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Abstract

In real-world environments it is usually difficult to specify the quality of a preven-

tive maintenance (PM) action precisely. This uncertainty makes it problematic to

optimise maintenance policy. This problem is tackled in this paper by assuming that

the quality of a PM action is a random variable following a probability distribution.

Two frequently studied models are, a failure rate PM model and an age reduction

PM model, and then will be investigated. The optimal PM policies are presented

and optimised. Numerical examples are also given.
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1 Introduction

Maintenance actions can generally be divided into two types: corrective main-

tenance (CM) and preventive maintenance (PM). The quality of maintenance
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actions in both CM and PM is an interesting research topic in the reliability

literature, and is also vitally important when maintenance policies are being

developed in practice.

The state of a piece of equipment after a maintenance action is performed is

assumed to be one of the three situations: perfect, imperfect, and minimal. A

perfect maintenance action is assumed to restore the equipment to be as good

as new; an imperfect maintenance action may bring the equipment to any

condition between as good as new and as bad as previously, and a minimal

maintenance action is assumed to restore the equipment to a state the same

as before the action. Examples of models for perfect, imperfect and minimal

maintenance actions are Renewal Processes, Generalized Renewal Processes

and Non-Homogeneous Poisson Processes, respectively. More comprehensive

discussion in maintenance from both theoretical and application points of view

can be found in Pham and Wang[1]; Dekker[2] and Scarf[3].

The assumption that the equipment can be restored imperfectly, or imperfect

maintenance, is closer to many practical scenarios than the other two assump-

tions. For modelling the quality of a PM action, two approaches have often

been studied: a failure rate PM model by Lie and Chun [4] and Nakagawa [5],

and an age reduction PM model by Canfield [6] and Malik [7]. Based on these

two models, Lin et. al. [13,14] introduced a hybrid PM model that combines

the failure rate PM model and the age reduction PM model.

Assume that PM actions on the equipment are carried out at every time

interval T independent of the failure history of the equipment, and CM actions

are conducted upon failures. The failure rate PM model, the age reduction PM

model and the hybrid PM model are defined as follows.
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• Failure Rate PM Model [4,5]. The failure rate after the kth PM becomes

hk(t) = θhk−1(t) for t ∈ (0, T ), where θ(> 1) is the adjustment factor, hk(t)

(t ∈ (0, T )) is the failure rate after the kth PM, and T is the time interval

between two adjacent PM actions. Each PM resets the failure rate to zero

and the rate of increase of the failure rate gets higher after each additional

PM. This model considers the change of the slope of the failure rate function.

In this model, the adjustment factor θ is an index for measuring the quality

of PM.

• Age Reduction PM Model [6,7]. Canfield[6] and Malik[7] introduced age

reduction models. In the age reduction model introduced by Canfield[6], the

effective age after the kth PM reduces to tk − η if the equipment’s effective

age was tk just prior to this PM, where η(< tk) is the restoration interval

in the effective age of the equipment due to the kth PM. The restoration

interval η in this model is an index for measuring the quality of PM. This

model has been widely used to optimize cost for maintenance policies under

various assumptions[8,9]. In the age reduction model introduced by Malik[7],

the effective age after the kth PM reduces to btk if the equipment’s effective

age was tk just prior to this PM, where b < 1. Applications of the Malik

model on the maintenance effect and optimizing maintenance policy can be

found in [11,12].

• Hybrid PM Model [13]. The failure rate after the kth PM becomes akh(btk+

x), where tk is the time when the kth PM is conducted, 1 = a0 ≤ a1 ≤ a2 ≤

... ≤ aN−1, 0 = b0 ≥ b1 ≥ b2 ≥ ... ≥ bN−1 < 1, x > 0, and h(t) is the

failure rate of the equipment when there is no CM or PM. Here, parameter

ak plays the same role as the parameter θ in the failure rate PM model,

and parameter bk functions similarly as the parameter b in the Malik’s age

reduction PM model.
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All of the above three models assume that the failure rate of the equipment is

increasing with time when no PM is conducted. This paper only studies the

failure rate PM model and the Canfield age reduction PM model.

The parameters that determine the PM quality are the adjustment factor θ

in the failure rate PM model and the restoration interval η in the Canfield

age reduction PM model. They are important because they impact on the

frequency of PM’s and therefore the long-run average cost. These parameters

can be estimated based on a domain expert’s suggestion [7] or real data [6]. It

is assumed by prior research on the above two models that the parameters θ

and η are fixed constant. This assumption may be violated in many scenarios,

especially in the case when the parameters are estimated by domain experts.

