rely on such
strong assumptions about the testing environment and incorporates a fault model to derive
tests that can be characterized in terms of fault detection. In this paper, we report on our
preliminary findings in attempts to elaborate such an approach. In particular, we introduce a
framework for testing 0TS, assuming that a tester can never prevent a system under test
from producing outputs, while the system does not block inputs from the tester either and,
thus, input and output actions may occur simultaneously and should be queued in finite
buffers between the tester and system.

The paper is organized as follows. In Section 2, we introduce some basic definitions and
define a composition operator for IOTS based on a refined notion of compatibility of IOTS
first defined in [LyTu89]. Section 3 presents our framework for a so-called queued-
quiescence testing, based on the idea that the tester should consist of two test processes, one
process is applying inputs to a system under test via a finite input queue and another one is
reading outputs that the system puts into a finite output queue until it detects no more
outputs from the system, i.e., the tester detects quiescence in the system. We elaborate such
a tester and formulate several implementation relations that can be tested with a queued-
quiescence tester. In Section 4, we discuss how gueued-quiescence tests can be derived for a
given specification and fault model that comprises a finite set of implementations. In Section
5, we generalize our testing framework with a so-called queued-suspension testing by

80



allowing atester to have severa pairs of input and output processes and demonstrate that a
gueued-suspension tester can check finer implementation relations than a queued-quiescence
tester. We conclude by comparing our contributions with previous work and discussing
further work.

2. Preliminaries

A labeled transition system, or simply alabeled transition system (LTS), isa4-tuple L = <S
2, A, o>, where Sis afinite non-empty set of states with the initial state so; 2 is afinite set
of actions; A J Sx 5 x Sis atrangition relation. In this paper, we consider only LTS such
that (s,a,5),(s,a,S") O Aimpliess =s". These are deterministic LTS.

Let Ly =<S 23, A1, o> and Lo = <T, 25, Ay, to>, the parallel composition L, || L, is defined
asthe LTS <R, 2; O 2, A, soto>, where the set of states R 0 Sx T and the transition relation
A are smallest sets obtained by application of the following inference rules:

o ifallZin 25 (sas)0A,and(t, a t) OAxthen (st, a st') U 4;
o ifallZ)\2, (s,a 5) 0Ag, then (&, a st) O A;
o ifal 2\, (t,at) OAy then(st, a, st') O A.

We use the LTS model to define a transition system with inputs and outputs. The
difference between these two types of actions is that no system can deny an input action
from its environment, while this is completely up to the system when to produce an output,
so the environment cannot block the output. Formally, an input/output transition system
(I0TS) L isa LTS in which the set of actions 2 is partitioned into two sets, the set of input
actions | and the set of output actions O. Given state s of L, we further denote init(s) the set
of actions defined at s, i.e. init(s) ={a 0 2| [ O S((s, a, ) O A)}. The IOTS is input-
enabled if each input action is enabled at any state, i.e., | [J init(s) for each s. State s of the
IOTS is caled unstable if there exists 0 [J O such that o O init(s). Otherwise, state is stable.
A sequence a;...a¢ over the set 2 is called a trace of L in state s if there exist states sy, ...,
S+1 such that (s, a;, s+1) O A foralli =1, ..., kand s; = s. We use traces(s) to denote the set
of traces of L in state s. Following [Vaan91] and [Tret96], we refer to a trace that takes the
IOTS from a given state to a stable state as to a quiescent trace.

To define a composition of IOTS, we first state compatibility conditions that define when
two IOTS can be composed by relaxing the original conditions of [LyTu89]. Note that L, ||
L, for IOTS L; and L, means the synchronous parallel composition of LTS that are obtained
from IOTS by neglecting the difference between inputs and outputs, so these IOTS are
treated as LTS.

Definition 1. Let Ly = <S 23, A1, o>, 21 =11 0 Oy, and L, =<T, 25, Ay, to>, 22 =1, 0 Oy, be
two IOTS such that the sets I3 n I, and O; n O, are empty. Let st be a state of the
composition Ly || Lo. The L; and L, are compatiblein state st if

o alinit(s) implies a [ init(t) foranyadl, n O; and

* alinit(t) impliesa O init(s) foranya Iy n O,.

The L; and L, are said to be compatible if they are compatible in the state spto; otherwise
they are incompatible. L; and L, are fully compatible if they are compatible in all the states
of the composition Ly || L.

Clearly, two input-enabled I0TS with I; = O, and |, = O, are fully compatible, but the
converse is not true. Based on the notion of compatibility we define what we mean by a

81



paralel composition of two IOTS. Let IOTS(I, O) denote the set of al possible IOTS over
the input set | and output set O.

Definition 2. The composition operator ][ : 10T, Op) % 10TH,, O,) - 10TY(l; O
[I)\(O1 O Oy), O1 0 Oy), wherethe setsI; n 1, and O; n O, are empty, is defined as follows.
LetL;=<S 23, A1, 0>, 21 =11, 0 Op, and Ly = <T, 25, Ay, to>, 2o =1, 0 O, be Compatible
IOTS. If Ly and L, are compatiblein state st of the composition L, || Lo, thenst—-a— St'inL;
| L2 implies the same transition in L; ][ Lo. If Ly and L, are incompatible in state st, then
there are no outgoing transitions from the statein L, ][ Lo, i.e., st is adeadlock.

The IOTS Ly ][ L2 can be obtained from the LTS L, || L, by pruning outgoing transitions
from states where the IOTS L; and L, are not compatible. For fully compatible IOTS, the
results of both operators, || and ][, coincide.

3. Framework for Queued-Quiescence Testing of IOTS

In atypical testing framework, it is usually assumed that the two systems, an implementation
under test (IUT) and tester, form a closed system. Thismeansthat if L, is atester, whileL; is
an 10TS modeling the IUT, then 23 = 55, I, = Oy, and I, = O;. To be compatible with any
|OTS over the given alphabet 5, = I, O O, the tester should be input-enabled. However, the
input-enableness has two implications on a behavior of the tester. Its behavior becomes
infinite since inputs enabled in each state create cycles and non-deterministic since the tester
has to choose non-deterministically between input and output. Both features are usualy
considered undesirable. Testers should be deterministic and have no cycles. The two
requirements are contradicting.

It turns out that a tester processing outputs of an IUT separately from inputs could meet
both requirements. To achieve this, it is sufficient to decompose the tester into two
processes, one for inputs and another for outputs. Intuitively, this could be done as follows.
The input test process only sends to the IUT via input buffer a given (finite) number of
consecutive test stimuli. In response to the submitted input sequence, the IUT produces
outputs that are stored in another (output) buffer. The output test process, that is simply an
observer, only accepts outputs of the IUT by reading the output buffer. All the output
seguences the specification IOTS can produce in response to the submitted input sequence,
should take the output test process into terminal states labeled with the verdict pass, while
any other output sequence produced by an IUT should take the output test process to a
terminal state labeled with the verdict fail. Since the notion of a tester is based on the
definition of a set of output sequences that the specification IOTS can produce in response to
a submitted input sequence, we formalize both notions as follows.

Let L be an IOTS defined over the action set 2 =1 [0 O and pref(a) denote the set of all
the prefixes of a sequence a over the set 2. The set pref(a) has the empty sequence &. Also
givenaset PO 2*, let {0 pref()) | y O P} = pref(P).

Definition 3. Given an input word a O I*, the input test process with a is a tuple a =

<pref(a), O, 1, A4 &, where the set of inputs is empty, while the set of outputsis |, A, =
{(B a Pa) | faU pref(a)}, and theinitial stateis &

82



We dlightly abuse a to denote both, the input sequence and the input test process that
executes this sequence. It is easy to see that each input test process is fully compatible with
any IOTS L that is input-enabled and defined over the set of inputs I. Notice that in this
paper, we consider only input-enabled 10TS specifications, while an implementation I0TS
(that models an IUT) is always assumed to be input-enabled.

To define an output test process that complements an input test process a, we have first to
determine al the output sequences, valid and invalid, the output test process has to expect
from IUT. The number of valid output sequences becomes infinite when the specification
oscillates, in other words, when it has cycles that involve only outputs. Further, we always
assume that the specification IOTS Spec = <S | [J O, A, s> does not possess this property.
Thus, in response to a, the IOTS Spec can execute any trace that is a completed trace
[Glab90] of the IOTS a'][ Spec leading into aterminal state, i.e., into state g, where init(g) =
0. Let ctraces(a ][ Spec) be the set of all such traces. It turns out that the set ctraces(a ][
Soec) isclosaly related to the set of quiescent traces of the specification gtraces(Spec), viz. it
includes each quiescent trace 8 whose input projection, denoted 3, , is the sequence a.

Proposition 4. ctraces(a ][ Spec) = { £ 1 qtraces(Spec) | £, = a}.

Thus, the set ctraces(a ][ Spec).o0 ={L.0 | £ U gtraces(Fpec) & £, = a} contains all the
output sequences that can be produced by the Spec in response to the input sequence a.

Let gtraces(s) be the set of quiescent traces of Spec in state s. Given a quiescent trace S [
gtraces(s), the sequence £, 15,00 is said to be a queued-quiescent trace of Spec in state s,
where 0[] 2 is adesignated symbol that denotes the absence of outputs, i.e., quiescence. We
use Qqtraces(s) to denote the set of queued-quiescence traces of s {(8,18.09) | B O
gtraces(s)} and Qqgtracesq(s, a) to denotethe set { B,0d| £ gtraces(s) & £, = a}. Next, we
define the output test process itself.

Given the input test process a and the set Qqtraces,(s), a), we define a set of output
seguences out(a) the output test process can receive from an IUT. Intuitively, it is sufficient
to consider all the shortest invalid output sequences along with all valid ones. Any valid
seguence should not be followed by any further output action, as the specification becomes
quiescent, while any premature quiescence indicates that the observed sequence is not a
valid output sequence. The set out(a) is defined as follows. For each S [ pref(Qqtracesy(So,
a)) the sequence £ [ out(a) if S0 Qatracess(So, @), otherwise Ba [ out(a) for all ad O [

{ S} such that Fa [ pref(Qqtraces,(so, a)).

Definition 5. The output test process for the IOTS Spec and the input test process a is a
tuple <pref(out(a)), O O { &, U, A, &, where pref(out(a)) is the state set, O [ { J} is the
input set, the output set is empty, Ay = {(B, &, fa) | fa O pref(out(a))} and € is the initial
state. State S O pref(out(a)) is labeled with the verdict pass if S 0 Qqtraces,(s, @) or with
the verdict fail if 80 out(a)\Qqtracesy(So, Q).

We reuse out(a) to denote the output test process that complements the input test process
a. For a given input sequence a O I* the pair (a, out(q)) is caled a queued-quiescence
tester or test case.

To describe the way the output tester interacts with an I0TS Imp O 10TS(I, O) after the
input test process a has terminated its execution against Imp, we denote (a ][ 1mp),o,s the

83



|OTS that is obtained from (a ][ Imp) by first projecting it onto the output alphabet O and
subsequent augmenting al the stable states of the resulting projection by self-looping
transitions labeled with o. In doing so, we treat the symbol J as an input of the output test
process, assuming that the tester synchronizing on djust detects the fact that its buffer has no
more symbols to read. Strictly speaking, treated as an output, a repeated O violates the
compatibility of a system in a stable state and a tester that reaches its termina state. With
this in mind, the correctness of the construction of the output test process (the soundness of
the tester) can be stated as follows.

Proposition 6. For any Imp 00 10TH(I, O) if the IOTS (a ][ Imp),0,5][ out(a) reaches a state
where (a ][ Imp),os and out(a) are incompatible, then the output tester out(a) is in a
terminal state. For the Spec a state, where (a ][ Spec), 0,5 and out(a) are incompatible is
reached only after quiescence, while the output tester is in aterminal state labeled with the
verdict pass.

Thus, the tester composed of two independent processes meets both requirements,
namely, it is compatible in all the states, save for the terminal ones, with any 10TS, it has no
cycles and never need choosing between input and output, thus the tester possesses the
required properties.

The composition (a ][ 1mp),0s ][ out(a) of a gqueued-quiescence tester for a given
specification with an implementation IOTS Imp over the same action set as the specification
has one or several terminal states. In a particular test run, one of these states with the verdict
pass or fail is reached. Considering the distribution of verdicts in the terminal states of the
composition, the three following cases are possible:

Case 1. All the states have fail.

Case 2. States have pass aswell asfalil.

Case 3. All the states have pass.

These cases |lead us to various relations between an implementation and the specification
that can be established by the queued-qguiescence testing.

In the first case, the implementation is distinguished from the specification in asingle test
run.

Definition 7. Given IOTS Spec and Imp, Imp is queued-quiescence separable from Spec, if
there exists a test case (a, out(q)) for Spec such that the terminal states of the IOTS (a ][
Imp), 0,5][ out(a) are labeled with the verdict fail.

In the second case, the implementation can also be distinguished from the specification
provided that a proper run is taken by the implementation during the test execution.

Definition 8. Given IOTS Spec and Imp, Imp is queued-quiescence distinguishable from
Soec, if there exists a test case (a, out(a)) for Spec such that the termina states of (a ][
Imp), 0,5][ out(a) are labeled with the verdicts pass and fail.

Consider now case 3, when for a given test case (a, out(a)) all the states have pass. In
this case, the implementation does nothing illegal when the test case is executed, as it
produces only valid output sequences. Two situations can yet be distinguished here. Either
there exists a pass state of the output test process that is not included in any terminal state of



(a ][ Imp),o0,s5][ out(a) or there is no such a state. The difference is that with the given test
case in the former situation, the implementation could still be distinguished from its
specification, whilein the latter, it could not. This motivates the following definition.

Definition 9. Given I0OTS Spec and Imp,

Imp is said to be queued-quiescence trace-included in the Spec if for al a O I* no
terminal state of the IOTS (a ][ Imp), o 5][ out(a) islabeled with the verdict fail.

Imp and Spec are queued-quiescence trace-equivalent if for al a O I* al the terminal
states of the IOTS (a ][ Imp),o0.5][ out(a) include al the pass states of out(a) and only
them.

Imp that is queued-quiescence trace-included in the Spec but not queued-quiescence
trace-equivalent to the Spec is said to be queued-quiescence weakly-distinguishable from

Spec.

We characterize the above relations in terms of queued-quiescent traces.

Proposition 10. Given IOTS Spec with theinitial state sp and Imp with the initial state to,

Imp is queued-quiescence separable from Spec iff there exists an input sequence a such
that Qqtracess(to, @) N Qqgtraces,(So, @) = 0.

Imp that is not queued-quiescence separable from Spec is queued-quiescence
distinguishable from it iff there exists an input sequence a such that Qqtracesq(to, Q) &
Qqtracesy(so, ).

Imp that is not queued-quiescence distinguishable from Spec is queued-quiescence
weakly-distinguishable from it iff there exists an input sequence a such that
Qqtracess(to, @) U Qgtracess(So, Q).

Imp is queued-quiescence trace-included into Spec, iff Qqtraces(to) [1 Qqtraces(sy).

Imp and Spec are queued-quiescence trace-equivaent iff Qqtraces(ty) = Qgtraces(so).

Figure 1 provides an example of I0TS that are not quiescent trace equivalent, but are

gueued-qguiescence trace-equivalent. Indeed, the quiescent trace aald of the IOTS L, isnot a
trace of the IOTS L;. In both, the input sequence a yields the queued-quiescent trace alg, aa
yields the queued-quiescent traces aald and aa2d, any longer input sequence results in the
same output sequences as aa.

Ly
Figure 1: Two IOTS that have the different sets of quiescent traces, but are queued-
quiescence trace-equivalent; inputs are decorated with “?”, outputs with “!”;

stable states are depicted in bold.

85



The IOTS L; and L, are considered indistinguishable in our framework, while according
to the ioco relation [Tret96], they are distinguishable. The IOTS L, has the quiescent trace
aal that is not a trace of L, therefore, to distinguish the two system, the tester has to apply
two consecutive inputs a. The output 1 appearing only after the second input a indicates that
the system being tested is, in fact, L, and not L;. However, to make such a conclusion, the
tester should be able to prevent the appearance of the output 1 after the first input a. Under
our assumption, it is not possible. The tester interacts with the system via queues and has no
way of knowing when the output is produced. The presence of atesting context that is a pair
of finite queues in our case, makes implementation relations that could be tested via the
context coarser, asis usualy the case [PYBD96].

4. Deriving Queued-Quiescence Test Cases

Proposition 10 indicates the way test derivation could be performed for the IOTS Spec and
an explicit fault model when we are given a finite set of implementations. Namely, for each
Imp in the fault model, we may first attempt to determine an input sequence a such that
Qqtracesq(to, @) N Qqtraces,(ss, @) = 0. If fail we could next try to find a such that

Qqtracesy(to, ) € Qqtraces,(s, Q). If Qqtracesy(to, a) [ Qqgtraces,(S, a) for each a the
guestion is about an input sequence a such that Qqtraces,(to, @) # Qgtraces,(s, Q), thus
Qqtracesq(to, @) O Qqtracesy,(ss, a). Based on the found input sequence, a queued-
quiescence test case for the Imp in hand can be constructed, as explained in the previous
section. If no input sequence with this property can be determined we conclude that the
IOTS Spec and Imp are queued-quiescence trace-equivalent, they cannot be distinguished by
the queued-quiescence testing.

Search for an appropriate input sequence could be performed in a straightforward way by
considering input sequences of increasing length. To do so, we just parameterize Definitions
7, 8 and 9 and accordingly Proposition 10 with the length of input sequences. Given alength
of input sequences k, let Qqtraces{(so) = {(B.18.09) | B U qtraces(s)) & |B.1| < K}. The set
Qqtraces(sy) is finite for the IOTS L with a finite set of quiescence traces. Then, e.g., Imp
and Spec are queued-quiescence k-trace-equivalent iff Qqtraces{(t)) = Qqtraces(sy). If

length of a such that Qqtraces,(to, @) ¢ Qqtraces,(S, a) isk then Imp is said to be queued-
guiescence k-distinguishable from Soec. With these parameterized definitions, we examine
all the input sequences starting from an empty input action. The procedure terminates when
the two 10TS are distinguished or when the value of k reaches a predefined maximum
defined by the input buffer of the IUT available for queued testing.

12

Spec

Figure 2: The IOTS that are queued-quiescence 2-distinguishable,
but not queued-quiescence 1-distinguishable.

Consider the examplein Figure 2. By direct inspection, one can assure Imp is not queued-
guiescence 1-distinguishable from Spec, for both produce the output 1 in response to the

86



input a. However, it is queued-quiescence 2-distinguishable from Spec. Indeed, in response
to the sequence ?a?a the Spec can produce the output 1 or 12. Whilethe Imp - 2 or 12.

It isinteresting to notice that the notion of k-distinguishability applied to the IOTS and FSM
models exhibits different properties. In particular, two k-distinguishable FSM are aso k+ 1-
distinguishable. This does not aways hold for IOTS. The system Imp in Figure 3 is queued-
quiescence 1-distinguished from Spec; however, it is not queued-quiescence k-distinguished
from Spec for any k> 1.

Joec
Figure 3: The IOTS that are queued-quiescence 1-distinguishable,
but not queued-quiescence k-distinguishable for k > 1.

This indicates that a special care has to be taken when one attempts to adapt FSM-based
methods to the queued testing of IOTS.

There is at least one specia case when distinguishability can be decided without
determining the sets of queued-quiescence k-traces for various k.

Let Imp, o denote the set of output projections of all traces of Imp.

Proposition 11. Given two IOTS Spec and Imp, if the set Imp, o is not a subset of Spec, o
then Imp is queued-quiescence distinguishable from Spec, moreover, any quiescence trace 8
[ gtraces(Spec) such that 8,0 U Imp,o\Spec, o yields a queued-quiescence test case (8,1,
out(S3,)) that when executed against the Imp produces the verdict fail.

The statement suggests a procedure for deriving test cases.

Procedure for deriving atest case that distinguishes the IOTS Imp from Spec.
Input: IOTS Spec and Imp such that the set Imp, o is not a subset of Spec, o.

Output: A queued-quiescence test case (a, out(a)) such that Qqtracesy(to, @) <
Qqtraces(so, Q).
Step 1. By use of a subset construction, project Imp and Spec onto the output set O.
Step 2. Using the direct product of the obtained projections, determine atrace pthat is
atrace of the output projection of Imp while not being atrace of that of Spec.
Step 3. Compose LTS <pref(o), O, A, & with the Imp and obtain the LTS, where
each trace is a trace of the Imp with the output projection p. Determine the input
projection a of any trace of the obtained LTS and the queued-quiescence test case (a,
out(aq)).

