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Abstract

Many systems might have a long time dormant period, during which the systems
are not operated. For example, most building services products are installed while
a building is constructed, but they are not operated until the building is commis-
sioned. Warranty terms for such products may cover the time starting from their
installation times to the end of their warranty periods. Prior to the commissioning
of the building, the building services products are protected by warranty although
they are not operating. Developing optimal burn-in policies for such products is im-
portant when warranty cost is analysed. This paper considers two burn-in policies,
which incur different burn-in costs, and have different burn-in effects on the prod-
ucts. A special case about the relationship between the failure rates of the products
at the dormant state and at the operating state is presented. Numerical examples
compare the mean total warranty costs of these two burn-in policies.
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1 Introduction

Warranty is a duty attached to a product and requires manufacturers to offer
pre-specified compensation to buyers when a product fails to perform its design
functions under normal usage within the warranty period. Nowadays, product
warranty becomes increasingly more important in consumer and commercial
transactions, and is widely used and serves many purposes. These purposes
include protection for both the manufacturer and the buyer; an indicator of
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product quality and reliability; a promotional tool to gain reputation; assuring
buyers against products which do not perform as promised. Product warranty
plays an important role in case there is any dispute resolution between buyer
and manufacturer. This in turn poses serious challenges to legislators in terms
of formulating sensible warranty policy legislation that will protect both the
buyers and manufacturers interests.

Warranty policy is an important factor influencing different stages of the whole
lifecycle of products including the development stage(see [1,2]), and the op-
eration and maintenance stage (e.g., [3]). Warranty is mainly utilised in the
manufacturing industries such as the automobile industry (see [4,5]), and the
information technology industry (e.g., [6]).

Warranty policies for a product sold are usually developed on the basis of
the failure pattern of the product. A typical failure pattern against time is
divided into three segments: an infant mortality period, usually marked by
a rapidly decreasing failure rate; a random failure period, where the failure
rate continues at a steady level;, and a period of an increasing failure rate
representing the onset of product wear-out.

Different types of failures may occur within the three periods. From a client
satisfaction perspective, infant moralities are unacceptable. They can be caused
by design deficiencies of the product, poor quality control, poor process con-
trol or workmanship during manufacture or installation. To reduce possible
damage from early failures, one way is to perform a burn-in procedure, which
is carried out by operating the products under electrical or thermal conditions
that approximate to the working conditions in field operation.

Building services products are installed in a building to support the functions
required. Most building products are protected under a kind of warranty or
insurance policy starting from the installation period. These products, for ex-
ample, heating, ventilation, air conditioning (HVAC) systems and so forth, are
installed while a building is constructed. They are not usually operated until
the building is completed and commissioned. The time from the installation
to the commissioning, is called a dormant state and may take several years.
It is not a short time period comparing with their whole life time.

Unlike products that are used immediately after purchase, the building services
products have a dormant state and:

e the products may age and deteriorate, and may therefore fail to function
when they are put into use at the commissioning time, and

e no inspection, or maintenance is conducted on the building services products
during this non-operable period.

As there may be no inspection or maintenance until the building is commis-



sioned, any failures within the dormant period occur with no cost for mainte-
nance. Burn-in policies for such products can therefore be different from those
without any dormant states.

Burn-in is an engineering method that involves testing of items for a given
time, and then releasing those items meet service test to the user [7]. The
items that fail during the burn-in procedure will be scrapped or repaired; only
those that survive the burn-in procedure will be considered to be of good
quality. Burn-in could be performed on the basis of a system (see [8,9]) or an
individual component (e.g., [10,11]). The systems might be electronic systems
such as circuit boards or mechanical systems including air conditioners, or
subsystems like an aircraft electrical subsystem, and the components would
be various types of chips, printed circuits, condensers, fans, and so forth.

A burn-in procedure is usually made in three steps: (1) estimate a lifetime
distribution for a given population, (2) assess the suitability of a burn-in
procedure based on the lifetime distribution, and (3) select a optimization
criterion in order to determine the duration of the burn-in. In the reliability
literature, much research focuses on the third step. The burn-in optimization
criteria includes performance-based methods [12,13], and cost-based methods
[14,15,16,17].

There is considerable research on burn-in policies. For a more comprehensive
understanding of different types of burn-in policies, the reader is referred to
the work of Blischke [18], Block [19], Jensen[20], and Kuo and Kuo [21].

