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Abstract

Stochastic analysis is now an important common part of computing and mathematics. Its applications are
impressive, ranging from stochastic concurrent and hybrid systems to finances and biomedicine. In this
work we investigate the logical and algebraic foundations of stochastic analysis and possible applications
to computing. We focus more concretely on functional analysis theoretic core of stochastic analysis called
potential theory. Classical potential theory originates in Gauss and Poincare’s work on partial differential
equations. Modern potential theory now study stochastic processes with their adjacent theory, higher
order differential operators and their combination like stochastic differential equations. In this work
we consider only the axiomatic branches of modern potential theory, like Dirichlet forms and harmonic
spaces.
Due to the inherently constructive character of axiomatic potential theory, classical logic has no

enough ability to offer a proper logical foundation. In this paper we propose the weak commutative
linear logics as a logical framework for reasoning about the processes described by potential theory. The
logical approach is complemented by an algebraic one. We construct an algebraic theory with models in
stochastic analysis, and based on this, and a process algebra in the sense of computer science.
Applications of these in area of hybrid systems, concurrency theory and biomedicine are investigated.
Parts of this paper have been presented, in shorter form, at diverse conferences and workshops. This

work represents a common ’umbrella’ for all these presentations and offers an extended version for the
(some time) very short published materials.
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Chapter 1 Introduction

In recent years a lot of interest was manifested in computation processes having a continuous nature.
Examples abound around: hybrid systems, biological inspired computing paradigms such as data mining
and neural networks, quantum computation, embedded systems. Continuous aspects can be identified
in domain traditionally considered as branches of discrete mathematics: in real time systems the time
domain value is often a dense (i.e. continuous in order) set, and Zeno phenomena (i.e. the familiar
continuo convergence) should be considered.
Another important computation fields, where continuity is considered, are probabilistic and stochastic

computation. Stochastic Petri nets, probabilistic process algebra like PEPA, stochastic hybrid systems
use frequently continuous probabilistic distributions. Particular attention was given to this case in model
checking.
Behaviour of many systems (like sensors monitoring heart beats, the management of the risks involved

in using stocks to fund pensions) can be profoundly affected by stochastic fluctuations and randomness.
Significant benefits can be achieved if one can be quantitative, and where possible deeply understand,
these systems. For example, the ability to price risk, has radically changed the financial markets, and
is at the present time causing a complete rearrangement of the conventional insurance industry. The
mathematical study of such systems will almost certainly involve tools with names like martingales,
paths spaces, Malliavin calculus, stochastic integrals, measure valued branching processes, stochastic
partial differential equations etc. All are tools central to stochastic analysis. The mathematical analysis
of stochastic systems, while perhaps a little inaccessible to outsiders, is undergoing quite rapid scientific
development. One could say with some justification that Stochastic Analysis has emerged as a core area of
late 20th century of mathematics. The Dirichlet Spaces have both deterministic and probabilistic models,
and constitutes the most important way of making effective the functional analytic tools in stochastics.
Other current researches uses the Dirichlet Spaces in the Markov processes theory, stochastic differential
geometry, stochastic differential equations, mechanics and physics. Detailed informations about all of
these can be found in Ma and Rockner’s book [MR 90].
All these approaches have no constructive logical foundations and no adequate computational model.

We could interpret the recent work in computer algebra systems and formalisation of mathematics in
higher orders logic (we call now these calculational approaches from now on) as an indirect computational
(and thus constructive) approach to mathematics. We can make a few observations here: (a) stochastic
analysis has not being approached yet by any of these methods; (b) the price paid of being very effective is
that they are very poor from a foundational perspective; (c) the computational model (which is, in most
cases, a variant of rewriting systems) is not used explicitly and is not adequate to from a foundational point
of view (it says how mathematical -symbolic-calculation and -limited forms of-reasoning can be executed
on a machine rather than the actual computational content of a continuous mathematical theory). We
look here at a more balanced approach:

• More constructive than the classical logic
• Less effective but more foundational than calculational approaches
• Making explicit a computational model for continuous (and especially stochastic) mathematical
theories. This model should have the same role the Hilbert machines have for discrete computation:
to abstract the operational features enough for a formal logic analysis.

In this work we aim to show that the non-commutative linear logic and the Hilbert machines are
suitable abstract tools to a logical approach of these topics.
The Hilbert machines are an extension of classical models of computation with symbols in order to

deal with concepts like infiniteness and similarity. In [Wik 98] H. Wiklicky introduced Hilbert machine
as a new quantitative computational model. A Hilbert machine operates with data taken from a Hilbert
space. Prominent examples of such model of computation include Girard’s Geometry of Interaction,
Neural Networks and Quantum Computation.
From a logical viewpoint, a fully constructive and foundational powerful logic proved to be linear

logic. Linear logic was discovered motivated by profound proof theoretic arguments, and its applications
in computing proved it as logic of resources and concurrency. The possibility of using LL for founding
continuous mathematics came from its further developments, namely Geometry of Interaction and non-
commutative LL. In the original operator formulation of Geometry of Interaction, projections play a
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very important role. The general C∗ algebras may contain no projections other than O and I. In such
cases, the Geometry of Interaction becomes a trivial theory. Therefore we are interested in sub-classes
of C∗ algebras rich in projections. Functional analytic arguments relate the existence of projections to
the w-closability property. Such C∗ algebras, closed in w-convergence are called von Neumann algebras.
Historically, the von Neumann algebras were the first class of operators algebras introduced. The passage
from the C∗ algebras to the von Neumann algebras correspond in the commutative case to the passage
from the algebra of continuous functions to the algebra of measurable functions. In the non-commutative
case, this analogy leads to the interpretation of von Neumann algebras as ”non-commutative measure
theory”.
The Dirichlet spaces were introduced in 1959 by A. Beurling and J. Deny [BD 95] as an axiomatic

extension of classical Dirichlet integrals.
We associate to each Hilbert machine a Dirichlet space, providing in this way a logical and computa-

tional model to each class of applications of Dirichlet spaces.

Another contribution is a unifying approach to nondeterministic and deterministic continuous processes.
Nondeterminism is considered by working directly with stochastic processes. This is useful in computing
over the real numbers, since continuous distributions can often be more realistic, for instance in modelling
economic systems or population growth. A decent formalisation must cover both discrete and continuous
distributions.
In the next chapter we present background material used in the rest of the paper. The chapter is

divided into three very different sections: first section introduces order causal relations, which are order
relations enriched with concepts coming from concurrency theory; the second section presents domain
computability for algebras; the third section introduces some basic abstract structures from continuous
mathematics, namely von Neuman algebras and Dirichlet forms.
The second chapter presents a computational model for continuous processes, the Hilbert machines,

and a logical foundation of these structures in linear logic.
In the third chapter we develop an abstract domain for the processes introduced before. The dynamic

of these processes is modelled using the causal order relations introduced in the first chapter. The
processes are abstracted via an algebraic axiomatization, suitable to apply the results presented in the
first chapter. We show that most of the continuous processes modelled by differential equations and
stochastic processes are domain computable.
The last chapter sketches some partial conclusions of this mathematical experiment.
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Chapter 2 Background
2.1 Order Relations

Let ≺ be an order relation on the set B. We shall use the notations

=≺ ∪id|B;
" =≺−1;
j =≺ − ≺2;

Definition 1 Define the following algebraic relations on B:

• the concurrency relation: co ⊂ B ×B is a symmetric relation with co ∩ idB = ∅.
• the causal relation: li ⊂ B × B is a binary relation with li ∩ idB = ∅ such that the following
interrelating properties holds

co ∩ li = ∅
co ∪ li = B ×B − idB

Proposition 1 The following properties holds

li = li−1

li = B ×B − co
co = B ×B − li

Definition 2 Proximity π and the immediate neighborhood lo relations are defined by

π = {(a, b); liB[a] # liB[b]}
lo = π ∪ π−1

Remark 1 lo express a notion of locality (even does not contain any topological or metric information)
based on concurrency and causality alone.

Definition 3 A relation ' ⊆ B ×B is a consistent orientation if the following conditions holds:

' ∪'−1 = lo (consistency of changes)
' ◦' ⊆ li (li between pre- and postset)
' ◦'−1 ⊆ coB (coB within preset)
'−1 ◦' ⊆ coB (coB within postset)

Remark 2 We shall note

O(B) = {' ⊆ B ×B;' is a consistent orientation}

Axiom 1 O(B) 9= ∅ (consistent orientability)
Axiom 2 The Basic Concurrency Axioms

.li-irreducibility. (∀a, b ∈ B) : liB[a] = liB[b]⇒ a = b

.co-irreducibility. (∀a, b ∈ B) : coB[a] = coB[b]⇒ a = b

.li-coherence. li∗B = B ×B

.co-coherence. co∗B = B ×B

.no changes of changes. π2 = ∅

.re-coherence. lo∗B = B ×B

.local co-transitivity. (∀a ∈ B) : (co|lo[a])2 ⊆ coB |lo[a]

.local orientability. (∀a ∈ B) : (li|lo[a])2 ⊆ coB|lo[a]

.local extensibility. (∀a ∈ B) : id|lo[a] ⊆ (liB|lo[a])2

4



Proposition 2 We have

π ∩ π−1 = ∅
π ∩ idB = ∅

π ⊆ li

lo ⊆ li

lo = lo−1

π ◦ co ⊆ co

liB ◦ π ⊆ liB
π ⊆ co ◦ li

π ∩ li ◦ co = ∅
π = li− li ◦ co

(∀a ∈ B) : lo[a] 9= ∅
(∀a ∈ B) : |lo[a]| ≥ 2

Definition 4 A partial order ≺⊆ B ×B is called a causal order iff

≺ ∪ "= li.
Remark 3 We shall note O(B) the class of causal orders on B.
Definition 5 Let ≺ be a causal order. Define
•(reconstitution of causal relation)

li =:≺ ∪ " ∪id|B
•(reconstitution of concurrency relation)

co =: li ∪ id|B
• for any a ∈ B :

a = : {b ∈ B; b ≺ a},
a = : {b ∈ B; b " a}

• l ⊆ B is a li-set iff
(∀a, b ∈ l) : (a, b) ∈ li

• l ⊆ B is a line iff l is maximal w.r.t. li:

(∀a ∈ B − l), (∃b ∈ l) : (a, b) ∈ (B ×B)− li.
Let L = L(B) be the set of lines of B.

• c ⊆ B is a co-set iff
(∀a, b ∈ co) : (a, b) ∈ co

• c ⊆ B is a cut iff c is maximal w.r.t. co :

(∀a ∈ B − c), (∃b ∈ l) : (a, b) ∈ (B ×B)− co.
Let C = C(B) be the set of cuts of B

Remark 4 We have

• (a li b) or (a co b);
• (a li b)&(a co b)⇔ a = b;

• A is a line iff
(i) (∀a, b ∈ A) : (a ≺ b) or (b ≺ a) or (a = b);
(ii) (∀b ∈ B −A), (∃a ∈ A) : not(a ≺ b or b ≺ a);
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• A is a cut iff
(i) (∀a, b ∈ A) : not(a ≺ b or b ≺ a);
(ii) (∀b ∈ B −A), (∃a ∈ A) : (a ≺ b) or (b ≺ a).

Definition 6 A Dedekind cut (D-cut for short) is a partition (A,A) for which

(∀a ∈ A∀b ∈ A) : not(a ≺ b).
Remark 5 (A,A) is a D-cut iff

A =↓ A and A =↑ A (A ∈ D(B)).
For A ⊂ B , define M(A) =: max(A) ∪min(A).

Definition 7 If (A,A) is a D-cut then define

Obmax(A) = : {a ∈Max(A);∀A3 ∈ D(B)∀l ∈ L : a ∈Max(A3 ∩ l)⇒ a ∈Max(A3)};
Obmin(A) = : {a ∈Min(A);∀A3 ∈ D(B)∀l ∈ L : a ∈Min(A3 ∩ l)⇒ a ∈Min(A3)};

c(A) = : Obmax(A) ∪Obmin(A).
Proposition 3 Let A ∈ D(B) and a ∈Max(A) , a ∈Min(A). We have

a /∈ Obmax(A)⇔ ∃b ∈ B∃l ∈ L : (a ≺ b) and (l ∩ [a, b] = {a});
a /∈ Obmin(A)⇔ ∃b ∈ B∃l ∈ L : (b ≺ a) and (l ∩ [b, a] = {a}).

Definition 8 A complete lattice is a partially ordered set in which every subset has a least upper bound
and a greatest lower bound. A conditionally complete lattice is a lattice which have the property that every
non-void bounded subset has a least upper bound and a greatest lower bound.

2.2 Type 2 Computability
2.2.1 Types of Constructive Analysis

This report deals with computable analysis. The subject, as its name suggests, represents a marriage
between analysis and physics on the one hand, and computability on the other. Computability, of course,
brings to mind computers, which are playing an ever larger role in analysis and physical theory. Thus it
becomes useful to know, at least theoretically, which computations in analysis and physics are possible
and which are not.
The appearance of constructive mathematics as a serious contender for the attention of practising

mathematicians may traced to that of L.E.J. Brouwer’s doctoral dissertation, ”Over de Grondslagen der
Wiskunde”, in 1907. Although it is true to say that a few individuals (for example Kronecker) had earlier
expressed disapproval of the idealistic methods of some of their nineteenth century contemporaries, it is
in Brouwer’s polemic writings, beginning with the above and continuing throughout the next forty seven
years, that the foundations of a precise and practical approach to constructive mathematics were laid.
Unfortunately-and perhaps inevitably, in the face of opposition from men of such stature as Hilbert

- Brouwer’s intuitionist school became more and more involved in quasi-mystical speculation about the
nature of constructive thought, to the detriment of the practice of constructive mathematics itself. Thus
it remains for Erret Bishop, in his seminal book ”Foundations of Constructive Analysis”, to resurrect
constructive mathematics in practice and produce some outstanding constructive proofs of important
theorems already known in their classical form: in particular many of the fundamental results in theories
of Banach spaces, measure and locally compact groups.
Computable analysis is traditionally approached from two different directions. On the one hand,

we have the machine-oriented work, where computations are performed on a certain kind of abstract
machine. One the other hand, we have the analysis-oriented approach. Here the concepts from classical
analysis are effectively presented and used to develop a computability theory for real numbers. This
approach to computable analysis comes from the work of Grzegorczyk [Gre 57]. The work of Pour-El and
Richards [PR 89] is based on this definition and is now well-established and frequently cited in various
communities including by physicists like Penrose [Pen 89].
Recent researches use domain theory as an approach to computable analysis. Weihrauch [Wei 87] has

called this approach type 2 (as opposite to recursive analysis, which is called type 1).) Various attempts
have been made to use algebraic domains to represent classical spaces in mathematics. Weihrauch [Wei
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87] and Schreiber constructed embeddings of Polish spaces into algebraic domains. Stoltenberg-Hansen
and Tucker have shown how to represent complete local rings and topological algebras [ST 95] by algebraic
domains. They also prove the equivalence between their definition of computable real function with the
notion of Pour-El and Richards. Blank has shown how to embed complete metric spaces into algebraic
domains.
This work is done in the framework of type 2 constructive analysis. Domain computability provides us

a common semantic domain in which we can interrelate the machine-oriented model (Hilbert machines)
and the logical model (non-commutative LL).

2.2.2 Computability of Topological Algebras
2.2.2.1 Domain Computability

Definition 9 A cpo P is an algebraic cpo if for each x ∈ P, the set approx(x) = {a ∈ Pc : a ≤ x} is
directed and x =

Z
approx(x).

Definition 10 A cpo P is a Scott-Ershov domain , or simply domain, if P is an algebraic cpo such that
if the set {a, b} ⊆ Pc is consistent in P (i.e. has an upper bound in P ) then a ∨ b exists in P.

Definition 11 A partial order P = (P ;≤,⊥) with least element ⊥ is a conditional upper semilattice with
least element (abbreviated cusl) if whenever {a, b} ⊆ P is consistent in P (i.e. has an upper bound in P )
then a ∨ b exists in P.

Remark 6 The compact elements in any Scott-Ershov domain form a cusl.

Definition 12 P is called consistently complete if every consistent set has a supremum.

Remark 7 Every Scott-Ershov domain is consistently complete.

Definition 13 Let P = (P ;y,⊥) be a cusl. Then I ⊆ P is an ideal if

1. ⊥∈ I
2. if a ∈ I and b ≤ a then b ∈ I
3. if a, b ∈ I and a ∨ b exists then a ∨ b ∈ I

Definition 14 The principal ideal generated by a ∈ P is defined by [a] = {b ∈ P : b ≤ a} and is the
smallest ideal containing a.

Definition 15 The ideal completion of P is the structure P̄ = (P̄ ;⊆, [⊥]) where P̄ = {I ⊆ P : I is an
ideal}.

Let P be a cusl. Then the ideal completion P̄ = (P̄ ;⊆, [⊥]) is a domain. Furthermore, P̄c = {[a] :
a ∈ P} and the map ι : P → P̄c defined by ι(a) = [a] is an order-preserving bijection.

Theorem 1 Let P = (P ;≤,⊥) be a domain. Then P̄c ∼= P, where P̄c is the ideal completion of the cusl
Pc and where the isomorphism is witnessed by an order-preserving bijection.

Definition 16 Let P = (P ;≤,⊥) be a domain. The Scott topology on P is given by : U ⊆ P is open if

the Alexandrov condition (x ∈ U)&(x ≤ y)⇒ (y ∈ U)
the Scott condition (x ∈ U)⇒ (∃a ∈ approx(x))(a ∈ U)

Remark 8 A topological base for the Scott topology is given by

B = {Ba : a ∈ Pc}, Ba = {x ∈ P : a ≤ x}

Proposition 4 Every open cover of Ba , a ∈ Pc, has a subcover consisting of one open set.
Corollary 1 Every element Ba, a ∈ Pc of B is compact.

Remark 9 This provides us with a technical reason for saying that the basic open sets are ’concrete’ or
’finite’ and hence that the compact elements of a domain are finite.
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Definition 17 A function f : P → Q between domains is called order continuous if f is monotone and
preserves suprema of directed sets, that is

1. x ≤ y ⇒ f(x) ≤ f(y)
2. f(

Z
A) =

Z
f(A) for each directed set A ⊆ P.

Proposition 5 A function f : P → Q between domains is continuous in the topological sense with respect
to the Scott topology iff one of the following conditions holds:

1. it is order continuous.

2. f(x) =
Z{f(a) : a ∈ approx(x)} for each x ∈ P.

Proposition 6 For each monotone function f : Pc → Q has a unique continuous extension f̄ : P → Q.

2.2.2.2 Σ−Algebras and Computable Algebras
Definition 18 A single sorted signature consists Σ consists of a sort name s, and a family kΣk : k ∈ Nl
of sets, where each element c of Σ0 is called a constant symbol (of sort s) and each element σ of Σk is
called a k-ary function (of type sk → s).

A signature is said to be non-void, instantiated or sensible if Σ0 9= ∅. Typically, a finite signature is
written as a list of symbols: < s; c1, ...cp,σ1, ...,σq > where ci ∈ Σ0 and σj ∈ Σk(j) for 1 ≤ i ≤ p and
1 ≤ j ≤ q.
Let A be an algebra of signature Σ.

Definition 19 A numbering of A consists of a set Ωα of natural numbers and a surjection α : Ωα → A
such that for each k-ary operation symbol σ ∈ Σk(k ≥ 0) with corresponding k-ary operation σA of A,
there exists a total tracking function f : Ωkα → Ωα such that for all x1, ..., xk ∈ Ωα, σA(α(x1), ...,α(xk)) =
α(f(x1), ..., f(xk)).

Remark 10 We obtain a Σ-algebra Rα of natural numbers such that each numbering α : Rα → A is a
Σ-epimorphism. Consider the kernel relation ≡α on the number algebra Rα defined by

x ≡α y iff α(x) = α(y) , (∀x, y ∈ Ωα)
Remark 11 The relation ≡α is a Σ-congruence on R and A ∼= R/ ≡α .
Let I = (I,≤) be a directed set and {Ai : i ∈ I} be an indexed family of Σ−algebras and φji : Aj → Ai

be a Σ−homomorphism, for each i ≤ j.
Definition 20 An inverse system of Σ−algebras is a couple {Ai : i ∈ I} , {φji : i ≤ j ∈ I} such that:
φii = idAi , φ

j
i ◦ φkj = φki . An inverse system is said to be surjective if each φji is surjective.

Definition 21 The projective or inverse limit of the inverse system {Ai : i ∈ I} , {φji : i ≤ j ∈ I}, if it
exists, is a Σ−algebra Â together with a family of Σ−homomorphisms φ̂i : Â → Ai , such that for each
i ≤ j ∈ I, φ̂i = φji ◦ φ̂j which is a solution of the following universal problem. If B is a Σ−algebra and
ψi : B → Ai is a family of Σ−homomorphisms for i ∈ I such that for each i ≤ j ∈ I, ψi = ψji ◦ ψj , then
there is a unique Σ−homomorphism θ making the diagrams below commute.

Â · · · θ· · · · · · B
| )̂

φj

1
ψj

|

| Aj |
| | |
φ̂i φji ψi
) ↓ 1

Ai

Definition 22 An effective numbering α of A is a numbering that consists of a recursive set Ωα of
natural numbers and for each k-ary operation σA of A and a recursive tracking function f : Ωkα → Ωα.
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Definition 23 Let α : Ωα → A be an effective numbering of A. The numbering α is called

1. a computable numbering iff the relation ≡α is recursive on the recursive set Ωα; in this case the
algebra A is said to be computable under α.

2. a semicomputable numbering iff the relation ≡α is recursively enumerable on the recursive set Ωα;
in this case the algebra A is said to be semicomputable under α.

3. a cosemicomputable numbering iff the relation ≡α is co-recursively enumerable on the recursive set
Ωα; in this case the algebra A is said to be cosemicomputable under α.

Definition 24 An algebra is computable, semicomputable, or cosemicomputable if there exists a com-
putable, semicomputable, or cosemicomputable numbering for the algebra, respectively.

2.2.2.3 Locally Compact Hausdorff Algebras

By a topological algebra we mean an algebra whose carrier set is a topological space and whose operations
are continuous. The class of locally compact Hausdorff algebras is a large and natural class of algebras
and includes many metric algebras (for example the ring of real numbers R).

Proposition 7 Let X be a locally compact Hausdorff space. Then X is regular. Further the family of
compact neighborhoods of each point is a base for its neighborhood system.

Let P
3
be a family of non-empty compact subsets of X and let P = P

3 ∪ {X}.We order P by reverse
inclusion, that is

F y F 3 ⇐⇒ F ⊇ F 3 (∀F,F 3 ∈ P )
Then P = (P,y,X) is a partial order with least element X.
Definition 25 The structure P = (P,y,X) is a cusl of compact neighborhood systems if the following
conditions hold:

i ) if F,F
3 ∈ P and F ∩ F 3 9= ∅ then F ∩ F 3 ∈ P and

ii) if U ∈ τ and x ∈ U then (∃F ∈ P )(x ∈ F ◦&F ⊆ U).
The previous proposition tells us that every locally compact Hausdorff space X has a cusl of compact

neighborhood systems, namely H(X)∪ {X}, where H(X) is the set of all non-empty compact subsets of
X.

Example 1 For R we let P = {[p, q]; p ≤ q, p, q ∈ Q} ∪ {R}.

The next two theorems are the key results for obtaining domain representability of fundamental
structures of stochastic analysis. These results will be applied in Chapter 4.

Theorem 2 [ST 95] Every topological Σ−algebra which is locally compact and Hausdorff is domain
representable.

Theorem 3 [ST 95] Every metric Σ−algebra is domain representable.

2.2.2.4 Topologies as Approximation Structures

Consider a set A.

Definition 26 An approximation for A is a set P with a relation � from P to A such that

(∀a ∈ A)(∃p ∈ P )(p� a)

(∀a, b ∈ A)(a = b⇔ {p ∈ P ; p� a} = {p ∈ P ; p� b}.

