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Abstract

A compilation technique is proposed for concurrent logic programs called
schedule analysis. Schedule analysis deduces at compile-time a partial sched-
ule for the processes of a program by partitioning the atoms of each clause
into threads. Threads are totally ordered sets of atoms whose relative or-
dering is determined by a scheduler. Threads reduce scheduler activity and
permit a wealth of traditional Prolog optimisations to be applied to the
program. A framework for schedule analysis is proposed and this defines
a procedure for creating threads. A safety result is presented stating the
conditions under which the work of the scheduler can be reduced from or-
dering processes to ordering threads. Schedule analysis has been integrated
into a compiler and implementation has suggested that it can play a central
role in compilation. Optimisations which follow from schedule analysis in-
clude a reduction in scheduling, the removal of synchronisation checks, the
simplification of unification, decreased garbage collection and a reduction in
argument copying.

1 Introduction

Concurrent logic programming brings a new dimension of expressiveness to
logic programming enabling a host of useful protocols and paradigms to
be modeled. This flexibility has a cost, however, because it is the control
strategy of Prolog which has bought efficient implementation. The depth-
first search of Prolog, for instance, brings with it a stack to support local
variables and continuations. On the other hand, concurrent logic programs
require scheduling which introduces the extra overheads of enqueuning and
dequeuning processes. Furthermore, without continuations argument copying
is increased and without local variables garbage collection becomes more fre-
quent. This is the penalty of substituting data-flow for control-flow. Sched-
ule analysis shows how to selectively replace data-flow with control-flow and
thereby reduce these overheads.

Schedule analysis is concerned with deducing at compile-time a partial
schedule of processes, or equivalently the body atoms of a clause, which is
consistent with the program behaviour. Program termination characteristics
are affected if an atom which binds a shared variable is ordered after an
atom that matches on that variable. In order to avoid this, an ordering of



the atoms is determined which does not contradict any data-dependence of
the program. In general the processes cannot be totally ordered and thus
the analysis leads to a division into threads of totally ordered processes. In
this way the work required of the run-time scheduler is reduced to ordering
threads.

Scheduling threads instead of processes avoids the creation of unneces-
sary suspensions during evaluation. This is useful because the overhead
incurred by each suspension is significant. The overhead is not merely in the
extra enqueuing and dequeuing of the process, since upon resumption of the
process, the guards of the associated predicate usually have to be retried.
In addition to avoiding the creation of unnecessary suspensions, schedule
analysis permits several useful optimisations to be applied within a thread.
The optimisations all depend on the existence of a total ordering of atoms
within a thread and follow from applying mode analysis, type analysis and
reference analysis to the threads [8]. Mode analysis and type analysis can be
used to identify: instances of unification which can be simplified; repeated
synchronisation instructions which can be removed; and redundant checks
which can be removed when producers are ordered before consumers in the
same thread. Reference analysis can be used to identify: variables which
can be accessed without dereferencing; variables for which initialisation and
unification can be simplified; and local variables which can be allocated to
a stack.

Schedule analysis exchanges parallelism for reduced overheads by infer-
ring orderings for atoms. In this sense schedule analysis addresses some of
the fundamental issues involved in implementing a concurrent logic program
on a uniprocessor. For a multi-processor, however, there is a danger of intro-
ducing too much control-flow and therefore limiting parallelism; a balance
between control-flow and data-flow needs to be struck. One way to get an
efficient and balanced untilisation of a multi-processor is to partition a pro-
gram into grains [4]. A grain is a set of processes, to be executed on a single
processor, when it is less efficient to evaluate them in parallel. For a con-
current logic program, a consequence of data-flow is that there is no explicit
ordering between the processes within a grain. Thus the processes within
a grain have to be scheduled. Thus, by introducing control-flow within the
scope of a grain, the benefits of reduced overheads can be obtained without
compromising the parallelism. The principle is therefore to turn excess or
fine-grained parallelism to good use by exchanging the parallelism for re-
duced overheads. King and Soper [7] describe in detail how to systematically
identify fine-grained parallelism and appropriately introduce control-flow to
remove the ineffective parallelism.

