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Abstract — This paper presents a new supervised learning
paradigm inspired by mechanisms exhibited in immune sys-
tems. This work provides an explication of a resource lim-
ited artifical immune classification algorithm, named AIRS
(Artificial Immune Recognition System), and provides re-
sults on simulated data sets to demonstrate the fundamen-
tal behavior of the algorithm.

I. INTRODUCTION

This paper presents a new supervised learning
paradigm, resource limited artificial immune classifiers,
inspired by mechanisms exhibited in biological and ar-
tificial immune systems. The key abstractions gleaned
from these immune systems include resource competition,
clonal selection, affinity maturation, and memory cell re-
tention.

The work presented here draws inspiration from sev-
eral sources within the field of Aritificial Immune Systems
(AIS). This includes the key represenational concepts of
B-Cells, artificial recognition balls (ARBs), and resource
limitation drawn from [1], [2], and [3]. Also pivotal in
the development of an immune-system inspired classifier
is the use of a representation of long-lived memory cells
drawn from[4] and [5]. We should also mention that to
date we know of only one other attempt to use immune
system principles to develop a supervised learning system
[6]. However, the work presented here differs significantly
for this previous work by Carter.

This paper provides an explication of a resource limited
artifical immune classification algorithm, named AIRS
(Artificial Immune Recognition System). Experimental
results on simulated data sets demonstrate the behavior
of the AIRS algorithm as a classification technique.

II. TOUR OF THE ALGORITHM

This section presents a tour of the AIRS algorithm. In
particular, this section presents an overview of the pri-
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mary routines, methods, and equations used in the train-
ing and building of an immune-system based classifier.
There are four primary stages involved in the AIRS algo-
rithm. The first stage is data normalization and initial-
ization. The second stage is memory cell identification
and ARB generation. The third stage is competition for
resources in the development of a candidate memory cell.
The final stage of the training algorithm is the potential
introduction of the candidate memory cell into the set of
established memory cells.

For this discussion, let us establish the following nota-
tional conventions:

o Let MC represent the set of memory cells and mc
represent an individual member of this set.

o Let ag.c represent the class of a given antigen, ag,
where ag.c € C' = {1,2,...nc} and nc is the number
of classes in the data set.

o Let mc.c represent the class of a given memory cell,
mec, where me.c € C = {1,2,...nc}.

e Define MC, C MC = {MCUMC>U... MC,.} and
me € MC, iff me.c = c.

o Let ag.f and mec.f represent the feature vector of a
given antigen and memory cell, ag and mec, respec-
tively. Let ag.f; represent the value of the ¢th feature
in ag.f and mec.f; the value of the ith value of mec.f.

e Let AB represent the set of ARBs, or the population
of existing cells, and MU represent a set of mutated
clones of ARBs. Furthermore, let ab represent a sin-
gle ARB where ab € AB.

o Let ab.c represent the class of a given ARB, ab, where
ab.ce C={1,2,...nc}.

e Define AB, C AB = {AB; UABy U ...AB,.} and
ab € AB, iff ab.c = c.

e Let ab.stim represent the stimulation level of the
ARB ab.

e Let ab.resources represent the number of resources
held by the ARB ab.

o Let Total NumResources represent the total number



of system wide resources allowed.

A. Initialization

The first stage of the algorithm, initialization, can pri-
marily be thought of as a data pre-processing stage com-
bined with a parameter discovery stage. During initial-
ization, first all items in the data set are normalized such
that the Euclidean distance between the feature vectors
of any two items is in the range of [0,1]. It is important
to note that, while for the current investigation Euclidean
distance is the primary metric of both affinity and stim-
ulation, other functions could be employed as well. After
normalization, the affinity threshold (AT) is calculated.
For established training sets (i.e., those not being gen-
erated on the fly), the affinity threshold is the average
affinity value over all training data items’ feature vectors.
For training data supplied from a user-defined data gener-
ation function, a finite number (arbitrarily chosen at fifty
for the current work) of data items are generated to be
used in this calculation. The affinity threshold is calcu-
lated as described in equation (1) below:

Yo > =iy affinity(ag;, ag;) 1
n(n—1) ( )
2

affinity threshold =

where n is the number of training data items (antigens)
in question, ag; and ag; are the ith and jth training anti-
gen (or generated data item), and affinity(x,y) returns
the Euclidean distance between the two antigens’ feature
vectors.

