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Abstract:    The combustion behavior of two single coals and three coal blends in a 300 kW coal-fired furnace under variable 

operating conditions was monitored by a flame monitoring system based on image processing and spectral analysis. A similarity 

coefficient was defined to analyze the similarity of combustion behavior between two different coal types. A total of 20 flame 

features, extracted by the flame monitoring system, were ranked by weights of their importance estimated using ReliefF, a feature 

selection algorithm. The mean of the infrared signal was found to have by far the highest importance weight among the flame 

features. Support vector machine (SVM) was used to identify the coal types. The number of flame features used to build the SVM 

model was reduced from 20 to 12 by combining the methods of ReliefF and SVM, and computational precision was guaranteed 

simultaneously. A threshold was found for the relationship between the error rate and similarity coefficient, which were positively 

correlated. The success rate decreased with increasing similarity coefficient. The results obtained demonstrate that the system can 

achieve the online identification of coal blends in industry. 
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1  Introduction 

 

In the last decade, coal burning has provided 

about 70% of the energy consumed in China. Coal 

blends have been regarded as an attractive fuel in 

coal-fired power plants to minimize fuel costs, 

improve fuel flexibility and reduce pollutant 

emissions (Haas et al., 2001). The combustion 

behavior of a coal blend differs from those of its 

components. The reactivity of a coal blend is different 

from that of the blended composition, depending 

mainly on the coal rank and mixing ratio (Peralta et 

al., 2001; Osorio et al., 2008). There is a need to 

identify the types of coal blends in coal-fired power 

plants that will enhance boiler safety, improve 

combustion efficiency and reduce pollutant 

emissions. Considerable research has been conducted 

on the combustion behavior of coal blends, including 

the ignition process, NOx emissions, burnout 

behavior and slagging behavior, using 

thermogravimetric analysis and drop-tube furnaces 

(Cloke et al., 2002; Biswas et al., 2006; Chi et al., 

2010; Moon et al., 2013; Sarkar et al., 2013; Zhou et 

al., 2015). In a coal-fired power plant, usually 

multiple coal types are burned, and the blended 

composition is unknown and even unpredictable after 

delivery and accumulation in stocks. Online 

identification of coal blends is desirable for 

continuous combustion optimization in coal-fired 
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boilers, since traditional coal analyzers work off-line 

and are time-consuming. 

With the development of diagnostic methods, 

significant research has been devoted to monitoring 

coal combustion behavior (Ballester and 

García-Armingol, 2010). In recent studies, flame 

monitoring techniques have generally been applied to 

extract flame features. A two-color method was 

applied for the two-dimensional (2D) temperature 

profile measurement of sooting flames (Huang and 

Yan, 2000; Huang et al., 2000), and a simple 

two-color method, in which only colorimetric 

information is needed, was also proposed (Jiang et al., 

2009). A flame monitoring system was established to 

monitor the 2D frequency profile of coal flames using 

image processing and spectral analysis (Lu et al., 

2006). Moreover, an auto-adaptive edge-detection 

algorithm was put forward to define flame edges 

clearly and continuously (Qiu et al., 2012). Because 

of the strengths of using non-intrusive probes in harsh 

environments (mainly inside boilers), flame 

monitoring techniques have been used for many 

purposes, such as co-firing characterizations (Molcan 

et al., 2009), prediction of pollution emissions (Wang 

et al., 2002), and combustion optimization (Huang et 

al., 2010). 

Machine learning algorithms are applied to 

identify coal types using the flame features extracted 

by flame monitoring techniques. An approach 

combining principal component analysis (PCA) and 

neural network (NN) was proposed for online 

identification of eight single coals under steady 

conditions in a 500 kW coal-fired furnace (Xu et al., 

2005). Flame intensity signals were obtained using a 

three-cell detector covering three spectral bands. 

SVM combined with PCA and independent 

component analysis (ICA) was applied to identify 

eight single coals under normal combustion 

conditions in a power plant (Tan et al., 2012). A coal 

identification system based on SVM was used to 

identify four single coals under variable operating 

conditions in a 300 kW coal-fired furnace (Zhou et al., 

2014). In addition, a radial basis function (RBF) NN 

was employed to identify biomass fuels based on 

flame radical imaging (Li et al., 2015). 