It can be more practical to assume that these two parameters are random

variables following certain probability distributions. Most maintenance engi-

neers in building service systems, for example, usually do not indicate that the

restoration interval of a PM is 2 years, they tend to estimate the restoration

interval falls within an interval (1, 3) years instead. In this case, it can assume

that the restoration interval is a random variable with a uniform probability

distribution.

This paper considers the scenarios when the maintenance quality is a random

variable. It assumes that both the adjustment factor θ and the restoration

interval η are random variables with certain probability distributions. Optimal

PM policies for these two models are then obtained.

The paper is organized as follows. Section 2 introduces two novel PM models

that consider failure rate PM models and age reduction PM models whose

parameters for measuring the maintenance quality are random variables, and
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provides with algorithms for optimising PM policies. Further discussions on

the quality of PM’s are made in Section 3. Section 4 investigates two cases

where the quality of PM’s are assumed to be uniformly distributed and the

failure time to be Weibull distributions. Finally, in the last section, concluding

remarks are given.

2 MODEL FORMULATIONS

In this section, we investigate the failure rate PM model and the Canfield age

reduction PM model, when the adjustment factor and the restoration interval

are random variables. Model A assumes that the failure rate of a piece of

equipment after a PM action become a product of a maintenance quality and

the failure rate before the PM action. Model B assumes that the equipment’s

age become younger than before a PM action.

2.1 Model A

Assumptions

A. PM actions are performed at time kT for k = 1, ...., N . The equipment is

replaced at time NT , where T is the time interval between two adjacent

PM actions and N is the number of PM actions before a replacement.

B. When there is no PM or CM, the failure rate of the equipment, denoted by

h(t), is strictly increasing.

C. The equipment has the failure rate hk(t) = θk−1h(t) after the kth PM,

where t ∈ (0, T ), and θ is a random variable with a cumulative distribution

function, denoted by F (θ) with θ ≥ 1. Assume that the Nth moment about
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the random variable θ exists.

D. A replacement can restore the equipment to be as good as new. The equip-

ment undergoes minimal repair upon failures between two adjacent PM’s.

The failure rate remains unchanged by minimal repair.

E. The times for PM, minimal repair and replacement are negligible.

F. The costs on a minimal repair, a PM and a replacement are cm, cp and cr,

respectively.

The long-run average cost rate is

CA(T,N) =
1

NT

cm
N∑
k=1

T∫
0

(

∞∫
1

θdF (θ))k−1h(t)dt+ (N − 1)cp + cr

 (1)

Denote γk = (
∫∞
1 θdF (θ))k−1 and rk(t) = γkh(t). Eq. (1) can be re-written as

CA(T,N) =
1

NT


cm N∑

k=1

T∫
0

rk(t)dt

+ (N − 1)cp + cr

 (2)

To determine the optimal values of N and T that minimize CA(T,N) in Eq.

(2), one can solve the following optimisation problem.

CA(T0, N0) = min
T,N

CA(T,N) (3)

According to Nakagawa [5], there exists optimal T0 and N0 when Eq. (4) and

(5) are satisfied.

T∫
0

{
(N − 1)rN(t)−

N−1∑
k=1

rk(t)

}
dt <

cr − cp
cm

≤
T∫
0

{
NrN+1(t)−

N∑
k=1

rk(t)

}
dt (4)
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and

N∑
k=1

Trk(T )−
T∫
0

rk(t)dt

 =
(N − 1)cp + cr

cm
(5)

Table 1 shows an algorithm for searching the optimal T0 and N0 of Model A.

When the parameter θ is assumed to be a constant

2.2 Model B

Assume that Canfield’s [6] age reduction PM model is utilized to maintain

the equipment. Under Canfield’s model, each PM reduces operational stress to

that existing time units previous to the PM intervention, where the restoration

interval is less than or equal to the PM intervention interval. Thus, each PM

restores the failure rate of the equipment at time t to the one at t− η, where

η ≤ T , while its shape remains unchanged. That is, the failure rate keeps

monotonically increasing, although the rate of degradation is reduced after

each PM. Canfield [6] derived the following failure rate:

hk(t) =


h(t) for 0 ≤ t ≤ T

wk(T, η) + h(t− kη) for kT ≤ t ≤ (k + 1)T

(6)

where 0 < η ≤ T , and wk(T, η) =
k∑
i=1

{h(iT − (i− 1)η)− h(i(T − η))}.

Assumptions

A. Assumptions A, B, D, E and F are the same as for Model A.

B. The equipment has the failure rate shown as Eq. (6), where η is a random
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variable with cumulative distribution function G(η) and 0 < η ≤ T .