The final step in initialization is the seeding of the mem-
ory cells and initial ARB population. This is done by ran-
domly choosing 0 or more training antigens to be added
to the set of memory cells and to the set of ARBs.

B. Memory Cell Identification and ARB Generation

Once initialization is complete, training proceeds

as a one-shot incremental algorithm. The first
step of this stage of the algorithm is memory
cell identification and ARB generation. Given
a specific training antigen, ag, find the mem-

ory cell, mcpqaich, that has the following property:
MCmatch = AIEMATmee MC,, , Stimulation(ag, mc), where
stimulation(x,y) is defined as in equation (2) below:

stimulation(z,y) = 1 — Euclidean_distance(z. f,y.f)(2)

If the set of memory cells of the same classification as
the antigen is empty, then add the antigen to the set of
memory cells and denote this newly added memory cell
as the match memory cell, mcyqatcn- It should be noted
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here that while the stimulation function for the current
work relies solely on Euclidean distance, this need not
necessarily be the case.

Once mcyqtcn, has been identified, this memory cell is
used to generate new ARBs to be placed into the popula-
tion of (possibly) pre-existing ARBs (i.e., those ARBs left
in the system from exposure to previous antigens). This
is done through the method shown in Figure 1, where the
function make ARB(x) returns an ARB with x as the an-
tibody of this ARB and where mutate(z, b) is defined in
Figure 2. In Figure 2, the function drandom() returns a

MU + ©
MU « MU UmakeARB(mcmatcn)
stim + stimulation(ag, mcmatch)
NumClones < hyper_clonal rate x clonal rate x stim
while (| MU |< NumClones)
do

mut + false

MCelone — Mutate(MCmatch, Mut)

if(mut = true)

MU + MU UmakeARB(mceione)

done
AB «+~ ABU MU

Fig. 1. Hyper-Mutation for ARB Generation

mutate(z,b)

foreach(x.f; in z.f)
do
change + drandom/()
change_to « drandom/)
if(change < mutation_rate)
z. f; + change_to x normalization_value
b+ true
done
if(b = true)
change + drandom()
change_to < (lrandom() mod nc)
if(change < mutation_rate)
x.c < change_to
return x

}

Fig. 2. Mutation Routine

random value in the range [0,1] and (Irandom() mod nc)
returns a random value in the range {1,nc}.



C. Competition for Resources and Development of a Can-
didate Memory Cell

At this point a set of ARBs (AB) exists which in-
cludes mepmqtch, mutations from mepqtcn, and (possibly)
remnant ARBs from responses to previously encountered
antigens. Recall that the AIRS algorithm is a one-shot
algorithm, so while the discussion has been divided into
separate stages, each antigen goes through this entire pro-
cess exactly one time. The goal of the next portion of the
algorithm is to develop a candidate memory cell which
is most successful in correctly classifying a given antigen,
ag. This is done primarily through three mechanisms.
The first mechanism is through the competition for sys-
tem wide resources. Following the methods first outlined
by [2] and re-examined in [3], resources are allocated to
a given ARB based on its normalized stimulation value,
which is used as an indication of its fitness as a recognizer
of ag. The second mechanism is through the use of muta-
tion for diversification and shape-space exploration. The
third mechanism is through the use of an average stim-
ulation threshold as a criterion for determining when to
stop training on ag.