Section 2 describes the notation and preliminary definitions which will
be used throughout. Section 3 develops a framework for schedule analysis in
which the data-dependencies between the atoms of a clause are characterised
in a way which is independent of the query. This enables pairs of atoms to
be identified which must be allocated to different threads. Theorem 3.1, a



safety result, states the conditions under which atoms can be partitioned into
threads and ordered within a thread whilst preserving the behaviour of the
program. This framework, however, is not tractable and section 4 outlines
a practical procedure for constructing threads and gives some preliminary
results. Sections 5 and 6 present related work and the concluding discussion.

2 Notation and preliminaries

To introduce schedule analysis some notation and preliminary definitions
are required. Let Atom denote the set of atoms for a program Prog, with
typical member a € Atom. Additionally let Goal represent the set of goals,
that is Goal = p(Atom), with typical member ¢ € Goal. For generality, let
Clause denote the set of clauses of the form a <= ag 1, -+, Gask,i * Grerr 1,

oy Qeerry | @pody 1ye - - 5Qpoay k- The ask, tell and body atoms of a clause
c are represented by the ordered sets ask. = {agsp1,-.., Qas i}, tell. =
{1,y e} and body, = {@pogy 15 - - - Apoay 1k }- If there are no tell atoms
the | connective is omitted from a clause, whereas if there are neither any
ask atoms nor any tell atoms both the : and | connectives are omitted from
a clause. A concurrent logic program Prog is a finite set of clauses. Let Subs
denote the set of substitutions for Prog with typical member 8. Additionally
let the set of states of a transition relation for Prog be denoted by State,
where State = Goal x Subs, and State has typical member s.

Definition 1 (match, try and the transition relation) The mappings
match : Atom x Atom — {fail, susp} U Subs, try : Atom x Clause —
{fail, susp} U Subs and the transition relation & on State are defined by:

¢’ 6 € mgu(d', a),
(ask,,8) F* (0,80,
¢ | vars(a') = e.
match(a',c) =13 susp 6 € mgu(a’,a),
(ask,,8) F* (0,80,
¢ | vars(a') # e.

fail  otherwise.

4 § € match(d’, ),

(tell., ) F* (0, 6).
susp susp = match(a’, c).
fail  otherwise.

try(a’, c) =

where F* is the reflexive and transitive closure of &, & is written infiz, 0 [ V
denotes the restriction of a substitution 6 to a set of variables V', vars(a)
denote the variables of a, and mgu(a,b) is the set of most general unifiers
for a and b.

The transition relation for Prog is described piece-wise in terms of trans-
ition relations for the clauses of Prog. The transition relation for a clause



c is described by: if try(a,b,c’) = ¢, ¢ is renamed apart from ¢ and

body., = {al,...,a,} then ({ay, ..., a,},0) Fo° (ay, ..., ap_y,d, ...,
Ay Qpgty - vy An ), 008,

The transition relation for Prog is described by: (g,0) & (g',0") if there
exists a clause ¢ of Prog such that (g,0) > (¢',0').

The transition relation for Prog engenders the notion of a proof. Thus let
Proof denote the set of proofs for Prog with typical member p. A proofis a
sequence p = $;, 8,11, Siya,...such that s; - s,,1, 8,41 F s;42, ... and can be
either finite or infinite. (The term proof has been extended to include infinite
sequences for notational convenience.) Operationally a proof corresponds to
a computation. A computation p = s;, 5,11, ..., s; is suspended if there does
not exist s € State such that s; - s. Additionally p is resumed by ¢ if p is
suspended with s; = (g, 6) and there exists s € State such that (g,609) F s.
Alternatively if ¢ = () then p is terminated.

3 A framework for schedule analysis

The abstract framework formalises the notion of a data-dependence between
two atoms of a goal and explains how to translate data-dependencies into
threads.