Based on the above assumption, we can obtain the following long-run average

rate

CB(T,N) =
1

NT
{cm

T∫
0

N−1∑
k=1

wk(T, η)T +
N−1∑
k=0

(k+1)T∫
kT

h(t− kη)dt

 dG(η)

+ (N − 1)cp + cr} (7)

For a fixed N , by solving the following equation, the time period T0 that

achieves the minimal long-run average cost rate can be obtained.

CB(T0, N) = min
T
CB(T,N) (8)

To determine the values of N and T that minimize CB(T,N) in Eq. (8), denote

L(T,N) =N

T∫
0

wN(T, η)T +

T∫
0

h(t+NT −Nη)dt

 dG(η)

−
T∫
0


N−1∑
k=1

wk(T, η)T +
N−1∑
k=0

T∫
0

h(t+ kT − kη)dt

 dG(η)

Let CB(T,N + 1) ≥ CB(T,N) and CB(T,N − 1) > CB(T,N), which implies

L(T,N) ≥ cr − cp
cm

and L(T,N − 1) <
cr − cp
cm

(9)

Let ∂CB(T,N)
∂T

= 0, then

N(N − 1)

2
T 2h(T )g(T ) + Tg(0)

NT∫
0

h(t)dt+NTg(T )

T∫
0

h(t)dt

−
T∫
0

N−1∑
k=1

wk(T, η)T +
N−1∑
k=0

T∫
0

h(t+ kT − kη)dt

 dG(η)

=
(N − 1)cp + cr

cm
(10)

8



where g(T ) = dG(t)
dt
|t=T , and g(0) = dG(t)

dt
|t=0. Therefore, there exists optimal

T0 and N0 when Eq. (9) and (10) are satisfied.

Table 2 shows an algorithm for searching the optimal T0 and N0 of Model B.

3 DISCUSSION

In the failure rate PM model and the age reduction PM model, both the

adjustment factor θ and the restoration interval η are assumed to be constant.

The above assumption that parameters θ and η are random variables provides

an alternative approach to investigating the two parameters. The restoration

interval η in the age reduction model can be estimated by either domain

experts [7] or collected data [6]. As domain experts tend to offer a rough

estimate of parameters, the above assumption may be more suitable for the

situation when the domain experts are asked to estimate the parameters.

For the failure rate PM model, this paper only considers Canfield’s age re-

duction model. Similarly, the parameter b in the Malik’s age reduction model

can be regarded as a random variable and analysed. As above mentioned, the

hybrid PM model [13,14] is derived on the basis of the failure rate PM model

and the age reduction PM model. The PM policies based on the hybrid PM

model can be optimised if parameters ak and bk are random variables.

Further research can be considered in the case when the equipment’s age may

impact the adjustment factor or the restoration interval. Chan and Shaw[15],

and Gu[16] considered the scenarios where the adjustment factor varies with

the equipment’s age; sequential PM modelling (see [13,14,5]) is a solution for

such scenarios. However, each PM action in sequential PM modelling has a
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different quality, which requires a large number of data to estimate it. In

practical use, it may be very hard to provide system designers or maintenance

engineers with a huge number of data.

4 NUMERICAL EXAMPLES

Suppose that the failure time of a piece of equipment has a Weibull distribu-

tion, i.e. h(t) = βtβ−1, where β = 1.6.

4.1 Model A

Let the adjustment factor θ in Model A has a uniform distribution as follows:

F (θ) =


θ−1
u−1 for 1 ≤ θ ≤ u

0 otherwise

(11)

Then for γk = (1+u
2

)k−1 and rk(t) = βγkt
β−1. The optimal solution N0 and T0

should satisfy the following inequality and equation:

(N0 − 1)T0
βγN0 − T0β

N0−1∑
k=1

γk <
cr − cp
cm

≤ N0T0
βγN0+1 − T0β

N0∑
k=1

γk (12)

and

T0 =

{
(N0 − 1)cp + cr

cm(β − 1)
∑N0
k=1 γk

} 1
β

(13)

Then the minimal long-run average cost is

CA(T0, N0) =
1

N0T0

cmT0β
N0∑
k=1

γk + (N0 − 1)cp + cr

 (14)
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Based on research in the office building services systems, Evans et al(see [17])

have identified the relationships among three costs incurred within the sys-

tems’ whole lifecycle span: initial capital costs, maintenance and building op-

erating costs, and business operating costs. They found that the operation

and maintenance of the building services systems costs can be five times the

capital costs; while the business operating costs will be two hundred times

the capital costs over the life of the building. In other words, business losses

are forty times as large as maintenance costs, namely, corrective maintenance

costs (that includes business losses) is forty times as large as preventive main-

tenance costs.