Similar to principles involved in genetic algorithms, the
AIRS algorithm employs a concept of fitness for survival
of individuals within the ARB population. Survival of a
given ARB is determined in a two-fold, interrelated man-
ner. First, each ARB in the population AB is presented
with the antigen ag to determine the ARB’s stimulation
level. This stimulation is then normalized across the ARB
population based on both the raw stimulation level and
the class of the given ARB (ab.c). Based on this normal-
ized stimulation value, each ab € AB is allocated a finite
number of resources. If this allocation of resources would
result in more resources being allocated across the popu-
lation than allowed, then resources are removed from the
weakest (least stimulated) ARBs until the total number
of resources in the system returns to the number of re-
sources allowed. Those ARBs which have zero resources
are removed from the ARB population. This process is
formalized in Figure 3.

It is important to note here two key aspects of this re-
source allocation routine. First, the stimulation value of
an ARB is not only determined by the stimulation func-
tion in equation 2 but is also based on the class of the
ARB. The stimulation calculation method outlined in Fig-
ure 3 provides reinforcement both for those ARBs of the
same class as ag that are highly stimulated by ag and
for those ARBs that are of a different class as ag that do
not exhibit a strong positive reaction to ag. Second, the
distribution of resources is also based on the class of the
ARB. This is done to provide additional reinforcement
for those ARBs of the same class as ag without losing the
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minStim + 2.0
maxStim < 0.0
foreach(ab € AB)
do
stim + stimulation(ag, ab)
if (stim < minStim)
minStim + stim
if (stim > maxStim)
maxStim  stim
ab.stim < stim
done
foreach(ab € AB)
do

if(ab.c = ag.c)
ab.stim  —ab-stim—minStim
mazStim—minStim

else
ab.stim « 1 — B SGRommEn
ab.resources + ab.stim x clonal_rate
done
141
while(i < nc)
do
resAlloc + E‘j’i?"l ab;.resources,ab; € ADB;
if(i = ag.c)
N ResAllowed — TotalNum2Resou7"ces
else
NResAllowed + T"t“lg&’gfff)"“”es
while(resAlloc > N ResAllowed)
do
N ResRemove < resAlloc — N ResAllowed
abremove  argmingye Ap, (ab.stim)
if(abremove -resources < N ResRemove)
ABi — ABz - abremove
resAlloc + resAlloc — abremove -resources
else
abremove-rESOUTCES < abremove-reSOUTCES—
N ResRemove
resAlloc + resAlloc — N ResRemove
done
11 +1
done

Fig. 3. Stimulation, Resource Allocation, and ARB Removal




potentially positive qualities of the remaining ARBs for
reaction to future antigens.

At this point in the algorithm, the ARB population
AB consists of only those ARBs that were most stimu-
lated by the given antigen, ag, or more specifically, AB
now consists of those ARBs that were able to successfully
compete for resources. The algorithm continues first by
determining if the ARBs in AB were stimulated enough
by ag to stop training on this item. This is done by defin-
ing a vector § that is nc in length to contain the average
stimulation value for each class subset of AB. That is:

Elji?"l ab;.stim
—

Y
| AB; |

s G,bj € AB;

reached iff s;

elements in §

The stopping criterion is
stimulation_threshold for all
{817 S92, ... Snc}-

v

Regardless of whether the stopping criterion is met or
not, the algorithm proceeds by allowing each ARB in AB
the opportunity to produce mutated offspring. While this
adding of mutated offspring is similar to the method out-
lined in Figure 1, there are a few differences. This modi-
fied mutation generation routine is presented in Figure 4.

MU + o
foreach(ab € AB)
do
rd + drandom()
if(ab.stim > rd)
NumClones + ab.stim * clonal_rate
11
while(i < NumClones)
do
mut + false
abeione + mutate(ab, mut)
if(mut = true)
MU + MU U abeione
141+1
done

done
AB «+— ABUMU

Fig. 4. Mutation of Surviving ARB

After allowing each surviving ARB the opportunity to
produce mutated offspring, the stopping criterion is exam-
ined. If the stopping criterion is met, then training on this
one antigen stops. If the stopping criterion has not been
met, then this entire process, beginning with the method
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outlined in Figure 3, is repeated until the stopping cri-
terion is met. The only exception to this repetition is
that on every pass through this portion of the algorithm,
except the first pass already discussed, if the stopping
criterion is met after the stimulation and resource allo-
cation phase, then the production of mutated offspring is
not performed. Once the stopping criterion has been met,
then the candidate memory cell is chosen. The candidate
memory cell, mceandidate, 1S the feature vector and class
of the ARB that existed in the system before the final
round of mutation that was the most stimulated ARB of
the same class as the training antigen ag.