3.1 Data-dependencies among the atoms of a goal

The existence of a data-dependency between two atoms is inferred by study-
ing the order in which the atoms are resolved within a computation. A
partial mapping resolve is used to indicate which resolution steps of a com-
putation are responsible for solving a particular atom of the goal. The
mapping resolve is defined in terms of the partial mapping solve.

Definition 2 (solve) The partial mapping solve : Proof x Atom x N —
Goal is defined by:

{(l} i:jvaegi-

(| d' € soloe(p. aj — 1), # an}U

{af,...,a,} i <j,an € solve(p,a,j—1).

801’06(1)7 (l,j - 1) i < jv am € 801’06([), avj - 1)
where p = S;, Sit1, ooy S0, Sy oo S5 =(95,0;), g1 =A@, .., A, ..
an} and 95 = {a1} RN am—lvaif RN a;mam+1; e an}'

Definition 3 (resolve) The partial mapping resolve : Proof x Atom —
©(N) is defined by:

resolve(p, a) = {j | a' € solve(p, a,j), ' ¢ solve(p,a.j + 1)}.



canDepend(Y) <- X = 1, canConsume(X, Y).

canConsume(X, Y) <- X =Y.
canConsume(X, Y) <= Y is X + 1.

Figure 1: The canDepend/1 and canConsume/2 predicates.

Intuitively a data-dependency exists from one atom to another, if the com-
putation for the second atom can never entirely precede the computation for
the first atom. The resolve mapping is useful because it indicates how atoms
are scheduled thus enabling a data-dependence to be identified. Definition 5
formalises the idea of a data-dependence between two atoms which, in turn,
is defined in terms of whether an atom finishes or persists.

Definition 4 (finish and persist) Ifs;, = (¢,,6:), p = si, Siy1,...and a €
g; then

e a finishes in p at | if there exists | > i such that solve(p,a,l)# 0 and
solve(p,a,l4+ 1) =10,

o a persists in p if solve(p,a,l)# O for all 1 > i.

Definition 5 (data-dependence) Suppose s, = (g,;,0;) and a1,...,a;,d" €

g, with a; # ', ..., aj # o'. There exists a data-dependence from a; or
..ora; toad forp=s;, ..., s if j is the least j such that
o forall p’ = s;y ..., 8, Sky1,-.. if @' finishes in p’ at | then there exists

am with 1 < m < j such that n € resolve(p’, a,,) and k < n < .

o forall p' = s;,..., 8, Sky1,-.. if @' persists in p’ then there exists ay,
with 1 < m < j such that n € resolve(p’, a,,) and k < n.

o there exists p' = S;, ..., Sk, Spi1,- .. Such that either o' finishes in p’ at
[ or a' persists in p'.

Note that definition 5 considers all p such that p’ = s,,..., s, Sgy1,- .. POS-
sibly including p which are infinite, suspended and terminated. The role
of p = s;,...,s; in definition 5 is technical and chiefly deals with non-
determinism. Its inclusion in definition 5 is necessary because, in general,
the presence of a data-dependence can be decided by a non-deterministic
choice. Example 1 uses the contrived but illuminating canDepend/1 and
canConsume/2 predicates listed in figure 1 to demonstrate how non-determinism
can determine the existence of a data-dependence. The example illustrates
the significance of p = s;,..., s in definition 5.



Example 1 The non-determinism in the canConsume/2 predicate of figure 1
decides whether or not a data-dependence exists from the X = 1 atom to the
canConsume(X, Y) atom of the canDepend/1 clause. The data-dependence
does not exist for p; but does exist for p, where pi = s, 84, 83, 84, 5 and
Do = S1, 82, S5, Sy, S5 are given below. The initial states of py and ps, s, and
89, coincide. Different clauses of canConsume/2, however, derive s3 and s}
so that s3 and si and the proceeding states differ.

s1 = ( {canDepend(Y)},e ) F

sy = ( {X = 1, canConsume(X, Y1)},{Y1 — Y} ) I
s =({X=1,X=Y},{Y1 = Y} )+

s = ({X=1}{Vi= Y, X~ Y} )

5 =(0,{Y—1,X— 1Y, — 1}).

sh =({X=1Yis X+ 1},{Ys — Y} ) F

s =({YiisX+ 1} {Yi—= Y, X— 1} ) -

s =(0,{Y—2X— 1Y, — 2} ).