This paper considers two scenarios for products having dormant states.

e Scenario A — Policy A is performed, which implements only one burn-in
procedure under a normal operating environment.

e Scenario B— Policy B is performed, which performs one burn-in procedure
under a dormant environment and follows a burn-in procedure under a
normal operating state. Costs of the burn-in procedure under the dormant
environment is cheaper than under the operating environment, but its burn-
in effect under the dormant environment is less than that under the normal
operating environment.

The paper is structured as follows. Section 2 presents denotations and assump-
tions on failure rates of the products under both dormant states and normal
operating states, warranty policies and costs. Section 3 obtains the mean to-
tal warranty costs under the two scenarios. Section 4 gives the mean total
warranty costs when a special case about the failure rate is considered, and a
numerical example is also presented to compare the warranty costs. Section 5
provides concluding remarks.



2 Assumptions and denotations
2.1 Assumptions

The following assumptions are held.

e The product installed in a building is in a dormant state from its installation
time 0 to commissioning time ¢y, and put into use at time ¢3. No maintenance
on the product is conducted within the time interval (0,ty). There is an
inspection at time tp; maintenance will be carried out immediately if any
failure is found. Inspection time and maintenance time is assumed to be
negligible.

e The product has failure rates as follows

rq(t) at the dormant state

r.(t) at the operating state

strictly decreasing for 0 <t, <t
ru(t) is { constant for t; <t, <ty (2)

strictly increasing for t, <t, < oo

where t, is operating time, tg < t;.

e The warranty term starts from the commissioning time. A free replacement
non-renewing warranty (FRW) policy is considered in this paper. The war-
ranty covers each product for a warranty period w.

e The products are protected by a free-replacement non-renewing warranty
(FRW) policy. That is, the buyer is charged no cost on replacement within
the warranty period w with w > t;. The warranty period w is fixed, and
cannot be renewed.

2.2  Denotation

Denote the life distribution of the product in the dormant state as Fy(t) =
t
1—e o ra®)d and the life distribution of the product in the normal operating
t _ —
state as F,(t) =1 —¢e" Jo r@de B4y =1 — F,(t) and Fy(t) = 1 — Fy(t).

For costs there are several additive components as follows:



¢o: manufacturing cost per product without burn-in;
c1q: fixed setup cost of burn-in per product under a dormant environment;
c1.: fixed setup cost of burn-in per product under an normal operating environ-
ment;
Caq: cost per product time of burn-in per product under a dormant environment;
Cou: cost per product time of burn-in per product under an normal operating
environment;
c3: shop replacement cost per failure;
cy: extra replacement cost per failure during the warranty period.

3 Main results

The failure rate of a product with a dormant state is different from those
without a dormant states. It can be lower within the dormant period than
that within the normal operating period; and it is not a continuous function
over the whole life cycle. Figure 1 shows a particular scenario, where the X-
axis is time and the Y-axis is the failure rate. We call this bathtub curve a
broken bathtub curve.

As the broken bathtub curve is different from the normal one, the burn-in
policy should be developed accordingly. Policy A and B are defined as:

e Policy A: a burn-in procedure is carried out for by, time units under a
normal operating environment.

e Policy B: a burn-in procedure is divided into two-stages. The first stage is
carried out for by time units under a dormant environment, and then for
the second stage bs,, time units under a normal operating environment.

Denote the cost for policy A as C(b1,), and the cost for policy B as Co(bg, b2y)-
We define the permissible set By of C}(b1,), and Bj of Cy(by, ba,,) as the sets
of all the optimal burn-in times that minimize Cj(b,,), and Cy(bg, bey); that
is,

B ={0<t<oo0:Ci(t)= min Ci(s))}

0<s<0c0

By ={0<t,t <oo:Cy(t,t') = min Cy(s,s'))}

0<s,s’'<o0

and the optimal burn-in b7, and b}, b5, as

bj, = inf By

(b, bo) = inf B}



3.1 Scenario A — Policy A is performed

Figure 2 shows the process for a one-stage burn-in policy. A burn-in proce-
dure is first carried out within time interval (0, by,,) under a normal operating
environment, and then the product is installed when a building is constructed.