Nevertheless, previous studies focused only on 

the identification of either single coals or biomass. 

Due to the popularity of coal blends in power plants, a 

thorough understanding of the identification of coal 

blends is urgently needed. In this study, a flame 

monitoring system was applied to acquire both flame 

images and light intensity signals. A similarity 

coefficient was defined to investigate the similarity of 

the combustion behavior between two different coal 

types using the extracted flame features. The method 

of ReliefF (Kononenko et al., 1997), a feature 

selection algorithm, was used to evaluate the 

weighting factors of all extracted flame features 

quantitatively. SVM (Cortes and Vapnik, 1995; 

Chang and Lin, 2011), tackling small sample learning 

problems very well and exhibiting superior 

generalization performance in machine learning, was 

applied to identify coal types. A detailed investigation 

of the identification of coal blends was conducted 

based on ReliefF and SVM under variable conditions, 

in a 300 kW coal-fired furnace. 

 

2  Experimental setup 

 

2.1 Combustion test facility 

Fig. 1 shows the layout of the 300 kW coal-fired 

test facility and the flame monitoring system mounted 

in the facility. The test facility contains a vertical 

furnace, a coal feeder, and a swirling burner. The total 

height of the furnace is 3.95 m, and its internal 

diameter is 0.35 m. Heat-insulating material was 

assembled in the furnace to reduce heat dissipation. 

The coal feeding rate was adjusted between 10 and 45 

kg/h by an electromotor. The temperature of heated 

primary air (PA) and secondary air (SA) was about 40

℃. PA and SA flow rates were adjusted as required by 

valves. The flame monitoring system was mounted in 

the furnace at a distance of 0.244 m from the swirling 

burner outlet, which could capture a region of the 

furnace 0.189×0.151 m2 in area. 

 

2.2 Flame monitoring system 

A schematic of the flame monitoring system is 

shown in Fig. 2. The system consists of a 90° angle 

lens inside a water-cooling tube, a beam splitter, a 

three-cell detector, an RGB CMOS camera, a serial 

device server, a network switch, and a personal 

computer (PC). The beam splitter is used to divide the 

flame light into two beams which are captured by the 

camera and the three-cell detector, respectively. The 

camera with an RJ45 port can be integrated into a 



  

network device. The three–cell detector, translating 

light intensity signals into electrical signals, is 

designed to capture ultraviolet (UV), visible (VI), and 

infrared (IR) spectral bands from 240 nm to 1700 nm. 

The serial device server is applied to connect the 

electrical signals translated by the detector to the 

Ethernet directly. The network switch is used to 

transmit both flame images and light intensity signals 

together via the Ethernet. Flame images and light 

intensity signals are synchronically acquired and 

processed using the PC with dedicated software. 

More details of the prototype system are described by 

Sun et al. (2011). With the introduced serial device 

and network switch, the signal transmission of the 

improved system is more stable than that of the 

prototype system (Sun et al., 2011; Zhou et al., 2014) 

which is controlled through a remote desktop. 

 

 
Fig. 1 Schematic illustration of the coal-fired test facility 

and location of the flame monitoring system 
 

 
Fig. 2 Schematic of the flame monitoring system 

 

3  Method 

 

3.1 Data acquisition and feature extraction 

The RGB camera resolution was set at 640 (H) 

×512 (V) pixels, the frame rate at 5 fps and the 

exposure time at 7 ms. The light intensity signals were 

sampled by the three-cell detector at 256 Hz, and each 

signal sequence consisted of 1024 data points. Spatial 

and temporal flame features were characterized. 

Fig. 3a shows 20 typical flame images captured 

by the camera continuously in 4 s. Image processing 

technique was applied to extract spatial flame features. 