For py, no data-dependencies can exist from X = 1 to canConsume(X, Y)
since resolve( sy, s3, Sa, S5, canConsume(X, Y)) = {2,3} and resolve(ss, s3,
sa, s5, X = 1) = {4}. For py, however, 3 € resolve(ss, s}, sy, st, X = 1) and
4 € resolve( sy, s4, s}, 5, canConsume(X, Y)). Putting p = so, s illustrates the
rationale behind p = s;, ..., s in definition 5. p and hence s are fized there-
fore the choice of clause for canConsume(X, Y) is predefined. Therefore, a
data-dependence always occurs in Sgi1, Sgia, - . . allowing the data-dependence
from X =1 to canConsume(X, Y) to be identified and captured.

3.2 Data-dependencies among the atoms of a clause

Schedule analysis focuses on organising the body atoms of a clause ¢, body,,
into threads. Therefore the notion of a data-dependence between the body
atoms of a clause is introduced.

Definition 6 (data-dependence relation) The data-dependence relation
0., for a clause ¢ and a computation p = s,,...,s; is a relation on body,
is defined by: if there exvists s;_; € State such that s;_, e s;, and body, =
{ay,..., a1}, body., = {a},...,a,}, and there exists a data-dependence from
a, or...orai toay,  forp then (a,ay,, ), .., (ay,a,,) € é.p.

Example 2 Let fib denote the recursive clause of the the fib/2 predicate
presented in figure 2. Additionally let @y = N1is N -1, a = N2is N - 2,
as = fib(N1, F1), ay = fib(N2, F2) and a5 = Fis F1 + F2 so that bodyg,
= A{ay,...,as}. Since fib is deterministic consider p = s where s =
({ar,...,a5},{N — 1}). The data-dependence relation 8g, , is presented
as a directed graph in figure 3.



fib(N, F) <- N=<1:F=1.
fib(N, F) <= N>1:N1lisN-1, N2isN -2,
fib(N1, F1), fib(N2, F2), Fis F1 + F2.

Figure 2: The fib/2 predicate.

N AN/
NN

Figure 3: 05 , and 6.

Although the data-dependence relation ép , is acyclic, a data-dependence
relation can contain cycles due to the possibility of coroutining, each cycle
corresponding to a set of coroutining atoms. It is important that schedule
analysis identifies coroutining since coroutining atoms need to be allocated
to different threads. Once placed in separate threads the data-dependencies
can be resolved at run-time with a scheduler.

Usually compilers do not have the benefit of a knowledge of the com-
putation p and hence it is necessary to derive a data-dependence relation
which is independent of p. In the terminology of abstract interpretation,
0., is collected for each possible p, to construct a relation 6, on body, which
summarises the data-dependencies of body, in a way which independent of

p.

Definition 7 (collecting data-dependence relation) A relation ¢, on
body. is a collecting data-dependence relation for a clause c if: ¢,, C 6, for
all p.

If each data-dependence relation is acyclic, coroutining cannot occur. Nev-
ertheless, cycles can still appear in a collecting data-dependence relation.
This is symptomatic of atoms whose scheduling order depends on the ini-
tial computation, for instance, the query. In addition to the coroutining
atoms, these atoms need to be placed in different threads so that they can be
ordered at run-time by the scheduler. Example 3 illustrates how cyclic data-
dependencies can be introduced into the least collecting data-dependence
relation by atoms whose relative scheduling ordering depends on the query.