Definition 27 (The refinement order) We define the preorder relation y by
p y q ⇔ (∀a ∈ A)(q � a⇒ p� a)
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Example 2 Let A = R and

P = {[p, q]; p ≤ q, p, q ∈ Q} ∪ {(−∞,∞)}

and the refinement order y given by the inverse inclusion. The approximation relation � from P to R
is given by

[p, q]� a⇐⇒ a ∈ [p, q].

Remark 12 P = (P,y) is a computable structure.
Example 3 Let X = (X, τ) be a T0 topological space. The relation from P = τ to A = X defined by

U � x⇐⇒ x ∈ τ , (∀U ∈ τ)(∀x ∈ X)

is an approximation relation .

Remark 13 It suffices to consider a topological base B for τ to obtain an approximation structure (B,⊇).

Proposition 8 Let X = (X, τ) be a T0 topological space. Then (τ ,�) is an approximation for X iff
(X, τ) is a T0-space.

Let (P,�) be an approximation for A.

Definition 28 (The specialization order). The relation on A defined by

a b⇐⇒ (∀p ∈ P )(p� a⇒ p� b)

is an approximation relation from A to A. Further, is a partial order and (A, ) is an approximation
for A relative to .

Proposition 9 Let X = (X, τ) be a T0 topological space and let be the specialization order on X. Then
is the discrete order (i.e. is =) iff X is a T1−space.

Proposition 10 Let P = (P ;≤,⊥) be a domain. Then the specialization order on P coincides with the
domain order ≤ .

Corollary 2 (Pc;≤) is an approximation for P relative to ≤ .

2.2.2.5 Domain Computable Algebras

Definition 29 A structured domain or Σ−domain for a signature Σ is structure

P = (P ;≤,⊥;x1, ..., xp,Ψ1, ...,Ψq)
such that

1. (P ;≤,⊥) is a domain;
2. each xi ∈ P, where P is given by Σ;
3. each Ψj is a continuous nj−ary operation on P, that is Ψj : Pnj → P is continuous, where Pnj is
given the product topology, and q and the arities nj are given by Σ.

Definition 30 A topological Σ−algebra A = (A; a1, ..., ap,σ1, ...,σq) is called domain representable by the
Σ−domain P = (P ;≤,⊥; â1, ..., âp, σ̂1, ..., σ̂q) if there is a Σ−substructure PA = (PA; â1, ..., âp, σ̂1, ..., σ̂q)of
P and a Σ−epimorphism vA : PA → A which is continuous with respect to the subspace topology of PA.

Definition 31 A domain representation of the representable topological Σ−algebra A is a triple (P,PA, vA)
as defined previous.

Proposition 11 Suppose that the topological Σ−algebras A and B are domain representable by the
Σ−domains P and Q respectively. Then the topological Σ−algebra A × B is domain representable by
the Σ−domain P ×Q.
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Proposition 12 Suppose that the topological Σ−algebra A is domain representable by the Σ−domain P .
Then

1. each topological subalgebra B of A is domain representable by P.

2. each continuous homomorphic image B of A is domain representable by P.

Let us consider a Σ−algebra A together with a family {≡n}n∈N of separating congruences on A.
Let (rn) be a sequence of strictly decreasing positive real numbers such that rn → 0. Then define an
ultrametric d on A by

d(x, y) =

�
0 if x = y
rn if x 9= y, where n is least s.t. x 9=n y

Similarly we define an ultrametric d̂ on Â = Lim←−− A / ≡n by

d(x, y) =

�
0 if x = y
rn if x 9= y, where n is least s.t. φ̂n(x) 9= φ̂n(y)

Proposition 13 Â is the ultrametric completion of A i.e. the following conditions holds:

1. Â is a complete ultrametric space.

2. The unique Σ−embedding θ : A→ Â is an isometry with respect to d and d̂.

3. θ[A] is dense in Â.

Theorem 4 Suppose A is an ultrametric Σ−algebra with non-expansive operations. Then there is a
complete ultrametric Σ−algebra Â with non-expansive operations, and a continuous Σ−embedding θ :
A → Â such that each x ∈ Â is the limit of some sequence (θ(an)) where (an) is a Cauchy sequence in
A. In particular, θ[A] is dense in Â.

Proof. We may without loss of topological generality assume that the ultrametric d on A is bounded.
Define a family of separating congruences {≡n}n∈N by

x ≡n y⇔ d(x, y) ≤ rn
where (rn) is a strictly decreasing sequence of positive real numbers such that rn → 0. Then we obtain
Â = Lim←−− A/ ≡n and the Σ−homomorphism θ : A → Â by the construction of the previous theorem.
To see that θ is continuous, just observe that the identity on A is a homeomorphism between (A, d) and
(A, d

3
) where d

3
is the ultrametric on A obtained from {≡n}n∈N. This observation also suffices for proving

that θ[A] is dense in Â.

Corollary 3 Each ultrametric Σ−algebra with non-expansive operations is domain representable.
.

2.3 Fundamental Structures in Functional Analysis
2.3.1 von Neumann Algebras

Let us fix H a complex Hilbert space and let B (H) be set of bounded linear operators on H.
Definition 32 A selfdual (or semipolar) cone S in the complex Hilbert space H is a subset satisfying the
property

{a ∈ H,∀σ ∈ S :< a,σ >≥ 0} = S.
S is then a closed,convex cone and H is the complexification of the real subspace

HΛ =: {a ∈ H :< a,σ >∈ R,∀σ ∈ S}
whose elements are called Λ-real : H = HΛ ⊕ iHΛ. Such S gives to a structure of ordered Hilbert
space on HΛ (denoted by ≤ ) and to an antiunitary involution Λ on H, which preserves S and HΛ :
Λ (a+ ib) =: a− ib for all a, b ∈ HΛ.
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Definition 33 An abstract C∗−algebra , denoted by B, is a complex Banach algebra with 1 ∈ A together
with an involution ∗ with the followings properties:

1∗ = 1, α∗∗ = α, (α+ β)∗ = α∗ + β∗,
(βα)∗ = α∗β∗, ||α|| =n α∗ n, ||αα∗|| =n α n2

Definition 34 An concrete C∗−algebra is an abstract algebra C∗−algebra B ⊆ B (H) on a fixed Hilbert
space H.

An abstract C∗−algebra is thus an abstract structure given by abstract axioms, ignoring the under-
lying Hilbert space.

Definition 35 The commutant of a subsetM of an abstract C∗−algebra B , denoted byM3, is the set

M3 = {α ∈ B;αμ = μα , for any μ ∈M}.
We can define alsoM33 the bicommutant ofM byM33 = (M3)3.

Remark 14 It can easily check that:
(i)M ⊆M33
(ii)The commutantM3 is an operator algebra which contains the identity operator 1 ∈ B (H) ; moreover
M3 is weakly-closed.

Definition 36 An abstract von Neumann algebra A is an abstract sub-C∗-algebra of an abstract C∗-
algebra with A = A33.
Definition 37 A concrete von Neumann algebra A is a C∗-algebra of operators A ⊂ B (H) with A = A33.
Again the difference between an abstract von Neumann algebra and a concrete one consists only in

ignoring the underlying Hilbert space and presenting it in an abstract, axiomatic manner.

Definition 38 (Special operators of an abstract von Neumann algebra) An operator α of a von Neumann
algebraM is called

• unitary if αα∗ = α∗α = 1.

• hermitian α = α∗

• projector if α is hermitian and α2 = α. We denote by ΠM the set of all projections ofM
• partial isometry if αα∗ is a projector
• symmetry if α is hermitian and unitary
• partial symmetry if α is hermitian and partial isometry

Proposition 14 (Properties for the special operators [KR 83])

• if α and β are projectors that commutes then αβ is a projector too.

• if α is a projector then β = 2α− 1 is a symmetry
• if α is a symmetry then β = 1/2.(α+ 1) is a projector

• if α is a projector then αα∗ is a projector called the initial projector and α∗α is a projector too,
called the final projector.

A crucial property of von Neumann algebras is that they are rich in projections (and thus in partial
isometries and partial symmetries).
Let us denote by ΠM the set of all projections of the von Neumann algebraM.

Proposition 15 ([KR 83])ΠM is a complete lattice inM.

Definition 39 A standard form (A,H,S,Λ) of the von Neumann algebra A (acting faithfully on the
Hilbert space H ) consists of a selfdual,closed, convex cone S in H, fulfilling the properties:
(i) ΛAΛ = A3
(ii) ΛαΛ = α∗,∀α ∈ C(A) =: A ∩A3 (the center of A );
(iii) Λσ = σ,∀σ ∈ S ;
(iv) αΛαΛ (S) ⊆ S,∀α ∈ A.
We will show in the Section 5 that a (non-symmetric) Dirichlet space can be associated to every

standard form of a von Neumann algebra.
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2.3.2 Dirichlet Forms
Dirichlet forms have the origin in the energy method used by Dirichlet to solve the Dirichlet problem
from the classical electrostatic. In the seminal papers, in 1959, Beurling and Deny [BD 59] set the study
of the Dirichlet forms, identifying a very important contraction property, called the Markov property.
The interest of studying Dirichlet forms has increased when the connection with the stochastic analysis
has been set up. In seventies, Fukushima and Silverstein set, in their papers (see [Fuk 80]), an explicit
connection with stochastic analysis. These papers offer a fruitful correspondence between the Dirichlet
forms and the symmetric Markov processes. In ’80s, the request for Markov processes study tools led
to extensions of the Fukushima result from the local spaces to infinite dimensional spaces. The most
general expression of relationships between Dirichlet spaces and stochastic analysis was done by Ma and
Rŏckner [MR 92]. In conclusion, the Dirichlet forms play a prominent role in different mathematical
fields as: stochastic, differential geometry, PDEs and they establish an effective connection among the
different applications. This fact is possible because the Dirichlet forms permit a netrivial development
of the stochastic analysis, under hypothesis of minimal regularity, for instance in very irregular spaces
without differential structure like fractals or path spaces.
Let X be a separable locally compact space and μ a Radon measure, strictly positive on X (i.e., μ

is a measure defined on the Borel σ−algebra B(X) of X, finite for the compact sets, strictly positive for
the nonempty open sets and supp(μ) = X ). We denote by L2(X,μ) the Hilbert space of all squared
integrable functions defined on X with real values, provided with the inner product: [u, v] :=

U
X uv dμ.

Let H be a real Hilbert space with the inner product (, ).

Definition 40 E is called symmetric form on H if the following conditions are satisfied:

(a)E:D[E]× D[E]→ R, where D[E] is a dens linear subspace of H,
(b)E (u, v) = E (v, u) ,E (u+ v,w) = E (u,w) + E (v,w) , aE (u, v) = E (au, v) ,
(c)E (u, u) ≥ 0;

for all u, v, w ∈ D[E ], a ∈ R. D[E] is called the domain of E .
If E is a symmetric form on H, for any α > 0, one can define a new symmetric form on H: Eα (u, v) =

E (u, v) + α (u, v) , u, v ∈ D[E], D[Eα] = D[E]. D[E ] is a pre-Hilbert space with the inner product Eα. Eα
and Eβ determine equivalent metrics on D[E] for different α,β > 0 .

Definition 41 If D[E] is complete w.r.t. Eα (α > 0), then E is closed, i.e., we have:

un ∈ D[E], E1 (un − um, un − um)→ 0, n,m→∞ =⇒
=⇒ ∃u ∈ D[E], E1 (un − u, un − u)→ 0, n→∞
If E (1) and E(2) are two symmetric forms, E(2) is an extension of E(1) if
D[E(1)] ⊂ D[E(2)] and E (1) = E(2) on D[E(1)]× D[E(1)].
In the following, the Hilbert space, H, will be L2(X,μ).

Definition 42 A symmetric form E on L2(X,μ) is called Markovian it satisfies the following condition:

(PM)For all ε > 0 , there exists a real function ϕε such that
(i)ϕε(t) = t,∀t ∈ [0, 1], −ε ≤ ϕε(t) ≤ 1 + ε, ∀t ∈ R , and 0 ≤ ϕε(t

3)− ϕε(t) ≤ t3 − t if t < t3,
(ii)u ∈ D[E ]⇒ ϕε(u) ∈ D[E ], E(ϕε(u),ϕε(u)) ≤ E(u, u).

Definition 43 If E is a symmetric form on L2(X,μ), then the unit contraction (resp. the normal
contraction) operates on E if the condition (UC) (resp. (NC)) holds:

(UC) u ∈ D[E ],v = (0 ∨ u) ∧ 1⇒ v ∈ D[E], E(v, v) ≤ E(u, u);
(NC) u ∈ D[E], v is a normal contraction of u⇒ v ∈ D[E], E(v, v) ≤ E(u, u).
A function v is called normal contraction of a function u if

|v(x)| ≤ |u(x)|∀x ∈ X; |v(x)− v(y)| ≤ |u(x)− u(y)|∀x, y ∈ X.
Remark 15 (NC)⇒ (UC)⇒ (PM).

These conditions are equivalent if the symmetric form E is closed [Fuk 80].
Sometimes it is convenient to denote D[E] by F and the symmetric form by (E,F).
A nonnegative closed symmetric form (E ,F) on L2(X,μ) is called Dirichlet form (or Dirichlet space

relative to L2(X,μ) ) if it is Markovian.
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Definition 44 A family (Pt)t>0 of linear operators on B with D(Pi) = B for all t > 0 is called a strongly
continuous contraction semigroup (on B) if

1. PtPs = Pt+s for all t, s > 0 (semigroup property)

2. Pt is a contraction on B for all t > 0

3. limt→ Ptu = u for all u ∈ B (strong continuity)

( ⇔ t :−→ Ptu is continuous on [0,∞) for all u ∈ B, with P0 = IdB).
Given a strongly continuous contraction semigroup on B (Pt)t>0, the linear operator (L,D(L)) on B

defined by

D(L) = {u ∈ B/ lim
t↓0

1

t
(Ptu− u)exists},

Lu =lim
t↓0

1

t
(Ptu− u), u ∈ D(L)

is called the infinitesimal-generator of (Pt)t>0.
The resolvent V = (Gα)α>0 associated to the semigroup (Pt)t>0 is

Gαf(x) =

] ∞
0

e−αtPtf(x)dt,∀f ∈ L2(X,μ), x ∈ X

Definition 45 A bounded linear operator S on L2(X;μ) is called Markovian if 0 ≤ Su ≤ 1 μ − a.e.
whenever u ∈ L2(X,μ), 0 ≤ u ≤ 1 μ-a.e.

Remark 16 Using some functional analysis results we can take −L, being the unique selfadjoint operator,
positively defined which corresponds to the Dirichlet form (E,F). The Hille-Yosida-Philips theorem implies
the existence of the semigroup (Pt)t>0 = (etL)t>0 and the resolvent (Gα)α>0 = (αI − L)−1α>0 associated
to L ≤ 0

The Markov property of a Dirichlet form can be characterized in terms of semigroup and resolvent
(so in terms of a Markov process) by the following result:

Theorem 5 (Fuk 80) Let E be a closed symmetric form on L2(X;μ). Let {Tt, t > 0} and {Gα,α > 0}
be the strongly continuous resolvent on L2(X;μ) which are associated with E .Then the next five conditions
are equivalent to each other:

(a) Tt is Markovian for each t > 0.
(b) αGα is Markovian for each α > 0.
(c) E is Markovian
(d) The unit contraction operates on E.
(e) Every normal contractions operates on E.
A semigroup (resp.a resolvent ) on L2(X;μ) satisfying conditions (a),(resp.(b)) is called a Markovian

semigroup (resp. a Markovian resolvent).
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Chapter 3 Logical and Computational Models
3.1 Hilbert Machines

The Hilbert machines are an attempt of reasoning with quantitative statements. Intuitively, they are
mathematical machines whose symbols are interpreted as vectors in some vector space. As a consequence,
their transition functions must be compatible with the algebraic structure of data space, i.e. they are linear
operators. Moreover, in order to treat the issue of similarity, the data space is enriched with a compatible
topology, yielding continuous transition functions. A well-known result from analysis characterizes the
continuity of linear operators in terms of boundness of their norm. Thus it is natural to consider a
topology on the data space generated by a Hilbertian structure. In this way we get bonus a kind of
”expansion” factor associated to each transition function: its norm.

Definition 46 A linear machine is a structure (I,O,Q, T ) where

• I is the input vector space
• O is the output vector space
• Q is the state vector space
• T is linear transition map defined by

T =

�
T1 T2
T3 T4

�
: Q× I → Q×O

with T1 : Q→ Q, T2 : Q→ O, T3 : I → Q , T4 : I → O.

Definition 47 The execution of a linear machine at the ’moment’ k on the input vector ik at the vector
state qk consists in the state vector qk+1 and the output vector ok+1 defined by the linear equations
qk+1 = T1qk + T3ik , ok+1 = T2qk + T4ik

Remark 17 If we consider a ’continuous’ time in the previous definition, e.g. the interval (0, 1), we
obtain the very important concept of semigroup of operators (although in the particular case when all the
semigroup components are the same) as defining a continuous sequential evolution (a line in the language
of Petri nets processes) of a linear machine.

Definition 48 A concrete Hilbert machine is a linear machine defined on a concrete Hilbert space and
a concrete continuous operator on this space.

Example 4 We highly recommend the papers [Wik 98] and [Wik 96] for detailed examples of Hilbert
machines, which include familiar computer science concepts like the classical finite automata, neural
networks, quantum computation and linear logic.

Definition 49 An abstract Hilbert machine is given by an element of a von Neumann algebra A.

.

3.2 The Weak Commutative Linear Logic ( WCLL )

We use the weak commutative linear logic as formulated by M.C. Abrusci in [Abr 9].
The sequent calculus
c Γ, A
c A,Γ (Cyclic Exchange)

Basic Rules

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Identity

A⇒ A
(id)

Cut
Γ⇒ ∆1, A,∆2 , Γ1, A,Γ2 ⇒ ∆

Γ Γ1,Γ2 ⇒ ∆1,∆,∆2 (cut)

⎧⎪⎪⎨⎪⎪⎩
∆1=Γ2=∅ or
∆2=Γ1=∅ or
Γ1=Γ2=∅ or
∆1=∆2=∅
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( )⊥ Rules
A,Γ⇒ ∆
Γ⇒ A⊥,∆

(⊥( ), R),
Γ⇒ ∆, A
Γ,A⊥ ⇒ ∆(

⊥( ), L).

⊥( ) Rules
Γ, A⇒ ∆
Γ⇒ ∆,⊥A(

⊥( ), R),
Γ⇒ A,∆
⊥A,Γ⇒ ∆(

⊥( ), L).

1−Rules ⇒ 1
(1, R),

Γ1,Γ2 ⇒ ∆
Γ1, 1,Γ2 ⇒ ∆(1, L).

T −Rule
Γ⇒ ∆1, T,∆2 (T )

⊗−Rules

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ1 ⇒ ∆1, A,∆2 , Γ2 ⇒ ∆3, B,∆4
Γ1,Γ2 ⇒ ∆3,∆1, A⊗B,∆4,∆2 (⊗, R)

⎧⎨⎩ ∆3=Γ2=∅ or
∆2=Γ1=∅ or
∆3=∆2=∅

Γ1, A,B,Γ2 ⇒ ∆
Γ1, A⊗B,Γ2 ⇒ ∆(⊗, L)

||−Rules

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ⇒ ∆1, A,B,∆2
Γ⇒ ∆1, A||B,∆2 (||,R)

Γ1, A,Γ2 ⇒ ∆1 , Γ3, B,Γ4 ⇒ ∆2
Γ3,Γ1, A||B,Γ4,Γ2 ⇒ ∆1,∆2 (cut)

⎧⎨⎩ ∆1=Γ2=∅ or
∆2=Γ3=∅ or
Γ3=Γ2=∅ or

&−Rules

⎧⎪⎨⎪⎩
Γ⇒ ∆1, A,∆2 Γ⇒ ∆1, B,∆2

Γ⇒ ∆1, A&B,∆2 (&, R)

Γ1, A,Γ2 ⇒ ∆
Γ1,A&B,Γ2 ⇒ ∆(&, L1)

Γ1, B,Γ2 ⇒ ∆
Γ1, A&B,Γ2 ⇒ ∆(&, L2)

⊕−Rules

⎧⎪⎨⎪⎩
Γ⇒ ∆1, A,∆2

Γ⇒ ∆1, A⊕B,∆2 (⊕, R1)
Γ⇒ ∆1,B,∆2

Γ⇒ ∆1, A⊕B,∆2 (⊕, R2)
Γ1, A,Γ2 ⇒ ∆ ,Γ1, B,Γ2 ⇒ ∆

Γ1, A⊕B,Γ2 ⇒ ∆ (⊕, L)

Definition 50 A weak commutative phase space

< P, ◦, 1,⊥ >
is a noncommutative monoid < P, ◦, 1 > ( whose elements are called phases) provided with a cyclic set
⊥⊂ P i.e.

a ◦ b ∈⊥ iff b ◦ a ∈⊥
of elements called antiphases.

Definition 51 We define the binary operations on the sets of phases P(P ) (the power set of P )
Composition A ◦B =: {a ◦ b | a ∈ A and b ∈ B},
Linear Postimplication A B =: {b | ∀a ∈ A b ◦ a ∈ B},
Linear Retroimplication B A =: {b | ∀a ∈ A a ◦ b ∈ B},
Intersection A ∩B =: {a | a ∈ A and a ∈ B},
Union A ∪B =: {a | a ∈ A or a ∈ B},

Proposition 16 < P(P ), ◦, 1 > is also an weak commutative phase space.
We are particularly interested in non-commutative linear logic as a logical framework for studying the

quantitative and continuous computation. Following the Wiclicky’s previously cited papers, we quickly
recall how we can encode the formulas of a computational logic as vectors in a Hilbert space. We start,
as usual, with a fixed set of predicates (the ’qualities’) Su and consider the formulas F, in the disjunctive
normal form, constructed over the qualities: F = F1 ∨ F2 ∨ ... ∨ Fa with Fj = Pu1 ∧ Pu2 ∧ ... ∧ Pub . This
formula will be encoded as a set of vectors sets V = {v1, ..., va}, each vector set vj = (vu1 , vu2 , ..., vub)
representing the formula Fj , where each vu is 1 whenever the predicate Pu is true and 0 otherwise. In
the case of linear logic, each ’resource’ Pu comes with a multiplicity (i.e. the counting of available copies
of a some resource) which can be considered a real number (with the negative sign meaning a debt of a
resource). Based on this encoding of formulas, a linear proof can be represented as continuous operator
(or a pair of continuous operators in Girard’s Geometry of Interaction [Gir 88]-[22]) on a Hilbert space,
i.e. as a Hilbert machine.
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3.3 Local Dirichlet Spaces

Definition 52 A local Dirichlet space (Beurling, Deny [BD 9]) is a Hilbert Space (H,<>) lattice ordered
by a linear order ≤ in a compatible manner, i.e. the order duality implies the Hilbertian duality s ∧ t =
0⇒ ks, tl = 0. We denote by H+ the set of non-negative elements of H.

Important Examples: l2 and L2

Define the temporal moments set T as a total ordered set, . Let S be the set of real values indexed
by time

s = {s(t) , t ∈ T}⇔ s : T → R.

such that Es =
U
t∈T

s2(t)dm(t) < ∞, where T is a locally compact separable Hausdorff space (complicate
definition for a set of times; in practice T will be a very simple value set) m is Radon measure on T
(which will be degenerated in the most examples). (S , <>) is a Hilbert space under the definition

< s, s
3
>=:

]
t∈T

s(t)s
3
(t)dt

The space L2[a, b] is defined as the space S with T = [a, b] for a, b ∈ R. The space l2 is defined as the
space S with T = N . We term signals the elements of this space. Note that l2 and L2 are Hilbertian
the same, but they are very different as ordered structures (Birkhoff [Bir 9]). We can easily see that l2

is a discrete lattice, whilst L2 has a continuous order.
Define the temporal moments set T as a total ordered set with ti the minimal element and tf the

maximal element.