87



Proposition 12. Given two IOTS Spec and Imp, let (a, out(a)) be the queued-quiescence
test case derived by the above procedure. Then the queued-quiescence test case executed
against the Imp produces the verdict fail. Moreover, if no pass verdict can be produced then
Imp is gueued-qui escence separable from Spec.

5. Queued-Suspension Testing of IOTS

In the previous sections, we explored the possibilities for distinguishing IOTS based on their
gueued-quiescent traces. The latter are pairs of input and output projections of quiescent
traces. If systems with different quiescent traces have the same set of queued-quiescent
traces, no queued-quiescence test case can differentiate them. However, sometimes such
|OTS can still be distinguished by a queued testing, as we demonstrate below.

Consider the example in Figure 4. Here the two 10TS have different sets of quiescent
traces, however, the have the same set of queued-quiescent traces {ald, aald, aal2d, aaald,
aaal2g, ... }. In the testing framework presented in Section 3, they are not distinguishable.
Indeed, we cannot tell them apart when a single input is applied to their initial states.
Moreover, in response to the input sequence aa and to any longer sequence, they produce
the same output sequence 12. The difference is that IOTS Imp, while producing the output
sequence 12, becomes quiescent just before the output 2 and the IOTS Spec does not. The
problem is that this quiescence is not visible through the output queue by the output test
process that expects either 1 or 12 in response to aa. The queued-quiescence tester can
detect the quiescence after reading the output sequence 12 as an empty queue, but it cannot
detect an “intermediate” quiescence of the system. It has no way of knowing whether the
system becomes quiescent before a subsequent input is applied. Both inputs are in the input
buffer and it is completely up to the system when to read the second input.

Soec Imp
Figure 4: The queued-quiescence equivalent IOTS.

Intuitively, further decomposing the tester for the Spec into two input and two output test
processes could solve the problem. In this case, testing is performed as follows. The first
input test process issues the input a. The first output test process expects the output 1
followed by a quiescence & when the quiescence is detected, the control is transferred to the
second input test process that does the final a. Then the second output test process expects
quiescence. If, instead, it detects the output 2 it produces the verdict fail which indicates that
the IUT is Imp and not Spec. Opposed to a queued-quiescence tester, such a tester can detect
an intermediate quiescence of the system. The example motivates the following definitions.

Let o1 ... ap be a finite sequence of input words such that as O I*,i =1, ..., p,and & Z €
for i # 1. Each word a; defines the input test process a; (see Definition 3). To define output
test processes that complement input test processes a; ... ap, we first notice that the first

88



output test process is designed based on the fact that the Spec starts in the only state that is
itsinitial state. This is no longer true for any subsequent output test process; the Spec can
start in one of severa stable states, depending on an output sequence it has produced in
response to the stimuli from the previous input test processes. Let a0 [1 Qqgtraces(sy), then
we use Spec-after-(a, f) to denote the set of stable states that are reached by Spec when it
executes all possible quiescent traces with the input projection a and output projection S.
Consider the input test process a», before it starts, the Spec has produced one of
|Qqtracesy(so, a1)| output sequences, each of which defines the set of stable states Spec-
after-(m, B), where S 0 Qqtraces,(Sy, 1), these are the starting states for the second input
test process a,. Thus, we have to define |Qqtraces,(ss, ai1)| output test processes that
complement the input test process a.. Each valid output sequence produced by the IUT so
far is used to decide which pair of input and output test processes should execute next, while
each invalid sequence terminates the test execution. Thus, testing becomes adaptive. For an
output sequence S [0 Qqtraces,(s, a1), the Spec can produce in response to a, any output
sequence in the set Qqtraces,(Spec-after-(a1, f), a»). Generalizing this to a;+1, we have the
following. The set of output sequences the Spec can produce in response to a1 IS
Qqtraces,(Spec-after-(ai...ai, Bi...3), ai+1), where for the output projection £;... 4 it holds
that 81 O Qqgtracesy(So, a1) and S [ Qqtraces,(Spec-after-(as... &1, fi...3-1), a;) for each j
=2, ..., I. A sequence of output words ;... with such a property is said to be consistent
(with the corresponding sequence of input words a;... ).

Each output projection fi...5 defines, therefore, a distinct test output process for the
(i+1)-th input test process. The set of output sequences out(ai+1, Bi...[3) the output test
process for the given sequence fi...5 can receive from an IUT is defined as follows. For
each y O pref(Qatraces,(Spec-after-(ai...ai, Bi...[), a+1) the sequence y [0 out(d+,
Bi...3) if yO Qqtraces,(Spec-after-(as...ai, Bi...3), ai+1), otherwise ya [ out(di+1, Bi...5)
for all a 0 O O {J} such that ya O pref(Qqtraces,(Spec-after-(as... @, Bi...3), Giva).

Let Gi...Blpref(out(dis1, Bi...[3)) denote the set {Ai...Ga | a O pref(out(ai+1, Br...5)}-
Now we are ready to generalize the definition of output test processes (Definition 5), taking
into account a valid output sequence produced by an IUT with the preceding test processes.

Definition 13. Let a1 ... ai+1 be a sequence of input words and ;... be a consistent
sequence of output words. An output test process for the IOTS Spec, sequence £i...5 and
the input test process a1 is a tuple <p.... Blpref(out(ai+a, Br...3)), O O {3}, U, A+, p1...4.
Bi...3>, where Si...Gpref(out(ai1, Bi...[3)) is the state set, O O {J} is the input set, the
output set is empty, Agi+1, g5 ={(Bi...By & Br...5)) | ya O pref(out(ai1, Si...3))} and
Si...G is the initial state. Each state £;...Gy is labeled with the verdict pass if y O
Qqtraces,(Spec-after-(ai...a, Bi...[3), a+1) or with the verdict fail if y O out(ai,

Bi...3)\Qatraces,(Spec-after-(ai... a, Bi...[3), d+a).

We use out(ai+1, Bi...3) to denote an output test process that complements the input test
process ai+1 and the output sequence Bi... 5. For a given sequence of input words ;... ap,
the set of the tuples of pairs (a1, out(an)), ..., (ap, out(ay, Bi... B-1)) for all consistent output
sequences fi...[5-1 is called a queued-suspension tester or a queued-suspension test case
and is denoted (... ap, Out(as... ap)).

It is clear that for a single input test process, a queued-suspension tester reduces to a
queued-quiescence tester. The queued-suspension testing is more discriminative than

89



gueued-quiescence testing, as Figure 4 illustrates. In fact, consider a queued-quiescence
tester derived from a single sequence ai...a, and a queued-suspension tester derived from
the sequence of p words a, ..., ap, the former uses just the output projection of quiescent
traces that have the input projection a...ap while the latter additionally partitions the
quiescent traces into p quiescent sub-traces. Then the two systems that cannot be
distinguished by the queued-suspension testing have to produce the same output projection,
moreover, the output projections have to coincide up to the partition defined by the partition
of the input sequence. This leads us to the notion of queued-suspension traces.

Given a finite sequence of finite input words a;...ap, a sequence of queued-quiescence
traces (a15.9)...(apB0) is called a queued-suspension trace of Spec if o180 0 Qatraces(sy)
and for each i = 2, ..., pit holds that 5[0 Qqtraces,(Spec-after-(ai... -1, fi...5-1), ;). We
use Qstraces(s) to denote the set of queued-suspension traces of Spec in state s.

We define the relations that can be characterized with queued-suspension testing by
adapting Definitions 7, 8, and 9.

Definition 14. Given I0TS Spec and Imp,

» Imp is queued-suspension separable from Spec, if there exist a test case (ai...ap,
Out(a1... ap)) for Soec such that for any consistent output sequence ... -1 the terminal
states of the 10TS (ap ][ Imp after(ai...ap1, Bi...5p-1)).06 Il out(ap, Bi...Bs-1) are
labeled with the verdict fail.

« Imp is queued-suspension distinguishable from Spec, if there exist test case (a...ay,
Out(as...ap)) for Spec and consistent output sequence fi...[5y-1 such that the terminal
states of the 10TS (ap ][ Imp after(ai...ap1, Bi...5p-1)).06 I out(ap, Bi...5s-1) are
labeled with the verdicts passand fail.

* Imp is said to be queued-suspension trace-included in the Spec if for all a O I* and all
possible partitions of a into words ay, ..., ap, no terminal state of I0TS (a, 1[ (ap 1[ Imp
after(a1...ap1, Br...Bo-1)).0,5][ out(ap, Bi... L) is labeled with the verdict fail.

* Imp and Spec are queued-suspension trace-equivalent if for all o O I*, all possible
partitions of «a into words a, ..., ap, and all consistent output sequence ... 5y-1, all the
terminal states of the I0TS (ap ][ Imp after (an... Ap1, Br-..Bo-1)) 0,51 OUt(ap, Si...Lo-1)
include all the pass states of out(a;) and only them.

* Imp that is queued-suspension trace-included in the Spec but not queued-suspension
trace-equivalent to the Spec is said to be queued-suspension weakly-distinguishable from

Spec.

Accordingly, the following is a generalization of Proposition 10.

Proposition 15. Given IOTS Spec and Imp,

* Imp is queued-suspension separable from Spec iff there exists a finite sequence of input
words a;...a; such that Qstraces,(Imp-after-(ai... a1, Wi...%-1), @) n Qstraces,(Spec-
after-(on... a1, Wi... W-1), a) = O for any consistent J4... Y.1.

 |Imp that is not queued-suspension separable from Spec is queued-suspension
distinguishable from it iff there exist a finite sequence of input words a;...a; and

consistent  J4...y.1 such that Qstraces,(Imp-after-(a;...qi.,, W...01), @) &
Qstraces,(Spec-after-(as... a1, W... Y-1), a)).

90



* |Imp that is not queued-suspension distinguishable from Spec is queued-suspension
weakly-distinguishable from it iff there exist a finite sequence of input words a;... a; and
consistent  J4...y.1 such that Qstraces)(Imp-after-(ar...a1, Ji...p1), a) O
Qstracesy(Spec-after-(ar... a1, Wi... %-1), a5).

* Imp is queued-suspension trace-included into Spec, iff Qstraces(to) [ Qstraces(s).

* Imp and Spec are queued-suspension trace-equivalent iff Qstraces(to) = Qstraces(sy).

The queued-suspension testing also needs input and output buffers as the queued-
quiescence testing. The size of the input buffer is defined by the longest input word in a
chosen test case (a1... ap, Out(a...ap)), while that of the output buffer by the longest output
sequence produced in response to any input word. We assume the size of the input buffer k
is given and use it to define queued-suspension k-traces and accordingly, to parameterize
Definition 14 obtaining appropriate notions of k-distinguishability. In particular, a queued-
suspension trace of Spec a15:10... 5,0 U Qstraces(sp) is called a queued-suspension k-trace
of Spec if |a] < k for all i = 1, ..., p. The set of all these traces Qstraces(sy) has a finite
representation.

Definition 16. Let Syapie be the set of all stable states of an IOTS Spec =<S 1 0 O, A, s>
and 1¥ denote the set of all words of at most k inputs. A queued-suspension k-machine for
Spec is a tuple <R, 1"0* 3, A qapie, 5>, denoted Spec’s,s, Where the set of states R 0 P(Ssabie)
O {so}, (P(Saie) is @ powerset of Syane), and the transition relation Agaye are the smallest
sets obtained by application of the following rules:

o (r,aB ') O AXgape if aB 0 1O*dand r' is the union of sets s-after-(a, B) forall sOIr.

« In case the initial state s is unstable (So, a3, r') O Asanie if aB0150%5, a = and r' = so-

after-(g, B).

Notice that each system that does not oscillate has at least one stable state.

Proposition 17. The set of traces of Spec"susp coincides with the set of queued-suspension k-
traces of Spec.

Corollary 18. Imp is queued-suspension k-distinguishable from Spec iff the Imp“gayie has a
trace that is not a trace of Soecksusp.

Figure 1 gives the example of IOTS that are queued-suspension trace equivalent, recall
that they are also queued-quiescent trace-equivalent, but not quiescent trace equivalent.

We notice that a queued-suspension k-machine can be viewed as an FSM with the input
set 1Xand output set O™ for an appropriate integer m, so that FSM-based methods could be
adapted to derive queued-suspension test cases.

6. Conclusion

We addressed the problem of testing from transition systems with inputs and outputs and
elaborated a testing framework based on the idea of decomposing a tester into input and
output processes. Input test process is applying inputs to a system under test via a finite
input queue and output test process is reading outputs that the system puts into a finite
output queue until it detects no more outputs from the system, i.e., the tester detects

91



guiescence in the system. In such a testing architecture, input from the tester and output
from the system under test may occur simultaneously. We call such a testing scenario a
gueued testing. We analyzed two types of queued testers, the first consisting of single input
and single output test processes, a so-called queued-quiescence tester, and the second
consisting of several such pairs of processes, a so-called gueued-suspension tester. We
defined implementation relations that can be checked in the queued testing with both types
of testers and proposed test derivation procedures.

Our work differs from the previous work in several important aspects. First of al, we
make a liberal assumption on the way the tester interacts with a system under test, namely
that the system can issue output at any time and the tester cannot determine exactly its
stimulus after which an output occurs. We believe this assumption is less restrictive than any
other assumption known in the testing literature [BrTrO1], [PetrOl]. Testing with this
assumption requires buffers between the system and tester. These buffers are finite, opposed
to the case of infinite queues considered in a previous work [VTKB92]. We demonstrated
that in a queued testing, the implementation relations that can be verified are coarser than
those previously considered. Appropriate implementation relations were defined and test
derivation procedures were elaborated with a fault model in mind. Thus, the resulting test
suite becomes finite and related to the assumptions about potential faults, opposed to the
approach of [Tret96], where the number of test cases is, in fact, uncontrollable and not
driven by any assumption about faults. The finiteness of test cases allows us, in addition, to
check equivalence relations and not only preorder relationsasin, e.g., [Tret96].

Concerning future work, we believe that this paper may trigger research in various
directions. One possible extension could be to consider non-rigid transition systems,
allowing non-observable actions. Procedures for test derivation proposed in this paper could
be improved, as our purpose here was just to demonstrate that the new testing problem with
finite queues could be solved in a straightforward way. It is also interesting to see to which
extent one could adapt FSM-based test derivation methods driven by fault models, as it is
done in [TaPe98] with a more restrictive assumption about atester in mind.

Acknowledgment

This work was in part supported by the NSERC grant OGP0194381. The first author
acknowledges fruitful discussions with Andreas Ulrich about testing IOTS. Comments of Jia
Le Huo are appreciated.

References

[BoPe94] G. v. Bochmann and A. Petrenko, Protocol Testing: Review of Methods and
Relevance for Software Testing, the proceedings of the ACM International
Symposium on Software Testing and Analysis, ISSTA'94, USA, 1994,

[BrTrOl] E. Brinksma and J. Tretmans, Testing Transition Systems. An Annotated
Bibliography, LNCS Tutorias, LNCS 2067, Modeling and Verification of Parallel
Processes, edited by F. Cassez, C. Jard, B. Rozoy and M. Ryan, 2001.

[dVBFO2] R. G. de Vries, A. Belinfante and J. Feenstra, Automated Testing in Practice: The
Highway Tolling System, the proceedings of the IFIP 14th Internationa
Conference on Testing of Communicating Systems, TestCom'2002, Berlin,
Germany, 2002.

92



[Glab90] R. J. van Glabbeek, The Liear Time-Branching Time Spectrum, the proceedings of
CONCUR’90, LNCS 458, 1990.

[JJTV99] C. Jard, T. Jéron, L. Tanguy and C. Viho, Remote Testing Can Be as Powerful as
Local Testing, the proceedings of the IFIP Joint International Conference,
Methods for Protocol Engineering and Distributed Systems, FORTE XII/PSTV
XX, China, 1999.

[LyTu89] N. Lynch and M. R. Tuttle, An Introduction to Input/Output Automata, CWI
Quaterly, 2(3), 1989.

[PetrO1] A. Petrenko, Fault Model-Driven Test Derivation from Finite State Models:
Annotated Bibliography, LNCS Tutorials, LNCS 2067, Modeling and Verification
of Parallel Processes, edited by F. Cassez, C. Jard, B. Rozoy and M. Ryan, 2001.

[Phal93] M. Phalippou, Executable Testers, the proceedings of the IFIP Sixth International
Workshop on Protocol Test Systems, IWPTS’93, France, 1993.

[PYBD96] A. Petrenko, N. Yevtushenko, G. v. Bochmann, R. Dssouli, Testing in Context:
Framework and Test Derivation, Computer Communications, 19, 1996.

[Sega93] R. Segala, Quiescence, Fairness, Testing and the Notion of Implementation, the
proceedings of CONCUR’93, LNCS 715, 1993.

[TaPe98] Q. M. Tan, A. Petrenko, Test Generation for Specifications Modeled by
Input/Output Automata, the proceedings of the 11th International Workshop on
Testing of Communicating Systems, IWTCS 98, Russia, 1998.

[Tret96] J. Tretmans, Test Generation with Inputs, Outputs and Repetitive Quiescence,
Software-Concepts and Tools, 17(3), 1996.

[Vaan91] F. Vaandrager, On the Relationship between Process Algebra and Input/Output
Automata, the proceedings of Sixth Annual IEEE Symposium on Logic in
Computer Science, 1991.

[VTKB92] L. Verhaard, J. Tretmans, P. Kim, and E. Brinksma, On Asynchronous Testing,
the proceedings of the IFIP 5th International Workshop on Protocol Test Systems,
IWPTS’92, Canada, 1992.

93



94



Optimization Problems in Testing Observable Probabilistic Finite-State

Machines

Fan Zhang' and To-yat Cheung?

'Department of Computing, Hong Kong Polytechnic University
e-mail: csfzhang@comp.polyu.edu.hk

?Department of Computer Science, City University of Hong Kong
e-mail: cscheung@cityu.edu.hk

Abstract: In this paper, we investigate the transfer sequence and diagnosis sequence for
testing a probabilistic finite-state machine whose transitions have weights. These
sequences are adaptive and are measured by their average length. We discuss the problem
of optimal strategies for selecting input and thus for generating these sequences. In
particular, we show that, if the probabilistic machine is observable (i.e., the next-state of
each transition can be uniquely determined by its output), then, polynomial-time
algorithms can be obtained for the following problems: (1) Find the shortest transfer
sequence from a start state to a target state, or prove that no such a sequence exists. (2)
Find the shortest pair-wise distinguishing sequences for a given pair of states, or prove

that no such sequence exists.

Keywords: Average weight, Diagnosis tree, Probabilistic finite-state machine, Software
testing, Transfer tree.

l. INTRODUCTION

Nondeterminism is common in testing systems that have concurrent processes and
internal actions. Recently, research interest in testing has been extended from
deterministic finite-state machines (DFSM) [1,4,8,13] to nondeterministic finite-state
machines (NFSM) [2,3,5,7,9,12] and probabilistic finite-state machines (PM)
[2,3,14,15]. A PM is an NFSM with transition probabilities that represent the chance of a
transition to be triggered by the input.

In the state-based approach of testing, the system under test is specified as an finite-
state machine M and a test sequence is designed based on M. During testing, the input
portion of the sequence is applied to the implementation under test (IUT) and the actual
outputs are compared with the expected ones to uncover any possible output or state-
transition errors. Two major test activities must be carried out in this approach: state-

transfer and state-identification. For state-transfer, the problem is to find a sequence of

95



inputs that drives the IUT from its initial state s to a targeted state t. For a DFSM, the
inputs along any directed path connecting s to t will serve this purpose. For an NFSM,
however, this problem becomes much more complex because the same input sequence
may bring the IUT sometimes to t and sometimes elsewhere. Therefore, instead of a
single path, we have to find a transfer-tree (TT) of which every path terminates at t, so as

to always bring the IUT to the expected targeted state.

State-identification is to verify the identification of a state. During testing, the current
state of the IUT cannot be observed directly but it can only be inferred from the output
observed. After the IUT is brought to a state t' that is expected to be t, the identification
of t' need to be checked to make sure the reached state t' is t indeed. For DFSM, a
diagnosis sequence of input/output pairs for t is derived. The following three kinds of
diagnosis sequences have been used most frequently: A distinguishing sequence can
identify the current state among all possible states. That is, the same distinguishing
sequence can be used for every state. A UIO sequence can differentiate a specific state r
from all other states. Different UIO sequences may be needed for different specified
states [11]. A pair-wise distinguishing sequence can identify the current state between
two given states. For an NFSM, similar to generalizing a transfer sequence to a TT, a
diagnosis sequence is generalized to a diagnosis tree (DT). For a general NFSM or PM,
most of the problems are computationally difficult. For example, deciding the existence
of a TT or DT is Exptime-complete; also, the algorithms for finding TTs and DTs require

exponential time [2].