Example 3 Figure j details the pathological abc/2, a/3 and b/3 predic-
ates. These predicates are contrived so that for some queries AAis A + 5 is



abc(X, C) <- Cis A+ B, AAis A + 5, BB is B + 6,
a(X, BB, A), b(X, AA, B).

a(X, BB, A)<-0<X:A=BB.
a(X,_,A)<-0>=X:A=23.

b(X, _,B)<-0<X:B =4
b(X, AA, B) <- 0 >= X : B = AA.

Figure 4: The abc/2, a/3 and b/3 predicates.

}%}ivgélg — A

af

Flglﬂ’e 5: 6abc,c+7 6abc,c_7 6(11)07 O abe and Tabc-

scheduled before BB is B + 6 whereas, for others, the ordering is reversed.
Specifically, the order of scheduling is predicated on X > 0. Let abc de-
note the clause the abc/3 predicate and a; = Cis A + B, ay = AAis A + 5,
a3 = BBis B+ 6, ay = a(X, BB, A), a5 = b(X, AA, B) so that body,,. =
{ai,...,as}. Further let ¢, ¢™ and c* respectively denote ¢ = s,,...,s; for
which s; satisfies X > 0, s; satisfies 0 >= X, and for which s; neither satisfies
X > 0 nor 0 >= X because X is unbound. Thus 64, = Oape, o+ Ubape, - Ubgpe ot
Since ¢t immediately leads to a suspension, Sape,cr = 0, so that b4 =
Oabe, e+ U Ogpe, - . Fligure 5 presents the relations Oq4p. o+, Ogpc,c~ and Ogp, aS
directed graphs. Note that 04, is cyclic even though 044, .+ and 4. .~ are
both acyclic.

3.3 Data-dependencies among the threads of a clause

A collecting data-dependence relation is used to partition the atoms of a
clause into threads. Specifically threads are formed by identifying pairs of
atoms which must be allocated to different threads. There are just four ways
in which data-dependencies can occur between a pair of atoms. These four
ways are listed and categorised in figure 6. The data-dependencies in each
category have different implications for the scheduling. By identifying which
category requires run-time scheduling, a prescription for generating threads
is derived.

For category one, either a data-dependence always exists from a to o
or sometimes exists from a to ¢’. Thus a can be ordered before a' within



Category Characteristic Order
1 (a,a') € 6. and (a’,a) ¢ 6. | a precedes a'.
2 (d',a) € 6. and (a,d’) ¢ 6. | o precedes a.

, , neither a precedes a’
3 {a,a’) & 0 and (a', a) £ 6. nor a’ precedes a.

either a precedes a’
4 (a,a') € 6. and (a’,a) € 6, | or a’ precedes a, or
a and @' coroutine.

Figure 6: Categorising atom pairs.

the same thread at compile-time. Category two is the symmetric variant
of category one. For category three, a data-dependence neither exists from
a to o' nor from o' to a. Thus ¢ and o' can be ordered at compile-time
in any manner! Category four either locates coroutining activity in which
data-dependencies exist both from a to ¢ and from «’ to a; or identifies
computations for which a data-dependence exists from a to @’ in one com-
putation and from «’ to @ in another. In either case, the atoms a and o
must be assigned to different threads and the ordering of a and o' resolved
at run-time. Of these four categories only category four corresponds to pairs
of atoms which require run-time scheduling. A relation o, on body, is intro-
duced, called the separation relation, which is used to isolate pairs of atoms
which have to be allocated to different threads.

Definition 8 (separation relation) A relation o, on body. is a separa-
tion relation for a clause ¢ if: (a,a’) € 0. if (a,a’) € 6, and (', a) € b..

A separation relation o, is symmetric, that is, if (@, a’) € o, then (¢, a) € o,
and therefore can be represented pictorially as an undirected graph. o, is
used to partition body. into sets of atoms which, when ordered, become
threads.

Definition 9 (partition) A set part. is a partition of a clause ¢ if:
o part. = {part, ,...,part, .},
e part., U...U part,, = body.,
o part, ;N part,; =0 for all i # j,
o if (a,d’) € o, then a € part,;, a’ € part,; with i # j.