Definition 53 A signal is a family of real values indexed by time s = {s(t) , t ∈ T} ⇔ s : T → R with
finite energy Es =

U
t∈T

s2(t)dt < ∞.

We shall note by S the set of all the signals. (S , <>) is a Hilbert space under the definition

< s, s
3
>=:

]
t∈T

s(t)s
3
(t)dt

and a local Dirichlet space under pointwise order (s ≤ s3 ⇔ st ≤ s3t,∀t ∈ T ).
Definition 54 A discrete signal is a signal s = {s(n) , n ∈ N} ⇔ s : N → R for which T = N. In this

case Es =
∞S
n=1

s2(n) < ∞. We denote by DS the set of all the signals. (DS ,<>) is a local Dirichlet space

with the inner product having the expression < s, s
3
>=:

∞S
n=1

s(n)s
3
(n)dt .

Definition 55 A continuous signal is a signal for which T = [0, 1] : s : [0, 1] → R. In this case Es =
∫10 s2(t)dt.
Definition 56 A couple of interaction generators is a pair (∂, δ) of partial isometries such that

∂∗∂ = δδ∗ = 1

∂∂∗ + δδ∗ = 1

Remark 18 Each of ∂∂∗, δδ∗ is a projector. In the case of C∗-algebras only, as considered by J.Y.
Girard and H. Wiklicky, there are possible situations when 1 and 0 are the only projections, so there are
no interaction generators. This is an important reason to consider more well-behaved C∗-algebras like
the von Neumann algebras, which are rich in projections, so in interaction generators too.

T D C
Being more intuitive, we detail the DS space.

Example 5 Let en(m) =
�
1 ,m = n
0 ,m 9= n and s =:

∞S
n=1

s(n)e(n) = (s1, s2, ...),
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t =:
∞S
n=1

t(n)e(n) = (t1, t2, ...) be discrete signals. Define operators ∂ and δ by

∂ (s) =:
∞S
n=1

s(n)e(2n) , δ (s) =:
∞S
n=1

s(n)e(2n+1)

Then
∂∗ (s) =:

∞S
n=1

s(2n)e(n) δ∗ (s) =:
∞S
n=1

s(2n+1)e(n)

Thus ∂∂∗(s) = (0, s2, 0, s4, 0, ...), δδ∗(t) = (t1, 0, t3, 0, ...), ∂∂∗s+ δδ∗t = (t1, s2, t3, s4, ...)
In order to obtain a connection with the weak commutative linear logic, we define a model of a weak

commutative phase space in a local Dirichlet space. For this, we define the set of phases P as the set of
all partial isometries on a fixed Hilbert space H and ⊥P as the set of all nilpotent operators.
Definition 57 We define the dualisation relation

α ⊥P β ⇔ αβ is nilpotent⇔ α = β⊥ ⇔ α⊥ = β

Definition 58 We define

A⊗B =: {∂α∂∗ + δβδ∗ | α ∈ A and β ∈ B}⊥⊥
!A =: {1⊗ α | α ∈ A}⊥⊥
A B =: (A⊗B⊥)⊥
A||B =: (A⊥ ⊗B⊥)⊥
A&B =: {α | α ∈ A and α ∈ B}⊥⊥ = A ∩B
A⊕B =: {a | α ∈ A or α ∈ B}⊥⊥ = (A ∪B)⊥⊥
A⇒ B =: (!A) B

We can formulate the main result of this section.

Theorem 6 For every abstract von Neumann algebra we can associate a local Dirichlet space.

Remark 19 The relevance of this result is that we can use the Hilbert machines as a computational
model and the weak commutative linear logic as a logical framework for all the models of local Dirichlet
spaces.

Proof. The proof is a particular combination of the general results exposed in [BB 01], [Ito 9], [7] and
[14]. But the construction requires some pieces of an algebraic theory, exposed briefly in the next section.
.
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3.4 Linear Logic Theory of Systems
Let ∂ and δ be two operators which satisfy (P1) and (P2).

Definition 59 An abstract continuous system ( ACS for short ) is a pair Σ = (σ,ω), where σ and ω are
operators in some matrix algebraM2m+n(B(H)) and

1. σ is a partial isometry, the coefficients σi,j being weakly nilpotent ( i.e. the sequence (σni,j) converges
weakly to 0)

2. ω is the partial symmetry exchanging indices 1 and 2, 3 and 4,...,2m− 1 and 2m.

ω =

�
ω2i,2i−1 = ω2i−1,2i = 1 , i ∈ [m]
0 , otherwise

(3.1)

(ω is hermitian and satisfies ω3 = ω).

Definition 60 The abstract continuous process ( acp for short ) ACP (Σ) associated to the ACS Σ =
(σ,ω) is defined by

ACP (Σ) = (1− ω2).σ.(1− ωσ)−1.(1− ω2) (3.2)

Remark 20 Let θ = 1− ω2. Then θ is a projector.

Definition 61 For any acp ACP (Σ) , Σ = (σ,ω), we define its execution

RUN(Σ) = σ.(1− ωσ)−1 (3.3)

Remark 21 We have ACP (Σ) = θ.RUN(Σ).θ. Thus RUN(Σ) memorizes the computation steps. For
instance, if σ

3
= RUN(Σ), then

σ
3
.(1− ωσ) = σ⇔ σ

3
= σ + σ

3
ωσ

and in the same way, σ
3
= σ + σωσ

3
(so σ

3
ωσ = σωσ

3
). From this we get σ

3
= σ.(1 + ωσ

3
), hence

σ = σ
3
.(1 + ωσ

3
)−1 = (1 + ωσ

3
)−1.σ

3

This shows that RUN(Σ) keeps the memory of σ, etc. The expression θ.(...).θ extracts the result and
therefore it is not the computation, but something like displaying the result somewhere. Hence the running
of a acp is represented by the operator RUN(Σ).

Proposition 17 The formula for acp always makes sense.

Proof. The partial isometries (1− ω2)σ(ωσ)n(1− ω2) , (1− ω2)σ(ωσ)m(1− ω2) have disjoint domains

and codomains for n 9= m and therefore the sum of all the (1− ω2)σ(ωσ)n(1− ω2) makes sense in terms
of weak or strong convergence.

Definition 62 An acp ACP (Σ) , Σ = (σ,ω), is called deadlock-free if ωσ is weakly nilpotent.

The interpretation of the sequent c [∆],Γ will be an ACS Σ = (σ,ω).
Proposition 18 If the ACS (σ,ω) is the interpretation of the sequent c [∆],Γ then ωσ is nilpotent and
it acp is a partial symmetry.

Proposition 19 The ACS Σ
3
= (σ,ω+ρ) is deadlock-free iff the ACSs Σ = (σ,ω) and Σ

33
= (ACP (Σ),ρ)

are deadlock-free. In that case

ACP (Σ
3
) = ACP (ACP (Σ),ρ) = ACP (Σ

33
) (3.4)

Proof. : We shall consider the basic cases of cuts. Consider the following context:
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σ3 σ
33

c A,Γ c A⊥,∆
c [A] ,Γ,∆

a cut between two sequents, each of them being proved in a cut-free way; we shall assume that the last
rules (R3) and

�
R
33
�
applied to σ

3
and σ

3
are (up to exchange) logical rules for A to A⊥. In that case,

we have a way to replace the cut by other ones, and this process is the basic part of Gentzen’s proof. If
we denote by τ the proof obtained by this acp, our goal is to relate ACP (σ,ω) with ACP (τ , () where (
the partial symmetry expressing the new cuts of τ . We consider 6 cases:
I. A = B ⊗ C, so that A⊥ = B⊥nC⊥. Hence (up to exchanges, that we once for all ignore), σ3comes

from proofs σ1and σ2 of sequents c B⊥,Γ1and c C,Γ2, (with Γ = Γ1,Γ2) by means of a ⊗-rule, whereas
σ33 comes from a proof σ3 of c B⊥, C⊥,∆, by a ||-rule. τ is defined by making a cut between σ1and
σ3 which yields σ0, proof of c B⊥, C⊥,Γ1,∆, and a second cut between σ2 and σ0 yields a proof τ of
c [B,C] ,Γ,∆.
Example 6 To see what happens, we shall assume that Γ1,Γ2 and ∆ all consist of one formula ,
so that we can write a matrix, which is much more visual than indices : the matricesσ1,σ2 and σ3
(2× 2, 2× 2, 3× 3) are given : ⎛⎝ α β β1 γ1 γ2 α3 β3

γ α1 α2 β2 γ3 α4 β4
0 0 0 0 α5 β5 γ5

⎞⎠
Now σ is 5× 5 :⎛⎜⎜⎜⎜⎝

∂α∂∗ + δβ1δ
∗ 0 ∂β δγ1 0

0 ∂γ2∂
∗ + ∂α3δ

∗ + δγ3∂
∗ + δα4δ

∗ 0 0 ∂β3 + δβ4
γ∂∗ 0 α1 0 0
δ∂∗ 0 0 β2 0
0 α5∂

∗ + β5δ
∗ 0 0 γ5

⎞⎟⎟⎟⎟⎠
whereas Ξ∗ is 7× 7 : ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 0 0 0 β 0 0
0 γ2 0 α3 0 0 β3
0 0 β1 0 0 γ1 0
0 γ3 0 α4 0 0 β4
γ 0 0 0 α1 0 0
0 0 α2 0 0 β2 0
0 α5 0 β5 0 0 γ5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Moreover, whereas ω exchanges 1 with 2, ( exchanges 1 with 2, and 3 with 4. Define an isomorphism

ψ from M7 (B (H)) into M5 (B (H)) by contracting indices 1, 3 into 1 and indices 2, 4 into 2 by means of
∂, δ in both cases, the indices 5, 6, 7 being renamed 3, 4, 5; then,

ψ (τ) = σ, ψ (r) = ω (∂∂∗ + δδ∗).

So, ωσ = ω (∂∂• + δδ•)σ is nilpotent⇔ (τ is nilpotent and ACP (σ,ω) = ψ (ACP (τ ,()) . If we restrict
our attention to the last 3× 3 squares of both matrices, since ψ is identical on this square. We can say
that ACP (τ , () = ACP (τ ,ω) .

II. A = ∀αB such that A⊥ = ∃αB⊥. This means that σ3 is obtained from a proof σ1 of c B,Γ by
means of ∀-rule (so α is not free in Γ), whereas σ33 is obtained from a proof σ2 of c B⊥

�
C
α

�
,Γ then a

cut σ2 yields a proof τ of c B⊥
�
C
α

�
,∆ means ∃-rule ; in that case, σ3• = σ1,σ

33• = σ2. τ is defined as
follows : we first form σ3, proof of c B

�
C
α

�
,Γ, then a cut with σ2 yields a proof τ of c

�
B
�
C
α

��
,Γ,∆.

Now there is a change in the size of matrices involved and α = ( ; moreover , by induction we can show
that σ3 = σ1, hence ACP (σ,ω) exists if ACP (τ , () does, in that case that they are equal.
III. A =!B, such that A⊥ =?B⊥ Then σ3 comes from a proof σ1of c A,Γ (whith Γ =?Γ1) by means

of a !-rule. Assume moreover that (R33) is the contraction rule, so that σ33 comes from a proof σ2 of
c?B⊥, ?B⊥,∆τ is obtained by first making a cut between σ1 and σ2, so to get rid of first occurrence of
?B⊥, yielding thus a proof σ3 of c [!B] , ?B⊥,Γ,∆ ,then another cut between σ1 and σ3, yields a proof
σ0 of c [!B, !B] ,Γ,Γ,∆. Finally, a sequence of contraction yields a proof τ of c [!B, !B] ,Γ,∆. In fact
the formula holds only when Γ is empty.
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Example 7 To see what happens, let us assume that Γ is empty and that ∆ consists of exactly one
formula, so that we can use a matriceal representation: by hypothesis σ1 as 1×1 matrix, and σ2 is 3×3 :⎛⎝ α β γ α1

0 β1 γ1 α2
0 β2 γ2 α3

⎞⎠
and σ1 is therefore ⎛⎝ γ3 ⊗ α 0 0

0 ∂3βδ3∗ + ∂3γδ3∗ + δ3β1∂3∗ + δ3γ1δ
3∗ ∂3α1 + δ3α2

0 β2∂
3∗ + γ2δ

3∗ α3

⎞⎠
with ∂3 = ∂ ⊗ γ3, δ

3 = δ ⊗ γ3. On the other hand

τo =

⎛⎜⎜⎜⎜⎝
γ3 ⊗ α 0 0 0 0
0 β 0 γ α1
0 0 0 γ3 ⊗ α 0
0 β1 0 γ1 α2
0 β2 0 γ2 α3

⎞⎟⎟⎟⎟⎠
Consider the isomorphism ψ from M5 (B (H)) to M3 (B (H)) described informally as follows: the

index 5 is renamed 3,and the indices 1,3 and 2,4 are respectively contracted into 1 and 2, by means of ∂3

and δ3. By a direct calculation we obtain

ψ (r) = ω
�
∂3∂3∗ + δ3δ3∗

�
Now ψ (τ) is almost σ; the only difference lies in its first diagonal coefficient, which is

�
∂3∂3• + δ3δ3•

�⊗α.
We have

ωσ is nilpotent ⇔ (1⊗ α)× �∂3β∂3B + ∂3γδ3∗ + δ3β1∂
3∗ + δ3γ1δ

3∗� is nilpotent
⇔ (1⊗ α)× �∂3β∂3∗ + ∂3γδ3∗ + δ3β1∂

3∗ + δ3γ1δ
3∗� is nilpotent

and therefore ω
�
∂3∂ + δ3δ

�
ψ (τ) is nilpotent. So, in case of nilpotency, it follows

ACP (σ,ω) = ACP (ψ (τ) ,ω
�
∂3∂ + δ3δ

�
) ,

so
ACP (σ,ω) = ψ(ACP (τ , ()) ,

but if we restrict to the last 2× 2 squares on which ψ is identical we obtain

ACP (σ,ω) = ACP (τ ,()

IV. As in III, but assume that σ3 comes by dereliction from a proof σ2 of c B⊥,∆ ; in that case, σ
is defined as the result of cutting σ1 with σ2 , so that to get a proof of c [B] ,Γ,∆ .Here again we shall
work with the extra hypothesis that Γ is empty ,and illustrate the proof in the particular case were ∆
consists of a formula.

Example 8 Assume that σ1 and σ2 are respectively�
α β γ
0 α1 β1

�
Then σ is ⎛⎝ γ3 ⊗ α 0 0

0 ∂β∂∗ ∂γ
0 α1∂

∗ β1

⎞⎠
whereas τ is
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⎛⎝ α 0 0
0 β γ
0 α1 β1

⎞⎠
and

ω = ( .

The nilpotency of (τ means that βα is nilpotent.. On the other hand, using the fact that ∂∗ (1⊗ α) = α∂∗,
the nilpotency of σ is the same as the nilpotency of (∂β∂∗) (1⊗ α) = ∂βα∂∗. Since ∂(βα)∂∗ is nilpotent,
(τ and ωσ are simultaneously nilpotent. If one of them is nilpotent, then the unique coefficient of
ACP (σ, () is β1 + α1αγ

∗ + α1αβαγ
∗ + α1αβαβαγ

∗ + ... , whereas the unique coefficient of ACP (σ,ω)
is β1 + α1∂

∗(1 ⊗ α)∂γ∗+α1∂∗(1 ⊗ α)∂β∂∗(1 ⊗ α)∂γ∗ + ... which is equal, using ∂(1 ⊗ α)∂ = α , to
β1 + α1αγ

∗ + α1αβαγ
∗ + ... , i.e., once more ACP (τ , () = ACP (σ,ω) .

V. As in IV, but σ33 is obtained from a proof σ2 of c ∆ by means of a weakening. τ is defined
as follows :since all formulas of Γ begin with ?, simply apply weakening to σ2 , to get a cut -free proof
c Γ,∆. Here again we shall assume that Γ is empty and that ∆ consists of one formula. Hence σ1 and τ
have both dimensions 1, and ( = 0 .

Example 9 Let α and β be their respective coefficients. Then τ is 1× 1 matrix consisting of β, whereas
σ is 3× 3 : ⎛⎝ α 0 0

0 0 0
0 0 β

⎞⎠
Then σωσ hence if we ignore the first two rows /columns , ACP (σ,ω) is equal to β, hence to τ ;

but since ( = 0 ,
ACP (τ , () = τ ,

and the property holds in that case too.
VI. Another case: Consider a proof σ of c [!B] ,∆, !C ending with a cut between c!B (proved by

σ3,which comes from a proof σ1of c B by a !-rule) and c?B⊥, ?∆, !C (proved by σ33, which comes from a
proof σ2 of c?B⊥, ?∆, Cby !-rule). Here τ is usual defined as the result of first cutting σ3 with σ2 so that
to get a proof σ3 of c [!B] , ?∆, C to which !-rule is then applied so that to get a proof τ of c [!B] ,∆, C
to which a !-rule is then applied so that to get a proof τ of c [!B] ,∆, !C.
Example 10 We shall assume that ∆ consists of one formula, so that we start with the following matrices
for σ1 and σ2 : ⎛⎝ α3 β γ α

0 β1 γ1 α1
0 β2 γ2 α2

⎞⎠
so that σ is : ⎛⎜⎜⎝

1⊗ α3 0 0 0
0 1⊗ β 1⊗ γ 1⊗ α
0 1⊗ β1 1⊗ γ1 1⊗ α1
0 1⊗ β2 1⊗ γ2 γ2 ⊗ α2

⎞⎟⎟⎠
and τ is : ⎛⎜⎜⎝

1⊗ 1⊗ α3 0 0 0
0 1⊗ β 1⊗ γ 1⊗ α1
0 1⊗ β1 1⊗ γ1 1⊗ α2
0 1⊗ β2 1⊗ γ2 1⊗ α3

⎞⎟⎟⎠
moreover, ω = ( and σ = τ .

Remark 22 If (σ,ω) is the interpretation of a proof σ a sequent c [∆] ,Γ, then ωσ is nilpotent.

Remark 23 If Γ does not use the symbol ”?” or ”∃”,and τ is cut-free proof of c Γ obtained from σ by
using standard Gentzen reduction steps in any order, then ACP (σ,ω) = τ .
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Of course this makes sense with the abuse consisting in removing from ACP (σ,ω) the rows/columns
corresponding to ∆, which are filled with null coefficients.

Proposition 20 The following assertions are equivalent:

i) σ is weakly nilpotent
ii)1− σ has an inverse among DDPU (Densely Defined Preclosed Unbounded) operators
iii)1− σ has an left inverse among DDPU operators
iv)1− σ has an right inverse among DDPU operators

Proof. .
i)⇒ ii)We construct τ = 1 + σ + σ2 + ...+ σn−1, where n is the order of nilpotency of σ. It follows

that τ(1− σ) = (1− σ)τ = 1.
ii)⇒ iii) and ii)⇒ iv) are easy to show.
iv)⇒ i) We have τ(1− σ) = 1 with an operator τ defined every where. We assume the existence of

an enumeration
m̈1, ..., m̈k, ...with σn(m̈n) 9= 0.

By 20,vi) we can choose m̈1, ..., m̈k, ... pairwise distinct, so that we can form the vector x =
S
(1/n)m̈n;

then
τ(x)− τ(σn(x)) = x+ σ(x) + ...+ σn−1(x)

The right hand side is a sum of atomic messages with coefficients of the form 1/k. For k < n, 1/k
occurs at least k times, which shows that the square of this expression is at least (1 + 1

2 + ... +
1

n−1),

hence can be made as big as desired. But ||τ(x)− τ(σn(x))|| ≤ 2π||τ ||√
6
. Contradiction! This means that

there is an integer k such that σk(m̈) = 0 for all atomic message m̈. But then σk(x) = 0 in the linear
span of atomic messages, and by continuity everywhere, so σk = 0.
iii)⇒ i)applying the previous implication to σ∗ yields σ∗ nilpotent, hence σ is nilpotent.

Proposition 21 If σ and ω are weak observable. The following assertions are equivalent:

i) σσ
3
is weakly nilpotent

ii)σ
3
σ is weakly nilpotent

iii)the operators equation σ
3
= σ + σ

3
ωσ has a DDPU solution σ

3

iv)the operators equation σ
3
= σ + σωσ

3
has a DDPU solution σ

3

v)the operators equation σ
3
= σ + σ

3
ωσ = σ + σωσ

3
has a DDPU solution σ

3

Proof. i) ⇒ v) the sequence < σk(x), x > converges to 0 by hypothesis, but if σn(x) = x, we get a
contradiction by considering the integers k = n.

v) ⇒ ii) since ker(1 − σ) = {x,σ(x) − x = 0} = {0}, 1 − σ is injective. If D is the range of 1 − σ,
one can define an unbounded operator τ on D, provided τ(1− σ) is 1 ,whereas (1− σ)τ is the identity
on D. The conclusion is immediate if we prove the closure of (1 − σ)τ will be1. That results if we
prove that D is dense, and that τ is preclosed. Consider, when x ∈ H, the vectors xn =: σn(x) and
xn =:

(x1 + x2 + ...+ xn)

n
, (∀n ∈ N∗). If we set yn := nx0 + (n− 1)x1 + ...+ xn−1

n
, (∀n ∈ N∗). Then

(1− σ)(yn) = x− xn, hence the vectors x− xn belongs to D. In the particular case x = m̈, then the m̈n

are either atomic messages or 0, pairwise orthogonal. So the norm of m̈n is at most
1√
n
, and the points

m̈− m̈n of D can be chosen as close as desired from m̈. So the closure of D contains all atomic messages,
and so D is dense in H. It remains to show that τ is closed, which is true since its graph is obtained
from the graph of the continuous 1− σ by means of usual operation.

ii)⇒ iii), ii)⇒ iv) are left to the reader.

iv) ⇒ vi) let τ be a left inverse for 1 − σ, τ(1 − σ) = 1 holds on a dense vector space. τ can be
assumed to be closed , and the equation must hold on the hole of H Let x be any vector of H; then
τ(x− σ(x)) = x, hence τ(x) = x+ τ(σ(x)).
This yields more generally

τ(x)− τ(σk(x)) = x+ σ(x) + ...+ σk−1(x). (*)
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Now assume that σn(m̈) = m̈ with n > 0, and let k = np, x = m. The left hand of (*) is null , the right
hand side has a norm equal to p

√
n, so cannot be null,contradiction.

iii) ⇒ vi) apply the previous case to 1 − σ∗, and conclude that σ∗n(m̈) = m̈ is impossible. But
from σn(m̈) = m̈, it follows that m̈ is in the domain of σn, hence σ∗nσn(m̈) = m̈, and so σ∗n(m̈) = m̈,
contradiction.

vi)⇒ i) let x, y ∈ H (that we take of norm 1, to simplify matters). There exists a weak message M
with the property

||M(x)|| < ε , ||M(y)|| < ε,

where ε is given in advance, and such that 1−M is finite sum of atomic messages. Hypothesis vi) shows
that for a sufficiently great n, we have

(1−M)σn(1−M) = 0
Let us compute <σn(x), y >=< σn((1−M)(x)), (1−M)(y) > + < σn((1−M)(x)),M(y) >
+ < σn(M(x)), (1−M)(y) > + < σn(M(x),M(y) >
But

< σn((1−M)(x), (1−M)(y) >=< (1−M)σn(1−M)(x),M(y) >= 0,
and, using the Cauchy-Schwarz inequality and the isometric character of σn,M,
1−M , we obtain a majorisation |< σn(x), y >| < ε+ ε+ ε2. This shows that < σn(x), y > converges to
0.