Spatial flame features include the means and standard 

deviations of the R, G, and B channels, and the R/G 

ratios of the flame image. A Guassian filter with a 

thresholding method was applied to reduce the 

background noise of the image and improve the 

signal-to-noise ratio (SNR). The correspond Gaussian 

function is shown as  
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Then, a morphological filter was used to extract the 

flame edge (Fig. 3b). A flame zone, defined as the 

flame region surrounded by the flame edge, was used 

to extract spatial flame features (Fig. 3c). Means and 

standard deviations of R, G, and B channels are 

related to the intensity of thermal release, to some 

extent. The mean and standard deviation of the R/G 

ratios respond to the temperature of the sooting flame 

(Jiang et al., 2009). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Typical flame images and defined flame zones: (a) 

original flame images (20 images); (b) detected flame edges 

(20 images); (c) defined flame zones (20 images) 

 

The means and standard deviations of the R, G, 

and B channels, and the R/G ratios were defined as 

follows: 
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where i=1, 2, 3, and 4 denote the R, G, and B channels, 

and the R/G ratios of the flame image, respectively; 



  

Pmean,i is the mean of the ith signal; nZ is the pixel 

number of the flame zone; gi,j is the jth gray-level or 

ratio of the ith signal; Z is the defined flame zone; and 

Pstd,i is the standard deviation of the ith signal. 

Fig. 4 shows the typical VI and IR signals in time 

domain. The values of light intensity signals are 

relative because of the different gain settings of the 

detector for VI and IR signals. Spectral analysis was 

used to extract temporal flame features. Temporal 

flame features include the mean, standard deviation, 

skewness, kurtosis, fluctuation ratio, and oscillation 

frequency of the light intensity signal. Three levels of 

wavelet shrinkage were applied to remove the 

background noise in the light intensity signal. The 

mean and standard deviation of the light intensity 

signal indicate their intensity and variation of thermal 

release. Skewness and kurtosis reflect their symmetry 

and steepness. The fluctuation ratio and oscillation 

frequency are related to the stability of the light 

intensity signal. 
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Fig. 4 Typical light intensity signals 

 

The mean, standard deviation, skewness, 

kurtosis, and fluctuation ratio of the light intensity 

signal were defined as follows: 
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where k=1, 2 denote VI and IR signals, respectively; 

Smean,k is the mean of the kth signal; Sstd,k is the 

standard deviation of the kth signal; Sske,k is the 

skewness of the kth signal; Skur,k is the kurtosis of the 

kth signal; Sflu,k is the fluctuation ratio of the kth signal; 

N is the sampling number; sk,j is the jth signal value of 

the kth signal; [sk,1⋯sk,N] is the kth signal; Smax,k is the 

maximum value of the kth signal; and Smin,k is the 

minimum value of the kth signal. 

The oscillation frequency of the light intensity 

signal was estimated using the Welch power spectral 

density (PSD) method (Huang and Zhang, 2008) and 

was defined as  
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where k=1, 2 denote VI and IR signals, respectively; 

Sf,k is the oscillation frequency of the kth signal; fk,j is 

the jth frequency of the kth signal; pk,j is the power 

density of the jth frequency component; and n is the 

number of frequency components (Huang and Zhang, 

2008).  

Only IR and VI signals were used in this study, 

due to the weakness of the UV signal in the tests. 

Thus, the total number of flame features was 20, 

including spatial and temporal flame features (Table 

1). 
 

Table 1 List of flame features 

No. 
Spatial flame 

features 
No. 

Temporal flame 

features 

1 Pmean,R 9 Smean,VI 

2 Pmean,G 10 Smean,IR 

3 Pmean,B 11 Sstd,VI 

4 Pmean,R/G 12 Sstd,IR 

5 Pstd,R 13 Sske,VI 

6 Pstd,G 14 Sske,IR 

7 Pstd,B 15 Skur,VI 

8 Pstd,R/G 16 Skur,IR 

  17 Sflu,VI 

  18 Sflu,IR 

  19 Sf,VI 

  20 Sf,IR 

Notes: R, R channel; G, G channel; B, B channel; VI, visible 

signal; IR, infrared signal. 
 