D. Memory Cell Introduction

The final stage in the training routine is the potential
introduction of the just-developed candidate memory cell,
MCeqndidate, INtO the set of existing memory cells MC.
It is during this stage that the affinity threshold calcu-
lated during initialization becomes critical as it dictates
whether the mceongigate TEPlACES MCHatch that was previ-
ously identified. The candidate memory cell is added to
the set of memory cells only if it is more stimulated by
the training antigen, ag, than mc,,4¢ch, where stimulation
is defined as in equation (2). If this test is passed, then if
the affinity between mceondigate and MCpyatcn 18 less than
the product of the affinity threshold and the user-defined
affinity threshold scalar (AT'S), then mceandidate replaces
MCmaten, I the set of memory cells. This memory cell
introduction method is presented in figure 5.

CandStim <+ stimulation(ag, mccandidate)
MatchStim + stimulation(ag, Mcmatcn)
CellAff « affinity(mccandidatea mcmatch)
if(CandStim > MatchStim)
if(CellAff < AT x ATS)
MC +— MC — memagich
MC + MCU MCcandidate

Fig. 5. Memory Cell Introduction

Once the candidate memory cell has been evaluated for
addition into the set of established memory cells, training
on this one antigen is complete. The next antigen in the
training set is then selected (or the next antigen is gener-
ated using a data generation function), and the training
process proceeds with memory cell identification and ARB
generation. This process continues until all antigens have
been presented to the system.



E. Classification

After training has completed, the evolved memory cells
are available for use for classification. The classification is
performed in a k-nearest neighbor approach. Each mem-
ory cell is presented with a data item for stimulation. The
system’s classification of a data item is determined by us-
ing a majority vote of the outputs of the k most stimulated
memory cells.

III. RESULTS ON SIMULATED DATA SETS
A. Data Sets and Experimental Design

To demonstrate and investigate the behavior and princi-
ples of the current implementation of the ATRS algorithm,
two somewhat basic simulated data sets are employed.
Both data sets represent two-dimensional two-class prob-
lems.

The training and test data sets for these experiments
are generated by randomly choosing points in the data
space. For the training set, the data generation is done
during run time through the use of a data generation func-
tion called from within the training routine. For the test
set, fifty data points were randomly generated for use in
assessing the algorithm’s ability to classify previously un-
seen data.

The primary purpose of this set of experiments was
a demonstration and investigation of some of the basic
principles of the AIRS algorithm. To this effect, these ex-
periments were kept relatively simple. That is, only two-
dimensional, two-class data sets were used, only one run of
the algorithm on each data set is examined, and only one
set of parameter settings is explored. Each training data
item was randomly generated at run time and exposed
to the evolving system. After each exposure, the perfor-
mance of the system on the previously generated test set
was evaluated. It should be stressed here that this per-
formance assessment in no way influenced the behavior
of the system or the training on subsequent data items.
In order to calculate the affinity threshold (AT) for these
simulated data sets, fifty data items were randomly gener-
ated. These fifty data items were subsequently discarded
after being used for the affinity threshold calculation.