Theorem 7 If σ is a weak observable, the following are equivalent:

i) σ is nilpotent
ii)1− σ has an inverse in B(H)
iii)1− σ has a right inverse in B(H)
iv)1− σ has a left inverse in B(H)

Proof.
i) ⇒ ii) We have < (σω)n(σx),ω∗(y) >=< ω(σω)n(σx), y >=< (σω)n+1(x), y >, therefore <

(σω)n+1(x), y > converges to 0.

ii)⇒ i) results from the previous implication by interchanging ω and σ.

ii) ⇒ v) from the proposition 20 results that the operator equation τ(1 − ωσ) = (1 − ωσ)τ = 1
has a solution τ which can be assumed closed and therefore the operator equation τ(1− ωσ) = x holds
everywhere. Consider the substitution: σ

3
=: στ . Hence σ

3
(x − ωσ(x)) = σ(x) and for x in the domain

D of ρ σ3(x) = σ(x)+σ
3
ωσ(x). If ωσ(x) is defined then x = (x+ y)−ωσ(x+ y) and x belongs to D: this

proves the equality σ
3
= σ+ σ

3
ωσ. On the other hand,

(1− σω)(σ
3
(x)) = στ(x)− σωστ(x)

= στ(1− ωσ)(x)

= σ(x) , (∀x ∈ D)
hence

σ
3
(x) = (σ + σωσ

3
)(x) , (∀x ∈ D) .

iv)⇒ ii) Since σ
3
= σ + σωσ

3
we may define

τ =: 1 + ωσ
3
.

It follows

(1− ωσ)(τ(x)) = τ(x)− ωσ(τ(x))

= x+ ω(σ
3
(x))− ω(σ(x))− ω(σωσ

3
(x))

= x , (∀x ∈ D)
therefore 1− ωσ is left invertible and ωσ is weakly nilpotent from the Prop. 20.

v)⇒ ii) and v)⇒ iv) are left to the reader.
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Definition 63 Define the set of phases P as the set of all partial symmetries on a fixed Hilbert space H
and ⊥Pas the set of all nilpotent operators.

Definition 64 We define the dualisation relation

α ⊥P β ⇔ αβ is nilpotent (3.5)

Definition 65 Define

A⊗B =: {∂α∂∗ + δβδ∗ | α ∈ A and β ∈ B}⊥⊥
!A =: {1⊗ α | α ∈ A}⊥⊥
A B =: (A⊗B⊥)⊥
A⇒ B =: (!A) B

.

CONTENTS 25



Chapter 4 Continuous Process Algebra

In this chapter we develop a nice algebraic theory which abstracts the basic properties of a Dirichlet
space. In particular, this allows us to associate a Dirichlet space to each von Neumann algebra.
The behavior of a concurrent system can be described in terms of the actions it can be perform. A

simple behavior of this kind is the set of all possible sequences of actions. Such a semantics is called an
interleaving semantics. The concurrent execution of actions is seen as equivalent to arbitrary interleaving,
i.e. to executing these activities in an arbitrary order. Thus concurrency is simply reduced to some form
of nondeterminism. Alternatively, one could try to represent concurrency explicitly, e.g. by describing
a system run by a partial order of actions. Such a semantic would be ’truly concurrent’. This semantic
domain is described in Sect. 2. where we introduce also the concept of extended process.
A physical phenomena is often described as a mesh of the world lines of interacting particles in the

same way as a partially ordered set can be imagined to be a mesh of its lines. In physical modelling, the
world line of an individual particle is described by a continuous curve with properties akin to those of
the line of reals. The property of D − continuity is based on the analogy between the lines of a poset
(and their interpretation as sequential subprocesses).
If α β then either α = β or α occurs earlier than β in the process described by < M,S, c > (β

is caused by α). In this interpretation a li − set comprise elements of that occur in sequential order
and the lines may be viewed as the sequential subprocesses of the process described by < M,S, c > .
This interpretation of lines was initiated by C. A. Petri ( [Pet 82]). The difference from Petri’s point of
view is that co relation is interpreted as the temporal simultaneity of two basic occurrences that do not
interact with each other (in Petri nets theory the co-relation is interpreted as the relation of concurrency
between basic occurrences). In our setting, the interaction between two basic occurrences α and β is
their superposition α� β6..
The space of basic occurrences B is a conditionally complete lattice in the essential order and a a

lower complete lattice in the specific order.
We study a special class of processes named dissipative processes (processes for which progress in time

produces the increasing of all parameters values).
Let X be a B − harmonic space in the sense of Constantinescu-Cornea [CC 72] , V ⊂ X an open

set and let B be the set of positive, superharmonic functions on X and BV be the set of positive,
superharmonic functions on V. We may recapture the local structure by means of the global one as
follows : BV is determined whenever B is known (because (β−BX−Vα )|V is contained in BV for any β ∈ B
and any β ∈ BV is the supremum of superharmonic functions of this type). The localization operator is
an abstract formulation of this fact.
The sweeping is an abstract method for construction of elementary processes which has model in the

Poincaré’s sweeping out process for solving the Dirichlet problem.We give here a short description of
mathematical facts beyond the abstract construction of sweeping. Poincaré’s method is applicable to the
boundary values which are taken on a surface S by any polynomial p in the Cartesian coordinates x, y, z
or to the boundary values taken by a uniformly convergent sequence of such polynomials. The region S
is covered by an enumerable sequence of spheres (Bn) which are ’swept’ in the order

B1, B2, B1, B2, B3, B1, B2, B3, B4, ...

Poincaré begins by replacing the polynomial p in B1 by the harmonic function α1 which takes on the
boundary of B1 the same values as p. This process, which ’sweeps’ the charge of density q = − 1

4π∆p
from the interior of B1 onto the surface of B1, is specified by Poisson’s integral. The continuous function,
equal to α1 in B1 and to p elsewhere in S, is denoted by β1, and is then replaced in B2 by the harmonic
function α2 which takes on the boundary of B2 the same values as β1. The continual repetition of this
process yields a sequence of functions (βn), each of which satisfies the prescribed boundary condition on
S and which converges to the required harmonic function γ.
We introduce the key concepts of energy and system. The mutual energy of two basic occurrences

is defined in a manner similar to the concept of mutual energy of two potentials of H. Cartan (see [Kel
29]). It will be shown in Theorem 14 that the energy of an elementary process uniquely determines that
process. A system is an abstraction for a physical system modelled by an elliptic operator. The basic
intuition behind the system’s definition is the following. Let

La = −
nS

i,j=1

∂
∂xi
(uij

∂
∂xj
) a
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be an elliptic operator and C be the bilinear form which transform the matrix U = (uij)1≤i,j≤n into the
identity matrix In. A system is then Γa = C(a, a). To any system we can attach an extended process (as
in Definition 4.3. ).
The intuition behind the W-like process [B] is that it represents the all weak solutions of Dirichlet

problem

(DP)
�
(La)(x) = f(x) , x ∈ Ω
a|∂Ω = 0

for an elliptic equation i.e. the all possible executions of a system.
We consider f ∈ L2(Ω) which is the prototype for the basic space [S]. The domain of the system L is

S ={a; a ∈ C2(Ω), a|∂Ω = 0}.

The energy associated to the W-like process [B] is

EC[α,β] =: C[α,β]+C[β,α]2 = − U
Ω

αβdx

from which we can derive the Γ− energy

EΓ[a, b] = EC[Γa, b] = −
U
Ω

b ∂a∂xi (uij
∂a
∂xj
)dx.

We obtain the following characterization for an extended process

[B] = {βf ; EΓ[b,βf ] = −
U
Ω

bfdx, (∀b ∈ [S])}.

Basic knowledge from the theory of second order partial differential operators and harmonic analysis
are assumed.

4.1 Extended Processes

Definition 66 A real space is defined as being a structure <M,≺> such that
(M1) < M,≺> is a lower complete semi-lattice. The order ≺ will be called the causal order. We shall
note by (resp. ) the infimum (resp. supremum if exists) of this semi-lattice and
(M2) if (αi)i∈I is increasing and dominated in M by α, α ∈M, then there exists

i∈I
αi .

Definition 67 Let D ⊆M.We call D

• dense in order from below (in M) if for any α ∈M we have α = {γ ∈ D;γ α};
• increasingly dense if the set {γ ∈ D; γ α } is increasing to α for any α ∈M ;

Definition 68 A basic space is defined as being a structure < S,≤,⊥,A,� > where:
(S1) < S,≤,⊥,A > is a lattice for which:
• ⊥ the minimal element and A the greatest element ;
• the lattice (S\{A},≤|S\{A},⊥) is lower complete and upper conditionally complete ;
• ≤ will be called the essential order;
we shall note by ∨ resp. ∧ the supremum resp. infimum of this lattice;
•⊥ will be called the nil action; A will be called deadlock ;

(S2) (S,�,⊥) is a monoid;
(S3) s = ⊥ if s� s = ⊥ (∀s ∈ S);
(S4) s�A = A (∀s ∈ S);
(S5) s� (a ∨ b) = (s� a) ∨ (s� b) (∀a, b, s ∈ S);
(S6) a� b = (a ∧ b)� (a ∨ b) (∀a, b ∈ S);
Definition 69 Two elements a, b ∈ S are called strongly dual if a ∧ b = ⊥.

We shall denote a ∈ b⊥ if a and b are orthogonal and a⊥ =: {s ∈ S; a⊥s}.
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Definition 70 Let S be an basic space. The specific order ≤� is defined by

a ≤� b iff (∃c ∈ S) : b = a� c.

We shall note by
Z
� resp.

Y
� the supremum resp. infimum in this order (if they exists).

Definition 71 a : b is called the residuu of a by b and it is the greatest element (if exists) which holds

b� (a : b) ≤ a.

Definition 72 An basic space S has the decomposition property if for any s, s1, s2 ∈ S such that s ≤ s1�s2
there exists t1, t2 ∈ S such that

t1 ≤ s1 , t2 ≤ s2 , s = t1 � t2 .

Proposition 22 Every basic space has the decomposition property.

Proof. Define t1 =: s ∧ s1 and t2 =: s : t1. It follows t1 ≤ s1 and t2 = (s : s1)∨ ⊥ so t2 ≤ s2.

Lemma 1 Let S be an basic space and s, a, b ∈ S .Then

i) a� b ≥ a ∨ b
ii) if a ≤ b then s� a ≤ s� b
iii) (a

Y
� b)� (a

Z
� b) = a� b

iv) if a, b ≤ s and a⊥b then a� b ≤ s
Proof.
i) a� b = (a ∧ b)� (a ∨ b) ≥ a ∨ b
ii) ( s� a) ∧ (s� b) = s� (a ∧ b) = s� a
iii) Suppose that every pair a, b ∈ S has a supremum a

Z
� b . Since a � b ≥� a and a � b ≥� b it

follows that a� b ≥� a
Z
� b . Define c = (a� b) : (a

Z
� b) . Then

c� (aZ� b) = a� b ≤� (aZ� b)� b
so c ≤� b and similarly c ≤� a . On the other hand, if c3 ≤� a and c3 ≤� b , then
c
3 � (aZ� b) = (c3 � a)Z�(c3 � b) ≤� a� b
so c

3 ≤� c , and it follows that
c = (a

Y
� b)⇔ (a

Y
� b)� (a

Z
� b) = a� b ;

iv) a� b = (a ∧ b)� (a ∨ b) = a ∨ b and
(a� b) ∧ s = (a ∨ b) ∧ s = (a ∧ s) ∨ (b ∧ s) = a ∨ b = a� b.

Proposition 23 We have ≤�⊆≤ .

Proof. a ≤� b ⇔ ∃c ∈ S: b = a� c ≥ a ∨ c⇒ a ≤ b.
Proposition 24 Any basic space is a distributive lattice.

Proof. By Bergmann theorem it is enough to show that a ∧ s = b ∧ s and a ∨ s = b ∨ s imply a = b.
But
a� s = (a ∧ s)� (a ∨ s) = (b ∧ s)� (b ∨ s) = b� s⇔ a = b.

Definition 73 A subset A of a basic space is called linearisable if
(L) if s� a ≤ s� b then a ≤ b (∀a, b ∈ A).

Definition 74 We define the order topology τ≤ on < S,≤> by putting (ai)i∈I →
τ≤

a iff ( (ai)i∈I is

increasing and dominated and
Z
i∈I
ai = a ) or ( (ai)i∈I is decreasing and

Y
i∈I
ai = a ).

Remark 24 Analogously can be defined the specific order topology τ≤�on < S,≤�>

Proposition 25 The superposition is continuous in the order topology.
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Proof. We shall prove that the followings relations holds in any basic space:
(ID1) for any increasing and dominated net (si)i∈I ⊂ S and any s ∈ S we have Z

i∈I (s � si) =
s� (Z

i∈I si);

(ID2) for any net (si)i∈I ⊂ S and any s ∈ S we have
Y

i∈I (s� si) = s� (
Y

i∈I si).

We prove first (ID2). We set a =:
Y

i∈I si and b =:
Y

i∈I (s� si). Observe that s� a ≤ b. From b ≤ s� si
we obtain b : s ≤ si (∀i ∈ I). Therefore
b : s ≤ a ⇔ b ≤ s� a⇔ Y

i∈I (s� si) = s� (
Y

i∈I si).

We prove now (ID1). We set a =:
Z

i∈I si and b =:
Z

i∈I (s� si). Observe that s�a ≥ b. From b ≥ s� si
we obtain b : s ≥ si (∀i ∈ I). Therefore b : s ≥ a ⇔ b ≥ s� a⇔ Z

i∈I (s� si) = s� (
Z

i∈I si).

Remark 25 The lattice operations ∨ and ∧ are continuous in the order topology.
Remark 26 The previous result, combined with theorem 2 from section 2.2.2 entails that any basic space
is domain representable. Thus, we can study using the type 2 computability tools presented in section 2.2,
the computability of all processes introduced in this report.

Lemma 2 The followings relations holds in any basic space:

(GD1) for any increasing and dominated net (si)i∈I ⊂ S and any s ∈ S we have Z
i∈I (s

Y
si) =

s
Y
(
Z

i∈I si);

(GD2) f or any net (si)i∈I ⊂ S and any s ∈ S we have
Y

i∈I (s
Z
si) = s

Z
(
Y

i∈I si).
Proof.

We prove first (GD2). We set a =:
Y

i∈I si and ai =: si : a , (∀i ∈ I). Obviously
Y

i∈I ai =⊥ . We have
s ∧ a ≤ (s� ai) ∨ (a� ai) = (s ∨ a)� ai. Thus

Y
i∈I (s ∨ si) ≤

Y
i∈I ((s ∨ a)� ai) = s ∨ a. The converse

inequality is immediate.
We prove now (GD1). We set a =:

Z
i∈I si and ai =: a : si , (∀i ∈ I). Obviously

Y
i∈I ai =⊥ . We have

s∨ si ≤ (s� ai) ∧ (si � ai) = (s∧ si)� ai ≤
Z

i∈I ((s∧ si)� ai). Thus s∧ a ≤
Z

i∈I (s∧ si). The converse
inequality is immediate.

Definition 75 An extended process is a three-tuple <M,S, c > , where <M,≺> is a real space, < S,≤
,⊥,A,� > is a basic space and c : M→ S is an injective isotone labelling function such that, if B = c(M)
then:

(P1) c(α β) ≥� c(α) ∨ c(β) if α β exists
(P2) if c(α β) = and γ " α β then c(γ) = A
(P3) ⊥∈ B
(P4) < B,≤|B,∧ > is a lower complete semi-lattice of < S,≤>
(P5) B is linearisable ;
(P6) (B,�,⊥) is a monoid;
(P7) The superposition is continuous in the order topology on B ;
(P8) B has the decomposition property.

Remark 27 The elements of an extended process will be called basic occurrences and will be denoted
by Greek letters: α, β,etc. Their labels c(α), c(β) will be called elementary processes. In the next we shall
identify these concepts.

Definition 76 An extended process is called

•dense iff j = ∅⇐⇒ ∀α,β ∈ B : α ≺ β ⇒ ∃γ ∈ B : α ≺ γ ≺ β;
•combinatorial iff = (j)+;
•K-dense iff (∀l ∈ L) (∀c ∈ C) l ∩ c 9= ∅;
•N-dense iff (∀α,β,γ, δ ∈ B) : (γ co β & β co α & α co δ & α li γ & γ li δ & δ li β)⇒
(∃e ∈ B : e co α & e co β & e li γ & e li δ).;

•of finite degree iff ∀β ∈ B : | β| <∞ and | β | <∞;
•with finite intervals iff (∀α,β ∈ B) : |[α,β]| <∞;
•boundedly discrete iff (∀α,β ∈ B) (∃n ∈ ω) (∀l ∈ L) : |[α,β] ∩ l| < n.
Definition 77 A discrete observer is a function dob : B→ ω :

α ≺ β ⇒ dob(α) ≺ dob(β)
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Definition 78 An extended process is called discrete observable if admits a discrete observer.

Definition 79 An extended process is injectively observable iff there exists an injective discrete observer.

Definition 80 A continuous observer is a function cob : B→ R+ with the following properties:

(CO1) α ≺ β ⇒ cob(α) ≤ cob(β) , (∀α,β ∈ B);
(CO2) cob(β) = supi∈I(cob(βi)) if (βi)i∈I ↑ β ;
(CO3) (∀β ∈ B) (∃(βi)i∈I ↑ β) : cob(βi) <∞.

Definition 81 A continuous observer cob is called nondeterministic iff cob(α�β) = max(cob(α), cob(β))

Definition 82 An extended process is called continuous observable if admits a continuous observer

We shall state without proof the followings connections between observability and discreteness:

Proposition 26 (BF 90) If an extended process is discrete observable then it is boundedly discrete. If
the extended process is countable then the converse also holds.

Proposition 27 (BF 90) An extended process is injectively observable iff the extended process has finite
intervals and it is countable.

Definition 83 An extended process B is called continuous if for any Dedekind-cut (A,A) of B and any
line l : |M(A) ∩ l| = 1 .

Proposition 28 If the extended process B is continuous then B is dense.

Proof. Suppose that j 9= ∅ , then (∃α,β ∈ B) : αjβ.We define A =↓ β−{β} and A = B−A. The
pair (A,A) is a D− cut. Since αj β and A =↓ β− {β} it follows α ∈Max(A). From the construction of
A it follows β ∈Min(A). Let l be a line such that α,β ∈ l . Then |M(A) ∩ l| = 2 , a contradiction with
the fact that B is continuous.

Definition 84 An extended process B is called
•gap-free iff ∀A ∈ D(B) ∀l ∈ L : |c(A) ∩ l| 9= 0;
•jump-free iff ∀A ∈ D(B) ∀l ∈ L : |c(A) ∩ l| 9= 2.

Definition 85 An extended process is called D-continuous if for any Dedekind-cut (A,A) of B and any
line l : |c(A) ∩ l| = 1
Remark 28 If the extended process B is combinatorial then
•Obmax(A) = {α ∈Max(A)/|α | ≤ 1};
•Obmin(A) = {α ∈Min(A)/| α| ≤ 1}.

Proposition 29 Let A ⊂ B be specifically decreasing. Then we have Y�A = YA.
Proof. Let α

3
= ∧A . Then α

3 ≥ Y�A . Let β ∈ A be fixed. It follows
α
3
=
Y{α ∈ A,α ≤� β}. The family {β : α;α ∈ A,α ≤� β} is increasing and β = α� (β : α) implies

β = (
Y

α∈A, α≤�β
α)� ( Z

α∈A, α≤�β
(β : α))

for any α ∈ A , α ≤� β . Hence α
3 ≤� β . Thus α

3 ≤�
Y
�A .

Proposition 30 Let A ⊂ B be specifically increasing and dominated. Then we have Z�A = ZA.
Proof. Let α

3
=
Z
A . Then α

3 ≤ Z�A . Let β ∈ A be fixed. It follows
α
3
=
Z{α ∈ A / α ≥� β} . The family {β : α; α ∈ A, α ≤� β} is increasing and α = β � (α : β) implies

α
3
= β � ( Z

α∈A, α≥�β
(α : β)) for any α ∈ A , α ≥� β . Hence α

3 ≥� β . Thus α
3 ≥�

Z
�A.

Corollary 4 The order topology τ≤ is finer than the specific order topology τ≤� .

Proof. Results directly from Prop. 29 and Prop. 30.
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Definition 86 The set U ⊂ S will be said to have u as a strong supremum (str sup) provided u is a
common supremum of U relative to essential and specific order.

Remark 29 Let a, b ∈ B. We shall note
• aB =: {b ∈ B / b ≤ a}
• Ba=: {b ∈ B / b ≥ a}
• B�a,b=: {s ∈ B / a ≤� s and b ≤� s}
• a,bB

�=: {s ∈ B / s ≤� a and s ≤� b}
• Ba,b=: {s ∈ B / s ≤ a and s ≤� b}
• Ba,b=: {s ∈ B / s ≥ a and s ≥� b}

Definition 87 The set A ⊂ B will be said to have A as a strong supremum (str sup) provided a is a
common supremum of A relative to essential and specific order.

Let a, b ∈ B. We shall denote by

a x b = :

�
sup≤ (Ba,b) if sup≤ (Ba,b) ≤� b
⊥ otherwise

a w b = :

�
inf≤ (Ba,b) if inf≤ (Ba,b) ≥� b
↑ otherwise

Definition 88 A mixed extended process is an extended process (B,≤,⊥,A,≺,x,w) with additional op-
erations x and w for which

a x b 9= ⊥ , a w b 9=↑ , (∀a, b ∈ B).
(a x b)� (a w b) = a� b, (∀a, b ∈ B). (C)

Remark 30 Let B be a mixed extended process and a, b ∈ B then (a w b) ≤� b, (a w b) ≤ a, (a w b) ≤ b.
Suppose that s, a, b are elements of B such that s ≤ a � b. Then there exists a3, b3 ∈ B such that

a3 ≤ a, b3 ≤ b, and s = a3+ b3. In fact, the elements a3 = sx a and b3� (sx a) = s (this is the domination
decomposition property). Plainly, the explicit choice of a3, b3 in the statement yields s = a3+b3 and a3 ≤ a.
Since the inequalities a ≤� a � b and s ≤ a � b result in a w s ≤ a � b, we have b3 � (s x a) = s and
b3 � a = a w s, so b3 ≤ b.

Proposition 31 We have

• a ≤� b ⇒ (s x a) ≤� (s x b) and (s w a) ≤� (s w b).
• s� (a x b) = (s� a) x (s� b) and s� (a w b) = (s� a) w (s� b)
• s x (a� b) ≤ (s x a)� (s x b) and s w (a� b) ≤ (s w a)� (s w b)
• s ≤� (a� b)⇒ s ≤� (a x s)� (b w s)

Proof. First, we prove that the condition (C) is equivalent to the condition that, for all a, b ∈ B, there
exists a w b which satisfies the inequality a w b ≤� a� b. For any c ∈ B satisfying c ≤� a and c ≤� b,
there is a corresponding c3 ∈ B such that c�c3 = a�b. That there exists a largest such c is evident from
the fact that some c admitted in the previous equality yields c3 = a w b, and this is the smallest possible
c3. The first two properties are immediate. For the third one, we apply the domination decomposition
property to sx (a� b) ≤ a� b to get the representation sx (a� b) = a3� b3 with a3 ≤ a, b3 ≤ b. Since we
have a3 ≤� a and b3 ≤� b, the asserted inequality follows.
Let T be a regular topological space and Ω the set of closed sets of T .

Definition 89 An abstract carrier on (T,B) is a map C : B → Ω with the following properties
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i) a =⊥⇔ C(a) = ∅
ii)a ≤ b⇒ C(a) ⊂ C(b)
iii)(∀a ∈ B), (∀U, V ∈ Γ) : U ∪ V = T, (∃aU , aV ∈ B) :

a = aU � aV and C(aU) ⊂ U , C(aV ) ⊂ V
Let V ∈ Ω and a ∈ B.
We shall define BV = {b ∈ B|C(b) ⊂ V } and aV =

Z
b∈BV,b≤a

b.