3.2 Similarity coefficient 

A similarity coefficient was used to analyze the 

similarity of the combustion behavior between two 



  

different coal types for each flame feature, and was 

defined as  

,Cs Rl Ra ,i i i                                             (12) 

where i is the serial number of flame features ranging 

from 1 to 20, Csα-β,i is the similarity coefficient 

between coal α and coal β in the ith flame feature, Rli 

is the overlap range of the ith flame feature between 

coal α and coal β, and Rai is the overall range of the 

ith flame feature between coal α and coal β. In 

addition, a weighted average similarity coefficient, 

Csα-β,average, was used to estimate the similarity 

between coal α and coal β for selected flame features, 

and was defined as  
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where j is the serial number of the selected flame 

features, S is the collection of selected flame features, 

wj (determined by the ReliefF algorithm) is the 

weighting factor of the jth flame feature, and Csα-β,j is 

the similarity coefficient between coal α and coal β in 

the jth flame feature. 

 

3.3 ReliefF algorithm 

The purpose of feature selection is to choose a 

subset of features which is necessary and sufficient to 

describe the target concepts (Piramuthu, 2003). Relief 

is a feature weight based algorithm, which uses the 

p-dimensional Euclid distance for selecting Near-hits 

and Near-misses (Kira and Rendell, 1992). Although 

Relief is noise-tolerant and robust to feature 

interaction, it is adapted to binary-classification 

problems only and cannot handle instances of 

incomplete data. ReliefF, an improved algorithm of 

Relief, was proposed to deal with multi-class and 

incomplete datasets (Kononenko et al., 1997). 

There are differences in the importance of each 

flame feature used for coal type identification. The 

method that models the effects of single flame 

features (Zhou et al., 2014) is not good for feature 

selection, and cannot weight the importance of each 

flame feature quantitatively. In this study, the 

importance of each flame feature was evaluated 

quantitatively using the method of ReliefF. This 

method not only gives the ranking of each flame 

feature, but also calculates its weighting factor. 

 

3.4 Support vector machine 

SVM is a machine learning method based on 

statistical learning theory (SLT) that constructs a 

hyperplane for classification, regression and other 

tasks, and is able to tackle small sample learning 

problems very well (Cortes and Vapnik, 1995; Chang 

and Lin, 2011). It exhibits superior generalization 

performance and has strong theoretical motivation in 

SLT compared with NN algorithms (Leslie et al., 

2002). Coal type identification is a classification 

problem in nature. In this study, support vector 

classification (SVC) was chosen to model the process 

and predict the outcome of coal type identification. 

Given a set of training data, U=[(x1, y1), (x2, 

y2),⋯(xn, yn)], where xi∈Rm is a feature vector, yi∈[-1, 

1] is an indicator vector in two classes, and 

f(x)=wTϕ(x)+b is the linear function, the SVC primal 

problem (Cortes and Vapnik, 1995) is expressed as 
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where C is the regularization parameter, f(xi) maps xi 

into a higher-dimensional space, w is the weight 

vector and b is the bias. In most cases, the vector w is 

always a high dimensional variable. The corre-

sponding SVC dual problem is defined as  
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where e=[1,⋯1]n
T, αi is the Lagrange multiplier, 

Q=[yiyjK(xi, xj)]n×n is an n-by-n positive semi-definite 

matrix, and K(xi, xj)=f(xi)
Tf(xj) is the kernel function. 

After the dual problem is solved, the optimal variable 

w can be expressed as  
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The decision function is formulated as  

1
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As the practical problem is nonlinear, a Gaussian 

RBF is used as the kernel function, resulting in a 

Hilbert space of infinite dimension. In addition, the 

one-against-one method (Hsu and Lin, 2002) is 



  

introduced to solve the multiclass classification 

problem. In this study, LIBSVM (Chang and Lin, 

2011), one of the most popular SVM software 

packages, was used to identify the coal types. 

3.5 Online identification system 

Fig. 5 illustrates the technical strategy of the 

online identification system. Modeling and prediction 

are two procedures of the system. In the modeling 

procedure, the flame features of the known samples 

are obtained through data acquisition and feature 

extraction. A model is generated using the whole 

training data, with a runtime of about 1 min. In the 

prediction procedure, the flame features of an 

unknown sample are also obtained through data 

acquisition and feature extraction. The built model is 

used to classify the flame features of an unknown 

sample, and then predict its coal type. The runtime of 

the prediction procedure is less than 5 s, which meets 

the requirement of online identification of coal types 

in industrial applications. 