For testing purpose, we believe that the PM is a better model than the NFSM. The
main reason is that the test sequence for a PM can be measured but cannot be (at least not
fairly) for an NFSM. Another reason is that the PM can reflect the stochastic behavior

pattern of the system under test but the NFSM cannot.

This paper reports our recent investigation on TTs and DTs for an observable PM
(OPM), a special but important class of PM [10]. In such a machine, the next-state of
each transition can be uniquely determined by its output. The transitions of the PM have
weight representing cost or time. The test sequences can be measured by their average
length. We discuss the problem of optimal strategies for selecting input and thus for
generating test sequences. In particular, we show that for an OPM, polynomial-time
algorithms can be obtained for the following problems: (1) Find the shortest transfer

sequence from a start state to a target state, or prove that no such a sequence exists

96



(Section 111). (2) Find the shortest pair-wise distinguishing sequences for a given pair of

states, or prove that no such sequence exists (Section V).

Il. DEFINITIONS
This section gives definitions. Most of them can be found in [15].

Definition 2.1 A nondeterministic finite-state machine M is a quintuple (S, I, O, D, A),
where S is a finite set of states, | is a finite set of inputs, O is a finite set of outputs, D 0 S
x | is the domain of the state-input pairs, and A is a mapping from D to O x S. A
transition (i,j;aly) starts at state i, ends at state j and is associated with an input/output

pair aly. The symbol € denotes “no input” or “no output”.

* M is called a probabilistic machine (PM) if it is associated with a probability function
p: SxSx1x0 - [0,1] such that p(i,j;aly) > 0 if and only if (i,j;aly) is a transition
and that }y; p(i,j;aly) = 1 for every (i,a) O D.

* M is further said to be an observable PM (OPM) if, for any two transitions (i,j;; aly1)
and (i,jo; aly,) with the same (i,a), y1 =y, implies j; = j».

» For the rest of the paper, M always represents an OPM with a weight function w: S x

S x1x0 - [0,00) such that w(i,j;aly) > O for every transition (i,j;aly).

Example 1. Figure 1 shows an OPM N represented by a directed graph. In this OPM,
every transition has weight 1 and probability either 1 or 0.5 (not shown), depending on
whether there are one or two outgoing transitions with the same input. N is strongly

connected, i.e., for any two states s and s', there is a (directed) path from sto s'.
ary

c/
o B e
aly
a/y alz
c/x

alx
cly

Figure 1. An OPM N.
Definition 2.2 A single-input tree T for M is formed by all possible execution paths
under an input-select strategy g. It is defined as follows: (1) T contains the starting state s
as its root. (2) At any node v of T whose corresponding state is i, there are two cases:
Case 1. No input is selected (as a testing goal has been achieved), v is a terminal node

and has label (i, €). Case 2. An input a is selected by g, and the node in T has label (i, a);

97



also, for every outgoing transition (i,j;a/y) from i, an arc with label y and ending node j

will be attached to the node in T. (Note that a single-input tree may be infinite.)

Definition 2.3 Let T be a single-input tree for M and P be a path of T.

* p(P), the probability of P, is the product of the probabilities of its arcs (transitions).

*  w(P), the weight of P, is the sum of the weights of its arcs.

» Piscalled afull path if it starts from the root and ends at a terminal node of T.

* p(T), the probability of reaching a terminal node of T is defined as limity, _, « Y (p(P):
for all full paths P of T with length < m) and is denoted by > p51 p(P).

» Tissaid to be almost sure if p(T) = 1.

 When T is almost sure, its average weight w(T) is defined as Y por p(P)w(P). w(T)
measures the efficiency of reaching a terminal node of T from its root.

» T is said to be a t-targeted transfer tree (TT) at state s if it is an almost sure single-
input tree whose root is s and terminal nodes all have label (t,¢).

» Anpolicy f of M selects an input for each state, thatis, f: S - 1 0 {€}.

« T, denotes the single-input tree at s determined by f, whose labels are (i, f(i)).

Example 2. Figure 2 shows the top part of a t-targeted TT (t = 1) at state 3 for OPM N
(Figure 1): T3 is determined by policy f: f(1) = ¢ f(2) = ¢ and f(3) = c. The probability
and weight of every arc of T, are 1/2 and 1, respectively. T3 is almost sure, as p(T3) = 1/2
+ (1/2)% +..+ (1/2) + ... = 1. It average weight is «(T3) = 1(1/2) + 2(1/2) + 3(1/2)3 +...+
k(L/2) + ... = 2.

L9

Figure 2. A t-targeted TT T3 for OPM N.

Definition 2.4 Let M be an OPM with target t and f be a policy for M.

« M denotes the submachine induced on M by f. That is, M" = (S, I, O, D, A), where D
is the domain {(i,f(i)): i O S}.

* Miissaid to be t-targeted if for every state v of M there is a directed path from v to t.

« fisat-policy if M is t-targeted.

98



We mention two useful facts about t-policies [15]: (a) If f is a t-policy, then T;' is a t-
targeted TT for every i O S. (b) If M is t-targeted, then there is a polynomial-time
algorithm for finding a t-policy f for M.

I1l. OPTIMAL TRANSFER-TREES
Now we consider the problem of finding an optimal policy for M that generates TTs

having minimum average weight. We first consider the case where M has a t-policy.

Definition 3.1 Let fbe a policy forM = (S, 1,0, D, A),n=|S|,i,jOSand a 01 O{&}.

* u(i,a,)) denotes the total probability of all the transitions which start at state i, have
input a and end at state j, i.e., p(i,a,j) = >y p(i,j;aly) and p(i,&j) = 0.

« A" denotes the n x n matrix (&), where ajj = p(i,f(i),j).

e E denotes the n x n identity matrix.

* Dbj, denotes the average weight of those transitions outgoing from i and activated by
input a, i.e., bia =Y y; p(i,j;aly)ui,j;aly) and b= 0.

« b denotes the vector (bi: 1 O°S), where b; = big).

Optimality Condition of a t-policy f [15]: f is optimal if and only if z = (E — AN %'
satisfies the following inequalities:

Zi <bia + jos p(i,a,))z;, forevery (i,a) DD andi #t.

Algorithm Optimal-Policy
Given: A t-targeted OPM M = (S, I, O, D, A).
Result: An optimal policy h for generating the shortest transfer trees.
Step 1: Find an optimal solution z* to the following linear program (LP):
LP:  maximize Y@z jOs)
Subjectto: z; — Yos U(i,a,))z; < bia, for every (i,a) O D
=0
Step 2: Let M* be the OPM induced by D* = {(i,a) O D: z*; — ¥ ju(i,a,j)z*j = bia }. Find
a t-policy h of M*.
Theorem 1: Algorithm Optimal-Policy is correct and has polynomial-time complexity.
Sketch Proof: Consider the dual linear program of the LP:
DLP: minimize Y ( biaXia: (i,a) O D)
Subjectto 3 ami Xja — D iaop Xiak(i,a,j) =1, j O S\{t}
Xia=20, (i,a) 0D

99



As M has a t-policy, say f, we construct x* based on this f as follows: For all (i,a) O D,
X*ia = X* irgy If @ = f(i); x*ia = 0 if & # f(i); and x*;c = 0. x* satisfies the equations of the
DLP and especially,

Xitg) — >i M(1,f(1).J)xirqy = 1, for all j O St}, and X = 1,
which is, in matrix form,

(Xiry: 1 OS)E - A = (1,1, ...,1).
Furthermore, as (E — A" exists and is non-negative, (X*irqy: iI0°S) = (1,1,...,1)(E - ANh™
IS non-negative. Hence, x* is a feasible solution to the DLP, and the LP has a finite

solution z*.

It can be easily shown that M* has a t-policy h. As all (i, h(i)) O D*, z* satisfies
7% — 3 u(ih(i).j)z* = bing, and hence z* = (E - A")'b". Because z* satisfies the
Optimality Condition, h is an optimal t-policy.
The LP can be solved in polynomial time [6], yielding a finite optimal solution z*. As
mentioned in Section 1, a t-policy for M can be obtained in polynomial-time. |
For an arbitrary OPM M, one can reduce M into an OPM M' that has a t-policy [15]
and then apply the algorithm presented here.

IV. DIAGNOSIS TREES

This section investigates the problem of finding a pair-wise distinguishing tree that
has a minimum average weight for an OPM, and also discusses UIO trees and

distinguishing trees.

Definition 4.1 For two states t and r of an OPM M, a pair-wise distinguishing tree (PDT) T
is an almost-sure single-input tree rooted at (t, r) that can decide the state under test to be
either t or r whenever the input/output sequence of any full path of T is executed.

An example of such a PDT for OPM N (Figure 3a) is given in Figure 3b. The symbol

“~” stands for “state does not exist”.

100



((1,2),2)

o / ly\
alx @@@ cly (1, ~), €) (1), a) (=.3), 9
aly X ,
aly alz / ly\
c/x
(=398 _ ((1,2),9) (1,~). 9
alx X ot LT

\J
Figure 3a. An OPM N Figure 3b. A PDT for (1, 2).

The problem of creating a general PDT was first investigated by Alur et al [2]. We
shall find the minimum-length PDT by a similar approach, that is, to transform the
problem of finding a PDT to a problem of finding a TT. It can be briefly described as
follows: First, construct an auxiliary ONFSM M' from M. The state set of M' is a subset
of (SxS) 00{6}, where S is the state set of M and 6 is the target state representing the
cases where an inference of the state identification can be drawn. Next, find an optimal
TT for M' from the start state (t, r) to the targeted state 6. One can show that an optimal
TT for M' with weight and probability assigned according to the algorithm below is
essentially an optimal PDT for M. For the following algorithm, we assume that M is

completely specified, that is, D =S x I.

Algorithm Optimal-PDT

Given: An OPM M = (S, I, O, D, A) and two states t, r 0 S, where the probability of the
state being t is p and the probability beingrisg=1-p.

Result: An OPM M' = (S', I', O', D', A\") and an optimal 6-policy f for M". If f(t, r) # &,
then an Optimal PDT can be obtained by applying f on M'. Otherwise, PDT for (t, r)
does not exist.

Method:

Step 1. Construct M' from M as follows, where p' and w' are the probability and
weight functions of M', respectively:
S'« (SxS)T{6}I' = ,O' « O,D" « (S"\{(v,v): vOS}) x1;
for (every (i,j) 0 S'\{6} such that i # j and every input a)
for every transition e; = (i, i'; aly), construct a transition e of M" as follows:

If there exists j' such that e, = (j, j'; aly) is a transition of M,
e=((i.j), (ihj); aly); /*add ((I"J), y) to N ((i,j), a) */

101



P'(e) = pp(e1) + gp(ez), wi(e) = puer) + qux e2)
else (no such j' exists)
e =((i,j), 6; aly). * add (8, y) to A'((i,j), a) */
p'(e) = pp(i, I'; aly), w(e) = pwlew);
end for
for every transition e, = (j, J'; aly) such that no transition (i, i'; aly) exists,
construct a transition e of M' as follows:
e =((1.j). 6; aty). /* add (8, y) to A'((i.j), @) */
p'(e) = ap(ez), wi(e) = quez);
end for
end for
Step 2. Find an optimal policy f for M" with targeted state 6 by applying Algorithm
Optimal-Policy of Section IlI.

Theorem 2 Algorithm Optimal-PDT finds a policy f for generating a PDT with minimum
average weight (when f(t, r) # €) or concludes that no PDT exists for the pair (t, r) (when
f(t,r) = ¢).
Remark on the Algorithm Optimal-PDT:
(@) If p=1and q =0, then the policy f is to verify the current state is t but not r.
(b) If p =0 and g = 1, then the policy f can be used to verify the current state is r but
not t.
(c) If both p and g are not 0O, then the policy f can identify the state as either t or r.
(d) The way of assigning the transition probability and weight of M’ ensures that M" is
an OPM and that the PDT is optimal.
Definition 4.2: For a given state s of M, a unique input output tree (UIOT) is an almost
sure single-input tree T of M rooted at s such that, when the input sequence of any full
path P of T is applied to a different state, the output sequence is always different from
that of P.

One of the approaches for obtaining the shortest UIOT for a state s is to look into the
state space S", using ideas similar to the PDT. A UIOT for state 1 of OPM N is shown in
Figure 4a in the space S", where Ty is a PDT (p = 1, q = 0) for the pair (1, 3) and T, is a
PDT (p = 1, g = 0) for the pair (2, 1). For the arc from ((1,2,3), a) to ((1,[13), a) of the
UIOT, its probability and weight are respectively assigned 0.5 and 1, same as those of the
transition (1, 1; a/x) of N. For the arc from ((1,2,3), a) to ((2,1,1), a), its probability and

102



weight are respectively assigned those of the transition (1, 2; aly). In general, the
probabilities and weights of a UIOT for state s are the same as those of the corresponding

single-input tree starting at s.

((1.2,3), c)
~2,1),
(12.3). ) ((~2,1), a) ((2,1,3),¢)
X y
N A /\
(@23),0) @11),2) @~na G230
Figure 4a. A UIOT for state 1 Figure 4b. A distinguishing tree for OPM N

Definition 4.3: A distinguishing tree for M is an almost sure single-input tree T such that,

whenever the end of a full path of T is reached, the initial state is uniquely identified.

As an example, Figure 4b shows a distinguishing tree for OPM N (Figure 3a), where
T3 is a PDT for the pair (2, 1). As for a PDT, the average weight of a distinguishing tree
is related to the probabilities py, ..., pn, Where p; represents the probability of the state

under test being state i.

\Y CONCLUDING REMARKS

In this paper, we described a polynomial-time algorithm for finding the shortest
transfer tree for an observable probabilistic finite-state machine. We also reduced the
problem of finding the shortest pair-wise distinguishing tree into the shortest transfer-tree

problem.

Many problems remain unsolved and require further research. For example, for state
transfer, a direct combinatorial and polynomial-time algorithm for finding an optimal
policy is desirable. For state identification, algorithms for generating the optimal UIOT

and DT need to be investigated.

ACKNOWLEDGEMENT
We thank the referees for their comments. This work is supported by the Hong Kong

Polytechnic University Research Grant G-YC51.

103



10.

11.

12.

13.

14.

15.

REFERENCES

Aho, A.V., Dahbura, A.T., Lee, D. and Uyar, M.U. (1991), “An optimization technique
for protocol conformance test generation based on UIO sequences and rural Chinese
postman tours,” IEEE Trans. on Commun., 39 (11), pp. 1604-1615.

Alur, R., Courcoubetis, C. and Yannakakis, M. (1995), “Distinguishing tests for
nondeterministic and probabilistic machines”, Proc. Twenty-Seventh Annual ACM
Symposium on Theory of Computing, Las Vegas, Nevada, pp. 363-372.

Cheung, T. and Ye, X. (1995), “A fault-detection approach to the conformance testing of
nondeterministic systems”, Journal of Parallel and Distributed Computing 28, pp. 94-
100.

Chow, T.S. (1989), “Testing software design modeled by finite-state machines”, IEEE
Trans. on Software Eng. 4 (3), pp. 178-187.

Fujiwara, S. and Bochmann, G.v. (1992), “Testing non-deterministic state machines with
fault coverage”, Protocol Test Systems, 1V, (J. Kroon, R.J. Heijink, and E. Brinksma
eds.), pp. 267-280.

Khachiyan, L.G. (1979), “A polynomial algorithm in linear programming”, Soviet Math
Dolk. 20, pp. 191-194.

Kloomsterman, H. (1993), “Test derivation from nondeterministic finite-state machines”,
Protocol Test Systems V, (Bochmann, G.v., Dssouli, R. and Das, A. Eds.), North
Holland, pp. 297-308.

Lee, D. and Yannakakis, M. (1996), “Principles and methods of testing finite state
machines - a survey”, Proc. IEEE 84, pp. 1090-1126.

Low, S. (1993), “Probabilistic conformance testing of protocols with unobservable
transitions”, Proc. Intl. Conf. on Network Protocols, pp. 368-375.

Luo, G., Bochmann, G.v., Das, A. and Wu, C. (1992), “Failure-equivalent transformation
of transition systems to avoid internal actions”, Infor. Processing Letters 44, pp. 333-
343.

Sabnani, K. and Dahbura, A. (1988), “A protocol test generation procedure”, Computer
Networks and ISDN Systems 15, pp. 285-297.

Tripathy, P. and Naik, K. (1993), “Generation of adaptive test cases from
nondeterministic finite state models”, Protocol Test Systems V, (Bochmann, G.v.,
Dssouli, R. and Das, A. Eds.), North Holland, pp. 309-320.

Ural, H., Wu, X. and Zhang, F. (1997), “On minimizing the lengths of checking
sequences”, IEEE Trans. on Computers 46 (1), pp. 93-99.

Yi, W. and Larsen, K.G. (1992), “Testing probabilistic and nondeterministic processes”,
Protocol Specification, Testing, and Verification XII, pp. 47-62.

Zhang, F and Cheung T.Y. (2002) “Optimal transfer trees and distinguishing trees for
testing observable nondeterminstic finite-state machines”, IEEE Trans on Soft Eng,
accepted.

104



BZ-TT: A Tool-Set for Test Generation from Z and
B using Constraint Logic Programming

F. Ambert, F. Bouquet, S. Chemin, S. Guenaud,
B. Legeard, F. Peureux, N. Vacelet
Université de Franche-Comté, France

M. Utting
The University of Waikato, New Zealand

Abstract

In this paper, we present an environment for boundary-value test generation
from Z and B specifications. The test generation method is original and was
designed on the basis of several industrial case-studies in the domain of critical
software (Smart Card and transport areas). It is fully supported by a tool-set:
the BZ-Testing-Tools environment. The method and tools are based on a novel,
set-oriented, constraint logic programming technology. This paper focusses on
how this technology is used within the BZ-TT environment, how Z and B
specifications are translated into constraints, and how the constraint solver is
used to calculate boundary values and to search for sequences of operations
during test generation.

Key words: Computer-Aided Software Testing Tool, Specification-based test gen-
eration, boundary value testing, B notation, Z notation

1 Introduction

From the end of the 1980’s, specification-based test generation has been a very
active and productive research area. In particular, formal specification has been
clearly recognized as a very powerful input for generating test data [BGM91, DF93,
Tre96, FJJIV96], as well as for oracle synthesis [RO92].

In [LPUO2b], we presented a new approach for test generation from set-oriented,
model-based specifications: the BZ-TT method. This method is based on constraint
logic programming (CLP) techniques. The goal is to test every operation of the
system at every boundary state using all input boundary values of that operation.
The unique features of the BZ-TT method are that it:

e takes both B [Abr96] and Z [Spi92] specifications as input;

e avoids the construction of a complete finite state automaton (FSA) for the
system;

e produces boundary-value test cases (both boundary states and boundary input
values);

e produces both negative and positive test cases;

105



e is fully supported by tools;

e has been validated in several industry case studies (GSM 11-11 smart card
software [LP01, BLLP02], Java Card Virtual Machine Transaction mecha-
nism [BJLPO02], and a ticket validation algorithm in the transport industry
[CGLPO01]). The method is currently being used in another industrial project
to generate tests for an automobile windscreen wiper controller.

B Source Z Source
File @ Java Module File
li| Sicstus Prolog Module -
Parsing Parsing
Type-Checking - XML Format File Type-Checking
Intermediate Form Source Format File Intermediate Form
Generator Generator
|
1A
Intermediate Form File
BZP
v

G
Table GeneratorLIJ
Script \
Test Patern -

Test TEST CLPS-BZ

G Builder e Al A

E xecuter >N

Executable N Test |

Test E fSequence! "

Generation R — Reducer A

T ate Solvers |

Executable g : (0]

Test source Integer || Relatior]| Setll Sequenc N
Ul GuI

Figure 1: Overall Architecture of the BZ-TT Environment

Figure 1 shows the architecture of the BZ-TT environment. The key component
in this environment is the CLPS-BZ solver, which is used to calculate boundaries
and simulate the execution of operations. It is this solver which enables the test
generation process to be effectively automated. Furthermore, since it is a general
reasoning engine, whose input is a pre/post specification format, it could poten-
tially be used with notations other than Z or B, and for purposes other than test
generation.

This paper describes how the CLPS-BZ solver is used to support the BZ-TT
method of test generation and how it enables both Z and B specifications to be
represented as constraint systems. Section 2 gives an overview of the BZ-TT test
generation method. Section 3 describes how Z and B specifications are mapped
into a common format: the BZP intermediate form. Section 4 describes the CLPS-
B7Z constraint solver, and how BZP predicates are represented as sets of constraints.
Section 5 describes how the test generation modules use the CLPS-BZ solver. Section
6 discusses related work; Section 7 gives conclusions and outlines future work.