Lemma 3 For any abstract carrier C we have:

i) C(a ∧ b) ⊂ C(a) ∩C(b)
ii) C(a) ∩C(b) = ∅ ⇒ a ∈ b⊥.
iii) C(a) ∪C(b) = C(a ∨ b) = C(a� b)

Proof.
i)a ∧ b ≤ a⇒ C( a ∧ b) ⊂ C(a) and a ∧ b ≤ b⇒ C( a ∧ b) ⊂ C(b) so C(a ∧ b) ⊂ C(a) ∩C(b);
ii)C(a) ∩C(b) = ∅ ⇒ C(a ∧ b) = ∅ ⇒ a ∧ b =⊥;
iii)a ∨ b ≥ a⇒ C( a ∨ b) ⊃ C(a) and

a ∨ b ≥ b ⇒ C( a ∨ b) ⊃ C(b) so C(a ∨ b) ⊃ C(a) ∪ C(b). On the other hand a ∨ b ≤ a � b so
C(a ∨ b) ⊂ C(a � b). Let U be an open neighbourhood of C(a) ∪ C(b). By property 3 of an abstract
carrier, there exists a

3
, b
3 ∈ B such that

a� b = a3 � b3 , C(a3) ⊂ U, C(b3) ⊂ T − U.
Hence we have
a ∧ b3 = b ∧ b3 =⊥,
b
3
= (a� b) ∧ b3 ≤ (a ∧ b3)� (b ∧ b3) =⊥,

C(a� b) = C(b3) ⊂ U.
Since U is arbitrary and T regular, we have C(a� b) ⊂ C(a) ∪C(b).
Proposition 32 BV is a pseudoband.

Proof. Let A ⊂ BV and m its least upper bound in B. We shall prove that m ∈ BV . Let U be an open
neighborhood of V . There exists m1,m2 ∈ B such that m = m1 �m2, C(m1) ⊂ U, C(m2) ⊂ T − U.
Then for any b ∈ B we have C(b ∧m2) ⊂ C(b) ∩C(m2) = ∅. Hence
b ∧m2 =⊥ , b = b ∧m ≤ (b ∧m1)� (b ∧m2) ≤m1.

Since b is arbitrary m ≤ m1, C(m) ⊂ C(m1) ⊂ U. Since U is arbitrary, it follows that m ∈ BV .
Definition 90 Let A ⊂ S be a set such that < A,≤A> satisfies the axioms (P3) ÷ (P7). Define [A] as
followings : we introduce on A× A the following equivalence relation

(a, b) ≈ (a3 , b3)⇔ a� b3 = a3 � b.

We shall denote by [A] the quotient space of A×A . For any a, b ∈ A we denote by (̂a, b) the element of
[A] generated by (a, b). Define on [A] the following relations and operations
•⊥3 =: (̂a, a) ;
•(̂a, b)�3 _(a3 , b3) =: _(a� a3 , b� b3) ; (̂a, b) :3 _(a3 , b3) =: (̂a, b)�3 _(b3 , a3);
•(̂a, b) ≤3 _(a3 , b3) if a� b3 ≤ a3 � b;
•((̂a, b))∗ =: (̂b, a);
•(̂a, b) ≺3 _(a3 , t3) iff _((a, b))

∗ ≺ ((a3 , b3))∗;
Proposition 33 The map a→ ea = (ā,0) is a one-to-one and ordered-preserving map of A into [A]↑ =:
{ea ∈ [A];ea ≥⊥}.
Proof. Easy verification.

Remark 31 In the sequel we shall identify < A,≺,≤,⊥,A > with its image in < [A],≺3 ,≤3 ,⊥3 ,A3 >,
so we can use consistently the same notation. Further [A] = A : A, because (̂s, t) = _(s,⊥) �_(⊥, t)
=_(s,⊥) :_(t,⊥) = s : t. The causal order will be extended to [A] by putting a ≺ b iff b∗ ≺ a∗.
The next three examples were inspired from [MR 92], where they have been presented in the context

of non-commutative Dirichlet Forms.
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Example 11 Let τ be Lebesgue measure on Rn, let X be an open set of Rn and let ai,j (i, j = 1..n) be
τ -measurable functions satisfying the following conditions
• ai,j = aj,i
• there exists a real number m ≥ 1 such that

1

m

n[
i=1

ξ2i ≤
n[

i,j=1

ai,j(x)ξiξj ≤ m
n[
i=1

ξ2i , (∀x ∈ X,∀(ξi)1≤i≤n ∈ Rn) (4.1)

For any open set V ⊂ X we shall denote by H(V ) the set of real, continuous functions h on V such that
the derivatives of first order of h in the sense of distribution theory belong to L2loc(τ) and such that for

any real function f of class C∞(V ) with compact carrier, we have
U
U

nS
i,j=1

ai,j
∂h

∂xi

∂f

∂xj
dτ = 0. An extended

process consists on all positive functions p for which p|V ∈ H(V ) for all open sets V ⊆ X.
Example 12 Let D ⊂ Rn be an open set and define the basic space U as a harmonic sheaf on X such
that :
• any U-functions is of class C2;
• U is non-degenerate at every point of D;
• the set of U-regular sets is a base of D;
Then there exists a system of real functions ui,j , vi, w (i, j = 1..n) on D such that:
i) ui,j = uj,i;
ii) (ui,j) is a non-zero positive definite matrix at any point of D;
iii) for any H-function h, we have

n[
i,j=1

ui,j
∂2h

∂xi∂xj
+

n[
i=1

vi
∂h

∂xi
+wh = 0;

iv) there exists an open, dense set V ⊂ X, such that ui,j , vi, c are continuous on V , and such that any
solution of the above equation on any open subset of V , is an U-function.;
An extended process consists on all positive functions p for which p|V ∈ H(V ) for all open sets V ⊆ X.
Example 13 Let D ⊆ Rn be an open set, let the basic space S be the positive continuous real function
on D , a ∈ [S] and let (Ai)1≤i≤j , B be first order differential operators of class C∞(D). For any open set
V ⊆ D, let H(V ) be the set of real functions h ∈ C∞(V ) and satisfying

j[
i=1

(Ai)
2h+Bh+ ah = 0.

Suppose that the Lie algebra generated by the operators Ai and B for the operation

(
n[
i=1

ai
∂

∂xi
) · (

n[
i=1

bi
∂

∂xi
) =

n[
i=1

(
n[
j=1

aj
∂bi
∂xj
− bj ∂ai

∂xj
)
∂

∂xi

is of rank n at any point of D. An extended process consists on all positive functions p for which
p|U ∈ H(U) for all open sets U ⊆ X.

Remark 32 In Examples 11. and 13. D endowed with H is a Brelot space [6].

Remark 33 Let A ⊂ B
i)We shall use the notation

Z
[B]A for the least upper bound of A in [B] if it exists. If A is increasing

and dominated we have b
[B]

A =
b
A;

ii)We shall use the notation
Y
[B]A for the greatest lower bound of A in [B] if it exists.In this casea

[B]

A =
a
A.
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Definition 91 For any a ∈ [S] we shall call the regular form of a the element a ∈ B defined by
a =

a
{β ∈ B; a ≤3 (β,⊥)}

Lemma 4 For any a, b ∈ S
i)a ≤ b if a ≤ b
ii) a� b ≤ a� b
iii) (a) = a.
iv) (si)i∈I ↑ (s) if (si)i∈I ↑ s .
v) (si)i∈I ↓ (s) if (si)i∈I ↓ s .

Proof
i)Let A = {β ∈ B / a ≤3 (β,⊥)} and D = {β ∈ B / b ≤3 (β,⊥)}. Then
a ≤ b⇒ A ⊃ D⇔ Y

A ≤ YD⇔ a ≤ b.
ii)Let A�D = {β ∈ B / a� b ≤3 (β,⊥)}. Then
∧(A�D) ≤ (∧A)� (∧D)⇔ a� b ≤ a� b.
iii)-v) Results by direct verification.

Lemma 5 Let α,β, γ ∈ B with β = α� γ. Then

α ≤� β and β : α =
b
{σ ∈;σ ≤ γ,σ ≤� β}.

Proof. Of course β ≤ γ� α . According to the decomposition property
(∃δ, δ3 ∈ B) : β = δ � δ

3
and δ ≤ γ , δ

3 ≤ α .
From δ

3
= β : δ ≥ β : γ it follows δ

3 ≥ α and therefore δ
3 ≥ α , hence δ

3
= α . If σ ∈ B is such that σ ≤ γ

and σ ≤� β it follows β : σ ∈ B , β : σ ≥ α and therefore β : σ ≥ α . From α� δ = β we deduce δ ≥ σ.

Proposition 34 For any α,β ∈ B we have (α ∨ β) ≤� (α� β).

Proof. We have α ∨ β = α ∨[B] β = (α� β) : (α ∧ β) hence (α ∨ β) ≤� (α� β).

Lemma 6 Let A ⊂ B and let β ∈ B be such that α ≤� β (∀α ∈ A). Then ZA ≤� β.

Proof. We first assume that A is increasing. It follows β = (
Z
A)�(Y (β : α)) so Z

α∈A
A ≤� β.We shall

prove that A may be assumed increasing. Let (αi)1≤i≤n be a finite subset of A and let (γi)1≤i≤n ⊂ B
such that β = αi � γi , (∀i : 1 ≤ i ≤ n ). It follows that

Z
1≤i≤n

αi = β : (
Y
γi) ≤� β.

Theorem 8 The space of basic occurrences ([B],≤3) is a conditionally complete lattice in the essential
order.

Proof. Let A ⊂ [B] specifically dominated and let D =: {β ∈ [B]; α ≤� β , ∀α ∈ A}.
It is no loss of generality to assume ⊥ ∈ A . Then we have D ⊂ B . Let now β

3
= ∧D. Since for any

α ∈ A and β ∈ D : β : α ∈ B we get β3 : α = Y{β : α; β ∈ D} , β3 : α ∈ B and therefore β3 ∈ D . Let
now β ∈ D be fixed and denote γ = β : β

3
. Then from Prop. 5 ∃d ∈ S : d = β : γ and d ≤ β

3
. From

γ = (β : α) : (β
3
: α) (∀α ∈ A) it follows γ ≤� β : α. Hence there exists e ∈ B such that β = γ � α� e,

d � γ = γ � α � e, d = α � e. This implies γ ≥� α and γ ≥ β
3
. Thus γ = β

3
, β ≥ β

3
and therefore

β
3
=
Z
�A.

Lemma 7 Let s ∈ [S] , s = a : b . Then s ≤� a.
Proof. We have a = s�b ≤ es�b. Let a = a1�a2 with a1 ≤ s and a2 ≤ b. It follows a = a1�a2 ≤ a1�b
so a1 ≥ a : b ≥ s. From definition of s results a1 ≥ s. Then s = a1 ≤� a.
Theorem 9 The space of basic occurrences B is a lower complete lattice in the specific order.

Proof. Let B�α,β =: {γ ∈ B; γ ≤� α, γ ≤� β} and α,β ∈ B , γ ∈ B�α,β. It follows that there exist
γ
1
, γ2 ∈ B such that γ = α � γ1 = β � γ2. Let δ =

Y{γ; γ ∈ B�α,β} , δ1 = Y{γ1; γ ∈ B�α,β} , δ2 =Y{γ2; γ ∈ B�α,β}. From δ = α� δ1 = β � δ2 it follows δ ∈ B�α,β. Let θ = γ : δ. Then θ = γ1 : δ1 = γ2 : δ2.
From the decomposition property there exists σ,σ1,σ2 ∈ B with σ ≤ δ such that γ = σ� θ , γ1 = σ1� θ
, γ2 = σ2 � θ. It follows that σ ∈ B�α,β , σ = δ , δ ≤� γ. Because γ ∈ B�α,β is arbitrary, it follows
δ = α

Y
� β.
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Definition 92 Let U ⊂ A ⊆ S.We call U
• solid (in A) if (u ∈ U , s ∈ A, so ≤ uo)⇒ (s ∈ U) ;
•specifically solid (in A) if (u ∈ U , s ∈ A, s ≤� u) ⇒ (s ∈ U).

Proposition 35 If A ⊂ B is an substructure which is dense in order from below and specifically solid
then A is increasingly dense.

Proof. Let a,β ∈ A. From Prop. 34. results a ∨ β ∈ A. Thus A satisfies the axioms of a basic space
which is increasingly dense in S .

Proposition 36 If the subsets A,A3 ⊂ B are solid and increasingly dense then A ∩ A3 is solid and
increasingly dense.

Proof. Let α ∈ B and denote Y = {x ∈ A ∩ A3/x ≤ α} and for y ∈ A with y ≤ α denote
Yy = {x3 ∈ A3/x3 ≤ y}. Then Yy ⊂ Y and α ≥ Z

Y ≥ Z
y∈X, y≤a

Z
Yy = α. For any y1, y2 ∈ Y there

exists x ∈ X such that y1 ≤ x ≤ a and y2 ≤ x. Since A3 is increasingly dense there exists x3 ∈ X3 with
y1 ≤ x3 ≤ x and y2 ≤ x3 . Obviously x3 ∈ A and therefore x3 ∈ Y.

.

4.2 Dissipative Processes

Definition 93 An extended process is called dissipative if ≤|B=≺ .
In this section every process is supposed to be dissipative and all continuous observers to be additives.

Definition 94 The process image is ImB = {cob : B→ R+; cob is an additive continuous observer}
Remark 34 ImB can be ordered with the usual pointwise order cob1 ≤ cob2 ⇔ cob1(β) ≤ cob2(β)
(∀β ∈ B). In this order ImB is a lattice and

(cob1 ∨ cob2)(β) = sup
β1�β2≤β

{cob1(β1) + cob2(β2)}

(cob1
a
cob2)(β) = inf

β1�β2=β
{cob1(β1) + cob2(β2)}

Definition 95 A couple of observers is a map C : B× B→ R+ such that for the maps defined by

[.]α : B→ R+, [β]α = C[α,β] and [.]β : B→ R+, [α]β = C[α,β] , (∀α,β ∈ B)
we have [.]α, [.]β ∈ ImB.
Remark 35 A couple of observers is not necessary symmetric.

Definition 96 A couple of observers C : B × B → R+ will be called positive definite if C[β,β] ≥ 0 ,
(∀β ∈ B).
Lemma 8 The couple of observers C : B× B→ R+ is positive definite iff

C[α,β] + C[β,α] ≤ C[α,α] + C[β,β] , (∀α,β ∈ B).
Definition 97 A couple of observers C : B×B→ R+ will be called regular if C[α,β] = C[α,β] , (∀α,β ∈
B).

We set, without proofs, the followings immediate results:

Lemma 9 If the couple of observers C : B× B→ R+ is regular then C[β,β] ≤ C[β,β] , (∀β ∈ B).
Lemma 10 If the couple of observers C : B × B → R+ is regular then C[α,α] = C[α,α] = C[α,α] ,
(∀α ∈ [A]).
Definition 98 A map T : B → B is called continuous in order from below iff Tβ =

Z
α∈A

Tα, for any

family A ⊂ B increasing to β ∈ B.
CONTENTS 35



Definition 99 A localisation is a map L : B→ B with the following properties:

(L1) Lβ ≤ β , (∀β ∈ B); (L2) L2(β)=Lβ , (∀β ∈ B); (L3) L(β � β
3
) = L(β)� L(β3) , (∀β,β3 ∈ B).

Remark 36 For any localisation L we shall note BL =: L(B).

Definition 100 The application SL =: idB : L,where L is a localisation, will be called a sweeping if it is
increasing.

Remark 37 For any sweeping S we shall note

BS = : S(B)
KerS = : {β ∈ B;Sβ =⊥}

Remark 38 If S is a sweeping then LS =: idB : S is a localisation.

Remark 39 The class of all sweepings on B can be ordered by putting

S ≤ T iff Sβ ≤ Tβ , (∀β ∈ B)
for any sweepings S, T. This ordered set is a complete distributive lattice.

Definition 101 For any sweeping S we define the sweeping S
3
as the smallest sweeping having the

property
S ∨ S3 = idB.

Lemma 11 Let α ∈ B and β = α : (α
Y
� SLα). Then

Lα = Lβ and

β
a
�
SLβ = ⊥ .

Proof. Let γ = α
Y
� SLα. From γ ≤� SLα and SL = S2L it follows SLγ = γ. We have also β = α : γ

and SLβ = SLα : γ.

Lemma 12 If α,β ∈ B with α� SLβ ≤ β � SLα then

(Lα� SLβ) ∈ B.
Proof. The decomposition property provides γ, δ ∈ B with
γ ≤ SLα , δ ≤ β and α� SLβ = SLγ � SLδ.
Since SLδ ≤ SLβ and SLγ ≤ SLα it follows SLδ = SLβ and SLγ = SLα and therefore (Lα�SLβ) = δ ∈
B.

Corollary 5 In the previous lemma, if α
Y
� Sα =⊥ then

α ≤ β and

Sα ≤ �Sβ.

Proof. We have LSα = Sβ and α ≤� Sα� δ and α ≤� (α
Y
� δ)� (α

Y
� Sα) ≤� δ ≤ β. Analogously

Sα ≤� Sβ.

Proposition 37 The decomposition property holds for BL , for any localisation L.

Proof. Let α,β, γ ∈ B such that Lα ≤ Lβ � Lγ. From the decomposition property for the basic space
there exists α

3
,β
3
,γ
3 ∈ B such that

α
3 ≤ SLα, β

3 ≤ β, γ
3 ≤ γ and α� SLβ � SLγ = α

3 � β
3 � γ

3
.

So SLα
3
= α

3
= SLα, SLβ = SLγ, SLβ

3
= SLγ

3
, hence

Lα = Lα
3 � Lβ3 and Lα3 ≤ Lβ , Lβ3 ≤ Lγ .

Proposition 38 Let L be a localisation and (αi)i∈I ⊂ B be such that αi
Y
� SLαi =⊥, (∀i ∈ I) then:
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i) if (Lαi)i∈I is increasing and dominated in [B] by Lα, α ∈ B, then (αi)i∈I is increasing and dominated
in B by α and we have b

[B]
i∈I

Lαi = L(
b
i∈I

αi) and
b
i∈I
SLαi = SL(

b
i∈I

αi).

ii) if (Lαi)i∈I is decreasing thena
i∈I
Lαi = L(

a
i∈I

αi) and
a
�
i∈I

SLαi = SL(
a
i∈I

αi).

Proof.
i)From Lemma 12. and Cor. 5 we have (αi)i∈I increasing and αi ≤ α, (∀i ∈ I). Let β =Z

i∈I
αi and γ =Z

�
i∈I

SLαi. From Prop. 30. we have γ ≤ β. Since γ ≤� SLα it follows γ = SLγ ≤ SLb. From L(αi) ≤ Lα,
(∀i ∈ I) we get β � SLα ≤ α� γ ⇒ SLb� SLα ≤ SLα� SLγ ⇒ SLb ≤ SLγ, hence SLb = γ. For i ≤ j
we have L(αi)� SL(αj) ≤ αj and therefore L(αi)� γ ≤ β, L(αi) ≤ Lβ.
Let α

3
: β
3 ∈ [B] be such that L(αi) ≤ α

3
: β
3
, (∀i ∈ I). It follows αi�β

3 ≤ α
3 �SL(αi) , β� β

3 ≤ α
3 � γ

, Lβ ≤ α
3
: β
3
and therefore Lβ =

Z
[B]
i∈I

Lαi.

ii)Let β =
Y
i∈I

αi and γ =
Y
�

i∈I
SLαi. From γ ≤� SLαi, (∀i ∈ I) we get SLγ = γ ≤ β and therefore

γ ≤ SLb. From Lemma 12. and Cor. 5. (SLαi)i∈I is specifically decreasing. From SLβ ≤ Sαi and from
Prop. 29. it follows SLβ ≤

Y
i∈I

SLαi =
Y
�

i∈I
SLαi = γ, hence γ = SLβ. Let α

3
,β
3 ∈ B be such that

L(αi) ≥ α
3
: β
3
, (∀i ∈ I). Then L(αi) ≥ Lβ ≥ α

3
: β
3
, (∀i ∈ I). Hence Lβ =Z[B]

i∈I
Lαi.

Proposition 39 BL is a inferior semi-lattice and a lattice ideal, for any localisation L.

Proof. We prove first that if α,β ∈ BL then α ∧ β ∈ BL. Let
α = Lα

3
, β = Lβ

3
, α
3
,β
3 ∈ B, and γ = (α

3 � SLβ
3
) ∧ (β3 � SLα3).

Since SLγ = SL(α
3 � β

3
) it follows α ∧ β = Lγ ∈ BL.

We prove now that if α ∈ BL and δ ∈ B then α ∧ δ ∈ BL. Let
α = Lα

3
, α
3 ∈ B, and δ

3
= α

3 ∧ (δ � SLα3).
Since SLδ

3
= SLα

3
it follows α ∧ δ = Lδ3 ∈ BL.

Lemma 13 If S and T are two sweepings then S ≤ T is equivalent with each one of the followings
conditions:

S ◦ T = T ◦ S = S; KerT ⊂ KerS
Proposition 40 If S and T are two sweepings such that S ∨ T = idB and S ◦ T = T ◦ S. Then

idB � (S ◦ T ) = S � T and S ◦ T = S ∧ T.
Proof. Let β ∈ [B]. We have
LSβ ∈ KerS , (S � T )(LSβ) = (T � S)(LSβ) =⊥ , (LSβ) : T (LSβ) ∈ KerS ∩KerT .
Since S ∨ T = idB we have KerS ∩KerT = {⊥} and therefore (LSβ) : T (LSβ) =⊥ which is equivalent
with β � (S ◦ T )β = Sβ � Tβ.
The last assertion follows immediately since S ◦ T is a sweeping.

Remark 40 Let α(n) means α� α...� α by n times.

Lemma 14 If α,β, γ ∈ [B]↑ and α(n) ≤ β , (∀n ∈ N)⇒ α =⊥ then the following assertions are equiva-
lent:

i) β ∧ α(n) ≤ γ, (∀n ∈ N); ii) (β : γ) ∧ α ≤⊥ .
Proof.
i) ⇒ ii) Let σ, δ ∈ B such that σ = (β : γ)�, and δ(p) = (α(p) : γ)� where p ∈ N is fixed. Then we

have
(β : γ) ∧ (α(n) : γ) ≤⊥, (∀n ∈ N)
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thus σ ∧ δ(p) =⊥ and therefore σ ∧ δ =⊥ . Then we get
((β : γ) ∧ α)(p) = (β : γ)(p) ∧ α(p) = (β : γ)(p) ∧ (α(p) : γ � γ)

≤ σ(p) ∧ (δ(p) � γ) ≤ (σ ∧ δ)(p) � (σ(p) ∧ γ) ≤ γ.
ii)⇒ i) We have σ ∧ α =⊥ and therefore σ ∧ α(n) ≤ σ(n) ∧ α(n) = (σ ∧ α)(n) =⊥ hence

β ∧ α(n) = (β : γ � γ) ∧ α(n) ≤ (σ � γ) ∧ α(n) ≤ (σ ∧ α(n))� (γ ∧ α(n)) ≤ γ.

Theorem 10 Let β ∈ [B]↑ . The map Sβ : B→ B defined by

Sβ(α) =
b
n∈N

(α ∧ β(n))

is a sweeping.

Proof. Let α,α
3 ∈ [B]� .From definition of Sβ it follows

Sβ(α) ≤ α and Sβ(α) ≤ Sβ(α3) if α ≤ α
3
. From (α� α

3
) ∧ β(n) ≤ (α ∧ β(n))� (α3 ∧ β(n)), (∀n ∈ N) we

get Sβ(α� α
3
) ≤ Sβ(α)� Sβ(α).

Further let σ,σ
3 ∈ B be such that σ ≤ Sβ(α) ≤ α , σ

3 ≤ Sβ(α3) ≤ α
3
, Sβ(α � α

3
) = σ � σ

3
. Since

(α � α
3
) ∧ β(n) ≤ Sβ(α � α

3
) = σ � σ

3
we get, using the Prop. 14, β ∧ ((α � α

3
) : (σ � σ

3
)) =⊥ and

therefore β ∧ (α : σ) =⊥⇔ α ∧ β(n) ≤ σ ⇒ σ ≥ Sβ(α).
Analogously we deduce σ

3 ≥ Sβ(α3), hence Sβ(α� α
3
) = Sβ(α)� Sβ(α3).