We therefore assume that cp = 1, cm = 40 and cr = 1000. When u in the

cumulative distribution function Eq. (11) changes from 1.1 to 2.0, one can

obtain the following results shown in Table 3 and Figure 1 based on the above

discussion. In order to show the data in a figure, the long-run average cost is

divided by 10 in Figure 1.

From Figure 1, if u increases, the replacement times N0 decreases, and both

the time intervals T0 and CA(T0, N0) increase.

4.2 Model B

Let the restoration interval η in Model B has a uniform distribution as follows:

G(η) =


η/T for 0 ≤ η ≤ T

0 otherwise

(15)

11



The distribution indicates that a PM action can bring the equipment to the

condition between before this PM and after the last PM. Denote

DN0 =
N0−1∑
k=2

k∑
i=2

iβ − 1

i− 1
−

N0−1∑
k=1

(
k∑
i=1

iβ−1 − (k + 1)β+1 − kβ+1 − 1

k(β + 1)

)
(16)

+ (N0 − 1)β + 1

Then, the optimal solution N0 should satisfy the following inequality:

(N0 − 1)DN0 −N0DN0−1 ≤
cr − cp
cmT

β
0

< N0DN0+1 − (N0 + 1)DN0 (17)

And T0 can be obtained from the following equation:

T0 =

{
(N0 − 1)cp + cr
cm(β − 1)DN0

}1/β

(18)

The long-run average cost is

CB(T0, N0) =
cmT

β
0 DN0 + (N0 − 1)cp + cr

N0T0
(19)

We assume that cp = 1 and cm = 40. When cr changes from 500 to 5000, we

have the following results shown in Table 4 and Figure 2 based on the above

discussion. In order to show the data in a figure, the long-run average cost is

divided by 10 in Figure 2.

Model A and model B are developed based on the assumption that the param-

eters θ and η are random variable. If the parameters are set to the expected

values of the random variables, the number of the PM actions before a re-

placement and the time interval between two adjacent PM actions can be

optimised. For example, set a fixed parameter η = T
2

for model B, then the

optimal values of N0 and T0 are shown in Table 5. Compare Table 4 and Ta-

ble 5, one can find that the cost in Table 4 is lower than in Table 5, which
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indicates the effect on the results of choosing the uniform distributions for the

parameter η of model B is better than that of choosing a fixed value. Figure

3 shows the change of the long-run average cost divided by 10 when η = T
2
.

5 CONCLUSIONS

In both the reliability literature and practical use, the quality of preventive

maintenance (PM) is an interesting topic because it is vitally important during

optimizing maintenance policies and lifecycle costing.

Prior research assumes that the quality of PM is a fixed constant, which is

usually not true in many scenarios. This paper investigated the optimization

problem of PM policies for the situations where the quality of PM is a random

variable with a certain probability distribution, which would be more practical

than the situation when the quality of maintenance is assumed to be a fixed

constant. The optimal maintenance policies for failure rate PM models and

age reduction PM models were obtained in the paper.

When the life distribution of a piece of equipment is a Weibull distribution

and the quality of PM distributes uniformly, explicit expressions of the optimal

time interval of PM can be obtained. The numerical example shows how the

long-run average cost changes with the quality of PM; it also shows that the

effect on the long-run average cost of choosing the uniform distributions for the

restoration interval of the age reduction model is lower than that of choosing

a fixed value.

ACKNOWLEDGMENTS

13



The author would like to thank two anonymous reviewers for their comments

and suggestions, which have resulted in a number of improvements in the pa-

per. The authors would like to thank EPSRC as part of the Innovative Con-

struction Research Centres (ICRC) initiative for their financial support and

our industrial partners (EC Harris, Dytecna Limited, EMCOR Rail, INBIS

and Quorum Logistics Support).

References

[1] Pham H, Wang H. Imperfect maintenance. European Journal of Operational

Research 1996; 94:425-438.

[2] Dekker R. Applications of maintenance optimization models: A review and

analysis. Reliability Engineering and System Safety 1996; 51:229-240

[3] Scarf PA. On the application of mathematical models in maintenance. European

Journal of Operational Research 1997; 99:493-506

[4] Lie CH, Chun YH. An algorithm for preventive maintenance policy. IEEE

Transactions on Reliability 1986; R-35:71-75.

[5] Nakagawa T. Periodic and sequential preventive maintenance policies. Journal

of Applied Probability 1986; 23:536-542.