To turn a partition part, into threads, each part,, is ordered so as not to
contradict a data-dependence in 6..



incr(X, Y) <= Yis X + 1.

incrs(Y1, Y2) <= X1 = 1, X2 = 2, incr(X1, Y1), incr(X2, Y2).

Figure 7: The incr/2 and incrs/2 predicates.

Definition 10 (thread orderings) A set o, is a set of thread orderings
for a clause c if:

o 0. ={0.1,...,0:¢},
® 0., is a relation on part, ;,
o 0., ={{a,,a,) |1 <k<l<m} ifpart.;, ={a,,...,a;},
o if (a,d') € 0., then (d',a) & 67.
The transitive closure of a relation 6, is denoted by é7.

Example 4 Figure 3 diagrams ég,. Since égy is acyclic, og, = 0, and
therefore partg, = {bodyg,} is a partition of c. In the notation of example 2,
take oy 1 = {{a;,a;) | 1 < i < j <5}. The clause abe is more illuminating
since 84y, is cyclic and therefore o4, # 0. Adopting the atom labeling used
in example 3, 04 = {{a2,as),(as, az)}. 0. is represented pictorially as
an undirected graph in figure 5. Therefore party,,, = {partype1, partayes} is
a partition of abc where party,. 1 = {as, as, a1} and partyp.» = {as,a3}. In
turn, the partition leads of the threads o4, 1 = {(a4, as), (a2, a1), (a4, 1)} and

Oabc,2 = {<f157 a3>}.

Although threads are constructed so as to avoid contradicting any data-
dependencies of the program, threads can be formed which compromise ter-
mination. Example 5 uses the incr/2 and incrs/2 predicates listed in figure 7
to illustrate circumstances in which the threads produced by schedule ana-
lysis inadvertently introduce deadlocking behaviour.

Example 5 The incr/2 and incrs/2 predicates are presented in figure 7. Let
incrs denote the clause of the incrs/2 predicate and let ay = X1 =1, ay =
X2 =2, a3 =incr(X1, Y1), ay = incr(X2, Y2) so that body,n..s = {a1, as, az, as}.
Oiners 18 acyclic and is diagrammed in figure 8. Since 0,005 18 acyclic a
single thread can be constructed but, for the sake of a counterexample, divide
body;pcrs according to part,..s = {partipers 1, Partiners o} where parti,..s1 =
{a1, a4} and part,,.rs » = {as, az}. In addition, choose the threads 0.5 1 =
{{as, a1)} and 0jpcrs 2 = {(a3,09)}. Oiners1 and 0jncrs 2 are also presented in
figure 8. Note, however, that 6,pcrs U Oipers1 U Oiners 2 5 cyclic. In opera-
tional terms, deadlock occurs, since ay of 0,051 suspends waiting for a, to
bind X2 and az of 0,n0rs > suspends waiting for a, to bind X1.

10



Gy as Gy as Gy as Gy as

X X

ay as ay as ay as ay as
Flglﬂ’e 8: 6incr57 Omcrs,lv Omcrs,2 and 6mcrs U Omcrs,l U Omcrs,Z-

Deadlock can occur because the constraints on the scheduling of the threads
can extend beyond the constraints on the scheduling of the clause. The
scheduling constraints for the threads, however, augment 6, with the order-
ings imposed by the threads themselves. The cumulative ordering effect of
the threads is given by o,, U...U o, which is dubbed ..

Definition 11 7, is a relation on body, defined by: 7. = 0.1 U...U o0, ,.

The scheduling constraints on the threads therefore extend from é, to 7,Ué,.
Example 5 illustrates the disastrous effect that extra cycles in 7,Ué, can have
on termination. Note, however, that if all the cycles which occur in 7, U 6,
also occur in ¢., then termination is not compromised. This follows because
the atoms which form the cycles of 7. U 6, would occur in the cycles of é,
and would therefore be split across different threads by schedule analysis.
Theorem 3.1 confirms this observation stating the precise conditions under
which the work of a scheduler can be safely reduced from scheduling processes
to scheduling threads. The theorem thus provides a way for checking the
integrity of the threads generated by schedule analysis. A reliable procedure
for forming threads thus follows, since erroneous threads can be identified
and be removed.