From α ∧ β(n) ≤ Sβ(α) we get α ∧ β(n) ≤ Sβ(α) ∧ β(n) and therefore Sβ(Sβ(α)) = Sβ(α).

Lemma 15 Sβ is continuous in order from below.

Proof. Let A ⊂ B increasing to γ ∈ B. From γ ∧ β(n) = Z
α∈A

(α ∧ β(n)) ≤ Z
α∈A

Sβ(α) we deduce that Sβ

is continuous in order from below.

Definition 102 Let A be a specifically solid ideal of B and denote

PAβ =
b
{α ∈ A;α ≤ β}.

Theorem 11 If for any A ⊂ B increasing to γ ∈ A we have Y
α∈A

(γ : α) =⊥ then PA is a sweeping and
continuous in order from below.

Proof. We prove first that idB : PA satisfy (L4).
Let α,β ∈ S and γ ∈ A such that γ ≤ α� β. Then there exists α

3
,β
3 ∈ B such that

γ = α
3 � β

3
, α
3 ≤ α , β

3 ≤ β.

Therefore α
3
,β
3 ∈ A and γ ≤ (PAα)� (PAβ) and, equivalently PA(α� β) ≤ (PAα)� (PAβ).

On the other hand PA(α� β) ≥ α
3 � β

3
and therefore PA(α� β) ≥ (PAα)� (PAβ).

We prove now that PA is continuous in order from below.
Let s ∈ S , (si)i∈I ↑ s and γ ∈ A with γ ≤ s. For any si we denote (γ, si) =: γ : (γ : (γ ∧ si)). From
the hypothesis and Prop. 5. we obtain: (γ, si) ∈ A , (γ, si) ≤ γ ,

Z
i∈I

(γ, si) = γ. Hence γ ≤ Z
i∈I

PA(si).

Because γ ≤ s is arbitrary we get PA(s) ≤
Z
i∈I

PA(si). On the other hand PA(si) ≤ PA(s) , (∀i ∈ I) soZ
i∈I
PA(si) ≤ PA(s). The rest of the axioms results by easy verification.

Proposition 41 ∀cob ∈ ImB , ∀α,β ∈ B , ∃ cob1, cob2 ∈ ImB :

cob = cob1 + cob2 and

cob(α ∧ β) = cob1(α) + cob2(β)
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Proof. Let α,β ∈ B , β
3
= α ∧ β , γ = β : β

3
and cob ∈ ImB . We shall define cob1 : B→ R by

cob1(σ) =sup
n∈ω

(σ ∧ γ(n)).

Then cob1(σ � σ
3
) =sup

n∈ω
((σ � σ

3
) ∧ γ(n)) =sup

n∈ω
((σ ∧ γ(n))� (σ3 ∧ γ(n))) = cob1(σ) + cob1(σ3).

If σ ≤ σ
3
then cob1(σ) ≤ cob2(σ3) . Let U ⊂ B be increasing to u. We shall prove that cob1 is continuous

in order from below. We have
cob1(u) ≥sup

v∈U
cob1(v) ≥sup

v∈U
sup
n∈ω

cob1(v ∧ c(n)) ≥sup
n∈ω

cob1(u ∧ γ(n)) = cob1(u).
From σ � (σ3 ∧ γ(n)) ≤ σ

3 � (σ ∧ γ(n)) we get
cob1(σ) + cob1(σ

3 ∧ γ(n)) ≤ cob1(σ3) + cob1(σ ∧ γ(n))
and cob(σ) + cob1(σ

3
) = cob1(σ) + cob(σ

3
) .

Therefore cob2 =: cob− cob1 satisfies axioms of a continuous observer.
Definition 103 For any additive continuous observer cob we shall define a regular form . by

(cob)(β) = cob(β) , (∀β ∈ B).

Proposition 42 We have: (cob1 − cob2)(β) = sup
α≤β,cob2(β)<∞

{cob1(α)− cob2(α)}.

Proof. The map cob(β) = sup
α≤β,cob2(β)<∞

{cob1(α) − cob2(α)} is an additive continuous observer and
satisfy the properties cob1 − cob2 ≤ cob ≤ ob for any ob ∈ ImB, ob ≥ cob1 − cob2.

.

4.3 Energetic Spaces
Definition 104 The mutual energy E[a, b] of two elements a, b is a map E : S×S→ R with the following
properties:

(EN1) E[a� b, s] = E[a, s] + E[b, s] (the superposition principle)
(EN2) E[a, b] = E [b, a] (the symmetry condition)
(EN3) E[s] = E[s, s] (the energy of the element s)
(EN4) E[s] > 0 if s 9=⊥ ( E is positive definite)
(EN5) |E[a, b]|2 ≤ E[a, b] · E [a, b] (the weak sector condition)

Remark 41 We can extend the energy to [S]× [S] by E[a : b, c : d] = E[a, c] + E[b, d]− E[a, d]− E[b, c].

Definition 105 Two elements a, b ∈ S are called dual in energy (noted a ∈ b⊥E ) if E[a, b] = 0.
Lemma 16 For any a, b ∈ [S]

i) E[⊥] = 0; ii) E[a,⊥] = 0; iii) E [a] > 0 if a 9=⊥ ;
iv) E[a∗] = E[a]; v) E 1

2 [a� b] ≤ E 1
2 [a] + E 1

2 [b];
vi) E[a� b] + E [a : b] = 2(E[a] + E[b]);

Proof.
i) In (EN1) take a = b = s =⊥;
ii) E[a,⊥] = E[a,⊥ � ⊥] = E [a,⊥] + E[a,⊥];
iii) Let a = u : v. Then

E[a] = E[u : v, u : v]
= E[u] + E[v]− 2E[u, v]
≥ E[u] + E[v]− 2E 1

2 [u]E 1
2 [v]

= (E 1
2 [u]− E 1

2 [v])2;
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iv) Let a = u : v. Then a∗ = v : u and

E [a∗] = E [v : u, v : u]
= E [v] + E[u]− 2E [v, u]
= E [u : v, u : v]
= E [a];

v) We have

E[a� b] = E[a� b, a� b]
= E[a] + E [b] + 2E [a, b]
≤ E[a] + E [b] + 2E 1

2 [a]E 1
2 [b]

= (E 1
2 [a] + E 1

2 [b])2;

vi) We have

E[a� b] + E [a : b] = E[a� b, a� b] + E [a : b, a : b]
= E [a] + E[a, b] + E [b, a] + E[b] + E[a]− E[a, b]− E[b, a] + E[b]
= 2(E[a] + E[b]).

Definition 106 We define the energy metric d : [S]× [S]→ R+ by

d(a, b) =

� E 1
2 [a : b] if a, b ∈ S
E 1
2 [(u� v3) : (v � u3)] if a, b ∈ [S], a = (u, v), b = (u3 , v3)

Remark 42 We can define the energy topology τd on [S] by

(an)n∈N →
τd
a iff (d(an, b))n∈N →

R
0.

Corollary 6 The energy topology is a Hausdorff topology.

Definition 107 We shall note by [S] the completion of [S] in the energy topology.

Remark 43 The theorem 3 from section 2.2.2 shows that every [S] is domain representable, so we can
study the computability of energetic spaces.

Remark 44 The energy E can be extended to [S] by E[a, b] = lim
n→∞ E [an, bn] , (a, b ∈ [S]), where (an)→ a,

(bn)→ b, (an) ⊂ [S], (bn) ⊂ [S].

Definition 108 An energetic space is a structure < [S], E > such that [S] is an extended space, E :
S× S→ R is an energy and

(ES1) [S] = [S];

(ES2) a ∈ b⊥ ⇒ a ∈ b⊥E , (∀a, b ∈ [S]).

Theorem 12 The structure < [S], E > is an energetic space iff [S] is closed in the energy topology and
the energy E is a lattice valuation.
Proof. We prove first that E is a lattice valuation iff

E[a ∧ b, a ∨ b] = E[a, b] , (∀a, b ∈ [S]).

Using axiom (S6) we obtain
E[(a ∧ b)� (a ∨ b)] = E[a� b, a� b]⇔
E[a ∧ b] + E [a ∨ b] + 2 · E [a ∧ b, a ∨ b] = E[a] + E[b] + 2 · E[a, b].
We prove now that in any energetic space the energy E is a lattice valuation. Let c = a ∧ b. We have
a = c� a3 , b = c� b3 , a3 ∈ (b3)⊥E , a ∨ b = c� (a

3 ∨ b3) = c� (a3 � b3).

CONTENTS 40



Therefore

E[a ∧ b, a ∨ b] = E [a3 � b3 � c, c]
= E [a3 � c, c] + E[b3 , c]
= E [a3 � c, b3 � c]− E[a3 � c, b3 ] + E [b3 , c]
= E [a, b]− E[a3 , b3 ]
= E [a, b].

Conversely, if E is a lattice valuation then
E [a, b] = E[a ∧ b, a ∨ b] = E [⊥, a ∨ b] = 0⇔ a ∈ b⊥.

Example 14 Let [S] be the class of all the spaces of excessive functions ξV [BBC 81] of all sub-Markovian
resolvents V which are in duality (with respect to a finite measure μ) and for which the initial kernels are
proper. For any ξV , ξW ⊆ [S] and a ∈ ξV , b ∈ ξW define the mutual energy E [a, b] of a and b by

E[a, b] =: sup{
]
f Wg dμ ; a, b ∈ F, V f ≤ s, Wg ≤ t}

where V is the initial kernel for V , W is the initial kernel forW and F denotes the set of all B-measurable
positive numerical functions on X, (X,B,μ) being the measurable space.

Example 15 Let D ⊂ Rn be Greenean set (with the Green function G) and let [S3 ] be the class of all
Borel measures on D. The mutual energy E [a, b] of two measures a3 = μ, b

3
= ν, a

3
, b
3 ∈ [S3 ] is defined by

E 3 [a3 , b3 ] =: U U G(x, y) dμ(x) dν(y).
Remark 45 If we denote by a(x) =:

U
G(x, y) dμ(x) , b(x) =:

U
G(x, y) dν(y), there exist resolvents V,

W which are in duality (with respect to a finite measure μ), such that a ∈ ξV , b ∈ ξW and E[a, b] =
E 3 [a3 , b3 ].

Example 16 Let [S] be the class of all absolute continuous functions f on (x, y) with f 3 ∈ L2(x, y) and
f(x) = f(y) = 0. One can define the mutual energy E[a, b] of a and b by E[a, b] =:

yU
x

a
3
b
3
dt.

Definition 109 For es ∈ [S] let es↑ = esZ[S] 0 , es↓ = (⊥ : es)Z[S] 0 , eso = es↑ � es↓ .
Proposition 43 The energy is continuous in the energy topology.

Proof. Let (an) ⊂ [S], (bn) ⊂ [S] with (an)→ a, (bn)→ b. We must show that lim
n→∞ E [an, bn] = E[a, b].

But

|E[a, b]− E [an, bn]| ≤ |E [a, b : bn]|+ |E[a : an, b]|
≤ E 1

2 [a]E 1
2 [b : bn] + E 1

2 [b]E 1
2 [a : an]

≤ E[a] · d(b, bn) + E[b] · d(a, an)

which converges to zero.

Lemma 17 The energy metric is translation invariant.

Proof. d2(a� s, b� s) = E[(a� s) : (b� s)] = E[(a : b)� (s : s)] = E[a : b] = d2(a, b).

Proposition 44 The superposition is continuous in the energy topology.

Proof. Let (an)n ⊂ [S], (bn)n ⊂ [S] with (an)→ a, (bn)→ b.We must show that lim
n→∞ (an� bn) = a� b.

But
d(an � bn, a� b) ≤ d(an � bn, a� bn) + d(a� b, a� bn) ≤ d(an, a) + d(bn, b) which converges to zero.
We want now to characterize the extended process for which the basic space are energetic spaces.

Definition 110 An extended process B is called W-like process if there exists a map i : B→ ImB such
that :

CONTENTS 41



(W1) i[α� β] = i[α] + i[β] , and

α ≤ β ⇔ i[α] ≤ i[β] , (∀α,β ∈ B);
(W2) i[B] is solid and increasingly dense in ImB ;
(W3) i[R(α)] = R̃(i[α]) , (∀α ∈ B);
(W4) for any two sweepings S and T on B such that S ∨ T = idB we have S ◦ T = T ◦ S.
Let C : B× B→ R+ defined by C[α,β] = i[β](α) , (∀α,β ∈ B). For any W-like process B we define

Bf =: {β ∈ B; C[β,β] <∞}.

Lemma 18 C is a couple of observers.
Lemma 19 The couple of observers C has the followings properties:

* )For any β ∈ B the maps α ≤ β ⇒ C[σ,α] ≤ C[σ,β].
** ) If (αi)i∈I ↑ α then

Z
i∈I
C[σ,αi] = C[σ,α].

***) For any cob ∈ ImB there exists β ∈ B such that cob(α) = C[β,α] , (∀α ∈ B).
Proof.
* ) Results from C[σ,α] = i[α](σ), C[s,β] = i[β](σ) and α ≤ β ⇔ i[α] ≤ i[β].
** ) Results from

Z
i∈I
C[σ,αi] = i[

Z
i∈I

αi](σ), C[
Z
i∈I

αi,σ] =
Z
i∈I
i[αi](σ), and if (cobi)i∈I ⊂ ImB, (cobi)i∈I ↑

cob ∈ ImB then cob[σ] = Z
i∈I
cobi[σ].

***) Follows from the fact that i is a bijection.

Corollary 7 The axioms W1) W2) are logical equivalent with the properties *), **), ***). The axiom
W3) is logical equivalent with the following property for any sweeping S on B

C[Sα,β] = C[α, Sβ] , (∀α,β ∈ B).

For any β ∈ B we define Bβ= : {α ∈ Bf ;∃m,n ∈ N,α(m) ≤ β(n)}.
Remark 46 Bf =

V
β∈Bf

Bβ.

Proposition 45 Bf is solid and increasingly dense in B.

Proof. If α ≤ βf and βf ∈ Bf we have C[α,α] ≤ C[βf ,βf ] < ∞ so α ∈ Bf . Let now β ∈ B . There
exists a net (αi)i∈I ↑ α such that C[αi,αi] ≤ C[αi,β] <∞ so (αi)i∈I ⊂ Bf .

Lemma 20 Bf is a basic space if C[βf ,βf ] ≥ 0 for any βf ∈ [Bfα] and α ∈ Bf .

Proof. Let α,β ∈ B and (γfi )i∈I ⊂ Bf increasing to α� β. Define αi = (γ
f
i : α) , βi = (γ

f
i : β). Then

we have αi � βi ≤ γfi , (∀i ∈ I) and the net (αi)i∈I increases to α and the net (βi)i∈I increases to β .

Corollary 8 For any α,β ∈ B

C[α,β] + C[β,α] ≤ C[α,α] + C[β,β] (PO)

and
C[α,α] = 0⇒ α =⊥ .

Proof. Because αi,βi ∈ Bfγfi , (∀i ∈ I) we have C[(αi : αi), (βi : βi)] ≥ 0 which is equivalent to

C[αi,βi] + C[βi,αi] ≤ C[αi,αi] + C[βi,βi] , (∀i ∈ I). Passing to the limit we obtain (PO). If C[α,α] = 0
then for any βf ∈ Bf we have 1

2C[α,β] ≤ (C[α,α])
1
2 · (C[β,β]) 12 , so C[α,β] = 0 and therefore α =⊥ .

Lemma 21 Let β ∈ [B3 ], B3 ⊆ B be solid in B with respect to the specific order and such that C[β] <∞,
β = α : α

3
, α : α

3 ∈ B and (βn)n∈N be the sequence defined by β1 = β, βn+1 = βn : βn. Then

C[β] =
∞[
n=1

C[βn].
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Proof. Since B3 is solid in B with respect to the specific order βn ∈ [B
3
]. The formula C[β] =

nS
j=1

C[βj ] + C[βn+1] can be proved by induction. Using relations

C[βn+1] = C[βn+1,βn+1] = C[βn+1,βn+1]
we have

C[βn+1] = C[βn+1,βn+1] + C[βn+1 : βn+1,βn+1]
= C[b̄n+1] + C[βn+1 : βn+1,βn+1 : βn+1] + C[βn+1 : βn+1,βn+1]
= C[βn+1] + C[βn+2],

and therefore C[β] =
n+1S
j=1

C[βj ] + C[βn+2].
We now construct inductively the sequences (αn)n∈N , (α

3
n)n∈N in B3 such that

α1 = α , α
3
1 = α

3
, αn+1 = αn : (αn : α

3
n) , α

3
n+1 = α

3
n : (α

3
n : αn).

The sequences (αn)n∈N , (α
3
n)n∈N are decreasing with respect to the specific order and α

3
n+1 ≤ αn+1,

αn+1 ≤ α
3
n. Hence

Y
� αn =

Y
αn =

Y
α
3
n =

Y
� α

3
n.

But αn : α
3
n = β2n−1 (formula that can be proved by induction) and therefore

C[β2n−1] = C[αn : α
3
n] , lim

n→∞ C[β2n−1] = 0 , C[β] =
∞S
n=1

C[βn].

Lemma 22 Let A ⊂ B a inferior semilattice, solid with respect the specific order and C[α] < +∞,
(∀α ∈ A). If the couple of observers C is regular, then

C[Sασ,σ3 ] = C[σ, Sασ3 ] , (∀α ∈ [A]↑ , ∀σ,σ3 ∈ A).
Proof. We prove first

C[Sασ,σ] = C[σ, Sασ] = C[Sασ, Sασ] , (∀α ∈ [A]↑,∀σ ∈ A) (AD)

Let α ∈ [A]↑, σ ∈ A . For any n ∈ N we define αn =: σ ∧α(n). Then (αn)n∈N is increasing in A. Further
(αn)n∈N is an increasing sequence in A and we have Sασ =

Z
n∈N

αn. Since

Sασ = (Sασ)(2) : σ =
b
n∈N

((αn)
(2) : σ)

we obtain

C[Sασ, Sασ] =
b
n∈N

C[(αn)(2) : σ, (αn)(2) : σ]

=
b
n∈N

C[(αn)(2) : σ, (αn)(2) : σ]

=
b
n∈N

C[(αn)(2) : σ, (αn)(2)]−
b
n∈N

C[(αn)(2) : σ,σ]

= 2 · C[Sασ, Sασ]− C[Sασ,σ]
so C[σ, Sασ] = C[Sασ, Sασ]. Analogously we obtain C[Sασ,σ] = C[Sασ, Sασ].
Using relation (AD) we prove now the conclusion. We have
C[Sα(σ � σ

3
),σ � σ

3
] = C[Sα(σ � σ

3
), Sα(σ � σ

3
)] ,

C[σ3 , Sασ3 ] = C[Sασ3 , Sασ3 ] , C[σ, Sασ] = C[Sασ, Sασ]
Thus C[σ, Sασ3 ] + C[σ3 , Sασ] = C[Sασ, Sασ3 ] + C[Sασ3 , Sασ] = 2 · C[Sασ, Sασ3 ].
Since C[σ, Sασ3 ] ≥ C[Sασ, Sασ3 ] and C[σ, Sασ3 ] ≥ C[Sασ, Sασ3 ] we get
C[σ3 , Sασ] = C[Sασ3 , Sασ]. Analogously we obtain the relation C[σ, Sασ3 ] = C[Sασ, Sασ3 ].

Proposition 46 Let B be a W-like process. Then < [Bfα],EC > is a energetic space, (∀α ∈ [B]).
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Proof.
We prove now condition (ES). We prove first
(SW) Sβ(β) = β , for any β ∈ [Bfα].

Let S and T be two sweepings on B such that S ∨ T = idB. Take T = S 3 .We have then S ◦ S3 = S3 ◦ S
and therefore Sβ ◦ S3β = S

3
β ◦ Sβ , (∀β ∈ [Bfα]).From Proposition we have Sβ(idB : S

3
β) = idB : S

3
β.

Since β ∈ KerS3β it follows Sβ(β) = β , for any β ∈ [Bfα].
Let now α,β ∈ [Bfα] be such that α ∈ β⊥. We have
EC[α,β] = EC[Sαα,β] = EC[Sαα, Sαβ] = EC[Sαα,⊥] = 0

so α ∈ β⊥EC .

Definition 111 Let B be a W-like process. The map EC : [S]× [S]→ R defined by

EC[α,β] =: C[α,β]+C[β,α]
2

will be called the energy associated to the W-like process B.

Definition 112 A system is a map Γ : [S]→ [S] such that

(S1) Γ[a� b] = Γ[a]� Γ[b];
(S2) Γ is continuous in τd;
(S3) there exists m = mΓ ∈ R+ such that 1

m · E[a] ≤ E[Γa] ≤m · E [a] , (∀a ∈ [S]);
(S4) Γ[[B]] is dense in [S];

(S5) E[a, b] = E[Γa, b] + E[a,Γb]
2

.

Definition 113 For any system Γ we can associate its Γ− energy EΓ defined by
EΓ[a, b] = E[Γa, b].

For any system Γ we define the space [BΓ] =: {α ∈ [S]; EΓ[α, s] ≥ 0,∀s ∈ [S]↑} called the extended
process associated to system Γ (or the Γ− extended process).
Theorem 13 The lattice operations ∨ and ∧ are continuous in the Γ− energy topology.
Proof. If (an)n∈N →

τd
a and bn =: a : an then we have

(bn)n∈N →
τd
⊥ , (bn)↑ →

τd
⊥ , (bn)↓ →

τd
⊥ , (bn)o →

τd
⊥,

and (an)↑ = (a↑ � (bn)↓) : (a↑ ∧ (bn)↑)� (a↓ ∧ (bn)↓).
From this and from (S3) it is sufficient to show that if s ∈ [S]↑ and (sn)n∈N →τd⊥, (sn)n∈N ⊂ [S]↑
then EΓ[(s ∧ sn)]n∈N → 0 (therefore (s ∧ sn)n∈N →⊥). We have ⊥≤ s ∧ sn ≤ sn, (∀n ∈ N). Hence for
any β ∈ [BΓ]↑ we get 0 ≤ EΓ[β, s ∧ sn] ≤ EΓ[β, sn] so EΓ[β, s ∧ sn]n∈N → 0. From (S4) it follows that

EΓ[s, s ∧ sn]n∈N → 0 (∀s ∈ [S]↑).
From EΓ[s, sn] + EΓ[s∧ sn]− EΓ[s, s∧ sn]− EΓ[s∧ sn, sn] = EΓ[s : (s∧ sn), sn : (s∧ sn)] ≤ 0 it follows

EΓ[(s ∧ sn)]n∈N → 0.

Definition 114 For any s ∈ [S] define the energy-reduite s∈ [BΓ] as the unique element which satisfies
EΓ[s : s, s] = 0.
Proposition 47 We have: EΓ[s] ≤ EΓ[s� t] , (∀t ∈ [S]↑).

Proof. E2Γ[s] = E2Γ[s, s] ≤ E2Γ[s� t, s] ≤ EΓ[s] · EΓ[s� t].

Corollary 9 For any s ∈ [S] we have: s = s.
Proof. From definition results s∈ [BΓ] and s≥ s. Let α ∈ [BΓ] with α ≥ s. From α ∧ s ∈ [BΓ] and
(α ∧ s) ≥ s we obtain
(α ∧ s) : s ∈ [S]↑, EΓ[α ∧ s] ≤ EΓ[s] ≤ EΓ[s� t] , (∀t ∈ [S]↑);
so α ∧ s = s , α ≥ s and therefore s = s.
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Lemma 23 Any increasing and dominated net is τd convergent.