106



2 Overview of the BZ-TT test generation method

Our goal is to test some implementation, which is not derived via refinement from
the formal model. The implementation is usually a state machine with hidden state.
We specify this state machine by a B or Z formal specification, which has a state
space (consisting of several state variables) and a number of operations that modify
this state.

A behavior of such a system can be described in terms of a sequence of operations
(a trace) where the first is activated from the initial state of the machine. However,
if the precondition of an operation is false, the effect of the operation is unknown,
and any subsequent operations are of no interest, since it is impossible to determine
the state of the machine. Thus, we define a positive test case to be any legal trace,
i.e. any trace where all preconditions are true. A positive test case corresponds to a
sequence of system states presenting the value of each state variable after each oper-
ation invocation. The submission of a legal trace is a success if all the output values
returned by the concrete implementation during the trace are equivalent (through
a function of abstraction) to the output values returned by its specification during
the simulation of the same trace (or included in the set of possible values if the
specification is non-deterministic). A negative test case is defined as a legal trace
plus a final operation whose precondition is false. The generation of negative test
cases is useful for robustness testing.

The BZ-TT method consists of testing the system when it is in a boundary state,
which is a state where at least one state variable has a value at an extremum —
minimum or maximum - of its sub-domains. At this boundary state, we want to
test all the possible behaviors of the specification. That is, the goal is to invoke each
update operation with extremum values of the sub-domains of the input parameters.
The test engineer partitions the operations into update operations, which may modify
the system state, and observation operations, which may not.

We divide the trace constituting the test case into four subsequences:!

Preamble: this takes the system from its initial state to a boundary state.
Body: this invokes one update operation with input boundary values.

Identification: this is a sequence of observation operations to enable a pass/fail
verdict to be assigned.

Postamble: this takes the system back to the boundary state, or to an initial state.
This enables test cases to be concatenated.

The body part is the critical test invocation of the test case. Update operations
are used in the preamble, body and postamble, and observation operations in the
identification part.

The BZ-TT generation method is defined by the following algorithm, where
{bound, , bound,, ..., bound, } and {op;, ops, ..., op;, } respectively define the set of all
boundary states and the set of all the update operations of the specification:

IThe vocabulary follows the 1SO9646 standard [ISO].

107



for i<1 ton % for each boundary state

preamble (bound;) ; % reach the boundary state
for j«1 tom % for each update operation
body (op;) ; % test op;
identification; % observe the state
postamble (bound;); % return to the boundary state
endfor
postamble (init); % return to the initial state
endfor

This algorithm computes positive test cases with valid boundary input values at
body invocations. A set of one or more test cases, concatenated together, defines a
test sequence. For negative test cases, the body part is generated with invalid input
boundary values, and no identification or postamble parts are generated, because
the system arrives at an indeterminate state from the formal model point of view.
Instead, the test engineer must manually define an oracle for negative test cases
(typically something like the system terminates without crashing).

After positive and negative test cases are generated by this procedure, they are
automatically translated into executable test scripts, using a test script pattern and
a reification relation between the abstract and concrete operation names, inputs and
outputs.

3 The BZP intermediate form

B and Z have many similarities. They both support model-oriented specification and
they have similar operator toolkits and type systems. The main difference between
them is that in Z the schema calculus is used to structure specifications and specify
states and operations in a flexible way, whereas B provides an abstract programming
notation (the generalized substitution language) for specifying operations, plus a
specialized machine construct for specifying hierarchies of state machines.

The BZ-TT environment supports both B and Z specifications by translating
them into a common notation, called BZP (B/Z Prolog format). Since the underlying
CLPS-BZ solver manipulates constraints, which are restricted kinds of predicates,
operations are specified in BZP using pre/post predicates.

Figure 2 gives an overview of the translation process. The generation and dis-
charge of well-formedness proofs for B is done using standard B tools (typically
before test generation begins). The B to BZP translator is written in Java, and uses
the rules from the B book [Abr96, Chap. 6] to translate the generalized substitution
language into pre/post predicates. The first stage of the Z to BZP translator uses
standard Z tools, while the second stage is a specific translator.

For simplicity, and to improve the scalability of the test generation process, we
impose three restrictions on the input specification. Firstly, it must specify a single
machine. For B, this means that we allow only one abstract machine, without
layering etc. For Z, we must identify the state, initialization and operation schemas
of the machine. Secondly, operations must have explicit preconditions. For Z this
means preconditions must be calculated (either manually, or using a theorem prover)
before translation. This is good engineering practice anyway. In B, operations
usually have explicit preconditions, but it is possible for the precondition to be
distributed throughout the operation. We require the entire precondition to appear
at the beginning of the operation, and also require this precondition to be strong

108



enough to ensure that the operation is feasible. Third, all the data structures must
be finite, which means that the given sets are either enumerated or of a known finite
cardinality. If everything is finite, then all specifications are executable (by labelling

if necessary).
Z specification

Typechecking; Typechecking;

B Specification

Translation to
pre/post format;

Precondition calculation

Translation to
BZP syntax

Well-formedness

e Z + explicit preconds|
and feasibility proofs
Schema expansion;

Translation to
BZP syntax

BZP File

Figure 2: Translation of B and Z specifications into common BZP format.

The BZP format is a Prolog-readable syntax which supports the union of the
B and Z toolkits and provides special constructs for defining state machines and
operations. The syntax of expressions and predicates is similar to the Atelier-B
ASCII notation for B (*.mch syntax). A BZP specification contains an unordered
set of facts, each of which has one of the following forms:

specification(Spec_Name).

predicat(Spec_Name, PREDICAT_KIND, ID, Pred).
declaration(Spec_Name, DECL_KIND, Name, Type).
operation(Spec_Name, Operation_Name).

The ID terms are used only for reporting errors, and are typically the line number
where that predicate appeared in the original specification source.

The PREDICAT _KIND and DECL_KIND terms relate each fact to some section
of the original B machine (and similar constructs in Z), and are defined as follows.
PREDICATE_KIND indicates the role of the predicate, and must be one of the
constants: constraint, property, invariant, initialisation, assertion or one
of the terms pre (OpName) or post (OpName).

Similarly, DECL_KIND indicates what kind of name is being declared, and must
be one of the constants: parameter, set, constant, variable, definition or one
of the terms input (OpName) or output (OpName). For definition, the type is a
singleton set containing the right-hand-side of the definition.

Invariants have different roles in B and Z. This difference is visible in the resulting
BZP file, since when we translate a Z operation, we include the (primed) invariant
in its postcondition because it often contributes to the effect of the operation, but
when we translate a B operation we do not include the invariant. However, the well-
formedness proofs for a B machine check that every operation preserves the invariant,
so discharging these proofs ensures that the B and Z approaches are equivalent.

To illustrate how Z specifications are translated to BZP format, we translate the
following fragment of a simple process scheduler [DF93]

PID ::=pl | p2 | p3 | p4

109



__Scheduler

#active < 1

(active = )

active, ready, waiting : F PID

ready N waiting = ()

active N waiting = ()

active N ready = )

= (ready = 0)

__ New

AScheduler
pp? : PID

pp? ¢ active U ready U waiting
waiting' = waiting U {pp?}
ready’ = ready
active' = active

The declaration of PID and the state schema produce:

machine (scheduler) .

declaration(scheduler,
declaration(scheduler,
declaration(scheduler,
declaration(scheduler,

predicat(scheduler,
predicat (scheduler,
predicat (scheduler,
predicat(scheduler,
predicat (scheduler,

set, pid,
variable,
variable,
variable,

{p1, p2, p3, p4}).
ready, power(pid)).
active, power(pid)).
waiting, power(pid)).

, card(active) =< 1).

, ready /\ waiting = {}).

active /\ waiting = {}).

, active /\ ready = {}).

, (active = {}) => (ready ={})).

invariant,
invariant,
invariant,
invariant,
invariant,

~N O O W

The New operation produces:

operation(scheduler, new).
declaration(scheduler,input (new), pp, pid).

predicat (scheduler,
predicat (scheduler,
predicat(scheduler,
predicat (scheduler,
predicat (scheduler,
predicat(scheduler,
predicat (scheduler,
predicat (scheduler,
predicat(scheduler,

pre(new), 10 , pp /: active \/ ready \/ waiting).

post(new), 11 , prime(waiting) = waiting \/ {pp} ).
post(new), 12 , prime(ready) = ready).

post(new), 13 , prime(active) = active).

post (new), , card(prime(active)) =< 1).

post (new), , prime(ready) /\ prime(waiting) = {}).

post (new), , prime(active) /\ prime(waiting) = {}).

post (new), , prime(active) /\ prime(ready) = {}).

post (new), , (prime(active) = {}) => (prime(ready) ={1})).

~N o oW

4 The CLPS-BZ solver

The CLPS-BZ solver is implemented in SICStus Prolog, and is comprised of three

subsystems:

The Executer: which manages the execution of the specified machine. The Exe-
cuter obtains predicates from the BZP specification, and passes them to the
other modules to achieve the effect of executing the desired operation.

110



The Reducer: which translates BZP predicates into lower-level constraints.

The Constraint Store: which records the current state of the specified machine
after some sequence of operations. In fact, we use symbolic execution, so a
single constraint store typically corresponds to many possible concrete states
of the specified machine.

We now describe these three subsystems, in a bottom-up fashion.

4.1 The Constraint Store

The CLPS-BZ solver manages a constraint store, which encodes a predicate (or a
set of states) over the variables of the formal model. The constraint store contains
both set-oriented constraints and finite domain (integer) constraints. The former
are managed by a customized set-constraint solver called CLPS, while the latter are
managed by the SICStus Prolog CLP(FD) solver. In this section we focus only on
the set part of the store (CLPS).

The CLPS solver was originally developed for solving combinatorial problems,
and is designed to work on homogeneous hereditary finite sets [ALL96]. It provides
five primitive constraint relations, which are the classical set relations, €, &, C, =, #,
and three operators (U,N,\). It also provides the cardinality operator, which is
important because it links the set constraints to the numerical constraints. Cardi-
nality constraints are one way that information propagates between the CLPS and
CLP(FD) solvers. The API of the solver includes procedures for adding each kind
of primitive constraint, query procedures for finding information about the domains
of variables, and labelling procedures for iterating through all possible values of a
given variable.

Internally, the CLPS solver represents the domain of each variable using one or
more of the following representations: undefined, min-maz (bounded) and enumer-
ated. Initially, the domain of a new domain variable (say X) is set to undefined.
When a membership constraint (e.g., X € PID) is added, an enumerated domain
is used to record all the possible values that X can take. When a subset constraint
(e.g., X C Ezpr or Ezpr C X) , a min-maz domain is used to record the lower
bound and upper bound of X.

Usually in Constraint Satisfaction Problems (CSP), solvers allow only wvalued
domains, where domains are sets of values. CLPS extends this by introducing the
notion of V-CSP [BLP02], which allows variables to appear in the domains of other
variables. This means that more complex rules are needed to manipulate these
symbolic domains, but the advantage is that a higher level of abstraction can be
achieved. CLPS allows variables within min-max domains and within enumerated
domains under the condition that all elements are different in a wvariable domain.
When two variables are unified, the intersection of their valued domains can be
calculated immediately. However, for the variable domains representation, it is not
always possible to combine the two symbolic domains, so the variable domain stores
a set of domains and the true domain of the variable is the intersection of these
domains.

The execution model of CLPS can be viewed as a transition system, where tran-
sitions represent reduction, inference and consistency rules [JM94]. The consistency
algorithm used by CLPS ensures partial consistency, using on one hand the domain
representations, and on the other hand the constraints store. To maintain domain
consistency, CLPS combines arc-consistency techniques derived from AC3 [Mac77]
and interval-narrowing over valued domains. So it is possible to have some elements

111



in domains not removed by these techniques, because only couple of variables are
checked. The solver uses similar methods to reduce variable domains except that
instead of manipulating one domain per variable, it manipulates a conjunction of
domains (enumerated and min-max).

The constraint store is used for two purposes. Firstly, it allows the propagation
of domain reductions, which enables consequences of constraints to be deduced. Sec-
ondly, it allows the solver to detect some semantic inconsistencies, which is crucial for
pruning the search space. The following example shows how propagation works when
constraints are acquired by the solver. In this example, B, C,D, G, X, Y are vari-
ables, Val_Domyx represents values included in the valued domain and Var_Domx
represents the conjunction of variable domains.

Acquired constraints | Val_Domyx | Var_Domx
1| Xe{B,C,D,Y} undef {{B,C,D,Y}}
2| Xe{B,C,D,2} undef {{B,C,D,Y},{B,C,D,2}}
3| X e€{3,4,G} undef {{B,C,D,Y},{B,C,D,2},{3,4, G}}
4| X €{1,2,3,4} {1,2,3,4} | {({B,C,D,Y},{B,C,D,2},{3,4,G}}
51 Y #X {1,3,4} {{B,C,D},{3,4,G}}
6| G=5 {3,4} {{B,C,D}}

Constraints from line 1 to line 4 build up variable domains and the valued domain
for X. On line 5, one of the variable domains is reduced from {B,C,D, Y} to
{B,C,D}. When a domain is included in another domain, the solver uses the
following rule: V- € Domy, V' € Doms, Domy C Domy, T = Domy\ Domy = V ¢ T.
In this case, due to the fact that all elements are different in a variable domain, it
infers X ¢ {2}, which is equivalent to X # 2. On line 6, one of the variable domains
becomes valued, which causes the valued domain to be recalculated by intersection:
Dom_Valx ={1,2,3,4} N {3,4,5}.

After all 6 constraints have been added, we can conclude that X =3 or X =4,
and that at least one of B, C' or D must also equal 3 or 4. If a unique solution
is not obtained after all constraints have been added, a user of CLPS-BZ typically
uses the labelling procedures to explore the possible solutions, one at a time.

4.2 The Reducer

The Reducer reduces BZP predicates into the basic constraints of the solver CLPS.
The most important procedure in the reducer API is add(P), which conjoins the
predicate P with the current constraint store, by reducing P into primitive con-
straints which are added into the constraint store. The reducer API also includes
procedures for adding and deleting variables, so that the association between each
specification variable and the corresponding Prolog constraint variable can be main-
tained.

The reduction of predicates to constraints is specified by a function €, which
takes a predicate as input, and returns a constraint as output. Generally, we have:

e(Expressionl Operator Expression2) =
e(Expressionl) Constraint_Operator e(Expression2)

In the Process Scheduler example, the precondition of the New operation is
pp /: active \/ ready \/ waiting. This can be translated into constraints as follows
(_Active, _Ready, _Waiting, _PP are Prolog variables that represent the constrained
values of the specification variables active, ready, waiting and pp).

112



e( pp /: active \/ ready \/ waiting)
= ¢( pp) nin e(active \/ ready \/ waiting))
_PP nin e(active) union e(ready \/ waiting)
_PP nin _Active union e(ready) union e(waiting)
= _PP nin _Active union _Ready union _Waiting
where “nin” and “union” are operators of the solver CLPS. They respectively
represent non membership and the union of two constrained values.

4.3 The Executer

The Executer is used to animate a machine specified in a BZP file. The executer
APT provides commands for loading a particular BZP file, initializing the machine
specified in that file, and executing the operations of that machine.

To initialize a machine, it simply declares all the state variables of the machine
then sends all the initialization predicates to the reducer.

The execution of an operation takes place in two stages:

e validation of preconditions, then
e execution of postconditions.

First, all the precondition predicates are added. If no inconsistencies are found,
all the postcondition predicates are added, and the primed state variables become
the new machine state. If inconsistencies are found, the operation is not executed.

5 The Test Generation Modules

The generation of boundary Goal is performed in two main stages. The first is
computed a set of boundary goals from the Disjunctive Normal Form (DNF) of
the specification, The secound is instantiated each boundary goal into a reachable
boundary state. Finally, the boundary states of the specification are used as a basis
to generate test cases.

5.1 Generation of Boundary Goals

For test generation purposes, the postcondition of each operation is transformed into
DNF, obtaining \/j Postj(op). The DNF transformation is not in general purpose,
but only computes one by one operation and the conditions described in it. Then
we project each of these disjuncts onto the input state, using the formula [LPU02b]:

dinputs, state’, outputs e Pre A\ Post;
J

We call these state subsets precondition sub-domains. The aim of boundary goal
generation is to find boundaries within each of these precondition sub-domains.

In practice, the CLPS-BZ solver reduces each sub-domain to a set of constraints.
For example, when the New operation of the Process Scheduler example is translated
to BZP format, and each of its precondition and postcondition is transformed into
DNF, we get the following predicates:

pre(new), == pp ¢ waiting U ready U active

post(new); == prime(waiting) = waiting U {pp} A
prime(ready) = ready A prime(active) = active A .. A
prime(active) = {} = prime(ready) = {}

113



which is reduced by the BZ-TT solver to the predicate PS such that:
PS == {Inv A #(waiting U ready U active) < #PID}

We compute boundary goals on the basis of the partition analysis by minimiza-
tion and maximization using a suitable metric function chosen by the test engineer.
(e.g., minimize or maximize the sum of the cardinalities of the sets). According
to the optimization function, this results in one or several minimal and maximal
boundary goals for each predicate.

Given the invariant properties Inv, a precondition subdomain predicate PS;, a
vector of variables V; which comprises all the free state variables within PS;, and f
an optimization function, the boundary goals are computed as follows:

BG™™ = minimize(f(V;), Inv A PS;)
BG™* = mazimize(f(V;), Inv A PS;)

The optimization function f(V;), where V; is a vector of variables v; ... v, is
defined as g1 (v1) + g2(v2) + - - . + gm (v ), where each function g; is chosen according
to the type of the variable wv;.

For example, from the predicate PS of the process scheduler example, bound-
ary goals BG™" and BG™® are computed with the optimization function f(V;) =
Y ovev, #v2. The result of constraint solving is a set of constraints on the cardinal-
ities of the set variables waiting, ready and active such that: BG™" = {waiting =
{} A ready = {} A active = {}}, and BG™*® = {waiting = {X1} A ready = {X2} A
active = {X3}} where (Vi X, € {p1,p2,ps3,ps}) and (Vi -i # j = X; # X;).
It should be noted that other optimization functions could be used (>_,cy, #v,

Y vev VUs-)-

5.2 Test Construction

This section describes the generation process of each test case, which is comprised
of a preamble, a body, an identification and a postamble part [LP01].

5.2.1 Preamble Computation

Each boundary goal is instantiated to one or more reachable boundary states by
exploring the reachable states of the system, starting from the initial state. The
CLPS-BZ solver is used to simulate the execution of the system, recording the set of
possible solutions after each operation. A best-first search [Pre01] is used to try to
reach a boundary state that satisfies a given boundary goal. Preamble computation
can thus be viewed as a traversal of the reachability graph, whose nodes represent
the constrained states built during the simulation, and whose transitions represent
an operation invocation. A consequence of this path computation is that state
variables which are not already assigned a value by the boundary goal, are assigned
a reachable value of their domain.

Some boundary goals may not be reachable via the available operations (this hap-
pens when the invariant is weaker than it could be). By construction, every boundary
goal satisfies the invariant, which is a partial reachability check. In addition to this,
we bind the search for the boundary state during the preamble computation, so
that unreachable boundary goals (and perhaps some reachable goals) are reported
to the test engineer as being unreachable. If all boundary goals in a precondition
sub-domain PS are unreachable, we relax our boundary testing criterion and search
for any preamble that reaches a state satisfying PS. Finally, the test engineer can

114



add and delete boundary goals, to customize the test generation, or to satisfy other
test objectives.

5.2.2 Input Variable Boundary Analysis and Body Computation

The purpose of the body computation, or critical test invocation, is to test, for a given
boundary state (a preamble), all the update operations, with all boundary values
of their input variables. For the boundary values which satisfy the precondition,
we get a positive test case, otherwise we get a negative test case. Note that, from
the same preamble and boundary state, several bodies are usually obtained for each
operation, with differing input values.

The process of boundary analysis for input variables is similar to that for state
variables, except that invalid input values are kept, which is not the case for unreach-
able boundary states. Given an operation Op with a set of input variables I; and a
precondition Pre, let BG; be a boundary goal. Note that BG; is a set of constraints
over the state variables, typically giving a value to each state variable. Then, given f
an optimization function chosen by the test engineer, the input variable boundaries
are computed as follows:

— for positive test cases:

minimize(f (I;), Pre A BG;)
mazimize(f (I;), Pre A BG;)

— for negative test cases:

minimize(f (I;),—Pre A BG;)
maximize(f (1;), - Pre A BG;)

5.2.3 Identification and Postamble

The identification part of a test case is simply a sequence of all observation opera-
tions whose preconditions are true after the body. The postamble part is computed
similarly to the preamble, using best-first search.