B. Results

With any classification algorithm, there are two pri-
mary questions which must be addressed. First, can the
algorithm develop a representation of the classes in the
data set from exposure to training items? Second, can
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the algorithm, using this representation, generalize in or-
der to accurately classify previously unseen data items?
To address this first concern, in Figures 6 and 7 we present
a visualization of the evolved memory cells after exposure
to the 250 training antigens along with those 250 train-
ing items. The lines in these figures represent the original
class boundaries. As can be seen in these two figures, the
memory cells evolved by the ATRS algorithm have devel-
oped a credible representation of the classes in the data
set. Close examination of these figures reveals that this
representation is not wholly perfect. This is particularly
true in areas close to the class boundaries, as would be
expected. One item of interest in Figure 7 is that none of
the class 1 memory cells are outside of the original class 1
boundaries, whereas there are a handful of class 0 memory
cells that have bled over into class 1 territory. One pos-
sible explanation for this is that class 0 is less distinctly
defined in space than class 1, which provides some ambi-
guity in the characteristics of a class 0 data item. Another
item of note in these 2 figures is that there are far fewer
than 250 memory cells that evolved from the 250 training
data items. Thus, AIRS also exhibits a degree of data
reduction. What is also intriguing about these two fig-
ures is not just that there are far fewer memory cells than
training items, but also that it is fairly easy to discern, in
places, which memory cells are representing which groups
of training items.
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Fig. 6. Memory Cells and Training Antigens After 250 Antigens
(Linearly Separable Data Set)

Another item of interest in these two figures is the out-
lier memory cells. While an initial supposition might
be that these outliers developed in reaction to training
items fairly close to the class boundary lines, examining
these two figures reveals that some of the outlier mem-
ory cells are no closer to the training items than memory
cells within the class boundaries. One possible explana-
tion for this is the somewhat naive method for memory
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Fig. 7. Memory Cells and Training Antigens After 250 Antigens

cell replacement in the AIRS algorithm. Recall from sec-
tion II that memory cell replacement only occurs when a
candidate memory cell is closer to the antigen than the
established match memory cell and when the candidate
memory cell is within a user defined distance of the match
memory cell. While this mechanism is extremely useful in
removing redundant memory cells from the set of mem-
ory cells, it does not necessarily ensure that only the best
classifying memory cells are retained. For the outlier cells
in Figures 6 and 7 it is possible that the outlier cells devel-
oped first and that, while subsequently evolved memory
cells were more stimulated by training antigens than these
outlier cells, none of these later evolved memory cells were
close enough to the outlier cells to warrant the removal of
the outlier cells.

Now that we have provided a demonstration of the
ATRS algorithm’s ability to develop a representation of the
classes present in these two simple data sets, we next turn
to the question of classification of previously unseen data
items using this representation. For these experiments the
quality of classification is only assessed through overall ac-
curacy. Recall from ILE that classification is performed
in a k-nearest neighbor approach with the classification
of an item being based on the majority vote among the
k nearest memory cells to the item. For the current ex-
periments k values of 1 and 3 were chosen. At the end
of the introduction of 250 antigens, the system is able to
accurately classify 94% and 98% (47/50 and 49/50) for
k =1 and k = 3, respectively, of the linearly separable
test set and demonstrates a training set accuracy rate of
97% and 98% on the training set for these same k values.
And the system is able to accurately classify 86% and 94%
(43/50 and 47/50) for k = 1 and k = 3, respectively, of the
non-linearly separable test set and demonstrates a train-
ing set accuracy rate of 97% and 94% for these same k
values. Not surprisingly, the accuracy on the non-linearly
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separable data set is less than the classification accuracy
on the linearly separable data set. This is to be expected
for a more complex domain. Nevertheless, even for more
complex data sets the AIRS algorithm is able to perform
fairly well as a classifier.

IV. CONCLUSIONS

This paper has introduced a new supervised learning
technique based upon immunological principles. The Ar-
tificial Immune Recognition System (AIRS) algorithm
presented here demonstrates that the development of a
classification system using immune-system inspired com-
ponents is feasible. We have provided a detailed explica-
tion of the mechanisms of the algorithm. The key mech-
anisms and concepts embodied in AIRS are memory cell
development, resource competition, affinity maturation,
and clonal selection. We provided initial results of the be-
havior of ATRS on two simulated data sets. These results
demonstrated that AIRS can both learn class representa-
tions in a data set and can successfully classify previously
unseen data. While not presented in this paper, it should
be noted that AIRS has also been shown [7] to perform
as well as, or better than, other, more established, classi-
fication systems on the iris, ionosphere, pima indians dia-
betes, and sonar data sets availble from the UCI machine
learning repository [8].
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