 

 
Fig. 5 Technical strategy of the online identification system 

 

4  Results and discussion 

 

4.1 Operating conditions 

Two single coals (A and B) and three coal blends 

(3A1B, AB, and 1A3B) were used to investigate the 

identification of coal blends. Coals 3A1B, AB, and 

1A3B were composed of coal A and coal B with mass 

mixing ratios of 75%:25%, 50%:50%, and 25%:75%, 

respectively. The proximate and ultimate analysis 

data of the five coal types are presented in Table 2. 

The tested coals were pulverized and sieved to a 

particle diameter of 70-160 μm and dried before the 

experiments. The operating conditions, including 

variations in coal feed rate, total air flow rate and 

PA/SA ratio, are presented in Table 3. A detailed 

description of the operating conditions is presented by 

Zhou et al. (2014). Each coal type was tested in 12 

test cases, resulting in 60 (12×5) test cases in total. 

Multiple data acquisition was applied to increase the 

sample size and reduce experimental errors (e.g., 8 

continuous samplings for each test case). As a result, 

a total of 480 (8×60) datasets were obtained in the 

tests. 

Table 2 Proximate and ultimate analysis of coals 

Sample A 3A1B AB 1A3B B 

Proximate analysis (wt%, ar) 

M 10.69 10.09 9.49 8.9 6.95 

V 28.94 27.88 26.82 25.75 29.46 

F 46.92 45.70 44.47 43.25 47.35 

A 13.45 16.33 19.22 22.10 16.24 

Ultimate analysis (wt%, ar) 

C 62.22 60.07 57.92 55.77 62.5 

H 4.11 3.99 3.87 3.76 4.11 

O 7.80 7.85 7.89 7.94 8.05 

N 0.92 0.90 0.88 0.85 0.99 

S 0.81 0.77 0.73 0.68 0.64 

Qar,net(MJ/kg) 23.92 23.12 22.32 21.52 23.88 

 

Table 3 Operating conditions 

Case 
Coal feed rate 

(kg/h) 

Total air flow 

rate (kg/h) 
PA/SA ratio 

1 25 210.4 0.339 

2 25 227.6 0.340 

3 25 245.8 0.340 

4 25 210.6 0.380 

5 25 227.5 0.380 

6 25 245.9 0.381 

7 30 252.7 0.340 

8 30 273.0 0.341 

9 30 294.9 0.340 

10 30 252.8 0.380 

11 30 273.2 0.381 

12 30 295.0 0.380 

 

4.2 Combustion behavior of different coals 

In this study, combustion behavior was used as 

the basis of coal type identification. To analyze the 

combustion behavior of coals A, 3A1B, AB, 1A3B, 

and B, 20 flame features were extracted for each coal 

type under variable conditions. The ranges of the 

flame features are shown in Fig. 6 using boxplots, 

each consisting of 96 (8×12) data points. The 

statistical distribution of data for each flame feature is 

easy to see in the boxplots. The ranges of the spatial 

flame features of the five coals under variable 

conditions are shown in Figs. 6a-6b, including the 

mean and standard deviation of the flame image 

signal. The ranges of the temporal flame features of 

the five coals under variable conditions are shown in 

Figs. 6c-6h, including the mean, standard deviation, 

skewness, kurtosis, fluctuation ratio, and oscillation 

frequency of the light intensity signal. There is a high 

degree of overlap in each flame feature for the five 

coals. Thus, it is difficult to identify the coal types 

using traditional methods. There is a need to 

introduce an SVM method which can use multiple 



  

flame features in coal identification, considering the 

advantage of SVM in tackling small samples and 

learning problems. 
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Fig. 6 Flame features of the five coals: (a)-(b) spatial flame features; (c)-(h) temporal flame features 



  

 