6 Related work

The BZ-TT proposal follows an important stream of work in test generation from
formal specification, particularly from model-based specification. But despite the
enormous popularity of boundary-value testing strategy for black-box testing in
the software practitioner guides, this approach has not been widely investigated
for automatic specification-based test generation. But boundary-value analysis is
related to partition analysis which has been the subject of systematic research since
the early testing literature [Mye79] [WOS80] [OB88].

Dick and Faivre [DF93] present an approach for partition analysis by computing
a Disjunctive Normal Form - DNF - both for input variables and system states.
The idea of automatic partition analysis was already present in the work of Gaudel
et. al. [BGM91, DGM93] by unfolding axioms from an algebraic specification. In
TTF [Sto93, CS94], and extensions of it [PAO1], partition analysis and DNF trans-
formation are used as heuristics for manually defining test templates. In [LPU02al,
we present a precise comparison between BZ-TT and TTF on the basis of the GSM
11-11 Standard case-study.

Various works [DF93, HP95, vABIM97, Hie97], use the partition analysis to build
a Finite State Automaton - FSA - corresponding to an abstraction of the reachability
graph denoted by the specification. Test cases are then generated by finding a

115



path (or several) “which traverses every transition with the minimum number of
repetitions” [DF93]. Unfortunately, this method is not easily automated, because it
is difficult to choose an appropriate abstraction of the state space to generate the
FSA. In the BZ-TT approach, due to the transformation of the B or Z specification
into a constraint system, the FSA is never explicitly computed.

During the last few years, the use of constraint logic programming for test gen-
eration has seen growing interest [Pre01]. For code-based test generation, Gotlieb
et. al. [GBROO] present a framework where a system of constraints is built from a
Static Single Assignment form of the source code (for C programs). The resolution
of the constraint system allows finding a path in the control flow graph to sensitize
a given point (statement or decision) in the source code. Meudec [Meu01] uses CLP
for symbolic execution of Ada code in order to generate tests. In specification-based
test generation, Marre et. al. [MAOQO] interpret LUSTRE specifications in terms of
constraints over boolean and integer variables and solve them to generate test se-
quences. Pretschner et. al. [PLO1] translate System Structure Diagrams and State
Transition Diagrams into Prolog rules and constraints to allow symbolic execution
of the specifications and thus test generation. Van Aertryck et. al. [vABIM97] use
DNF and constraint solving to generate an FSA and test sequences from a B-like
specification, but this is not fully automated. Mostly, these techniques use existing
constraint solvers (Boolean and finite domains in general). In BZ-TT, due to the
specificity of set oriented notations of Z and B, we developed an original solver able
to treat constraints over sets, relations and mappings. This solver co-operates with
the integer finite domain solver.

7 Conclusions and future work

We have presented an environment for automatic boundary-value testing from set-
oriented formal specification notation. This environment is strongly based on a
constraint technology which offers specialized support for the B and Z toolkits (sets,
relations, functions and sequences).

The major advantage of using this constraint technology is that it dramatically
reduces the size of the search spaces during test generation, which allows the method
to scale to larger applications.

Firstly, the constraint technology enables boundary goals to be found more ef-
ficiently, due to the constraint representation, which is based on min/max interval
domain representation (both for sets and numeric variables). This means that some
max/min limits can be obtained directly from the constraint store, without search.
Even when labelling is used, the search space is reduced because the constraint
system prunes the search tree.

Secondly, the boundary goals that we obtain are also a set of constraints, rather
than a specific value for each variable. Typically, some key variables will have
extremum values, but others will just be constrained. This allows the boundary
goals to be more abstract, which makes it easier to find a preamble that reaches
the goal. In other words, the constraint approach avoids premature commitment to
precise values for every state variable, which could result in choosing unreachable
states.

Thirdly, the search for a preamble is reduced in complexity. At each point during
the best-first search, we must still consider every operation, but with constraints it
is not necessary to consider every input value to each operation, because the entire
set of allowable inputs can be represented as a set of constraints.

116



These three reductions in search space give this boundary-value test generation
method good scalability, and allow us to handle applications that would not be
possible without the constraint technology.

Typically, the number of boundary goals (and thus preambles) generated is pro-
portional to the number of operations, while the number of tests generated is pro-
portional to the square of the number of operations (because we try to test each
operation at every preamble). The time taken to produce each test is more diffi-
cult to predict, because it depends upon the complexity of the constraints and the
average length of each preamble. The first factor is bounded by the worst case com-
plexity of the CLPS-BZ solver, which is n? x nd x d [BLP02], where n is the number
of variables, nd is the highest number of sub-domains and d is the size of the largest
domain. The second factor depends upon how easily each boundary goal can be
reached, which is highly specification dependent.

In the realistic industry case studies that we have completed, the specifications
were quite complex, but the test generation time was acceptable on a typical per-
sonal computer. For example, in a recent case study on the Java Card transaction
mechanism [BJLP02], the 15 page B specification contained 20 operations and 15
state variables, where some state variables had sizable domains, such as the backup
memory variable, which was a total function from addresses (0 ..255) to bytes.
In this case study, 60 boundary goals were computed, producing around 4500 test
sequences, taking around 15 hours of computation time on a 1GHz Pentium.

We have also used this technology to generate tests for other smart card ap-
plications. In the GSM 11-11 standard case study [LP01, BLLP02], the five page
specification contained 11 operations and 12 variables, and produced 38 boundary
goals and around 1000 tests, with a computation time of 50 minutes. In the trans-
port ticket validation algorithm [CGLPO01], there was only one operation, but it was
complex (5 pages) with 15 variables, and generated around 100 test cases in 20 min-
utes. The number of test are huge but one human test must be 5 to 10 automatic
tests.

Until now, the BZ-TT environment has been usable only by the development
team, because it lacked user interfaces and integration between components. How-
ever, we are currently developing Java interfaces for animation and test generation
and consolidating the CLPS-BZ solver and the overall environment. The objective
is to produce a beta release for Windows and Linux by the end of 2002, under a
free license for academic use. See the BZ-TT website [BZT02] for updated release
information.

In the future, we will be focusing on several areas:

e Supporting the full B and Z notation, such as parts of the toolkits that are
currently missing (sequences, trees etc.) and layered machines in B.

o Extending the CLPS-BZ solver for continuous domains to be able to address
problems with real or floating variables.

e Extending the solver and the BZP notation to support other specification
notations, such as state charts and the UML object constraint language (OCL).

Acknowledgment
This research was supported in part by a grant of the French ANVAR - Agence

Nationale de Valorisation des Actions de Recherche. The visits of Mark Utting are
supported under the French/New Zealand scientific cooperation program.

117



References

[Abr96]

[ALLY6]

[BGMO91]

[BJLPO02]

[BLLP02]

[BLP02]

[BZT02]

[CGLPO1]

[CS94]

[DF93]

[DGMY3]

[FJIV96]

[GBROO]

[Hie97]
[HP95]
[1SO]

[IM94]

[LPO1]

[LPU02a]

[LPUO02b]

J-R. Abrial. The B-BOOK: Assigning Programs to Meanings. Cambridge University
Press, 1996. ISBN 0 521 49619 5.

F. Ambert, B. Legeard, and E. Legros. Programmation en logique avec contraintes
sur ensembles et multi-ensembles héréditairement finis. Technique et Science Informa-
tiques, 15(3):297-328, 1996.

G. Bernot, M-C. Gaudel, and B. Marre. Software testing based on formal specifications:
a theory and a tool. Software Engineering Journal, 6(6):387-405, November 1991.

F. Bouquet, J. Julliand, B. Legeard, and F. Peureux. Automatic reconstruction and
generation of functional test patterns - application to the Java card transaction mech-
anism (confidential). Technical Report TR-01/02, LIFC - University of Franche-Comté
and Schlumberger Montrouge Product Center, 2002.

E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test sequences from
formal specifications: GSM 11.11 standard case-study. Submitted to the Journal of
Software Practice and Ezperience, 2002.

F. Bouquet, B. Legeard, and F. Peureux. CLPS-B — A constraint solver for B. In Pro-
ceedings of the conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’02), Grenoble, France, April 2002.

The BZ-TT web site. http://lifc.univ-fcomte.fr/RECHERCHE/TFC/Page_BZ-TT.
html, April 2002.

N. Caritey, L. Gaspari, B. Legeard, and F. Peureux. Specification-based testing —
Application on algorithms of Metro and RER tickets (confidential). Technical Report
TR-03/01, LIFC - University of Franche-Comté and Schlumberger Besanon, 2001.

D.A. Carrington and P.A. Stocks. A tale of two paradigms: formal methods and
software testing. In Proceedings of the Z user workshop (8th Z User Meeting), pages
51-68, Cambridge, June 1994.

J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specifications. FME’93: Industrial-Strength Formal Methods, LNCS
670:268-284, April 1993.

P. Dauchy, M-C. Gaudel, and B. Marre. Using Algebraic Specifications in Software
Testing : A case study on the software of an automatic subway. Journal of Systems
and Software, 21(3):229-244, June 1993.

J-C. Fernandez, C. Jard, T. Jéron, and G. Viho. Using on-the-fly verification techniques
for the generation of test suites. In Computed Aided Verification (CAV’96), volume
LNCS 1102, New Brunswick, New Jersey, July 1996. Springer-Verlag.

A. Gotlieb, B. Botella, and M. Rueher. A CLP framework for computing structural
test data. In Springer-Verlag, editor, Proceedings of the First International Conference
on Computational Logic (CL’00), pages 399-413, London, UK, July 2000.

R. Hierons. Testing from a Z specification. The Journal of Software Testing, Verifica-
tion and Reliability, 7:19-33, 1997.

H.M. Horcher and J. Peleska. Using formal specifications to support software testing.
Software Quality Journal, 4(4):309-327, 1995.

ISO. Information Processing Systems, Open Systems Interconnection. OSI Confor-
mance Testing Methodology and Framework — ISO 9646.

J. Jaffar and M.J. Maher. Constraint logic programming : A survey. Journal of Logic
Programming, 19/20:503-582, May/July 1994.

B. Legeard and F. Peureux. Generation of functional test sequences from B formal
specifications — Presentation and industrial case-study. In 16t IEEE International
Conference on Automated Software Engineering (ASE’01), San Diego, USA, November
2001.

B. Legeard, F. Peureux, and M. Utting. A comparison of the BTT and TTF test-
generation methods. In ZB2002: Formal Specification and Development in Z and B,
volume LCNS 2272, pages 309-329, Grenoble, France, January 2002. Springer-Verlag.

B. Legeard, F. Peureux, and M. Utting. Automated boundary testing from Z and B.
In Lars-Henrik Eriksson and Peter Lindsay, editors, Formal Methods Europe, 2002,
LNCS. Springer-Verlag, July 2002. To be published.

118



[MA00]

[Mac77]

[Meu01]

[MyeT79]
[OB88]

[PAO1]

[PLO1]

[Pre01]

[RO92]

[Spi92]
[St093]
[Tre96]

[VABIMY7]

[WOS0]

B. Marre and A. Arnould. Test Sequence generation from Lustre descriptions: GATEL.
In Proceedings of the 15" IEEE International Conference on Automated Software
Engineering (ASE’00), pages 229-237, Grenoble, France, 2000.

A.K. Macworth. Consistency in network of relations. Journal of Artificial Intelligence,
8(1):99-118, 1977.

C. Meudec. ATGEN: Automatic test data generation using constraint logic program-
ming and symbolic execution. The Journal of Software Testing, Verification and Re-
liability, 11(2):81-96, 2001.

G.J. Myers. The Art of Software Testing. Wiley-InterScience, 1979.

T.J. Ostrand and M.J. Balcer. The Category-Partition Method for Specifying and
Generation Functional Test. Proceedings of the ACM Conference, 31(6):676-686, June
1988.

K. Periyasamy and V.S. Alagar. A rigorous method for test templates generation
from object-oriented specifications. The Journal of Software Testing, Verification and
Reliability, 11(1):3-37, 2001.

A. Pretschner and H. Lotzbeyer. Model Based Testing with Constraint Logic pro-
gramming : First Results and Challenges. In Proceedings of the 2% ICSE Workshop
on Automated program Analysis, Testing and Verification (WAPATV’01), pages 1-9,
may 2001.

A. Pretschner. Classical search strategies for test case generation with Constraint Logic
Programming. In BRICS, editor, Proceedings of the Workshop on Formal Approaches
to Testing of Software (FATES’01), pages 4760, Aalborg, Denmark, August 2001.

D.J. Richardson and S.L. Aha T.O. O’Malley. Specification-based test oracles for
reactive systems. In Proceedings of the 14" International Conference on Software
Engineering (ICSE’92), pages 105-118, Melbourne, Australia, May 1992. ACM Press.

J.M. Spivey. The Z notation: A Reference Manual. Prentice-Hall, 27 edition, 1992.
ISBN 0 13 978529 9.

P. Stocks. Applying Formal Methods for Software Testing. Phd thesis, The University
of Queensland, 1993.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software-
Concepts and Tools, 17(3):103-120, 1996.

L. van Aertryck, M. Benveniste, and D. le Metayer. CASTING: a formally based
software test generation method. In 1% IEEE International Conference on Formal
Engineering Methods (ICFEM’97), pages 99-112, 1997.

E.J. Weyuker and T.J. Ostrand. Theories of program testing and the application of
revealing subdomains. IEEE Transactions in Software Engineering, 6(3):236—-246, May
1980.

119



120



Using a Virtual Reality Environment to Generate
Test Specifications

Stefan Bisanz Aliki Tsiolakis

University of Bremen, Germany
{bisanz,tsio } @informatik.uni-bremen.de

Abstract

The creation of test specifications that can be used for automated testing re-
quires considerable skill in the field of formal methods. This article proposes
a method that enables the development of test specifications by interaction
with a virtual reality representation of the system under test. From these
interactions, a formal test specification is generated. Its goal is to reduce the
need for formal methods expertise and therefore concentrates on the knowl-
edge of the application to be tested. It addresses domain experts who are not
familiar with formal methods.

In this article, the character of the virtual reality model as well as its cre-
ation are discussed. Further, the generation of test specifications is explained.
Statecharts are used as formal specification language for the result of the
generation step.

1 Introduction

Testing embedded real-time systems is a complex and time-consuming task and thus
a high level of automation is advisory. Ideally, the test team receives a complete
and consistent system specification in a formal specification language. By use of a
test tool, the automatic generation of test cases, the automatic execution of the test
and the automatic evaluation can be supported based on this specification. This
idea relies on two main preconditions: On the one hand, the existence of a formal
system specification developed by the domain experts and, on the other hand, on
the availability of an appropriate test tool.

However, most system specifications are informal, natural language descriptions of
the system’s behaviour and the test experts have to develop the necessary test spec-
ifications manually based on these system specifications. Since the formal specifica-
tions require considerable skills in the field of formal methods, the domain experts
can usually not generate the test specifications themselves. Nevertheless, approriate

121



test tools can be found. For example, RT Tester' supports automatic test gener-
ation, execution and evaluation based on formal test specifications in Timed CSP.
These Timed CSP specifications are then translated into labelled transition systems
(LTS). RT Tester has been applied in many application areas — from avionics to
railway controllers.

Thus, the process of automatic test execution and evaluation is sufficiently sup-
ported by existing test tools. To fill the gap, we want to introduce a new approach
of generating formal test specifications by interacting with a virtual reality repre-
sentation of the system under test (SUT) called the Virtual Periphery. The Virtual
Periphery represents the functional interface of the SUT embedded into its envi-
ronment. For example, consider as a SUT the fasten-seatbelt signs in an airplane
that can be switched on or off automatically depending on the status of specific
sensors or manually by a dedicated switch in the cockpit. The functional interface
consists of interface objects like signs, switches or sensors which are represented
as interactive objects in the Virtual Periphery. The additional non-interactive ob-
jects constitute the geometry that is not of functional relevance to the SUT but
serve to model the SUT’s environment. To specify that the fasten-seatbelt signs
are switched on by toggling the switch, one has to interact with the corresponding
interface objects. Thus, the approach assists the domain experts intuitively during
the specification process because the interaction’s semantics can easily be learned.
Interactions with VR components are mapped to specification fragments of a formal
specification language that can be composed into the complete test specification.

Nevertheless, this basic Virtual Periphery is not sufficient to specify specific con-
cepts, e. g., parallelism, or alternative interactions. For example, it is not possible
to express by these interactions that all fasten-seatbelt signs have to be switched
on in parallel because it is not possible to perform several simultaneous actions in
the Virtual Periphery. To reduce this drawback, it is necessary to enhance the Vir-
tual Periphery with visual representations of commands, graphical menues, gesture
interactions, or voice commands. Furthermore, the Virtual Periphery only reflects
the ”present point in time” while it is not possible to investigate the history of past
interactions or the potential future events. In order to overcome this, we have cho-
sen statecharts as a formal but as well graphical specification technique. Statecharts
provide an alternative view on the test specification fragments and facilitate their
understanding. This choice has essential impact on our specification approach be-
cause, on the one hand, it affects the semantics of the VR interactions and, on the
other hand, it defines the maximum expressive power of the resulting specifications.

In the next section, we give a detailed overview about the Virtual Periphery and
some possible enhancements. The representation of the test specification fragments
as statecharts is described in section 3. Section 4 refers to the integration of the
generated statechart specifications with RT Tester. In section 5, we discuss ways to
automatically generate the Virtual Periphery.

IRT Tester has been developed by Verified Systems International GmbH
(http://www.verified.de) in cooperation with University of Bremen.

122


http://www.verified.de

2 Virtual Periphery

The Virtual Periphery is an incomplete simulation model of the SUT, i. e., it is a
model of the real world that only contains those objects that are relevant for the
SUT’s interface. Additional non-functional geometry enriches the Virtual Periphery
and serves to model the SUT’s environment such that it resembles the real world.
The interface objects consume inputs (e. g., switches, buttons, sensors), yield output
(e. g., signs, loudspeakers) or process input as well as generate output (e. g., touch
screens, buttons with back light). Each interface object can be in a number of
different states, and only specific state changes are possible. For example, a specific
two-state toggle’s states are ON and OFF, and a specific indicator can yield the
states RED, YELLOW and GREEN. Each interface object is associated with specific
attributes which include the interface object’s type. Returning to our previous
example, the fasten-seatbelt signs in an airplane denote a specific type of sign which
has the attributes SEAT ROW and AISLE. Thus, specific objects of the same type can
be identified. Furthermore, similar interface objects can be grouped, e. g., applying
the condition type = "Fasten-Seatbelt Sign" and seat row > 20 and aisle
= left identifies all interface objects of type Fasten-Seatbelt Sign in the left aisle of
an aircraft at seat row 21 or higher.

As interface objects of the same type share geometry, possible states and attributes,
interface object templates can be provided by interface object libraries. General
purpose libraries contain general switches, indicators, etc. while domain specific
interface objects (e. g., the fasten-seatbelt signs) are defined in domain specific li-
braries. The interface object templates and thus the libraries are modelled manually
and are utilised within the Virtual Periphery creation process (see section 5).

The use of our Virtual Periphery exceeds simple simulation. By interacting with
interface objects the user generates test specification fragments. This means that
specific state changes in one input interface object are reflected in state changes of
other output (or input/output) objects. More precisely, the state changes in the
input interfaces are initiated by interactions and are used as stimuli for the SUT.
The expected reaction is represented by the correct output.

Interaction with interface objects takes place by navigating a 3D cursor that looks
like a human hand. By touching an interface object (i. e., more exactly by colliding
the 3D cursor with it), it gets selected for further interactions. Moving or rotating
the 3D cursor generates a basic test specification element.? What movement or
rotation is appropriate depends on the type of the selected interface object, but
it should conform to the direct manipulation metaphor. This direct manipulation
changes the interface object’s state and its visual representation. For example, a
toggle switch changes its state according to the rotation direction: the movement of
the 3D cursor’s fingertips chooses which part of the toggle switch is pressed down.
Figure 1 shows a 3D cursor and three-state toggle switches in the cockpit of an
airplane. For an introduction to 3D interaction see [BKLPO1] and for a general
discussion on direct manipulation see [Shn83] and [HHNS6.

2If a conventional mouse is used for interactions, there are two dimensional mouse interactions
that correspond to these three dimensional ones.