Proof. Let (αi)i∈I ⊂ [BΓ] be a net increasing in [BΓ] and dominated in [S]. Let also s ∈ [S] be such that
αi ≤ s, (∀i ∈ I). Results then αi ≤ s, (∀i ∈ I) so the net (αi)i∈I is increasing in [BΓ] and dominated by
s in [BΓ].We have for i, j ∈ I, i > j,

d2(αi : αj) = EΓ[αi : αj ,αi : αj ]
= EΓ[αi]− 2EΓ[αi,αj ] + EΓ[αj ]
≤ EΓ[αi]− EΓ[αj ].

From the fact that the family (EΓ[αi])i∈I is increasing and dominated in R results the convergence of
(αi)i∈I .

Lemma 24 Any decreasing net is τd convergent.

Proof. Let (αi)i∈I ⊂ [BΓ] decreasing. We have for i, j ∈ I, i > j,
d2(αi : αj) = EΓ[αi : αj ,αi : αj ]

= EΓ[αi]− 2EΓ[αi,αj ] + EΓ[αj ]
≤ EΓ[αi]− EΓ[αj ];

From the fact that the family (EΓ[αi])i∈I of positive elements is decreasing in R results the convergence
of (αi)i∈I .

Corollary 10 For any A ⊂ [BΓ] we have
Y
[S]A ∈ [BΓ].

Definition 115 For any set A ⊂ [S] we define its polar A◦ by A◦ =: {s ∈ A◦; EΓ[a, s] ≤ 0,∀a ∈ A}.

Proposition 48 The energy EΓ is isotone on [BΓ].
Proof. Let α,β ∈ [BΓ] with α ≤ β. We have
EΓ[α] = EΓ[α,α] ≤ EΓ[α,β] ≤ EΓ[β,β] = EΓ[β].

Theorem 14 Any Γ− elementary process is uniquely determined by its energy.
Proof. Let α,β ∈ [BΓ] with EΓ[α] = EΓ[β]. We have

EΓ[α : β] = EΓ[α]− 2EΓ[α,β] + EΓ[β]
≤ EΓ[α]− 2EΓ[β] + EΓ[β]
= 0

so α = β.

Proposition 49 We have [BΓ] = [S].

Proof. Let s ∈ [S] such that EΓ[α, s] = 0, (∀α ∈ [BΓ]). It follows so ∈ ([BΓ])◦ . From definition of [BΓ]
and from the bipolar theorem results
([BΓ])◦ = [S]↑ so so ∈ [S]↑ ⇔ s =⊥ .

Proposition 50 For any system Γ the space BΓ =: [BΓ]↑is an extended process.

Proof.
(P3 ) Of course EΓ[⊥, s] = 0, (∀s ∈ [S]↑) so ⊥∈ BΓ;
(P4) Let α,β ∈ BΓ. It is sufficient to show that α∧β = nf(α∧β). Indeed, if we denote γ = nf(α∧β)

we prove that γ = γ∧α and γ = γ∧β. From the definition of γ we have EΓ[γ] = EΓ[γ, γ∧α] and therefore

EΓ[γ, γ : (γ ∧ α)] = EΓ[γ, γ : (α ∧ β)]
= EΓ[γ, (α ∧ β) : (γ ∧ α)]
= 0
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Also, since ((α : (γ ∧ α)) ∈ (γ : (α ∧ γ))⊥ we get EΓ[α : (γ ∧ α), γ : (α ∧ γ)] = 0. Hence we deduce that
EΓ[γ : (α ∧ γ)] = EΓ[γ, γ : (α ∧ γ)] + EΓ[α : (γ ∧ α), γ : (α ∧ γ)]− EΓ[α, γ : (α ∧ γ)]

and therefore EΓ[γ : (α ∧ γ)] = 0 so γ = α ∧ γ. Analogously we get γ = β ∧ γ;
(P5) and (P6) are direct consequences of (EN1);
(P7) Results from (ID1) and (ID2) and from Lemma 23 and from Lemma 24.
(P8) Let α,β, γ ∈ BΓ such that γ ≤ α� β and let α

3
= nf(γ : β) , β

3
= γ : α

3
. Then α

3
,β
3 ∈ BΓ ,

α
3 ≤ α , β

3 ≤ β , γ = α
3 � β

3
.

Proposition 51 We have: α : (α : β) ∈ BΓ , (∀α,β ∈ BΓ).
Proof. Let α,β ∈ BΓ. Then
α : (α : β) ∈ BΓ ⇔ (α : (α : β)) = α : (α : β).
Note γ = α : α : β. We have
EΓ[γ : γ] = EΓ[γ, γ : γ]− EΓ[γ,γ : γ] = EΓ[γ, γ : γ]
From γ ≤ β we deduce γ ≤ β and

EΓ[γ, γ : γ] = EΓ[α : (α : β), γ : γ]
= EΓ[α, γ : γ]− EΓ[(α : β), γ : γ]
≤ EΓ[α, γ : γ]− EΓ[(α : β),β : γ]
≤ EΓ[α : β, (β : α)� (α : β)]
= EΓ[α : β, (α : β) : (α : β)]
= 0.

Hence EΓ[γ : γ] = 0⇔ γ = γ.
We define

[S]S = : KerS,

SS = : KerS ∩ S,
ΓS = : Γ[S]S ,

The structure < [S]S, EΓ > is the energetic space associated to the system ΓS .
Proposition 52 We have

i) BS is solid in the ΓS − extended process BΓS ;
ii) for any β ∈ BΓS there exists a sequence (βn)n∈N ⊂ BS such that β =

∞M
n=1

βn;

iii) for any α ∈ [S]S such that β ∈ BS ⇒ α ∧ β ∈ BS we have α ∈ BΓS ;
iv) for any β ∈ B and any α ∈ BΓS we have α ∧β ∈ BΓS .

Proof.
Let α ∈ [S]S.We show that α ∈ BΓS iff there exists a sequence (βn)n∈N ⊂ BΓ such that LS(βn)→τd α.

Indeed we have
α ∈ BΓS ⇔ Sα ∈ ([S]S ∩ S)◦ ⇔ Sα ∈ ([S]S)◦ − (S)◦ ⇔ α ∈ BΓ � Γ−1(([S]S)◦).
Since Γ−1(([S]S)◦) = [S]S we have α ∈ BΓS ⇔ α =lim

τd
(βn � Sγn) where (βn)n∈N ⊂ [S]. Since α ∈ BΓS

we have
Sα =⊥, lim

τd
(Sβn � Sγn) =⊥, α ∈ BΓS ⇔ α = lim

τd
LS(βn).

i) Let α ∈ BΓS , β ∈ BS and (βn)n∈N ⊂ BΓ be a sequence such that α = lim
τd
LS(βn) , α ≤ LS(β).

Since BΓ is a inferior semi-lattice we may assume LS(βn) ≤ LS(β) We have LS(βn) � Sβ ∈ BS and
α� Sβ ∈ BS and therefore α = (α� Sβ) : S(α� Sβ) ∈ BS ;
ii) Let α ∈ BΓS . It is sufficient to show that, for any ε > 0, there exists αε ∈ BΓS and βε ∈ BS

such that α = αε� βε and EΓ(βε) ≤ ε. For this purpose let (βn)n∈N ⊂ BΓ such that βn →
τd

α and

αn =: nf(α : βn) − in [S]S. We have EΓ(βn) → 0 and α : αn ∈ BΓS , α : αn ≤ βn . We may choose
αε = αn for a sufficiently large n and βε = α : αε .
iii) Let α

3
=: α(−in [S]S) and let (βn)n∈N ⊂ BΓ such that βn →τd α

3
. We have α = α ∧ α

3
=

lim
τd
(α ∧ βn) ∈ BΓS .
iv) Follows from iii) remarking that α ∈ BΓ, β ∈ BS ⇒ α ∧ β ∈ BS.
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Corollary 11 Let S be a sweeping on BΓ. If we denote BS =: (BΓ)LS then BS is an extended process
and

(α ∧LSβ) ∈ BS , (∀α,β ∈ BΓ);
(Sα)� (LSβ) ∈ BΓ if (LSα) ≥ (LSβ).

Proof. Results from the fact that BS = KerS .

Example 17 Let V ⊂ Rn, n ≥ 1, V open, m = dx be the Lebesgue measure on V and C∞0 (V ) denotes
the set of all infinitely differentiable functions on V with compact support. Let uij : V → R, 1 ≤ i, j ≤ n,
such that

i) uij = uji for all 1 ≤ i, j ≤ n
ii)
Sn
i,j=1 uij(x)ξi, ξj ≥ 0 for all ξi, ..., ξn ∈ R, dx− a.e.x ∈ U.

iii) uij ∈ L2loc(U, dx), ∂
∂xi
uij ∈ L2loc(U, dx), 1 ≤ i, j ≤ n, where the derivatives are taken in the sense of

Schwartz distributions.
Define [B] =: C∞0 (V ), [S] =: L2(V ; dx) and the system by the linear operator Γ on [S]

Γα = −
n[

i,j=1

∂

∂xi
(uij

∂

∂xj
)α , (α ∈ [B]).

It is necessary to have Γα ∈ [S] for every α ∈ [B] . Define the energy by

EΓ[α,β] =: E[Γα,β] =
n[

i,j=1

]
∂a

∂xi

∂b

∂xj
uijdx , (α,β ∈ [B]).

Then < E , [B] > is closable on [S]6 . Since [B] is dense in [S], its closure is a symmetric closed form on
L2(V ; dx) .

Example 18 Consider the previous example with uij := 1
2δij , i.e. Γ =

1
2∆ with domain [B]. We denote

the corresponding energy by E, and its domain by [S] = H1,2
0 (V ) (since the completion of C∞0 (U) w.r.t.

Γ is by definition the (1,2)- Sobolev space on V with Dirichlet boundary conditions).

Example 19 The Laplacian ∆ is defined on all of L2(V ; dx) in the sense of Schwartz distributions.Then
Γ =: 1

2∆ with domain {u ∈ H1,2
0 (V ) | ∆u ∈ L2(V ; dx)} is the system corresponding to < E, [B] =

H1,2
0 (V ) > on [S] = L2(V ; dx).

Example 20 Define H1,2(V ) := {a ∈ L2(V ; dx) | ∂a
∂xi
∈ L2(V ; dx), 1 ≤ i ≤ n} with derivatives in the

Schwartz distributions sense (i.e., H1,2(V ) is the(1,2)-Sobolev space on V with Neumann-boundary
conditions). Define the energy E#

E#(a, b) := 1

2

n[
i=1

]
∂a

∂xi

∂b

∂xi
dx ; (u, v ∈ H1,2(V )).

Then < E#, [B#] =: H1,2(V ) > is a energy on [S] =: L2(V ; dx) which extends < E, [B] = H1,2
0 (V ) >.

Note that in general H1,2(V ) 9= H1,2
0 (V ) , e.g. if V is a ball then 1 ∈ H1,2(V ) , but 1 /∈ H1,2

0 (V ) . This
is different if V = Rn .

Remark 47 H1,2
0 (Rn) = H1,2(Rn) .

Example 21 Let m = dx and let ”· ”resp.”· ” denote Fourier transform, i.e. f(x) = (2π)−n/2 U exp[i <
x, y >L2 ]f(y)dy, resp. its inverse. Define for 0 < α ≤ 1 (−∆)αa := (|x|2α û) (∈ L2(Rn;dx)); a ∈
C∞0 (Rn) . Then (−∆)α is a system on [S] =: L2(Rn; dx) with dense basic space [B] =: C∞0 (Rn) . Define
the energy E(α)(−∆)α

E(α)(−∆)α(a, b) =:
1

2

]
ûv̂ |x|2α dx ; (a, b ∈ C∞0 (Rn))

where ” ” means complex conjugation. Its closure < E(α)(−∆)α , [B] =: H
α,2(Rn) > is hence a symmetric

closed form on [S] =: L2(Rn; dx).
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Example 22 If 0 < α < 1 then a ∈ [B] if and only if UU |a(x)−a(y)|2
|x−y|2α+n dxdy <∞ and for a, b ∈ Hα,2(Rn)

E[a, b] = Kα

]]
(a(x)− a(y))(b(x)− b(y))

|x− y|2α+n dxdy

for some constant Kα (independent of a, b).

Example 23 Let B := V ⊂ Rn , V open, m := σ · dx for some σ ∈L1loc(V ; dx) , such that
U
v
σ dx > 0

for all V ⊂ V , V open. Let p := (p1, ..., pn) with pi ∈ L1loc(V ; dx), pi ≥ 0 dx - a.e. and define for
a, b ∈ C∞0 (V ).

Ep(u, v) :=
n[
i=1

]
∂u

∂xi

∂v

∂xi
pidx.

Then < Ep, [B] =: C∞0 (V )) is a densely defined symmetric positive definite bilinear form on L2(V ;σ · dx)
. We want to give conditions on pi,σ so that < Ep, [B] > is closable on [S] =: L2(V ;σ · dx) . Define for
p ∈ B+(V )

R(p) := {x ∈ V |
]
{y∈V ||x−y|≤ε}

p−1(y)dy <∞ for some ε > 0}.

Here we use the convention that a0 =: (sign a) ·∞ . Then we ask R(p) is open and p > 0 dx -a.e. on
R(p) and R(p) is the largest open set U ⊂ V such that p−1 ∈ L1loc(U ;dx) .

Because any local Dirichlet space is an energetic space, the previous theorem shows us how one can
associate a local Dirichlet space to a von Neumann algebra.

Definition 116 Let B be a W-like process. The map EC : [S]× [S]→ R defined by

EC[α,β] =: C[α,β]+C[β,α]
2

is an energy which will be called the energy associated to the W-like process B.

It is an easy exercise to verify that any symmetric Dirichlet form is an energy, and its associated
potentials form a W-like process.
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Chapter 5 Unified Theory of Deterministic and
Stochastic Processes

5.1 Types of Continuous Processes
Definition 117 An extended process B = (B,≤, 0,∞,≺) is called C-like (ces for short) if for any A ⊂ B
with a specific order majorant we have:
(C1)

Z
�A is the specific order supremum of a countable subset of A ;

(C2) if A
3
is the class of specific order majorants of A, thenb

A ≤� A3 ;

Definition 118 We shall introduce the unary internal operation e.f on B such that

ea� bf = eaf � ebf
eeaff = eaf

Remark 48 The previous definitions can be extended to arbitrary families of elements ∆.

Example 24 Let a be a positive superharmonic function on a set X, which has a subharmonic minorant.
Then eaf is the greatest harmonic minorant

Example 25 Let ∆ = {xt(.),x(.), t ∈ T} be a class of stochastic processes with a common linearly
ordered parameter set T , on a common probability space, and adapted to a common filtration x(.). Then
eaf is the greatest martingale minorant.

Example 26 We assume a specified filtered probability space with an arbitrary linearly ordered parameter
set T . Denote by (C,≤) the lattice, in the essential order, of those stochastic process equivalence classes
under standard modification which contain positive supermartingales. The space ([C],≤) consists then of
the stochastic process equivalence classes which contain supermartingales having positive supermartingale
essential order majorants.(C,≤, 0,∞,≺) is a model for the C-like process.

Remark 49 The lattice ideas was first introduced in martingale theory by Kricksberg ( [Kri 56]).

Definition 119 A continuous extended process is an process cC ⊂ C with the following properties:

C 1)the regularized act as an application ·̈ : [C]→ [cC] such that

• if a ≤� b in [C] then ä ≤� b̈ in [cC], (∀a, b ∈ C)
• if a ∈ C then ä ∈c C, (∀a ∈ C)

C 2)a ≤� b in [cC] iff a ≤� b in [C], (∀a, b ∈ C)

Example 27 In the continuous parameter context the lattice (cC,≤) consists of the equivalence classes
containing positive right continuous supermartingales . If T = R+ an equivalence class in [cC] contains a
right continuous supermartingale if the class contains almost surely right continuous supermartingale and
two almost surely right continuous supermartingales in the same equivalence class are indistinguishable.
If a(·) ∈ [cC] then the regularized has the form

ä(x) =lim inf
r↓t,r∈Q

a(r)

Remark 50 (Rao [MR 69]) An adapted almost surely right continuous L1 bounded process is a member
of [cC] iff it is a quasimartingale (as defined in Fisk 1965).

We can also exploit the correspondence from (Follmer [Fol 73]) between member of [cC] and measures
on the σ algebra of predictable sets determined by the filtration of quasimartingales.
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Example 28 Let D be a Greenian subset of Rn , n ≥ 2. Denote by cC the class of positive superharmonic
functions on D, in pointwise order and with addition. It follows that [cC] is the class of superharmonic
functions on D with positive superharmonic majorants, ordered by pointwise inequality and with addition.

Proposition 53 (cC,≺,≤, ,⊥,A) with an causal order such that � is the usual superposition (+), 0 as
⊥, ∞ as deadlock is an continuous C-like process.
Proof. Axioms B1), B3), and B4) are satisfied because (cC,≤) is a vectorial lattice.
Axiom B5) (with � as the usual-linear-superposition): trivial for finite-valued functions, is true in

general case because a = b on the set of finiteness of a; so a = b quasi-everywhere and therefore everywhere.
Axiom B2) : if A ⊂c C has an h-superharmonic minorant then according to the Fundamental Con-

vergence Theorem, the lower semicontinuous smoothing of the pointwise infimum of A is superharmonic,
and this function is

Y
A . If A has a superharmonic majorant then ∨A exists and is the (cC,≤) infimum

of the class of superharmonic majorants of A. Thus (cC,≤) is a conditionally complete lattice.
Axiom B6): if A has an superharmonic majorant, some countable subset of A has the same (cC,≤)

supremum as A. If A is directed upward
Z
A is the pointwise supremum; if A is not directed upward, we

shall apply the result in the directed case to the set of (cC,≤) suprema of finite subsets of A.
Definition 120 The H-like process is a specific pseudoband H with the following properties:
(H1) ≤� and ≤ coincides on H

≤�|H=≤|H
(H2) If A ⊂ H then

Y
�A = eAf

(H3) (H,≤H) is a complete lattice
Definition 121 An H-like continuous process is an H-like space cH which is a conditionally complete
sublattice of (cC,≤�)
Definition 122 Denote by H(D) the set of all positive harmonic functions on D .

Proposition 54 H(D) is a model for H-like continuous extended processes.
Proof. A superharmonic function specific order majorized by an harmonic function is itself harmonic.
Let H be a set of positive harmonic functions on D with

Z
�H = h , then h is a specific order majorant

of each member of H; so h is positive and superharmonic and its greatest harmonic minorant on D ghh
is a specific order majorant of H. Hence h = ghh and h is harmonic. The essential and specific orders
coincides onH(D).
Proposition 55 The set of the finite signed measures on ∂D of the ball D is a model for H-like contin-
uous extended processes.

Proof. The Riesz representation theorem establish a lattice isomorphism between the set of the finite
signed measures on ∂D and H(D).
Proposition 56 The set of stochastic process equivalence classes under standard modification which
contain positive martingales is a model for H-like continuous extended processes.
Definition 123 The B-like process is a specific closed specific pseudoband B such that

B = H⊥ and C = H� B
Definition 124 The B-like continuous process is B-like space cB which is a conditionally complete sub-
lattice of (cC, ) such that

cB = (cH)⊥ and cC = (cH)� (cB).
Proposition 57 The set of stochastic process equivalence classes under standard modification which
contains positive supermartingale potentials (i.e. positive supermartingale a for which eaf = 0) is a
model for H-like extended processes.
Remark 51 A martingale is in an H equivalence class iff the martingale is L1 bounded.

Proposition 58 The set of stochastic process equivalence classes under standard modification which
contain right continuous positive supermartingale potentials is a model for H-like continuous extended
processes.
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Remark 52 If a is L1 bounded almost surely right continuous martingale, then a ∈c H.
Proposition 59 The set of all positive superharmonic potentials on D ( noted B(D) ) is a model for
B-like continuous extended processes.

Proof. An element of B(D) specific order majorized by a superharmonic potential GDμ of a measure is
itself such a potential. If A is a set of such potentials with

Z
�A = a , then s is a specific order majorant

of each member of A ; so s is positive and superharmonic and the potential a : a is also a specific order
majorant of A and therefore must be a; that is, a is a potential.

Proposition 60 The setM+
a of measures on D whose potentials are superharmonic is a model for B-like

continuous extended processes.

Proof. The map μ :→ Gμ is a one-to-one order preserving map from M+
a onto B(D).

Definition 125 An Qb-like process is a set like

Q = {a ∈ C ; a =
b
�
A, A ⊂ Bis a set of bounded elements }

Proposition 61 The set of stochastic process equivalence classes under standard modification which
contain quasi-bounded positive supermartingales is a model for Qb-like basic spaces.

Proposition 62 An Qb-like continuous process is an Qb-like process which is a conditionally complete
sublattice of (cC,≤�).
Proposition 63 The set of stochastic process equivalence classes under standard modification which
contain quasi-bounded positive supermartingales and all bounded positive supermartingales involved in
definition are supposed to be almost surely right continuous is a model for Qb-like continuous process.

Proposition 64 If D is provided with a boundary ∂D by a metric compactification, then the Perron-Wiener-
Brelot (PWB) method ([Bre 60, Doo 80) solutions for this boundary are model for the Qb-like process.

Remark 53 We have also a converse result for Prop. 64. If the boundary is internally resolutive then
every element of Qb-like process is a PWB solution.

Definition 126 Define
HQ = H ∩Q and BQ = B ∩Q.

Remark 54 HQ is the band in the set of stochastic process equivalence classes under standard modifica-
tion which contain quasi-bounded positive supermartingales generated by the equivalence class of process
all of whose random variables are identically 1.

Proposition 65 We have
BQ = (HQ)⊥ and Q = BQ�HQ

Definition 127 Define
cHQ = (cH) ∩ (cQ) and cBQ = (cB) ∩ (cQ).

Proposition 66 We have

cBQ = (cHQ)⊥ and cQ = (cBQ)� (cHQ)
Definition 128 Let

R = Q⊥,
cR = (cQ)⊥.

Proposition 67 The class of stochastic process equivalence classes under standard modification for which
every bounded C-specific order minorant is a standard modification of the identically zero process is a model
for R.

The class of functions for which every bounded cC-specific order minorant is the identically zero
function is a model for cR.
CONTENTS 51



Definition 129 Let

HR = H ∩R, BR = B ∩R
and

cHR = (cH) ∩ (cR), cBR = (cB) ∩ (cR)
Proposition 68 A function a is member of the cHR model iff the Martin representation of a has a
representing measure which is singular.

Proposition 69 A stochastic process is a member of BR iff it is local martingale (as defined by Ito and
Watanabe in [IW 65]).

Proposition 70 A necessary condition for h ∈c H to belongs to cHR is h ∧ k ∈c B for every strictly
positive constant k and it is a sufficient condition if the above condition is satisfied for some strictly
positive constant k

Definition 130 Let
BR = B ∩R and cBR = (cB) ∩ (cR).

Proposition 71 We have

C = HQ�HR� BQ� BR and
cC = (cHQ)� (cHR)� (cBQ)� (cBR).

Definition 131 A discrete process is an process dC ⊂ C with the following properties:
D1) the regularized act as an application ·̈ : [C]→ [dC] such that
• if a ≤� b in [C] then ä ≤� b̈ in [dC], (∀a, b ∈ C)
• if a ∈ C then ä ∈d C , (∀a ∈ C)

D2) a ≤� b in [dC] iff a ≤� b in [C], (∀a, b ∈C)
In the discrete parameter context T = Z+.

5.2 Semantic Developments
Definition 132 By an E-model we mean a fixed connected Greenian set D ⊂ Rn such that

H means the class of all positive harmonic functions on D
B means the class of all positive superharmonic potentials on D
cC means the class of all positive superharmonic functions on D
Q means the class of all positive quasi-bounded functions on D

D means

the class of all real valued Borel measurable functions u on D
for which if ξis in D and if Bn is an increasing sequence of open
relatively compact subsets of D with union D then the sequence
[u|∂Bn ,μBn(ξ, ·)]n∈Z+
of coupled functions and measures is uniformly integrable.