4.3 Importance of different flame features 

Fig. 7a shows the rankings, arranged in 

descending order, and the importance weights of the 

20 flame features. The cumulative importance weight 

in relation to the number of flame features is shown in 

Fig. 7b, with the flame features ranked in descending 

order. The results show that the importance weight of 

Smean,IR is obviously larger than those of other flame 

features. It can be inferred that Smean,IR is the most 

influential feature in coal type identification. The first 

18 flame features explain 99.73% of the information 

of the datasets. Therefore, these 18 flame features 

could be selected to identify coal types very well. The 

remaining 2 flame features have almost no effect on 

coal type identification. In relation to the temporal 

features, Pstd,R, Pstd,G, and Pstd,B are more influential 

than Pmean,R, Pmean,G, and Pmean,B in coal type 

identification, while Pstd,R/G had a similar effect to 

Pmean,R/G. For the spatial features, the mean and 

standard deviation of the IR signal were clearly more 

significant than those of the VI signal. 
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Fig. 7 Importance and cumulative importance weights: (a) 

importance weight and ranking of each flame feature; (b) 

cumulative importance weight in relation to the number of 

flame features 
 

In addition, the runtime of ReliefF in analyzing 

the importance of each flame feature was less than 

that of the single flame feature modeling method 

(Zhou et al., 2014). 

 

4.4 Effects of the number of flame features on 

identification 

Samples of coals A, 3A1B, AB, 1A3B and B 

were tested to study coal type identification. All 480 

datasets of the five coals were randomly divided into 

two groups: a training group and a test group, 

processing 75% and 25% of the datasets of each coal 

type, respectively. The training group (360 datasets) 

was used to generate an SVM model. The number of 

samples was 6 (over 5) in each case for each coal type 

to ensure model accuracy (Zhou et al., 2014). The 

testing group (120 datasets) was used to evaluate the 

success rate of coal type identification which was 

calculated as  

success success total ,R N N                                    (18) 

where Rsuccess is the success rate, Nsuccess is the number 

of successful identifications, and Ntotal is the total 

number of identifications. 

The method for selecting an optimal number of 

features for use in the SVM was to compare the 

success rates of different numbers of flame features. 

SVM models were created by the training group using 

different numbers of flame features, and the test group 

was used to evaluate their performances. Flame 

features were ranked by their importance weights, 

from the largest to the smallest. Feature vectors, 

consisting of different numbers of flame features, 

were tested and compared to select an optimal feature 

vector. Each grouping-training-testing procedure was 

carried out 20 times. 

Fig. 8 shows the mean success rates of 

identification of the five coals in different numbers of 

flame features. Each data point in Fig. 8 is an average 

of 100 (5×20) success rates, and the standard 

deviation of the data is shown as an error bar. The 

mean success rate increased as the number of flame 

features increased when the number of flame features 

was less than 12. However, it showed no further 

significant increase when the number of flame 

features was more than 12. Computational 



  

complexity increased quickly as the number of flame 

features increased. In addition, the error bar remained 

basically stable when the number of flame features 

was over 12. Considering the overall precision, 

efficiency and stability, the first 12 of the ranked 

flame features were selected to identify the coal types 

in this study. The selected flame features were Nos. 

10, 12, 5, 18, 4, 17, 8, 6, 7, 11, 9 and 19 (Table 1). 
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Fig. 8 Success rate changes with the number of flame 

features 

 

4.5 Effects of similarity on identification 

A coal blend is blended by mixing two single 

coals in a specific ratio, thus the combustion behavior 

of a coal blend and its component coals is similar. In 

consideration of the various importance weights of 

different flame features, the weighted average 

similarity coefficient between two coal types was 

calculated using the importance weights (Section 4.3) 

as the weighting factors. The first 12 of the ranked 

flame features (Section 4.3) were selected. Table 4 

shows the weighted average similarity coefficient 

between two different coal types, and the mean of the 

weighted average similarity coefficients between one 

coal and the other four coals. CsAB-A,average was larger 

than CsAB-B,average, and CsAB-3A1B,average was larger than 

CsAB-1A3B,average. The combustion behavior of a coal 

blend is more similar to that of its component coal of 

higher volatile matter in the blend. Moreover, the 

similarity between a coal blend and its component 

coal increased as the proportion of the component 

coal increased. These results support those of Chi et al. 