123



e

Figure 1: 3D cursor interaction with toggle switch

However, the direct manipulation metaphor is not appropriate for all interface ob-
jects. Consider interface objects that are not targets of tactile interaction in the real
world (e. g., a sign or a sensor). Their state changes are selected using a graphical
3D menu within the Virtual Periphery that is triggered by a 3D metaphor of a mouse
click, i. e., by a short movement of the 3D cursor’s fingertips towards the interface
object. An example of a 3D menu to select the state change of a sensor is given in
Figure 2.

(in] low@CPC1 [PANEL=SensorPanel, TYPE=PRESSURE_SENSOR! -

[in] ok@CPC1 [PANEL=Sensorane =PRESSURE_SENSORj -
m £
[in] normal@CPC1 [PANEL=5ensorfanel, IYPE=PRESSURE_SENSOR! @

[in] high@CPC1 [PANEL=Sensor ane,T?PE:PRESSURE_SENSOR_ ®

[in] max@CPC1 [PANEL=5ensorPanel, TYPE=PRESSURE_SENSOR]

Figure 2: Selection of a sensor’s state change using graphical 3D menu

Besides the central direct manipulation metaphor, we make use of a technique that
integrates naturally within virtual reality: voice commands. While direct manipu-
lation is used for interaction within the Virtual Periphery, speech input is used for
system control and therefore for interaction with the Virtual Periphery itself.

In order to realize different semantics of direct manipulation interaction, the Virtual
Periphery must provide different interaction modes. For example, a causality mode
would enable specification fragments like

124



if switch SW changes to state ON, then sign SI will be LIGHTED,
and a parallel mode would enable
all signs SI; ... SI, change to state LIGHTED in arbitrary order

Note that speech based system control is superior to graphical system control be-
cause it does not interrupt the interaction within the Virtual Periphery. Simple
navigation is also controlled by speech: predefined viewpoints can be activated such
that the viewer® is immediately transported to the corresponding location within
the virtual world.

Another feature supported by speech input is the selection of interface objects: in
order to use several similar interface objects within a specification fragment, one
selects them before interacting with one of them that then acts as a placeholder for
all these objects.

While speech selection provides selection of currently visible interface objects, alter-
natives are mouse based selection on the one hand and attribute based selection on
the other hand.

Figure 3: Reference gesture (left) and time gesture (right)

In order to switch specific interaction modes, gestures can be used. For example, the
so-called reference gesture is a rotation of the 3D cursor so that it looks like an open
hand, palm up. In combination with a subsequent direct manipulation interaction as
described above, it references the complete interface object and defines the current
specification context. The so-called time gesture will switch the specification mode
so that further interactions are time dependant. Thereby, the 3D cursor which is
equipped with a watch is rotated as if the user is taking a look on it. Both gestures
are shown in figure 3.

3That is the person interacting with the Virtual Periphery.

125



3 Incremental Development of Statecharts by
Interaction

Behaviour Template With each interface object a pre-defined behaviour tem-
plate is associated: a statechart consisting of its possible states and appropriate
transitions. The behaviour template of an interface object is created manually based
on its interface and stored as an additional attribute of its template in the inter-
face object library (see section 2). Note that the states in the behaviour template
correspond to the informally described states of the interface object. Additionally,
the behaviour template contains transitions between the states based on the inter-
face description of the interface object. Considering a simple two-state switch as an
example, the corresponding statechart contains two states ON and OFF. The state
changes would be switching from ON to OFF and vice versa, therefore the statechart
contains two transitions triggered by the events SWITCH.OFF and SWITCH.ON, re-
spectively. Figure 4a shows the behaviour template of the two-state switch.

Switch.on Lamp.light

Switch.off Lamp.dark

(a) Switch tenplate (b) Lanp tenplate

/.

[in(dark)] ~Jdark_checked <light_not_yet <Jlight_pending
dark_pending | dark_not_yet | light_checked | -
[in(light)]

(c) Lanp checker tenplate

Figure 4: Behaviour template of switch and lamp

Additionally, the behaviour template can contain a checker component that is typ-
ically needed for our test purposes. As an example, consider a simple lamp or sign
that provides outputs to the SUT’s environment: while on the one hand the real
lamp is in one of its states DARK or LIGHT (see figure 4b), we want to check if its
state changes occur appropriately depending on certain events or conditions within
the SUT. While these events and conditions are subject to the specification process,
the checker component generally distinguishes valid and pending situations. Fig-
ure 4 shows the behaviour template of a lamp consisting of a statechart for the real
lamp and the checker statechart. The latter is denoted in figure 4c and contains
different states: The states DARK_CHECKED and LIGHT_CHECKED represent the cor-
rect (and checked) states and thus correspond conceptually to the states DARK and
LIGHT in figure 4b. The states DARK_PENDING and LIGHT_PENDING represent the

126



situation when the event (or condition) to change the state has already occured but
the correct reaction of the SUT has not been checked yet. Finally, DARK_NOT_YET
and LIGHT_NOT_YET denote that after the occurence of the change event the SUT
is not expected to react yet.

Interaction Scenario Let us now consider the interaction scenario for the follow-
ing requirement:

The lamp must be dark, if the switch is off
and it must be lighted, if the switch is on.

The interface objects are a two-state switch and a lamp whereby the former is
initially in state OFF and the latter is initially DARK. On template base, the ap-
plication specific dependencies between switch, lamp and checker component are
not yet defined. The following steps describe in a step-by-step manner how these
dependencies are introduced to the templates of figure 4 for the concrete application
context. Since only correct behaviour should be specified, the system state has to
be consistent with respect to the current specification context.

1. The process is started by choosing the specification context, i. e., this is the
lamp in the example. Therefore, we navigate to the lamp within the Vir-
tual Periphery by issuing the voice command VIEW LAMP. By applying the
reference gesture and touching the lamp, we reference the lamp’s behaviour
template (i. e., the corresponding statechart).

2. To define the trigger for the state change of the context object, we navigate
to the trigger object, i. e., in this example to the switch, by voice command
VIEW SWITCH. The following manipulation of the switch — a rotation of the 3D
cursor — changes the state of the switch to ON. This state change is represented
by a transition in the switch’s statechart.

3. To define the effect of the trigger on the context object, the current state of
the context object is considered as the source state for a transition. Since
the lamp cannot be manipulated directly, the target state (i. e., the state
LIGHT) has to be selected using a 3D menu. Although the corresponding 3D
menu provides the states LIGHT and DARK (i. e., states defined in the lamp’s
statechart), the checker statechart is affected. The transition with source state
DARK_CHECKED and target state LIGHT_NOT_YET is labelled with the guard
IN(SWITCH.ON).

4. The same steps have to be applied for specifying the second part of our speci-
fication, respectively. Thereby, the transition from state LIGHT to target state
DARK_NOT_YET is labelled with IN(SWITCH.OFF).

In the above specification scenario, the resulting specification fragment is only
causally coherent but does not contain any timing constraints. Moreover, the checker
might stay in state LIGHT _PENDING without detecting any errors. Since the system
specifications usually imply specific requirements to react in a certain time interval,

127



it is necessary to apply as well the time gesture (see section 2). Thus, before start-
ing the above described specification process, the time gesture is applied to indicate
that the following specification mode is time dependant. The effect of the timed
specification mode is that when the trigger of a state change is defined, additional
transitions and labels are inserted in the checker statechart that check the lower and
upper bounds of the time interval.

In the above example, in order to check the upper bound two transitions are
added — one at state LIGHT_PENDING and the other one at state DARK_PENDING.
The transitions are labelled with a timeout event TM(EN(LIGHT_PENDING),T3) and
TM(EN(DARK_PENDING),Ty), respectively, and a resulting ERROR action.® The
events are triggered T, time units after the last entry to state LIGHT_PENDING or
DARK_PENDING, respectively. The lower bound check of the state change to LIGHT
is realised by the timeout event TM(EN(LIGHT _NOT_YET),T;) in combination with a
new transition between LIGHT_NOT_YET and LIGHT_CHECKED. The latter can only
be taken before T time units elapse and therefore results in an ERROR. action.
The lower bound check of the state change to DARK is specified in a similar way.
The concrete timer values T, cannot be set directly, therefore default values are
used that have to be further adjusted (e. g., by the use of a 3D menu in the Virtual
Periphery). Note that the lower bound check as well as the upper bound check of
the time interval can be omitted.

The resulting statecharts are shown in figure 5. In addition to the above mentioned
statecharts for interface objects, another statechart is generated during the spec-
ification process. While interacting with the Virtual Periphery, the user triggers
certain input interface objects (e. g., a switch) to change state. These user state-
charts cannot be defined as behaviour templates in a library, since their states and
transitions depend entirely on the test specification for the SUT.

Switch.on Lamp.light
Switch.off Lamp.dark
. tm(en(light_pending),t2) / ERROR
(a) Switch ° (b) Lanp tignt p )
in(dark)] ~[dark_checked [in(Switch.on)] ~ [light_not_yet)] tm(en(light not_yet) t1) light_pending | _
[in(dark)] / ERROR [in(light)] / ERROR
dark_pending dark_not_yet | light_checked |
tm(en(dark_not_yet),t3) [in(Switch.off)] [in(light)]

tm(en(dark_pending),t4) / ERROR
(c) Lanp checker

Figure 5: Instantiated and extended statecharts

4A more detailed error handling is necessary but is not discussed in this paper.

128



4 Testing with Statecharts

(- - T - - - - - - - - - - = N
I VR model
[ Virtual Periphery

e ﬂ
|

Test specification \_ _ T - - - —-———"—"——___ -
(Statecharts)

5 e I Input :
| = Input m |
| i es | and. |Test ~ | system
is read by system 2l loﬂtp-uf log Eﬁ under test :
L (SuT)
= == |
|

Output

Figure 6: Test process overview

An overview about the complete test process is given in figure 6. While, on the one
hand, the statecharts (as discussed in Section 3) are the result of a test specification
session, they are, on the other hand, the input to the test system. We focus in
our work on RT Tester. RT Tester generates and executes tests automatically by
sending inputs to the SUT. The tests are evaluated on the fly based on the given
inputs and the outputs coming from the SUT. See [Pel02] and [PT02] for application
examples and [Pel98] for the theoretical background.

Since the RT Tester tool accepts test specifications as labelled transition systems
(LTS) to allow the use of arbitrary formal test specification languages that can be
translated into an LTS, we have to provide such a translation relation.

This translation depends on the statechart semantics used during the specification
process. Different semantics are available for statecharts: Harel introduced state-
charts in 1987 (see [Har87]) and gave a formal semantics in [HPSS87]. A variant
described in [HN96] has been implemented in the STATEMATE tool®. Statecharts
have as well been integrated in UML (see [Obj]) with a slightly different semantics.
Other semantics have been discussed as well, and a comparision of different state-
chart semantics is given in [vdB94]. As well, different approaches for the translation
of statecharts into LTS have been discussed, see e. g. [US94], [Lev96] and [Joh99].
Most variants are tailored to meet specific needs. We need a semantics that can at
least deal with our timing constraints and which has a step semantics with a greedy
approach. Nevertheless, we are currently investigating the specific needs of our ap-
proach with respect to the statechart semantics. Thus, we can yet neither provide

SSTATEMATE is a commercial tool by i-logix (http://www.ilogix.com) and is actually applied
to industrial projects.

129


http://www.ilogix.com

a complete algorithm for the translation nor a precise semantics for the statecharts
used in our approach.

5 Virtual Periphery Generation and Reuse

One crucial point within our approach is the creation of the Virtual Periphery itself.
Since the manual generation of the Virtual Periphery is a very time consuming and
thus expensive task and moreover highly SUT dependant, it is desirable to minimise
any manual effort to create the Virtual Periphery. Hence, we want to discuss in the
following an approach to support the generation of the Virtual Periphery. Figure 7
gives a first overview.

CAD document e o E
VR specification environment

Virtual
periphgry VR model (interactive):
) generation - Virtual Periphery
Parameter :
specification m
Test
Test specification template Spec_lflcat|on
session
Test specification
instantiation
| Test specification | > - _Test 3
s execution = el

Figure 7: Virtual Periphery generation and test process

In most application areas, there are static geometry models of the SUT’s environ-
ment and/or the SUT itself. This collection of documents — typically CAD docu-
ments — can be converted straight-forward into an appropriate virtual reality model.

Additionally, some SUTs are equipped with some kind of parameterisation mod-
ule in order to configure system features. Consider the Cabin Intercommunication
Data System that is used within Airbus airplanes. It contains the so-called Cabin
Assignment Module that parameterises for example, how many attendant handsets
are available in the cabin and to which controllers they are connected. A similar
example is the number and mapping of passenger service units® to seat rows and
aisles. Although the parameterisation modules are typically domain specific, once an
evaluation is realised it can be used to generate appropriate variants of the Virtual
Periphery depending on the specific parameter values.

6 A passenger service unit is a collection of signs, keys, lamps, . ..above the passenger’s seat.

130



Typically, only an intermediate format — a non-interactive virtual reality model
— can be derived automatically from the given documents. Hence, the interface
objects have to be inserted or replaced manually by interactive objects in order to
specify the tests as discussed in the previous sections. This process can be supported
by libraries of interface objects which contain for each type of interface object its
geometry as well as the corresponding behaviour template (see sections 2, 3).

CAD document

Interface object

libraries
77777777777777 Enhanced ‘general + domain specific
© VR model beo. ; o
| (non-interactive) | " TT-._
P—— 7 e L P
1 S - -
o Interaction
CAD-to-VR N toolkit
{ Decoration
converter L toolkit
+ \\\\7“7 ‘
Parameter A
evaluator :
VR model VR model (interactive):
(non-interactive) Virtual Periphery

specification

Figure 8: Detailed Virtual Periphery generation

Figure 8 gives a detailed view of the Virtual Periphery generation. It also contains
an optional step via an enhanced non-interactive model. This may be desired if the
Virtual Periphery is supposed to contain decorations like textures, which usually are
not provided within the CAD documents. Enhancing the model is a manual activity
similar to the insertion of interface objects.

While the previously described generation approach itself reuses the CAD docu-
ments and the parameterisation module (i. e., documents generated not specifically
for the purpose of testing), it is as well possible to reuse parts of the test specifica-
tion fragments based on concrete parameter values. Considering, for example, the
reading lights in an airplane, all reading lights can be switched on or off by a central
button (using the selection mechanism described in Section 2 to select all reading
lights). Additionally, each reading light can be switched on or off by a toggle switch
above the passenger seat. Nevertheless, it is neither desirable to specifiy this speci-
fication part for each reading light separately nor should it be necessary to specify
the behaviour of all reading lights once again, if the parameter value denoting the
number of reading lights has changed. In contrast, a test specification template
could be used which is instantiated with a concrete set of parameter values before
testing (i. e., more precisley before generating the LTS). This approach is visualised
in the lower left part of Figure 7 focussing on the test specification instantiation
based on the generic test specification template and the concrete parameter values
defined in the parameterisation module.

131



6 Conclusion

This article proposed an approach to facilitate the creation of formal test specifi-
cations providing interactive virtual reality components. The approach addresses
domain experts who are not familiar with formal specification languages and allows
them to create basic test specifications quickly and intuitively. Nevertheless, the
person interacting with the Virtual Periphery should have a precise understanding
of concepts like parallelism and the sequencing of events.

Thus we expect the benefit of our approach to be:

Simple specifications Simple specifications can be developed without applying
elaborate concepts and thus without a detailed understanding of the underly-
ing concepts of the formal specification language.

Team development Within a test team, domain experts and test experts can
cooperate to extend the simple specifications.

Introduction to formal specification languages Additionally, our approach can
be used to become familiar with formal specification languages in an intuitive
way and thus to gain necessary expertise in it. Eventually, the expert will then
even prefer to define the test specifications using directly the formal specifica-
tion language.

The Virtual Periphery described in this article is partially implemented using Java3D
which is an API for the general purpose, object oriented programming language Java.
It is proved to be superior to VRML which we used during earlier efforts (see [BF99],
[PBFE99]), because Java3D allows more flexible modelling. For further information
concerning Java, Java3D and VRML see [GJS97], [Jav00] and [VRM97].

One main design guideline during the implementation is the use of conventional
personal computers without extraordinary input or output devices. Hence, all in-
teraction must be possible by mouse, keyboard and low cost microphone. Our 3D
cursor is carefully designed to be used with the mouse to allow movements and rota-
tions to be gained from two-dimensional mouse movements combined with so-called
modifier keys (e. g., pressing of mouse buttons). Furthermore, the output has to
be appropriate for conventional monitor screens and stereo pairs of speakers. Note
that this is the reason why no haptical output like force feedback is available with
the Virtual Periphery.

Nevertheless, it is possible to enhance the virtual reality feeling with special equip-
ment. There is no inherent restriction of our 3D cursor to be used with the mouse,
so that alternatively a data glove could be used. For visual output, a head mounted
display as well as stereoscopic viewing solutions can be applied. As virtual reality
audio enhancement, dolby surround or similar techniques are available. To gain an
overview about virtual reality equipment refer for example to [MG96].

Future work will include the definition of a formal statecharts semantics and a cor-
responding translation to LTS that can be used by the RT Tester tool. Since the

132



formal language is exchangeable as far as there is an appropriate LTS representa-
tion, further evaluation of appropriate formal specification languages is planned. In
particular, we will consider hybrid automata (see [Hen96]) that enable modelling
of continuous behaviour and are in this respect more expressive than statecharts.
However, the chosen language has essential impact on the interaction’s semantics
within the virtual reality.

Another point that is subject to further research concerns the test evaluation that
is so far based on the generated test specification. A way to map an event from the
test log of a test run to the corresponding Virtual Periphery representation would
be valueable in order to interpret errors and warnings or even to find inconsistencies
within the test specification itself. Since the test execution is based on labelled
transition systems, this is not a trivial task. Even the mapping to the corresponding
part of the statechart is non-trivial.

Finally note that although we focus on developing test specifications, our approach
is not restricted to this kind of specifications but can be expanded to more general
specifications.

References

[BF99]  Stefan Bisanz and Ingo Fi. Grafischer Entwurf von CSP-Spezifikationen
fiir den Test eingebetteter Echtzeitsysteme. Master’s thesis, Universitét
Bremen, February 1999.

[BKLPO1] D. Bowman, E. Kruijff, J. LaViola, and I. Poupyrev. An Introduction to
3D User Interface Design. Presence: Teleoperators and Virtual Environ-
ments, 10(1):96-108, 2001.

[GJS97] James Gosling, Bill Joy, and Guy Steele. The Java Lan-
guage  Specification. The Java Series. Addison-Wesley, 1997.
http://java.sun.com/docs/books/jls/html/.

[Har87]  David Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, 8(3):231-274, June 1987.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of
the 11th Annual Symposium on Logic in Computer Science (LICS), pages
278-292. IEEE Computer Society Press, 1996.

[HHN86] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation
interfaces. In D. A. Norman and S. W. Draper, editors, User Centered

System Design: New Perspectives on Human-Computer Interaction, pages
87-124. Erlbaum, Hillsdale, NJ, 1986.

[HN96] David Harel and Amnon Naamad. The STATEMATE semantics of stat-
echarts. ACM Transactions on Software Engineering and Methodology,
5(4):293-333, October 1996.

133


http://java.sun.com/docs/books/jls/html/

[HPSS87] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the formal se-

[Jav00]

[Joh99]

[Lev96)

IMG6]

[Obj]

mantics of statecharts. In Proceedings, Symposium on Logic in Computer
Science, pages 54—64. The Computer Society of the IEEE, June 1987.
Extended abstract.

The Java 3DT™ API Specification. Version 1.2.
http://java.sun.com/products/java-media/3D /index.html, April 2000.

Sebastian John. Zur kompositionalen Semantik von objektorientierten
Statecharts. Master’s thesis, Technische Universitat Berlin, August 1999.

Francesca Levi. A process language for statecharts. In Logical and Opera-
tional Methods in the Analysis of Programs and Systems, pages 388-403,
1996.

Tomasz Mazuryk and Michael Gervautz. Virtual reality - his-
tory, applications, technology and future.  Technical Report TR-
186-2-96-06, Vienna University of Technology, Institute of Com-
puter Graphics and Algorithms, A-1040 Wien, February 1996.
Available as http://www.cg.tuwien.ac.at /research/TR,/96 /TR-186-2-96-
06Abstract.html.

Object Management Group (OMG). OMG Unified Modeling Language,
Specification. Available at http://www.omg.org/uml/.

[PBFE99] J. Peleska, S. Bisanz, I. Fif}, and M. Endrefl. Non-Standard Graphical

[Pel9g]

[Pel02]

[PT02]

[Shn83]

Simulation Techniques for Test Specification Development. In H. Szczer-
bicka, editor, Modelling and simulation: A tool for the next millenium.
18th FEuropean Simulation Multiconference 1999, volume 1, pages 575—
580, Delft, 1999. Society for Computer Simulation International.