To introduce the safety theorem, however, the notion of an interleave
is required to express a scheduling order of the threads. A scheduler can
transfer control from one thread to another by suspending and resuming
the evaluation of a thread. The scheduler therefore induces an ordering on
body. which extends beyond 7.. The concept of an interleave is introduced
in definition 12 to capture this ordering and clarify the way in which the
evaluation of the threads can be interleaved.

Definition 12 An interleave of 7. is a relation ¢, on body, defined by:
o if (a,d') €1, then (d',a) & 7.,

o if a,a’ € body. and a # o' then either (a,d’) € 1. or {d',a) € ¢,.

Theorem 3.1 (safety theorem [9]) If7.Ud} has no more cycles than §F
then there exists an interleave v, of 7. for arbitrary c.

11



4 A procedure for schedule analysis

The framework can be regarded a compilation scheme in which the input
is a collecting data-dependence relation and the output is the threads of a
clause. Thus, once a collecting data-dependence relation is found, schedule
analysis can be integrated into a compiler. King and Soper [9] explain how
data-dependencies can be inferred with existing forms of analysis, specific-
ally producer and consumer analysis [6, 1] or the mode algorithm of Ueda
and Morita [13]; detail how a collecting data-dependence relation can be
constructed; and show how the framework defines a constructive procedure,
an algorithm, for generating threads.

Schedule analysis has been integrated into a compiler for a dialect of Flat
Parlog. The final version of the schedule analysis module, which excludes
the producer and consumer analysis, equates to about 350 lines of code. The
bulk of the module equates to code for calculating the transitive closure of
a relation, counting the number of cycles in a relation, and computing a
partition. The transitive closure and cycle count is computed by variants
of the backtracking algorithm proposed by Tiernan [12]. The partitioning
is accomplished by an approximation algorithm, specifically the largest-first
sequential colouring algorithm [11]. Although computing an optimal parti-
tion is equivalent to calculating x(¢.) which, in turn, is NP-complete [3],
the approximation algorithm was found to frequently minimise the number
of threads.

Some of the optimisations which follow from schedule analysis are best
illustrated at the level of the intermediate code. The intermediate code used
in the compiler is similar to Kernel Parlog [2]. Kernel Parlog is a useful
basis for the intermediate language because it includes control primitives
like Data/1! and supports the sequential and the parallel conjunction. The
primitive Data(X) induces suspension if X is unbound. The parallel and the
sequential conjunction, respectively denoted , and &, provide a way to order
the evaluation of atoms within a clause and thereby express threads. The
usefulness of Kernel Parlog extends beyond that of a representation language
since Gregory (1987) proposed a suite of optimisations that can be used in
connection with sequential conjunction and therefore apply to threads. The
optimisations are significant because they can be used as a measure of the
effectiveness of schedule analysis.

Figure 9 lists two versions of the intermediate code for fib/2, generated
without and with schedule analysis. To put the optimisations into perspect-
ive, the instruction count for the Data/1 and Unify/2 primitives drops from
529 and 353 to just 1 and 177 when the tenth Fibonacci number is com-
puted. The other primitives Less/2, Less_Equal/2, Minus/3 and Plus/3 are

1To be faithful to the intermediate code used in the compiler, primitives are denoted by
Data/1, Less/2, Less_Equal/2, Plus/3 and Unify/2 rather than using the notation DATA/1,
LESS/2, LESSEQ/2, PLUS/3 and =/2 introduced by Gregory (1987). The extra primitive
Minus/3 required for fib/2 has the obvious interpretation.
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fib(_1, _2) <- Data(_1) & Less_Equal(_1, 1) : Unify(_2, 1).
fib(_1, _2) <-

Data(_1) & Less(1, _1):

Data(_1) & Minus(_1, 1, _4) & Unify(_4, N1),

Data(_1) & Minus(_1, 2, _5) & Unify(_5, N2),

fib(N1, F1), fib(N2, F2),

Data(F1) & Data(F2) & Plus(F1, F2, _6) & Unify(_6, _2).

fib(_1, _2) <- true : Data(_1) & $fib(_1, _2).