(2010). 

To analyze the effects of the similarity 

coefficient on coal type identification, the 

training-testing process was carried out 20 times 

using the first 12 of the ranked flame features (Section 

4.3) for coals A, 3A1B, AB, 1A3B, and B. The 

numbers of correct identifications and erroneous 

identifications are presented in Table 5. Since the 

process was carried out 20 times and the testing group 

comprised one quarter of the datasets, the total 

number of identifications was 480 (24×20) for each 

coal type. A single coal may be mis-identified as a 

coal blend, if one component of the blend is 

predominant, due to the high similarity between them 

(e.g., coal A was mis-identified as coal 3A1B, and 

coal B was mis-identified as coal 1A3B). Similarly, a 

coal blend may be mis-identified as another coal 

blend if two the blends consist of the same coals in 

different proportions (e.g., coal 3A1B was 

mis-identified as coal AB, coal 1A3B was 

mis-identified as coal AB, and coal AB was 

mis-identified as coals 3A1B and 1A3B). Also, a coal 

blend may be mis-identified as a single coal which is 

a component of the coal blend (e.g., coal 3A1B was 

mis-identified as coal A, and coal 1A3B was 

mis-identified as coal B). Thus, in the process of coal 

type identification, one coal type can be 

mis-identified as another due to their similar 

combustion behavior.  

The relationship between the error rate and the 

similarity coefficient was investigated. The error rate 

was calculated as  

error, error, total ,R N N                                 (19) 

where Rerror,α-β is the error rate of coal α mis-identified 

as coal β, Nerror,α-β is the number of mis-identifications 

of coal α as coal β, and Ntotal is the total number of 

identifications. 
 

 

Table 4 Weighted average similarity coefficients 

Coal α 
Coal β 

Mean 
A 3A1B AB 1A3B B 

A - 0.6873 0.4518 0.4003 0.3751 0.4786 

3A1B 0.6873 - 0.6332 0.4638 0.3904 0.5437 

AB 0.4518 0.6332 - 0.6114 0.3613 0.5144 

1A3B 0.4003 0.4638 0.6114 - 0.5437 0.5048 

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E7%B2%BE%E5%BA%A6%E5%92%8C%E6%95%88%E7%8E%87


  

B 0.3751 0.3904 0.3613 0.5437 - 0.4176 

 

 

 

Table 5 Number of correct and erroneous identifications 

for 20 trials 

Target 
Predicting result 

A 3A1B AB 1A3B B 

A 450 30 0 0 0 

3A1B 33 388 59 0 0 

AB 0 41 409 30 0 

1A3B 0 0 28 441 11 

B 0 0 0 8 472 

 

The error rates of different similarity coefficients 

are shown Fig. 9. In accordance with the data 

distribution, segmented linear regression analysis was 

used to analyze the correlation between the error rate 

and the similarity coefficient. The correlation 

coefficients of the two fitted lines were 1 (r2 = 1) and 

0.8103 (r2 = 0.6566), respectively. The dividing point 

is the intersection point of the two fitted lines. The 

abscissa value of the point was 0.4709. The error rate 

was zero when the similarity coefficient was less than 

0.4709. This indicates that a coal type would not be 

mis-identified as another coal type if the similarity 

coefficient between the two coal types was below 

0.4709. When the similarity coefficient was more 

than 0.4709, the error rate had a positive correlation 

with the similarity coefficient. While the value of the 

dividing point was 0.4709 in the current study, the 

value may change for other coal types. 
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Fig. 9 Error rates for different similarity coefficients 

 

The relationship between the success rate and 

the similarity coefficient was also investigated. The 

mean similarity coefficient was calculated as the 

mean of the weighted average similarity coefficients 

between one coal and the other four coals. The 

success rate decreased as the mean similarity 

coefficient increased (Fig. 10). A higher similarity 

coefficient resulted in a lower success rate. Because 

coal 3A1B had the highest mean similarity coefficient 

with the other coals, it, mis-identified as coals A and 

AB possibly, had the lowest success rate among the 

five coals. In contrast, coal B had the highest success 

rate, because it had the lowest mean similarity 

coefficient with the other coals. 