Jan Peleska. Testing reactive real-time systems. Tutorial,
held at the FTRTFT 98, Denmark Technical University, Lyngby,
1998. Updated revision. Available as http://www.informatik.uni-
bremen.de/agbs/jp/papers/ftrtft98.ps.

Jan Peleska. Formal methods for test automation - hard real-time test-
ing of controllers for the airbus aircraft family. In Proc. of the Sizth
Biennial World Conference on Integrated Design € Process Technology
(IDPT2002), Pasadena, California. Society for Design and Process Sci-
ence, June 2002. To appear.

J. Pelska and A. Tsiolakis. Automated Integration Testing for Avionics
Systems. In Proceedings of the 3rd ICSTEST — International Conference
on Software Testing, April 2002.

Ben Shneiderman. Direct manipulation: A step beyond programming
languages. IEEE Computer, 16(8):57-69, 1983.

134


http://java.sun.com/products/java-media/3D/index.html
http://www.cg.tuwien.ac.at/research/TR/96/TR-186-2-96-06Abstract.html
http://www.cg.tuwien.ac.at/research/TR/96/TR-186-2-96-06Abstract.html
http://www.omg.org/uml/
http://www.informatik.uni-bremen.de/agbs/jp/papers/ftrtft98.ps
http://www.informatik.uni-bremen.de/agbs/jp/papers/ftrtft98.ps

[US94]

[vdB94]

[VRMO7]

Andrew C. Uselton and Scott A. Smolka. A compositional semantics for
statecharts using labeled transition systems. In International Conference
on Concurrency Theory, pages 2-17, 1994.

M. von der Beeck. A comparison of StateCharts variants. In Proc. of
Formal Techniques in Real Time and Fault Tolerant Systems, pages 128—
148, Berlin, 1994. Springer-Verlag.

VRML Consortium. The Virtual Reality Modeling Language.
http://www.web3d.org, 1997. International Standard ISO/IEC 14772-
1:1997, Part 1 — 3.

135


http://www.web3d.org

136



Towards a Formalization
O}NineWpoEl‘nts esi?ing

MARIUS BUJORIANUY, SAvI MAHARAJZ, MANUELA BUJORIANU?

lComPUTING LABORATORY, UNIVERSITY OF KENT,
CANTERBURY, KENT, CT2 7TNF MCBS8QUKC.AC.UK.
2DEPARTMENT OF COMPUTING SCIENCE AND MATHEMATICS,
UNIVERSITY OF STIRLING, STIRLING, SCOTLAND, FK9 4LA, UK
{MLB, SMA}@CS.STIR.AC.UK

25 June 2002

ABSTRACT.  Test case generation from formal specifications is now a very ma-
ture field. Partial specification or viewpoints represents a co-operative approach in
software specification. Although partial specification has a long history, only a little
was done towards application of the methodology to formal test case generation. In
this work we propose a categorical foundation of viewpoints oriented testing, obtain-
ing a sound methods integration and a formal testing methodology for composite
(heterogeneous) software systems. In particular, we plan to address the combination
of specification based testing and test case generation from proofs.

Keywords: formal testing, viewpoints specification, category theory.

1. INTRODUCTION

The most challenging issue of software engineering still is the question how to master
the complexity of the development of large software systems. For projects involving the
specification and development of large systems, the structuring of their descriptions is
crucial to the project’s success. Traditionally, systems were decomposed according to
functionality; modern approaches favour, in addition to this, decompositions according
to “aspects” or "viewpoints”. Also, these viewpoints may be views of the system’s func-
tionality from different participants. Viewpoints mean different perspectives on the same
system, aspect oriented specifications written in different languages by teams having dif-
ferent backgrounds, etc. Of course, for an implementation we need an integration of all
these formal descriptions, more specifically a minimal one, called unification.

The increasing importance of the viewpoint model in software engineering is exempli-
fied by its use in the Open Distributed Processing (ODP) standard, OO design methodol-
ogy, requirements engineering, software architecture, reverse engineering and the Unified
Modeling Language (UML). ODP, for example, defines a viewpoint framework for spec-
ification of distributed systems using a fixed collection of five viewpoints: enterprise,
information, computational, engineering and technology. We are particularly interested
in the construction of a general model applicable to most of these application fields.

Different models for viewpoints have been proposed, like the VOSE framework [11]
and the 'Development’ approach [5]. Our approach follows the general model presented
in [6] and [16]. In this work we extend the categorical framework developed for the
homogenous case in [7]. Viewpoints are written using the specification language associated
with a general logic [22]. The correspondences between viewpoints are expressed using
diagrams, specifically spans from the correspondence specification to the viewpoints which
are unified. Unification is given then by the pushout of the diagram.

137



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING?

Although viewpoints oriented specification like techniques are used in a great variety
of development technologies, there is no mature use of them in testing. Notable excep-
tions are MacColl and Carrington’s framework MATIS [17] and Pemberton’s VOCAL
[23]. VOCAL: ’Viewpoint-Oriented verifiCation And vaLidation’ is an application of the
VOSE framework to software testing. Viewpoints have been applied for the identification
and structuring of test deployment. Using such an organization helps to ensure that all
important test perspectives are taken into account. In the VOCAL approach, viewpoints
are classified in group viewpoints, verification viewpoints, validation viewpoints and qual-
ity viewpoints. The test technique applied within viewpoints provides test coverage. In
contrast, MATIS is specification oriented and is much closer to the idea of our work.

Tests are derived from viewpoint specifications specifically, according to the formal
language used by each team. Viewpoints could have different concepts for tests, different
languages to describe them precisely, and different techniques to derive them. When we
have a big heterogeneity of viewpoints, and implicitly of tests derived from them, we need
a common definition and understanding of them, as well a set of tests for the whole system
description (i.e. unification).

We suppose the reader is familiar with the basics of category theory. The space limit
of this work doesn’t allow a background presentation of the category theory, which has
been used. We recommend the book [1] for the necessary background information.

The paper is structured as follows. In the next section we give a brief summary of a
categorical and logical approach to software specification. In this section we study also
the unification process and the development relations involved. In Section 3 we sketch a
formal theory for composite viewpoints. In Section 4 we present the formal testing theory
for axiomatic specifications as application introduced and developed by M.C. Gaudel [13].
In Section 5 the formal frameworks are applied to unify the tests generated from the
viewpoints in order to obtain tests for the whole system. The partial conclusions of this
formal experiment are sketched in the last section.

2. AXIOMATIC VIEWPOINT SPECIFICATION

This section defines the formal concept of viewpoints used in the rest of the paper. We
stress here especially the logical and categorical aspects of formal software specifications.

2.1. Categorical Specification Logics. The categorical logic we describe in this para-
graph is based on the papers [?7?] and [22].

e Syntax.

Vocabulary : is given by a category of signatures SIGN. Associated with the cate-
gory SIGN we have a functor Sort : SIGN — SET, called the sort functor for SIGN;
for any signature X , the elements Sort[¥] (or S) are called the sorts of 3. By SIGN""
we denote the category where an object is a pair (3, X) where X is a Sort(3)-sorted set
whose elements are called variables, and a morphism from (X, X) to (¥, X’) is a pair
(o,v) with o : ¥1 — 33 a morphism of signatures and v : X; — (X2)|U.We call an object
in SIGNY" a signature with variables. We often ask for this category to be cocomplete.
For the case studies we will consider in our work, SIGIN is cocomplete.

Formulas are given by a functor Syn : SIGN — SET, assigning to each signature
in SIGN a set of X—sentences Syn(X).

We do not use here any specific language. We will introduce the syntax gradually, as we
will use it.

e Model Theory

The interpretation is given by

138



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING3

i) a functor called interpretation functor Int : SIGN — CAT? contravariant in SIGN,
which gives to each signature ¥ in SIGN a small category Int(X) of X—models. These
Y:—models provide the interpretations for the names in the vocabulary. Thus we can
suppose that there are some concrete entities, to which sentences can refer. For any
signature morphism o : ¥; — X9 in SIGN, there is a functor Int(o) : Int(32) — Int(;)
is called the reduct functor and denoted by —|,.

ii) a family of Logical Satisfaction Relations F= {5, Y € SIGN}, ExC |[Int(X)] x
Syn(X), such that we have the Logical Satisfaction Condition M; Fs2 Syn(o(a1)) <
Int(o(Ms)) Esi ayis fulfilled for all signatures morphisms o : 31 — X5 in SIGN, all
Yo-structures My € |Int(X2)| and all ¥q-axioms a1 € Syn(Xq)

e Proof Theory

Proof theoretic methods have been successfully applied in formal software develop-
ment. Notable examples are the work in [3] for formal integration of VDM and B specifi-
cation languages and in [19], where correctness proofs have been used as a source for tests
generation. Anyway, in this work we will present only background introduction in proof
theory for specification logics, necessary for a further implementations into a theorem
prover.

A consequence relation (shortly CR) is a pair (S,F) where S is a set of formulas and
FC pf(S) xS is a binary relation such that : (Reflexivity) a b a; (Transitivity) If I' F a
and a,I" F b then ', TV - b; (Weakening) If ' - a then T, b I- a.

The closure operation on sets of formulas A C .S of a CR (S,F) is defined by

Cl-(A) =A = {al' - a,T C A}
A set of formulas A is closed under | iff Cl-(A) = A.
Definition 1. A theory (wrt t-) is a set of formulas closed under | .

Definition 2. (CR morphism) A morphism of consequence relations 7 : (S,F) — (S’,F)
is a function T : S — S’ (the translation of formulas) such that if T' b a then 7(T') ' 7(a).
Definition 3. (Category CR) The consequence relations as objects and morphisms
of consequence relations as arrows form a category, denoted CR, with identities and

composition inherited from the category of sets.

If r:(SF) — (9,F) is a CR morphism and A C S then 7(A) C 7(A). Thus the

image of a theory under a CR morphism is not always a theory. Moreover 7(A) = 7(A).

Definition 4. (Logical system) A logical system is a functor L : SIG, — CRp, such
that the deduction relation by is sound for the logical satisfaction relation =y, for every
signature ¥ € SIGN.

A Y —theory is a theory in L(X). A L—theory is a Y—theory for ¥ € |SIGy|. The
category of theories will be denoted TH.

Der = (SIGN, Syn, ) forms general deduction system and the structure M¢c,=(SIGN, Syn, Sem, E
) gives the model theory (the institution) of the general logic CL .

e Examples of Specification Logics

Example 5. The logic FOL™ : many-sorted first order logic with equality

139



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING4

Signatures are many-sorted first order signatures. Models are many-sorted first order
structures. Formulas are many-sorted first order formulas. Formula translations mean
replacements of the translated symbols. Satisfaction is the usual satisfaction of a first
order formula in a first order structure.

Example 6. The logic LTSHL: the labelled transition systems hidden logic

Signatures are many-sorted first order signatures enriched with hidden sorts. Each hidden
sort models the states of an 1ts. As used in hidden logic, we ask operations to be monadic
on hidden sorts. Formulas are many-sorted first order sentences, models are simply many-
sorted first order structures, satisfaction is defined also like in first order logic. Labelled
transition systems (1ts’s) (S, L, —) are modelled as first order structure, where the support
of a hidden sort models the state set S. Labels of L are behavioral formulas of the
form precondition = action. Actions are simply assignment statements as in imperative

languages. The transition relation is a predicate —C S x L x S. We use the notation

o N . . .
s —{l} — s’ = op(s) for the transition s % s, where op is an operation from a hidden

sort to a hidden sort from the algebraic signature.

2.2. Viewpoint Specification and Unification in General Logics. A X—presentation
in a general logic is a signature extended with a set of axioms. In most specifications an
axiom consists of a set of variables and two terms of the same sort belonging to the term
language of the signature with respect to the set of variables.

The semantics of a viewpoint is an element in a category, often an algebra. An algebra
is presented by a presentation if it is denoted by the signature of the presentation and
satisfies the axioms of the presentation.

Any specification formalism based on a general logic £ determines a class of speci-
fications, and then, for any viewpoint PSP, its signature Sig[PSP] € |[SIGN]| and the
collection of its models Sem[PSP] C Int[Sig[PSP]|. If Sig[PSP| = X, we refer to PSP
as a YL —specification.

Consider an arbitrary but fixed general logic,

Definition 7. For every signature ¥ in SIGN we define X—viewpoints PSP by

e any X—presentation PRES = (X, Fq) is a viewpoint PSP with the following se-
mantics

Sig[PRES) = ©
Sem[PRES] = {M € |Sem(Z)|, M |= Eq} "2 Sems[Eq]

e enrichment : unif(PSP, PSP’) of the X—viewpoint PSP with the ¥’ —viewpoint
PSP’ | where X NY =), is a viewpoint with the following semantics

Siglunif(PSP,PSP")]=2U%
Sem[unif (PSP, PSP’)] = Sem|[PSP|U Sem[PSP’]
A bit of syntactic sugar: we write the enrichment operation as
spec ENRICHMENT is
enrich PSP _name with
PSP’
endspec.

Example 8. Consider the parallel specification of a telephone account by two different
teams. The first team’s perspective is that of an account in credit. It uses the partial
logic LTSHL to define a general consume operation on the account. The second team
concentrates on deposit operation on the account and uses the FOL™ logic.

140



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTINGs5

spec CONS is
enrich AMOUNT with
sort Sum
hidden sort State
const ok, outm : State;
opns Consume : State Sum - State
Balance : State — Sum

var S : State; X : Sum;
axioms
(S = ok)—{ Balance(S) > X = Balance(Consume(S, X)) = Balance(S) — X}— (S =
ok).
(S = ok) — { Balance(S) < X = Balance(Consume(S, X)) = Balance(S) — X}— (S =
outm,).
endspec

The specification AMOUNT defines a standard numerical datatype like integers. Ob-
serve that the operation Consume is partial because is not defined in the state outm.
spec DEP is
enrich AMOUNT, BOOLEAN with
sort State, Amount
const init : State;
opns Add : Credit Amount — Credit

AccValue : Credit — Amount

var S : Credit; X : Amount;
axioms
Positive(init) = true.
(Positive(S) = true) = (Positive(Add(S, X)) = true) A (Acc-Value(Add(S, X)) =
AccValue(S) + X).

(Positive(S) = false) N (AccValue(S) + X < 0) = (Positive(Add(S, X)) = false) N
(Acc-Value(Add(S, X)) = Acc_Value(S) + X).
(Positive(S) = false) A (AccValue(S) + X > 0) = (Positive(Add(S, X)) = true) A
(Ace-Value(Add(S, X)) = Acc-Value(S) + X).

endspec

Definition 9. (MC-refinement) A (partial) specification REF refines (by model con-
tainment MC) a viewpoint PSP, and we note this by REFJPSP if

SiglREF] C Sig[PSP]
Sem[REF|] C Sem[PSP)]

We adopt the view on viewpoints consistency expressed in [6] by

” A collection of viewpoints is consistent if and only if it is possible for at least
one example of an implementation to exist that can conform to all viewpoints.”

Definition 10. (unification) ([6]) The unification UNIF[PSP, PSP'] of two viewpoints
PSP and PSP’ is defined as the smallest common refinement

UNIF[PSP,PSP'|J PSP
UNIF[PSP,PSP'|J PSP’
SPJ PSP ,SPJPSP= SPJUNIF|[PSP,PSP']
An effective procedure for constructing the unification of axiomatic specified view-
points can be found in our paper [7].

141



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTINGs

Example 11. Consider the viewpoints DEP and CONS from the Example 8. Their
unification is

spec UNIF is
enrich AMOUNT, BOOLEAN with
sort Amount
hsort State
const ok, outm : State;
opns Consume : State Amount - State

Add : State Amount — State

Balance : State — Amount
var S : State; X : Amount;
axioms
(S = ok) — { Balance(Add(S, X)) = Balance(S) + X }— (Add(S, X)) = ok).
(S = outm) —{Balance(S) + X < 0 = Balance(Add(S, X)) = Balance(S) + X }—
(Add(S, X)) = outm).
(S = outm) —{ Balance(S) + X > 0 = Balance(Add(S,X)) = Balance(S) + X }—
(Add(S, X)) = ok).
(S = ok) —{ Balance(S) > X = Balance(Consume(S, X)) = Balance(S) — X }—
(Consume(S, X)) = ok).
(S = ok) —{ Balance(S) < X = Balance(Consume(S, X)) = Balance(S) — X }—
(Consume(S, X)) = outm).
endspec
Of course, the concrete method (pushout applied to some translations of the viewpoints)
for construction of the unification makes necessary supplementary constructions, which
will be given in the rest of the paper. In particular, the following signature morphism has
been applied to DEP
Credit — State, Acc.Value — Balance, true — ok, false — outm, Positive — Current

3. A FRAMEWORK FOR COMPOSITE VIEWPOINTS

3.1. Translation Between Specification Logics. Over the last ten years there have
been a lot of variations in defining morphisms of logics. These notions have been given
many different names, including morphism, map, embedding, simulation, transformation,
coding, representation, and more, most of which do little or nothing to suggest their
nature. We present in this paragraph what are, in our view, the most useful and logically
articulated definitions..

Let £ = (SIGN, Syn, Sem,F,F) and £ = (SIGN’, Syn’, Sem’,F’,') be two cate-
gorical specification logics.

Definition 12. A logic morphism (Goguen [14]) Mor between logics
0=(6,0,0): L— L'
is given by
e a functor ¢ : SIGN — SIGN’

e a natural transformation a : ¢; Syn’ = Syn : SIGN — SET

e a natural transformation 3 : Sem = ¢;Sem’ : SIGN®? — CAT such that the
simple map of institutions condition

142



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING?

B(2)(M) |:£/>(E) /"= M s a(Z)(f") (Satisfaction Condition)
holds for each ¥ € [SIGN| , M € |Sem(X)|, f' € Syn/(¢(X)).

The functor ¢ on signatures and the natural transformation S on models go in the
same direction in this definition, while the natural transformation a goes in the opposite
direction.

Logic morphisms compose and form a category LOG.

Definition 13. A logic comorphism CMor (or a plain map -Meseguer [22]) between logics
0" = (¢, 8): L= L
is given by
e a functor ¢ : SIGN — SIGN’

e a natural transformation « : Syn = ¢; Syn’ : SIGN — SET

e a natural transformation 3 : ¢;Sem’ = Sem : SIGN°? — CAT such that the
simple map of institutions condition

BE)M') s f = M' |y a(E)(f) (Co-Satisfaction Condition)
holds for each ¥ € |[SIGN| , M € |Sem(X)|, f' € Syn/(¢(X)).
Logic comorphisms compose and form a category COLOG.

Proposition 14. LOG and COLOG are both complete.

Because we are primarily interested in specification morphisms, and in our approach
specifications are theories, we need to consider generalizations of logic morphisms that
involve mapping theories instead of just signatures.

Let Sg: TH — SIGN be the functor which forgets the formulas of a theory.

Definition 15. The logic of specifications over a general logic £ = (SIGN, Syn, Sem,
) is £5F = (TH*, SynSF SemSF ESP -5P) where THF is the category of theories
over L, Syn°F is Sg; Syn , Sem®T is the extension of Sem to theories, E°F is Sg;E .

Definition 16. A specifications morphism is a morphism from L£3F to £'ST which is
signature preserving.

We denote by SPLOG the category of logics of specifications and their morphisms.
In the rest of this paper we will use the notation LOGICS to denote anyone of the
categories LOG, COLOG and SPLOG.

Example 17. (A translation between PFOL™ and LT SHL ) Consider the specification
logics presented Examples 5 and 6.

0(Credit) = State , 0(Sum) = Amount ,
d(Consume) = (Consume, {al, a2, a3})
0(x) = = otherwise

143



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTINGS

Sig? THISig1]

SpecLOGT pspect]  EC

_ I Specification
LOQ'-'C_ I Transiation
Morphism |
I
| THfSig2]
i
Specl OG2 PSPEC2

Figure 1:

3.2. A Category for Composite Viewpoints.

Definition 18. Given a functor G : C°? — CAT, the Grothendieck construction con-
structs the fibration induced by G, i.e. a category F(C, Q) defined as follows:

e an object of (C,G) is a pair < a,x >, where a € |C| and x € |G(a)|

e an arrow < a,p >:< a,x >—<a’,2’ > has a:a — a an arrow of C and p : z —
Ga(z') an arrow of F(a)

e if<a,p><a,x>—<d,r’>and < 3,0 >:<d,x’ >—><d”’, 2" > then < a,p >
1< B0 >:< a,x >—< a’, 2" > is defined as< a, p >; < 3,0 >=< «; 3, p; Ga(p) >

This construction provides us with a way to give a domain where objects are very
general logical structures and whose arrows are compatible relations between them.