Considering the above condition leads us to the following result.
Theorem 1 If products are sold with FRW and a one-stage burn-in policy,
then the mean total warranty cost for the products is given by

Cl (blu) = (7/1 (blu) + C4)(M1 (IU) + Mg(w) + 1) — Cy (3)

where

0" Fu(t)dt  Fu(bu)
= +c3= )

My (w) = Fia(to)(1 + Mo(w)),

v1(b1u) = o + Cru + Cou

My(w) = (1 — Fra(to) /1+MO — 1)) dF(t),
0
= > F(w).
k=1

Furthermore, the optimal burn-in time b, must satisfy b* < t;.
Proof. See Appendix.

In order to obtain the optimal burn-in time from Eq. (3), we need to approx-
imate the renewal function, My(w). Here we use an approach from Xie [22] to
achieve this goal. Given a renewal function

m(t) = F(t) + / m(t — o)dF(z) (4)

Suppose it is desired to approximate m(t) with 0 < ¢ < T™*. Partition the time
period [0,7*] into N subintervals: 0 = Ty < 77 < ... < T, = T*. Xie [22]
develops the following recursive approximations to m(7;):

F(T) + 8, — F(T, — T,_)m(T; ;)

T;) = 2 1<i<N
m(T;) = F(T,—T,,) 1<i< (5)




with m(Ty) = 0, where S; = 0,

1
B (Ti—1 + T7)

To obtain the optimal burn-in time by,, commonly used heuristic methods
such as GA (Genetic Algorithm), SA(Simulated Annealing algorithm), or T'S
(Tabu search) can be applied for optimizing the burn-in times (see [23]).

3.2 Scenario B — Policy B is performed

Figure 3 shows the process for a the two-stage burn-in policy. A burn-in proce-
dure is first carried out within (0, by) under the dormant environment, and then
another burn-in procedure under the normal operating environment within
(bg, by + bay). The product is installed in a building at time by + by, and
commissioned at time by + by, + to.

At stage one in this policy, the mean burn-in cost is

Jo Fa(t)dt Fy(ba)

Folba) | CFy(by)

(7)

VQ(bd) = C + Cld + Cod

Denote the life distribution of a product that survives after burn-in time by by
F5(t) within time (bg, by + bay). At stage two of the two-stage burn-in policy,
the mean burn-in cost is

Dau By (t)dt Fy(bay)

+ c3=
F2(b2u) 3F2(b2u)

v3(bay) = Cru + Cou

(8)

The life distribution of the product within time interval (bg+ bay, bg + bay + to)
is assumed to be Fyy(t) if the product has survived from burn-in time by + bg,,,
and the life distribution of the product is assumed to be Fy,(t) if the product
is at the normal operating state and does not fail to operate at commissioning
time by + boy + to.

If the product fails to operate at time by + bg, + tg, the expected number of
replacements for the product within time interval (bg+ boy, +to, b+ boy +to+w)
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My(w) = Fza(to) (1 + Ms(w)) (9)

where Ms(w) = 352, Fp(g)(w), and F»(w) is the life distribution of a product
after burn-in period by + by, in the two-stage burn-in policy.

If the product fails within time interval (bgy + bay, + to, by + boy + to + w), the

expected number of replacements within this time interval is given by

Ms(w) = (1 — Faalto)) [ (1 + Ma(w — t))dFou(t) (10)

O Y——=

Theorem 2 If products are sold with FRW and a two-stage burn-in policy,
then the mean total warranty cost for the products is given by

Ca(ba, bou) = (v2(b) + v3(b) + ca) (Ma(w) + Ms(w) + 1) — ¢4 (11)

Furthermore, the optimal burn-in time b}, b3, must satisfy b}, b5, < 1.

The proof can be completed by using the one for Theorem 1 in [14] and
mimicking the proof of Theorem 2 in this paper.

For both policy A and policy B, the permissible sets of B}, and B; are subsets
of [O, tﬂ

3.8 Discussion

In real applications, the above two burn-in policies can be selected on the basis
of different scenarios.

When the burn-in period by = 0, and the fixed setup cost c¢14 = 0, the mean
total warranty cost Cq(bg, b, ) of from Policy B in Theorem 3 is equivalent to
C(byy,) from Policy A in Theorem 2.

If the length of stage two in Policy A is set to the same as that for the burn-in
time in Policy B, namely, by, = b1y, then Cy(bg, boy,) > Ci(b1,,). This means
the mean total warranty cost incurred in Policy B is larger than that in Policy

A.

Cy(bg, byy,) can be less than Cy(by,) if the length of the burn-in period under
a normal operating environment in Policy B is shorter than that in Policy A.