Lm means

the class of all real valued Borel measurable functions u on D
for which if ξis in D and if Bn is an increasing sequence of open
relatively compact subsets of D with union D then
supn∈Z+μBn(ξ, |u|m) <∞

Definition 133 By an M-model we mean stochastic processes with parameter set R+, on a complete
probability measure space (Ω,F, Br) provided with a right continuous filtration F such that F(0) contains
the null sets

H means
The class of stochastic process equivalence classes under standard
modification which contain positive martingales,

B means
The class of stochastic process equivalence classes under standard
modification which contain positive supermartingale potentials,

cC means
The class of stochastic process equivalence classes under standard
modification which contain positive right continuous supermartingales,

Q means
The class of stochastic process equivalence classes under standard
modification which contain quasi-bounded positive supermartingales.
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D means
the class of all stochastic processes x(·) for which the family
{x(T ) : T optional, countable valued with values in I}
of random variables is uniformly integrable.

Lm means
the class of all stochastic processes x(·) for which
sup{M(|x(T )|m) : T optional, countable valued with values in I} <∞

Remark 55 For m > 1 we have
cC ⊂ L1 in bothM−model and E −model
cC ∩Lm ⊂ D in bothM−model and E −model
Lm ⊂ D inM−model

Proposition 72 Let b ∈ Q and a ∈c C . Define the class of sets: Xr =: {b > r} and the sweeping
operator: σXr [b] =:

b
x∈X

(b ∧ x). We have

• in theM−model : lim
n→∞ (σXn

[b(·)]) = 0 except a set of null capacity.

• in the E −model : lim
r→∞ (σXr

[b]) = 0 except a set of null capacity.

Proposition 73 Let h ∈ H. We have
• in theM−model a necessary condition for the stochastic process h(·) to belongs to Q⊥ is

h(·) ∧ k ∈ B
for every strictly positive constant k and it is a sufficient condition if the above condition is satisfied
for some strictly positive constant k .

• in the E −model a necessary condition for h ∈ Q⊥ is
h ∧ k ∈ B

for every strictly positive constant k and it is a sufficient condition if the above condition is satisfied
for some strictly positive constant k or equivalently

lim
r→∞ b(r) = 0 a.s.

Proposition 74 Let a ∈c C with a component aQ ∈ Q⊥. We have
• in theM−model : lim

n→∞ (σXn
[a(·)]) = aQ except a set of null capacity.

• in the E −model : lim
r→∞ (σXr [a]) = aQ except a set of null capacity.

Proposition 75 Let a ∈c C. We have
• in theM−model a necessary and sufficient condition for the stochastic process a(·) to belongs to
Q⊥ is σXn [a(·)] = a except a set of null capacity, for every strictly positive constant k .

• in the E −model a necessary and sufficient condition for a ∈ Q⊥ is σXn [a] = a for every strictly
positive constant k .

Proposition 76 Let a ∈ B. The following assertions are equivalent
• in theM−model
i) the process a(·) belongs to BQ;
ii) the process a(·) belongs to D;
iii) lim

n→∞ (σXn [a(·)]) = 0 except a set of null capacity.

• in the E −model, a = GDμ
i) a ∈ BQ; ii) a ∈ D;
iii) lim

k→∞
(σXk [a]) = 0 except a set of null capacity;

iv) μ vanishes on sets of null capacity.
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5.3 Models from Biomedicine

This chapter is rather technical and intends to provide strong mathematical arguments that biopotentials
appearing in human muscles and heart activity are models of our process algebra. We show these by a
two step method: we show that the mathematical models of biopotentials are solutions of Laplace and
Poisson equations, and thus potentials in the sense of classical potential theory. We gave in the previous
chapters examples showing that potentials in axiomatic potential theory are models of continuous process
algebra. The way potentials in classical potential theory are axiomatized in the modern approaches can
be found in the potential theory literature.

5.3.1 HB-like processes in cardiac electrogenesis

We want to express the fact that the basic occurrences of processes associated with concurrent bio-
systems such as the heart are modelled by potentials defined in HB-like processes. More concerns on
parallel evolution and interaction between the basic occurrences will be considered in a forthcoming
paper.
If we consider the body as an insulated volume conductor bounded by an irregular surface, contain-

ing intracardiac current sources, then the total current
−→
J can be expressed everywhere in the volume

conductor as the sum of a passive term σ
−→
E and a source term

−→
J i, where

−→
E is the electric field, σ is the

conductivity for isotropic media and
−→
J i. Thus

−→
J = σ

−→
E +

−→
J i .

Since the electric field
−→
E is conservative, it can be expressed as the gradient of a scalar potential

function −→
E = −∇p

The source term
−→
Ji , where the index ”i” stands for impressed current, represents the contribution of

a non-conservative field which accounts for the locally generated current density due to conversion of
chemical to electrical energy. This conversion occurs in the cell membrane.

The charge conservation law states that the rate of change of the quantity of charge within a volume
v bounded by a fixed surface S, is always equal to the flux of change per unit time through this surface.
The law may thus be written as dq

dt = −
U
S

−→
J · d−→S . But dq

dt =
d
dt

U
v ρdv =

U
v
∂ρ
∂t dv and by means of

the divergence theorem for the vector
−→
J we obtain ∇−→J + ∂ρ

∂t = 0 everywhere in v. The conductivity
σ is a real quantity due to the resistive nature of biological tissues at the low frequencies contained in
bioelectric signals. This is true everywhere in v except in the membrane,which has both resistive and
capacitive properties. The bioelectric current field may then be treated as stationary since it does vary
with time, but the time dependence adds no distinct source term. Then, under stationary conditions
∇−→J = 0. If the volume conductor is isotropic and if the membrane is an ideal surface with zero thickness,
then ∇−→J = ∇(−σ∇p+−→Ji ) = 0,

∇2a = ∇
−→
Ji
σ

(5.1)

Thus a satisfies a Poisson’s equation which reduces to the following Laplace’s equation

∇2a = ∆p = 0 (5.2)

in regions of the volume conductor where there are no sources. The source function −∇−→Ji corresponds
to the charge density as defined in electrostatics and −∇−→Ji dv,where dv is a volume element,can be
considered as contributing to the potential field in the same way as a point charge contributes to the
electrostatic potential field. Since the current density

−→
Ji refers to the active membrane and has a given

volume distribution,then

a(−→x ) = 1

4πσ

]
v

−∇−→Ji
d

dv (5.3)

where d = |−→x −−→y | and x, y refer to the field point and to the source element position respectively. The
assumption is here made that the medium is infinite and homogeneous.
An equivalent expression for the potential can be obtained by using the vector identity ∇(−→Ji · 1d ) =

1
d∇
−→
Ji +

−→
Ji∇( 1d) and by integrating both sides within a volume that completely contains all sources

−→
Ji .

By applying the divergence theorem the first volume integral reduces to a surface integral and since
−→
Ji is
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necessarily zero over this bounding surface its contribution is zero: 0 =
U
v
∇−→Ji
d dv+

U
v

−→
Ji ·∇( 1d)dv. Then

the potential a(−→x ) is given by
a(−→x ) = 1

4πσ

]
v

−→
Ji ·∇(1

d
)dv (5.4)

In electrostatics the potential at a point −→x due to a dipole at a point −→y is obtained by the su-
perposition (i.e. �) of the potential due to a positive point charge b at a point −→y ,i.e. b/d with
d = |−→x −−→y |, and the potential due to an equal charge of opposite sign −b at a very small distance
from the first charge. Let this small distance be taken along one coordinate axis, e.g. ∆y1. Since the
potential function of a point charge has a first order singularity at the position of the charge, i.e.x = y,
d = 0, then the new system of two charges has a higher order singularity at d = 0. This procedure
is equivalent to differentiating the potential function q/r with respect to the source variable y1. We
note that this potential is also a solution of Laplace’s equation since it is the derivative of one of its
solutions. Then a(−→x ) = 1

4πσ
∂(b/d)
∂y1

∆y1 =
q∆y1
4πσ · x1−y1d3 . By defining

lim
b→∞,∆y1→0

b ·∆y1 = −→a as the dipole moment,then a(−→x ) = 1
4πσ
−→a ·∇( 1d) where ∇ is the gradient vector

operator acting on source points −→y .
We want to obtain an interpretation of the volume density distribution of the dipole moment. The

sources are located in the cellular membrane. If we consider the membrane as a thin layer we can treat
it as a mathematical surface separating two potential distributions just inside and outside of the cell
membrane. In such a system the following conditions are satisfied:

• continuity of the normal component of the current density across the membrane σi ∂p∂n |i= σo
∂p
∂n |owhere−→n is the normal unit vector to the membrane surface which is approached from inside (i) and outside

(o) respectively and σi and σo are the conductivities on both sides of the surface;

• the potential is discontinuous across the membrane am = ai− ao where am is the transmembrane
potential. For a single fiber immersed in an infinite volume conductor the scalar function σp, with
σ = σi inside the fiber, and σ = σo outside the fiber, satisfies the following Laplace’s equation

∇2(σp) = 0 (5.5)

In addition, the function σp is discontinuous across the fiber membrane and its normal derivative is
continuous. These properties of the function σp characterize the presence of a double layer on the
surface element dS. The moment of the double layer is normal to dS, has strength (σoao−σiai) ·dS
and is oriented according to the outward normal Then the function σp is given by σp(−→x ) =
1
4π

U
B
(σoao − σiai) ·∇( 1d ) · d

−→
S and the potential function is

a(−→x ) = 1

4πσ

]
S

(σoao − σiai)∇( 1
d
) · d−→S (5.6)

where σ = σo if the field point is external to the fiber and σ = σi if the field point is internal to
the fiber. We note that ∇(1/d) · d−→S = dΩ is the solid angle subtended by the source element dS
at the field point −→x .

a(−→x ) = 1

4πσ

]
S

(σoao − σiai)dΩ

In the extracellular volume the potential due to an active fiber is given by a dipole layer source
covering the membrane. The dipole moment magnitude per unit area is given by the discontinuity of the
function σp across the membrane surface.
Whenever there is an electrical source distribution on a given surface S (single layer for charge distri-

bution, double layer for dipole distribution) then the source magnitude is determined by the associated
scalar or vector function which is discontinuous across the surface S. The value of the discontinuity of the
function is proportional to the magnitude of the surface distribution. The function which is discontinuous
across the surface is the one which contains the product of the source magnitude times a term which is
the solid angle subtended at a point by the surface element. For the single layer the charge distribution
is proportional to the discontinuity of the normal derivative of the potential (normal component of the
electric field ) at the surface S.
If we consider an idealized uniform cylindrical fiber in an infinite, homogeneous conducting medium,

then the equation may be transformed into

a(−→x ) = 1

4πσo

]
v

Im
d
dv (5.7)
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where Im is the transmembrane current density and the volume of integration is that of the cylinder.
This result is obtained by assuming the core conductor model to be valid for the cylindrical fiber. Under
this assumption the transmembrane current density Im is given by the spatial change of the intracellular
longitudinal current I. From linear cable theory, in a cylinder oriented along coordinate axis x1 it is
Im = −∂Ix1

∂x1
. The intracellular current density Ix1 is generated by a spatial gradient of the intracellular

potential ai : Ix1 = −σx1 ∂pi∂x1
where σx1 is the intracellular conductivity along the cylinder axis. Thus

Im = σx1
∂2ai
∂x21

is proportional to the second derivative of the intracellular potential and is constant over
any cross section of the cylinder.

Remark 56 Inverse and Forward Models in Electrocardiology

It is the purpose of clinical electrocardiology to obtain some information on the intracardiac electrical
events from body surface measurements. Over a century ago Helmholtz showed that an endless variety of
electrical generators (electro-motive forces) located within a volume conductor can produce one and the
same potential distribution at its surface. This statement can be proved by the following reasoning. Let
an arbitrary surface S, internal to a volume conductor, surround all current sources so that no current
source exists outside or on the surface S. On the surface S it is always possible to spread a double layer
distribution and leave the sources inside so that no current will flow outside the volume bounded by S.
When this is done, surface S behaves as the boundary between a conductor and an insulator. Let a be
the potential function of the real sources in the absence of the double layer on S, and b the potential
function of the double layer on S which would prevent the currents generated by the internal sources
from flowing through S. The superposition a�b of a and b must satisfy the following conditions within
the entire volume conductor

∇2a =
∇−→J i

σ
at points occupied by sources (5.8)

∇2b = −μ
σ
at the surface S of the double layer (5.9)

∇2(a� b) = 0 elsewhere (5.10)
∂(a� b)

∂n
= 0 on S (5.11)

where ∇−→Ji is the internal source function and μ is the magnitude of the double layer density distribution
normal to S and oriented along the outward normal. Both b and a are harmonic functions outside S
and due to condition (5.10), according to a general theorem (Kellog 1926), it must be

a� b = const (5.12)

outside S, or a = −b but for an additive constant which can be assumed to be zero, i.e. 1
4πσ

U
v
−∇−→Ji
d dv =

− 1
4πσ

U
S
μ∇( 1d) · d

−→
S .

This equations provide a pure biological model for our extended processes.
At a point x of the surface S the potential function a is continuous while the potential function

b has a discontinuity which equals the strength of the double layer, i.e. μ(S)
σ = ΦS(S), where ΦS is the

potential measured at the surface S. It follows from Eq that the potential outside S can be given
either by potential function

a =
1

4πσ

]
v

−∇−→Ji
d

dv (5.13)

relating to internal sources or by the potential function

−b = 1

4πσ

]
S

ΦS∇( 1
d
)d
−→
S (5.14)

relating to the non-homogeneous double layer normal to S, and oriented as the outward normal. Since
the surface S has been chosen in an arbitrary manner with the only restraint that all sources be internal
to it, then an infinite number of double layer distributions, each on a different surface, will generate the
same potential field in the volume conductor external to all of them.
It follows from the Helmoltz theorem that the distribution of electrical generators within the cardiac

muscle cannot be uniquely reconstructed from electrical signals recorded at the surface of the human body.
However, this is only true if we have no a priori knowledge of the generator. Practically, physiological
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constraints may greatly reduce the theoretical indeterminacy. The problem of gaining some insight into
the distribution of intracardiac events from external measurements is called the ”inverse problem” of
electrocardiology.
The counterpart of the inverse problem can be stated as follows: given the distribution of intracardiac

generators, find the potential distribution within the body and on its surface. The problem is referred
to as the ”forward problem” of electrocardiology. There is a fundamental problem between these two
problems. In the forward problem, a complete knowledge of the cardiac electrical generators and the
properties of the surrounding medium enables us to determine an unique surface potential distribution
(within a constant). To achieve this purpose one must have a quantitative knowledge of torso geometry,
inhomogeneities and anisotropy of the body tissues. The forward approach plays an important role in
electrocardiology in that it makes possible to evaluate the performance of different models of cardiac
generators. In addition, the forward approach is a necessary intermediate step in the solution of the
inverse problem.

5.3.2 Anisotropy of Cardiac Muscle and Conduction of Excitation

The theory which assumes a uniform double (dipole) layer as an equivalent current generator during
cardiac excitation has been recently challenged by experimental evidence. In 1977, Corbin and Scher
proposed an ”axial” double layer model for the depolarization wavefront where the dipole moment density
is oriented along the axis of the fibers. The potential distribution generated by such an axial model
was in qualitative agreement with three dimensional potential patterns measured in the thickness of
the ventricular walls after epicardial or midwall stimulation, in open chest dogs. Current was flowing
toward resting tissue from those portions of the front that moved along fiber direction. Spach developed
a three dimensional model where the cardiac sources are represented by transmembrane currents of non
uniform distribution due to anisotropic intracellular conductivity. The potential a0 in the intracellular
homogeneous volume of conductivity σ0 is given by eq. For a three dimensional network of myocardial
fibers the volume density of the transmembrane current is given by
Im = −(∂Iy1∂y

1
+

∂Iy2
∂y2

+
∂Iy3
∂y3

) = ∂
∂y1
(σiy1

∂pi
∂y1
) + ∂

∂y2
(σiy2

∂pi
∂y2
) + ∂

∂y3
(σiy3

∂pi
∂y3
)

where σiy1 ,σiy2 ,σiy3 are the intracellular conductivities along three orthogonal axes, and Iy1 , Iy2 , Iy3 are
the intracellular curent densities along the same directions. When the arrangement of myocardial fibers
has axial symmetry σ1=σiy1 and σt = σiy1 = σiy3 where σ1 and σt represent the longitudinal and trans-
verse fiber conductivities respectively. The extracellular potentials simulated by Spach showed good
agreement with the potentials measured on a stimulated two dimensional sheet of ventricular muscle
in a tissue bath. The intracellular gradients were measured by means of intracellular needles and the
conductivities were deduced from measured conduction velocities by applying Hodgkin equation.

The Forward Problem: The Integral Equation Approach

As stated above, the forward problem deals with the computation of the potential distribution within
the body and at its surface, when the distribution of intracardiac current sources is known. Let us, at
first, consider a homogeneous volume conductor v with internal current sources, bounded by a surface
S at the conductor-air interface. According to Green’s second identity it is

U
v
(p∇2ψ − ψ∇2a)dv =U

S(p∇ψ − ψ∇p) · d−→S where a and ψ are harmonic functions in the domain considered. If a is the

potential function and ψ = 1/d then
U
v
p∇2( 1d)dv−

U
v
∇2a
d dv =

U
S
p∇( 1d ) · d

−→
S − U

S
∇p
d · d

−→
S . It can be

shown that the volume integral
U
v p∇2( 1d )dv equals −4πp within volume v,−2ap on the surface S and

zero outside volume v. In eq the last surface integral is zero because the surface is insulated. For the
field points belonging to the surface S, eq is then transformed into

−2πp(−→x )−
]
v

∇2a
d
dv =

]
S

a(−→y )∇( 1
d
) · d−→S ,

a(−→x ) = 1

2π

]
v

−∇2a
d

dv − 1

2π

]
S

a(−→y )∇(1
d
) · d−→S (5.15)

where −→x is the point vector defining the point on surface S where we are computing the potential and−→y is the point vector defining all the elements of area on surface S. In eq the volume integral represents
the source term, i.e. the potential we would measure at the surface S if the medium were infinite and
homogeneous aim(−→x ) = 1

4π

U
v
−∇2a
d dv, where aim(−→x ) stands for ”infinite medium” potential on surface
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S. Then eq may be written as

a(−→x ) = 2pim(−→x ) +
]
S

a(−→y )dΩ (5.16)

where dΩ = ∇(1/d)·d−→S is the solid angle subtended by
−→
dS at point−→x . This is an Fredholm equation. Let

the surface S = S1 contain n internal regions of non-homogeneity, each region homogeneous and bounded
by a close surface Sj(j = 2, ..., n). It can be shown that for −→x belonging to surface Sd = (d = 1, 2, ..., n),

a(−→x ) = 2pim(−→x )+
nS
S=1

(− 1
2π )

σiS−σ0S
σid+σ

o
d

U
SS
a(−→y ) ∂

∂n(
1
d)dS,

with −→y point of SS and σiS,σ
0
S internal and external conductivities of surface SS respectively. If all

surfaces are discretized into triangular elements the integral equation is transformed into a system of
linear equations which can be solved numerically with particular procedures due to the fact that this
system is singular. Once the integral equation is solved and the potential is known on all surfaces
Sd(d = 1, 2, ..., n) then the potential at points −→x of the volume conductor bounded by Sd is computed
as

a(−→x ) = aim(−→x )+
n[
S=1

(− 1

4π
)
σiS − σ0S
σid + σod

]
SS

a(−→y ) ∂
∂n
(
1

d
)dS, (5.17)

where a(−→x ) is given by known quantities. The forward problem for the potential function is then
completely defined: given the internal sources, it is always possible to compute the potential anywhere
in the volume conductor and at its surface.
.
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Chapter 6 Conclusions
In this paper we have proposed a computer science perspective on processes associated traditionally with
continuous mathematics is really beneficial. As result, we have established the computability of very
general structures and founded them in a more constructive logic. We have presented the Hilbert machine
as computational model and the weak commutative linear logic as a logical framework for the stochastic
analysis, in its axiomatic form of Dirichlet spaces. A general process algebra, named continuous process
algebra or continuous information processing systems has been developed. An important application of
this process algebra is that we can associate a Dirichlet space and a weak commutative phase space (a
linear logic) to each von Neumann algebra, and therefore to any Hilbert machine of it.
Other important applications include hybrid systems [BB 01 c], [BB 01 d], models in biomedicine

[Buj 01 e] and the mathematical knowledge representation [BB 02 a], [Buj 01 e]. Future developments
will include quantum mechanics [Buj 01 d] and financial mathematics applications [BB 01 b].

An important conclusion of this mathematical experiment is that partial orders constitute a very
powerful modelling tool, for studying structures arising from both stochastic analysis and computer
science. They provide us a rich semantic domain and we believe it is possible to extend the approach
towards verification.
This work is still in its early stages. It is pioneering in trying to interrelate very different in nature

mathematical disciplines. We have tried not being superfluous by avoiding too much mathematical text
and not risk transforming our ideas into cheap speculations. The price is this document is very technical
and less intuitive. Our choice was motivated by the need of providing a document, which can serve as a
basis for further more concise developments and presentations.
This work was initiated in the first author’s MSc thesis [Buj 98 a] and further developed in [BB 01

a], [BB 01 d], [BB 02 a] and other presentations cited in the bibliography. We want to point out here
some important related approaches. A similar program was initiated by Herbert Wiklicky in [Wik 96]
and further developed in [Wik 98]. His work and Jean Yves Girard’s Geometry of Interaction program
were great sources of inspiration for us. Michele Abrusci’s work [Abr 91] in non-commutative LL was
essential in letting us continuing the mentioned programs and to interrelate them with our previous work
in axiomatic stochastic analysis.
The axiomatic trend in stochastic analysis was explosively developing in the last 50 years. It generated

new and very rich mathematical theories like harmonic spaces (Brelot, Bucur, Constantinescu, Cornea
see the monographs [CC 72] and [Bre 70] for a full exposition), Dirichlet spaces (Beurling, Deny [BD
59], Ma, Rockner [MR 92]) and H-Cones (Boboc, Bucur, Cornea [BBC 81]). We consider that the
most general approach is that based on H-cones. H-cones can be associated to both harmonic spaces
and Dirichlet forms. Their theory combines lattice theory ([Bir 68]) with functional analysis, and has
applications to both differential equations and Markov processes. It allows us to abstract the continuous
mathematics machinery, hardly inaccessible to logicians and computer scientists. The direction was even
further developed by Arsove and Leutwiller in [AL 74], [AL 80]. For a foundation approach to stochastic
analysis, this work is priceless. The theory of H-cones is the most straightforward way to give models to
our algebraic theory. Anyway, this work helps only partially our needs. For an axiomatic representative
of stochastic analysis, we have chosen the theory of Dirichlet spaces. We have taken as an abstraction of
Dirichlet spaces the work from [BBC 81] and [AL 80] as a starting point, but our developments followed
a different direction.
The idea of modelling dynamics of concurrent systems with partial orders comes from the theory of

Petri nets (see the monograph [BF 90] for many detailed explanations). The decomposition of a causal
order into sequential and concurrency relations was used for the first time in [Ste 96].
A following accompanying paper will present some important omissions, like applications to hybrid

systems and control theory. Hybrid systems mix continuous and discrete behaviours, and their semantics
should provide a uniform treatment to all components. We have provided above, references to our work
in using this theory as a semantic domain for (stochastic) hybrid systems. Also, the interpretation of
this work as a way of representing the (continuous) mathematical knowledge in linear logic has not been
exposed here. Possible applications in data mining also deserves more explanations.
Important applications can also be done in the fields of software engineering. The presentation [BB 02

a] sketches some applications of LL in software testing of stochastic and/or hybrid systems. We believe
the theory can be fruitfully applied to the control of stochastic hybrid systems, as well to their formal
specification.
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