Let 0 = (¢,,3) : L — L' be a (co)morphism of logics and < X, T > , < ¥, TV >
theories from TH and TH'.

Definition 19. A 90— composite viewpoint translation between < X, T" > and < X/, T >
is an arrow & :< X, >—< ¥/ TV > such that & : $(X) — X' is a morphism in SIGN’
and such that T Fsy Syn(¢(2))(a(X)(T) U 05).

The composite viewpoint translations compose and build a category which is on top of
the category LOGICS.

Theories from arbitrary logics as objects and composite viewpoint translations as mor-
phisms define the category HPSPEC.

The category HPSPEC is exactly the Grothendieck category G(LOGICS, Th) where
Th : LOGICS — CAT.

144



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTINGo9

Given a composite viewpoint translation & :< X, T' >—< X' T” > | its denotation is
the reindexing functor Sem(d) : Sem|_ (< ¥,I" >) — Sem,_(< X, >), which maps
models from the target to the source logic.

Definition 20. (Indexed Category of Composite Models) Let G(LOGICS,Th) be the
Grothendieck category. and < ¥,T' > , < ¥/, TV > theories from TH; and TH/,,. Then
the assignment < X,I' > Sem,_ (< X,I'>) ,

* < I > T > Sem(d) : Semi (< X7 >) — Sem_ (< E,T" >)
defines an indexed functor HSem : G(LOGICS, Th)°? — CAT.

Definition 21. We define the category of composite models and composite morphisms
as the split fibration induced by HSem : G(LOGICS,Th)? — CAT, i.e. the category
F(G(LOGICS,Th), HSem,).

In general the indexed category of composite models and composite model functors
HSem : G(LOGICS, Th)°? — CAT as the semantically functor which maps composite
viewpoints to their model theoretical counterparts.

3.3. A Logic for Composite Viewpoints. A general logic for specifying the uni-
fication must be able to keep some original viewpoint specification logics. A candidate
logics for this are the Grothendieck logics.

Definition 22. (Diaconescu [10]) Given an indexed logic L : Ind°® — Log, define the
Grothendieck logic L% as follows:

-Signatures in £# are pairs (}_,7), where i € |Ind| and Y_ a signature in the logic £(i) ,
-signature morphisms (o, d) : (3.;,4) — (3_,,7) consist of a morphism d : i — j € Ind
and a signature morphism o : 3, — @£ (Y,) (here, £(d) : L(j) — L(i) is the logic
morphism corresponding to the arrow d : ¢ — j in the logic graph, and ®£(@ is its
signature translation component),

-the (>, 7)—sentences are the > -sentences in L(i), and sentence translation along (o, d)
is the composition of sentence translation along ¢ with sentence translation along £(d),
-the (},4)—models are the Y  —models in £(7), and model reduction along (o, d) is the
composition of model translation along £(d) with model translation along o, and
-satisfaction (resp. entailment) w.r.t. (3_,¢) is satisfaction (resp. entailment) w.r.t. > in

L(i).

4. FORMAL TESTING FOR AXIOMATIC SPECIFICATIONS
We develop our formal approach to software testing in the algebraic tradition initiated by
M.C. Gaudel and B. Marre in [2] and [21].

A testing hypothesis describes assumptions about the system or the test process to
reduce the size of the test set. But too strong hypotheses could weaken the generated
tests, as an industrial experiment [21] shows. We consider here only uniformity hypotheses:
we define sub-domains of interpretation for items, such that the system has the same
behavior for all the values of the sub-domain. Then we assume that testing for a value of
a sub-domain is enough to test for all its values. The sub-domains are defined in a logical
form by the concept of test cases.

Definition 23. A test instance is a couple (C, D) where C is a test case corresponding
to a test hypothesis and D is a test data defined with respect to this test hypothesis.

145



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING 10

Let Prog be the program under test and a a specific test goal (like a axiom of the
program specification or a desirable program property). If an execution of Prog satisfies
one Y—test data set D , we say " Prog satisfies the test data set D” and we notice
Prog <y D and Prog <y C. We use the same notation for a test case C: Prog <5 C
means that all the executions of the program Prog satisfies C' (and we say ” P satisfies
the test case C”).

Definition 24. A test instance (C, D), with respect to a program Prog, is called
e unbiased if (Prog = C) A (Prog =x a) = Prog <x D.
e valid if (Prog < C) A (Prog <s D) = Prog Es a.
o correct if it is valid and unbiased: (Prog = C) = (Prog l=x, a <= Prog <y D))

Unbiased test sets are ones which accept all correct programs, but incorrect programs
can also be accepted as correct. Valid tests do not accept incorrect programs, but correct
programs can be rejected. Thus, an ideal test must be valid and unbiased, i.e. correct.

Definition 25. The category of ¥—test cases, denoted TCsy, has

e objects: test cases

e morphisms: for a test case morphism C' — C' , at each instance of C' we associate a
an instance of C' with the same item, i.e. an inclusion between the set of instances
of both test cases (or equivalently the logical implication C' = C' holds).

TCsy is a finitely cocomplete category: initial object is a an empty test case, pushout
is defined by putting together the instances of both test cases without repetition of shared
instances.

The instantiation of test cases with values generates the test data sets.

Definition 26. A test data set is a subset of consistent ground instances of formulas
from TCs,.

Example 27. Consider the viewpoint DEP from the Example 8. As a test cases we could
consider an uniformity hypothesis like

C1 = {Positive(S) = true, Acc-Value(S) > 0, X > 0, Acc-Value(S) > X}

C2 = {Positive(S) = true, Acc-Value(S) > 0, X = 0}

C3 = {Positive(S) = true, Acc_.Value(S) =0,X =0}

C4 = {Positive(S) = false, Acc-Value(S) < 0,X > 0, Acc_-Value(S) + X < 0}
C5 = {Positive(S) = false, Acc-Value(S) < 0,X =0}

C6 = {Positive(S) = false, Acc_-Value(S) < 0,X > 0, Acc_Value(S) + X > 0}
C7 = A{Positive(S) = false, Acc-Value(S) < 0,X > 0, Acc_-Value(S) + X =0}

We can observe that from C one can derive
Positive(S) = true < Acc-Value(S) >0
Using a test notation like
< Positive(S), Acc.Value(S), X, Positive(Add(S, X)), Acc-Value(Add(S, X)) >

a test data set is

146



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING 11

Dpep ={ < true, 25,20, true, 45 >,
< true, 25,0, true, 25 >,
< true, 0,0, true,0 >,
< false, —25,20, false, =5 >,
< false, —25,0, false,—25 >,
< false, —20,25, true,5 >,
< false, —25,25, true,0 > }

Example 28. Consider the viewpoint CONS from the Example 8. As a test cases we
could consider an uniformity hypothesis like

Cl1 = {Balance(S) > 0,X > 0, Balance(S) > X}
C2 = {Balance(S)>0,X =0}
C3 = {Balance(S) > 0,X > 0, Balance(S) = X }
C4 = {Balance(S)=0,X =0}
C5 = {Balance(S) > 0,X > 0, Balance(S) < X}
C6 = {Balance(S)=0,X >0}

Using a test notation like
< Current(S), Balance(S), X, Consume(S, X ), Balance(Consume(S, X)) >
a test data set is

Dwrrupr ={ < 0k, 25,20, 0k,5 >,
< 0k, 25,0, 0k, 25 >,
< ok, 25,25, 0k,0 >,
< 0k,0,0,0k,0 >,
< ok, 20, 25, outm, —5 >,
< 0k, 0,25, outm, —25 > }

Definition 29. (Testing functor) We define a functor Test giving for every signature its
category of Y —tests

Test : SIGN — CAT
Test(X) = TCyg

such that the satisfaction condition for tests
M’ <y Test(o)(a) & Sem(o)(M') 5 a

is satisfied.

In a categorical specification logic, a program is identified with a viewpoint PSP and
its execution with the semantics of the specification Sem[PSP]. Thus, a test goal is a
formula @« € TH[PSP], and the satisfaction relations Prog <5, D and Prog <5, C are
replaced by the test satisfaction relation for models <3 C |[Mod(X)| x |Test(X)| for each
¥ € |[SIGN|

147



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING 12

5. TESTING UNIFICATION BY UNIFICATION OF TESTS
Suppose we have generated the test instances (Cpsp, Dpsp/) from the viewpoints PSP,
PSP/, correct for the test goals Xpsp , Xpspr and similar for the specification CO, which
expresses the correspondences between the viewpoints. It is important to note that we
do not use any hypotheses about the way tests have been obtained. For example, Dpgp
could be obtained from a correctness proof, as in [20], and Dpgps could be obtained by
any method of generating test cases from a formal specification.
Consider the unification obtained by the following pushout of viewpoints,

CcO
m1,/ \ e
PSP PSP
UNIF

corresponding to the pushout of signatures

Sig[CO]
o1/ \ 02
Sig[PSP] Sig[PSP'
o \ \/ 0/2
Sig[UNIF]

We are interested in the way (Cynrr, Dunrr) for UNIF can be obtained. In the cor-
rectness of the method.

Proposition 30. Correctness of test instances is preserved by signature translation and
composite translation morphisms.

Proposition 31. The test instance (Cynrr, Dunrr) obtained by pushout

(CcosDco)
1./ \ t2
(Cpsp, Dpsp) (Cpspr, Dpsp)
N\ / th

(Cunir, Duntr)

is correct for Syn(m})(Xpsp) A Syn(mb,)(Xpspr).
Proof. By renaming according to m} we have a test instance (Cpgp, Dpgp) de-
fined on Sig[PSP] and correct for Syn(m})(Xpsp) and similar we get a test instance
(Cpgpr, Dpgps) defined on Sig[PSP’| and correct for Syn(mb)(Xpsp:).
We consider a model M’ defined on Sig[UNIF] such that M’ satisfies Cuynrr = Cpgp N
Cpgp- M’ satisfies Cpgp and Cpgps and correctness of (Cpgp, Dpgp) and (Cpgpr, Dpgpr)
gives

M’ i giunrr) Syn(ml)(Xpsp) <= M’ <gigunir) Dynre

"Esigunir Syn(m2)(Xpspr) <= M’ <gigunir) Dpsp:

If M’ satisfies Dpgpand Dpgp, we can build a consistent test case on Sig[UNIF] by
conjunction, so M’ satisfies Dy . Reversely, if M’ satisfies Dy yyr,it exists a test case
of Dynir satisfied by M’and build by composition of a test case of Dy, and a test
case of Dpgpr. So M’ satisfies Dpgpand Dipgp.
We obtained that

M’ i gunrr) Syn(ml)(Xpsp) A Syn(m2)(Xpspr) <= M’ <sigunir) Dunir
Because Xynrr = Syn(ml)(Xpsp) A Syn(m2)(Xpgp/) we obtain that the test instance
(Cunir,Dunir) is correct for Syn(m})(Xpsp) A Syn(mb)(Xpsp/).q.e.d.

148



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING 13

Example 32. We construct now the test instance (Cynrr, Dunir) from (Cwirapr, DwiTHDR)
and (Cpep, DpEp)-

We consider the following notation for test data
< op, Current(S), Balance(S), X, Current(op(S, X)), Balance(op(S, X)) >

The symbol op ranges in the values { Add, Consume} and the symbol | when the attribute
is not defined for the current operation. The test data Dy g is
Dynir ={ < Consume, ok, 25,20, ok,5 >,
< Consume, ok, 25,0, ok, 25 >,
< Consume, ok, 25,25, 0k,0 >,
< Consume, ok, 0,0, 0k, 0 >,
< Consume, ok, 20, 25, outm, —5 >,
< Consume, ok, 0,25, outm, —25 >,
< Add, ok, 25,20, ok, 45 >,
< Add, ok, 25,0, 0k, 25 >,
< Add, ok, 0,0, 0k,0 >,
< Add, outm, —25, 20, outm, —5 >,
< Add, outm, —25,0, outm, —25 >,
< Add, outm, —20, 25, 0k, 5 >,
< Add, outm, —25,25, 0k, 0 > }.
Similar we construct Cynrr

C1 = {Op,ok, Balance(S) > 0, X = 0}
C2 = {Op,ok,Balance(S) =0,X =0}

C3 = {Op,ok, Balance(S) > 0, X > 0, Balance(S) > X}

C4 = {Consume,ok, Balance(S) > 0,X > 0, Balance(S) = X}
C5 = {Consume,ok, Balance(S) > 0,X > 0, Balance(S) < X}
C6 = {Consume,ok,Balance(S)=0,X > 0}

C7 = {Add,outm, Balance(S
C8 = {Add,outm, Balance(S
C9 = {Add,outm, Balance(S
C10 = {Add,outm,Balance(S

< 0,X >0, Balance(S) + X < 0}
<0,X =0}

< 0,X >0, Balance(S) + X > 0}
< 0,X >0, Balance(S) + X = 0}

— — ~— —

6. CONCLUSIONS

As the title suggests, this work is only preliminary. Much more remains to be done in the
sense of using effective test case procedures and describing concrete development relations
to be used in the unification process. We intend to instantiate our framework with more
formal notations, like temporal logics and co-algebraic specifications.

The basic achievements of this work are:

e a method of unification of heterogeneous viewpoints using category theory,

e corresponding to this, a method of testing the unification by unifying the tests
generated from the viewpoints

e an exemplification using a small case study (a simplified telephone account)

e a formal framework for constructing proofs of correctness preservation for the uni-
fication process.

149



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING 14

The formal testing theory we have presented here is connected with general logics only
on their model theoretic counterpart. Despite of a careful presentation of proof theory,
issues like general logics for theorem provers, mappings of viewpoint logics into a universal
logic didn’t get their natural place now. A future work might describe all these issues in
connection with using correctness proofs as a source for test case generation [20].

This work is all theoretical, conducted by a toy example. A next step is to consider
an executable logical framework (like LF [15], Maude or HOL) in which the Grothendieck
viewpoint logic should be embedded, and a real life case study (we target an air traffic
control example).

As future ’test’ study, we will concentrate on testing of ODP and UML system specifi-
cations. ODP defines a basic framework for conformance as part of the reference model,
rather than it being retrofitted later, as in OSI. UML allows systems UML allows sys-
tems to be described using diagrams and notations of various kinds, but none of these
is assumed to fully characterise the behaviour of the system being specified. Thus, for
an UML specification, any diagram could be mapped into a viewpoint specification, and
consequently develop a specific theory of testing. We also intend to apply our logical
viewpoint specification and testing framework to hybrid systems. This can be done in
few ways, for example by extending UML capabilities to specify hybrid systems or by
modelling them using a particular categorical logic.

Acknowledgements

Authors want to thank Dr. Eerke Boiten who contributed to the first part of this paper
(we have actually used his work on a categorical framework for viewpoint specifications)
and read a draft of this paper. The financial support from EPSRC under the grant
GR/N03389/01 is also fully acknowledged.

REFERENCES
[1] J. Adamek, H. Herrlich, G. Strecker Abstract and Concrete Categories Wiley,
New York, 1990.

[2] G Bernot, M-C Gaudel, B Marre Software Testing Based on Formal Specifications:
a Theory and a Tool Software Engineering Journal, Nov 1991.

[3] J. Bicarregui, M. Bishop, T. Dimitrakos, K. Lano, T. Maibaum, B. Matthews,
B. Ritchie Supporting Co-Use of VDM and B by Translation In J. Bicarregui, J.
Fitzgerald (Eds) VDM in 2000! Proceedings of the 2nd VDM workshop, 2000.

[4] E.A. Boiten, J. Derrick A Constructive Framework for Partial Spec-
ification EPSRC Fast Stream Research Proposal Case for Support
http://www.cs.ukc.ac.uk/research /tcs/framework/

[5] E.A. Boiten, H. Bowman, J. Derrick, P.F. Linington, M.W.A. Steen Viewpoint Con-
sistency in ODP. Computer Networks, 34(3):503-537, 2000.

[6] H. Bowman, E. A. Boiten, J. Derrick, M. W. A. Steen. Strategies for Consistency
Checking Based on Unification. Science of Computer Programming, 33:261-298, 1999.

[7] M.C. Bujorianu, E.A. Boiten Consistency Checking and Unification of Partial Spec-
ifications Using Category Theory submitted.

[8] M.C. Bujorianu, M.L. Bujorianu On the Hilbert Machines Quantitative Com-
putational Model QAPL’01 Workshop on Quantitative Aspects of Programming
Laguages, Satellite Event of PLI’02, September 3 - 7, 2001 — Firenze, Italy. To
appear in Vol. 60 of Electronic Notes in Theretical Computer Science, Elsevier,
www.elsevier.locate/tcs/

150



TOWARDS A FORMALIZATIONOF VIEWPOINTS TESTING 15

[9] M.C. Bujorianu, M.L. Bujorianu Linear Logic: From Stochastic Analysis to Software
Testing BCTCS 18 British Colloquium for Theoretical Computer Science, Bristol,
UK, 2002.

[10] R. Diaconescu. Extra Theory Morphisms for Institutions: Logical Semantics for
Multi-paradigm Languages. Technical Report IS-RR-96-0024S, Japan Institute of Sci-
ence and Technology, 1996.

[11] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M. Goedicke. VIEWPOINTS:
a Framework for Integrating Multiple Perspectives in System Development. Interna-
tional Journal on Software Engineering and Knowledge Engineering, 2(1):31-58, 1992.

[12] M.C. Gaudel, P.R. James Testing Algebraic Data Types and Processes: A Unifying
Theory. Formal Aspects of Computing , 10(5-6), pp. 436-451, 1998.

[13] M.C. Gaudel Testing Can Be Formal, Too. TAPSOFT 1995, pp. 82-96, 1994.

[14] J. Goguen, G. Rosu Institution Morphisms to appear in Formal Aspects of Comput-
ing.

[15] T. Harper, R., Sannella, D., Tarlecki, A. Structured Theory Presentations and Logic
Representations. Annals of Pure and Applied Logic 67:113-160 1994.

[16] P.F. Linington, J. Derrick, H. Bowman The Specification and Conformance of ODP
Systems. In 9th International Workshop on Testing of Communicating Systems, IFIP
TC6/WG6.1, Chapman & Hall, pp. 93-114. 1996.

[17] 1. MacColl, D. Carrington Testing MATIS: a Case Study on Specification-based Test-
ing of Interactive Systems Formal Aspects of Human Computer Interaction Work-
shop, Sheffield, UK September 1998

[18] P. D. L. Machado. On Oracles for Interpreting Test Results Against Algebraic Speci-
fications. In Proceedings of AMAST’98, volume 1548 of LNCS, Springer, 1999.

[19] S. Maharaj Towards a Method of Test Case Extraction from Correctness Proofs. in
Proceedings of the 14th International Workshop on Algebraic Development Tech-
niques, Bonas, France, pp 45-46, November 1999.

[20] S. Maharaj Test Case Extraction from Correctness Proofs Case for Support 2000
http://www.cs.stir.ac.uk/~sma/testing.ps

[21] B. Marre, P. Thévenod-Fosse, H. Waeselynck, P. Le Gall et Y. Crouzet. An Exper-
imental Evaluation of Formal Testing and Statistical Testing, 1V. Fault Removal.
Section C., pages 273-281. ESPRIT Basic Research Series, Predictably Dependable
Computing Systems. Springer-Verlag, 1995. Also SAFECOMP’92, Randell, B. and
Laprie, J.-C. and Kopetz, H. and Littlewood, B. (ed.)

[22] J. Meseguer General Logics. In Logic Colloquium’87, pp. 275-329, North Holland,
1989.

[23] D. Pemberton, I. Sommerville VOCAL: A Framework For Test Identification € De-
ployment in IEE Proceedings - Software Engineering, Vol. 144, Issue 5-6, , p. 249 -
260, 1997.

[24] V. Wiels, S. Easterbrook Management of Evolving Specifications Using Category The-
ory Automated Software Engineering 98 October 13-16 1998, Hawai

151



	Formal Approaches to Testing of Software
	Preface
	Contents
	1 -Thinking Formally About Testing Without a Formal Specification
	2 -Generating Formal Specifications from Test Information  
	3 -Testing from statecharts using the Wp method
	4 -Testing Nondeterministic (stream) X-machines
	5 -Complete Behavioural Testing (two extensions to state-machine testing)
	6 -Formal Basis for Testing with Joint-Action Specifications
	7 -Queued Testing of Transition Systems with Inputs and Outputs
	8 -Optimization Problems in Testing Observable Probabilistic Finite-State Machines
	9 -BZ-TT: A Tool-Set for Test Generation from Z and B using Constraint Logic Programming
	10-Using a Virtual Reality Environment to Generate Test Specifications
	11-Towards a Formalization of Viewpoints Testing