[6] Canfield RV. Cost optimization of periodic preventive maintenance. IEEE

Transactions on Reliability 1986; 35:78-81.

[7] Malik MAK. Reliable preventive maintenance scheduling. AIIE Transactions

1979; 11:221-228.

[8] Park DH, Jung GM, Yum JK. Cost minimization for periodic maintenance

policy of a system subject to slow degradation. Reliability Engineering and

System Safety 2000; 68:105-112.

14



[9] Jung GM, Park DH. Optimal maintenance policies during the post-warranty

period. Reliability Engineering and System Safety 2003; 82:173-185.

[10] Shin I, Lim TJ, Lie CH. Estimating parameters of intensity function and

maintenance effect for repairable unit. Reliability Engineering and System

Safety 1996; 54:1-10.

[11] Shin I, Lim TJ, Lie CH. Estimating parameters of intensity function and

maintenance effect for repairable unit. Reliability Engineering and System

Safety 1996; 54:1-10.

[12] Jayabalan V, Chaudhuri D. Optimal maintenancereplacement policy under

imperfect maintenance. Reliability Engineering and System Safety 1992; 36:165-

169.

[13] Lin D, Zuo MJ, Yam RCM. General sequential imperfect preventive

maintenance models. International Journal of Reliability Quality and Safety

Engineering 2000; 7:253-266.

[14] Lin D, Zuo MJ, Yam RCM. Sequential imperfect preventive maintenance models

with two categories of failure Modes. Naval Research Logistics 2001; 48:172-182.

[15] Chan J, Shaw L. Modeling repairable systems with failure rates that depend

on age and maintenance. IEEE Transactions on Reliability 1993; R-42:566-571.

[16] Gu HY. Technical Note: Studies on optimum preventive maintenance policies

for general repair reliability. Reliability Engineering and System Safety 1993;

41:197-201.

[17] Evans R, Haryott H, Haste N, Jones A. The long term costs of owning and

using buildings. London: The Royal Academy of Engineering Publishing, 1998.

15



Fig. 1. Changes of the optimal solution N0, T0 and CA(T0, N0) with the change of

u

Fig. 2. Changes of the optimal solution N0, T0 and CA(T0, N0) with the change of

cr when eta is a random variable with a uniform distribtuion as Eq. (15)
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Fig. 3. Changes of the optimal solution N0, T0 and CA(T0, N0) the change of cr

when η = T
2
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Table 1

Searching the optimal T0 and N0 for Model A

Inputs

h(t): the failure rate cm: the cost of minimal repair;

cp: the cost of PM; cr: the cost of replacement;

F (θ): the cumulative distribution function of θ

Outputs

N0: the cumulative distribution function of θ

T0: the optimal time interval for periodic PM;

1: for N = {1, 2, ...,∞} do

2: obtain T by solving Eq. (5);

3: if inequality (4) is satisfied, then

4: calculate CA(T,N) from Eq. (2);

5: T0 ⇐ T ; N0 ⇐ N ;

6: break;

7: end

8: end
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Table 2

Searching the optimal T0 and N0 for Model B

For Inputs, replace F (θ) with G(η), and θ with η. Outputs are the same

as Algorithm 1. The calculating steps are the same as Algorithm 1 after the follow

interchanges have been made: Eq. (4) with Eq. (9); Eq. (5)

with Eq. (10); Eq. (2) with Eq. (7), respectively.

Table 3

Changes of the optimal solution N0, T0 and CA(T0, N0) with the change of u

u 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

N0 18 11 7 6 5 4 3 3 3 3

T0 1.4 1.7 2.3 2.5 2.8 3.3 4.2 4.1 4 3.9

CA(T0, N0) 116.8 146.6 166.7 181.7 193.5 202.6 211.1 217.1 223.0 228.9

Table 4

Changes of the optimal solution N0, T0 and CB(T0, N0) with the change of cr when

eta is a random variable with a uniform distribtuion as Eq. (15)

cr 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N0 3 3 3 3 3 3 3 3 3 3

T0 2.2 3.3 4.2 5.1 5.9 6.6 7.2 7.9 8.5 9.0

CB(T0, N0) 207.6 268.9 313.0 348.6 378.9 405.8 429.9 451.9 472.4 491.4
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Table 5

Changes of the optimal solution N0, T0 and CB(T0, N0) with the change of cr when

η = T
2

cr 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N0 16 18 18 18 18 18 18 18 18 18

T0 0.6 0.8 1.0 1.2 1.4 1.6 1.7 1.9 2.0 2.2

CB(T0, N0) 167.3 213.6 247.8 275.8 299.9 321.6 339.7 357.8 373.3 389.1
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