 

0.40 0.45 0.50 0.55
80%

85%

90%

95%

100%

coal AB

coal 3A1B

coal 1A3B

coal A

 

 

S
u

c
e

s
s

 r
a

te

Similarity coefficient

coal B

 
Fig. 10 Success rate changes with the mean similarity 

coefficient 

 

5  Conclusions 

In this study, tests were conducted on a 300 kW 

combustion test facility under variable conditions. 

Twenty flame features were extracted to investigate 

the combustion behavior of different coal types. The 

method of ReliefF was used to calculate the 

importance weight of each flame feature 

quantitatively, with a very short runtime. Smean,IR was 

the most important of the 20 flame features, and 

played the dominant role in coal type identification. 

The number of flame features used to build an SVM 

model was reduced from 20 to 12 through combining 

the methods of ReliefF and SVM. The computational 

complexity was reduced, and the computational 

precision was guaranteed. The optimal flame features 

were Smean,IR (No. 10), Sstd,IR (No. 12), Pstd,R (No. 5), 

Sflu,IR (No. 18), Pmean,R/G (No. 4), Sflu,VI (No. 17), 

Pstd,R/G (No. 8), Pstd,G (No. 6), Pstd,B (No. 7) Sstd,VI (No. 

11), Smean,VI (No. 9), and Sf,VI (No. 19). The defined 

similarity coefficient was able to analyze the 

similarity of combustion behavior between different 

coal types. The similarity coefficient between a coal 

blend and its component was influenced mainly by 

the volatile matter in the coal blend and its mixing 



  

ratio. A coal blend had a higher similarity coefficient 

with its component of higher volatile matter and 

mixing ratio in the blend. A threshold value of 0.4709 

was found for the relationship between the error rate 

and the similarity coefficient. The error rate remained 

at zero when the similarity coefficient was below the 

threshold. When the similarity coefficient was above 

the threshold, the error rate generally increased as the 

similarity coefficient increased. In addition, the 

success rate decreased as the similarity coefficient 

increased. A higher similarity coefficient resulted in a 

lower success rate. It was more difficult to identify a 

coal type that had a high similarity with other coal 

types, due to the high error rates. The present results 

demonstrate that the proposed system is effective for 

identifying coal blends with similar combustion 

behavior. 
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中文概要 



  

 

题 目：结合火焰监测技术和支持向量机算法的混煤在线

辨识研究 

目 的：混煤在锅炉燃烧中的广泛应用。利用火焰监测技

术提取混煤燃烧的火焰特征量，并获取最优的特

征量组合。研究混煤相似度对其辨识错误率和正

确率的影响。 

创新点：1. 利用 ReliefF 算法和 SVM 算法定量分析各个火

焰特征量在煤质辨识过程中的重要性，获取最优

特征量组合。2. 定义混煤/单煤的相似度，并分析

相似性对其辨识错误和正确率的影响。 

方 法：1. 利用火焰监测技术提取火焰图像信号和火焰光

强信号，提取 20 个火焰特征量（图 3、图 4 和表

1）；2.利用 ReliefF 算法计算 20 个特征量在煤质

辨识中的重要性（图 7）；3. 利用 SVM 算法分析

特征量数量对煤质辨识正确率的影响，确定最优

特征量组合（图 8）。 

结 论：1. 在煤质辨识过程中，结合 ReliefF 算法和 SVM

算法可以将特征量数量由 20 降至 12，并保证辨

识准确度；2. 混煤与其组分单煤的相似度主要受

单煤挥发份含量及掺混比例影响；3. 辨识错误率

与相似度之间存在一个阈值，当相似度低于该阈

值时，辨识错误率为 0，当相似度高于该阈值时

辨识错误率与相似度呈正相关；4. 辨识正确率随

着相似度的升高而降低。 

关键词：混煤；火焰监测；在线辨识；ReliefF；SVM；相

似度 

 