$fib(_1, _2) <- Less_Equal(_1, 1) : Unify(_2, 1).
$fib(_1, _2) <-

Less(1, _1):

Minus(_1, 1, _4) &

Minus(_1, 2, _5) &

$fib(_4, F1) & $fib(_5, F2) &

Plus(F1, F2, _6) & Unify(_6, _2).

Figure 9: Intermediate compilation of the fib/2 predicate.

invoked 88, 89, 176 and 88 times on both occasions. Note also that the re-
cursive clause of fib/2 requires nine variables whereas the recursive clause of
$fib/2 uses seven variables. Furthermore, the $fib/2 clause has more scope
for introducing local variables since five of its variables can be allocated to
a stack. For the fib/2 clause, only three of its nine variables are local.

It is important to realise that although schedule analysis guarantees that
a minimum number of suspensions are created for fib/2, it does not ensure
that the suspension count is actually reduced. Schedulers often employ the
heuristic that data-dependencies tend to flow left-to-right among the atoms
of a clause to avoid creating unnecessary suspensions. In particular, for the
fib/2 predicate, all the data-dependencies flow left-to-right, and therefore
the scheduling heuristic minimises the number of suspensions. This does
not deny the usefulness of schedule analysis since the use of threads enables
other scheduling optimisations to be applied. For instance, threads permit
the run-queue to be accessed less frequently and also enable a reduction in
the number of arguments which are copied to and from a stack [5].

Nevertheless, schedule analysis cannot significantly improve performance
when all threads it produces are small. This tends to occur with programs
which use coroutining throughout. The application of schedule analysis to
a prime sieve program, for example, only gave a marginal improvement in

performance due to the instruction count for Unify/2 reducing from 275 to
247.
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5 Related work

Korsloot and Tick [10] have presented some initial ideas on how to intro-
duce sequentiality into concurrent logic programs. Like schedule analysis
the aim is to recover “traditional procedural language optimisations that
have previously been discarded by those implementing committed-choice
languages”. Korsloot and Tick derive data-dependencies by the mode al-
gorithm described by Ueda and Morita [13] and give several examples of
how the data-dependencies can be used to order the atoms of a clause. The
procedure for sequentialisation is ad hoc, has no supporting theory, and con-
sequently there is no guarantee that deadlock is avoided.

6 Conclusions

Schedule analysis is concerned with deducing at compile-time a partial sched-
ule of the processes, or equivalently the body atoms of a clause, which is
consistent with the behaviour of the program. It partitions the atoms of
each clause into threads of totally ordered atoms which do not contradict
any data-dependence of the program. Threads substitute data-flow with
control-flow thereby reducing the load on a scheduler and also enabling a
wealth of traditional control-flow optimisations to be applied to the pro-
gram.

A framework for schedule analysis has been proposed, formulated in
terms of the operational semantics for a program, which builds from the
notion of a data-dependence to define a procedure for creating threads. All
data-dependencies which can possibly occur between the atoms of a clause
for any query, are collected together and compared, to identify those atoms of
a clause which must be allocated to different threads. This gives a straight-
forward prescription for partitioning the atoms of a clause into threads. The
threads generated by this procedure, however, in exceptional circumstances,
can compromise the behaviour of the program. Thus, a safety result has
been presented which states the conditions under which the work of a sched-
uler can be safely reduced from scheduling processes to scheduling threads.
The theorem provides a way for checked the integrity of the threads so that
erroneous threads can be identified and filtered out.

Deriving the data-dependencies for schedule analysis is non-trivial and
will be a focus of future work. Nevertheless, a preliminary implementation
suggests that schedule analysis is likely to be a useful compilation technique.
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