4 A special case

The failure rate function in a dormant state is usually lower than a normal
operating state. The difference between the two failure rate functions might
result from different load conditions and operating environments, hence, the
link between them can vary. Here a simple example is given to investigate the
policies discussed in the paper.

Assume that the relationship between the failure rates of the product at a
dormant state and at a normal operating state is

ra(t) = ar,(Bt) (12)

where o, f € (0,1), and are called adjustment factors in what follows.
It follows that

Fy(t) =1 — e Jooruomds (13)
4.1 Policy A case

In Policy A, the cumulative distribution function of a product that survives
after burn-in time by, is

== )
by +t
=1—¢ Jb1u ru(@)dz (14)
Denote 1, (t) = F’pll(t) dFZ;(t) = ry(b1y + t). Hence, the life distribution of prod-

ucts survived from the burn-in time by, Fi4(t), is given by

Fld(t) -1 efa f; rp1(Bx)dx

— 1 _ e_a fot ru(blu+,8$)dx (15)
Denote Fy(t) = Aetqtizqetel and ry(t) = gl @5 = aru(bu + Bty + Bt),
then
Fro(t) =1 — e~ & Jo ra(e/)de
=1—e" fot ru(b1u+Bto+a)de (16>



4.2 Policy B case

In the two-stage burn-in policy, the cumulative distribution function of a prod-
uct that survives after burn-in time b4 at a dormant stage for Policy B is

Fd(bd + t) — Fd(bd)

Fy(t)= _
ao(t) Folon)
=1l—-¢c bl;dﬂ ary(Bz)dz an
Denote 74o(t) = Fd;(t) szg(t) = ar,(B(bg +1t)). Hence, F(t) is given by
Fy(t) =1 — e~ Jo rao(a/B)de
and Fo(t) is given by
Fy(boy +t) — Fy(bay,
Fpo(t) = 2(b2u + 1) ~ Folba)
F2(b2u)
=1l—-e 1:]225H Tu(Bbg+x)dw (19)
Denote rps(t) = Fpi(t) dpzii(t) = ry(Bbg + bay, + t). Hence, Fyy(t) is given by
Foa(t) =1 — e~ Jo rra(Boyie
— 1 _ o= Jy ru(Bbatbau+Ba)da (20)
Denote F}(t) = £e50eale) and r(t) = 5l 5 = aru(Bba-+ bau + Blto +
t)), then
F(t)=1- eii fot ra(z/B)dx
=1—e" fot Tu(Bba+bou+pBto+z)dr (21)

5 A numerical example

For burn-in to be effective, lifetimes should have high failure rates initially
and then improve. The class of lifetimes having bathtub-shaped failure rates
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has this property. This section consider a distribution introduced by Xie and
Lai [24] to investigate the relationship between the total warranty cost and
burn-in times.

Xie and Lai [24] introduced the following life distribution.

F(t) =1— ¢ Mit2=0an™ 4 > ¢ (22)

?

and the failure rate function is

Tu(t) = M Ao (At) 27+ Mg (Ast) M 2 >0 (23)

With different parameters, r,(t) can describe different patterns of bathtub
curves. The first change point of this failure rate function is given by

. (1 — Ag)AgAqh | 22
P e DA

Let Co = ].00, Cly = 27 Coy = 0]., C3 = 10, Cq4 = 50, a = 02, ﬂ = 04, to = 03,
w = 0.5, c;g = 1, and c9q = 0.05. The mean total warranty cost are shown in
Table 1 for four groups of parameters Ai, As, A3, and 4.

As Policy A might find more applications from the real world, we pay more
attention to Policy A than Policy B in the following.

Table 1 shows that all of optimal values of by, are less than x;, which verifies
the results in Theorem 1 and 2. Compare the costs based on Policy A with
Policy B, only the third group of the parameters makes the cost of Policy
B (116.60) less than that of Policy A (118.91), which indicates that the two
policies can find their application in different settings.

For policy A, the change of the mean total warranty costs based on Eq. (3)
vs. the values of by, is shown in Figure 4 and 5. In the four figures, the X-axis
represents by, values and the Y-axis is the mean total warranty costs. The
costs increase rapidly after the first change point.

When setting a; = 0.2, = 2, a3 = 5, and a4 = 0.5, we have the following
results. Figure 6 shows the change of optimal burn-in time with « values when
the values of § are set to 0.1, 0.5, and 1, respectively. It shows that the optimal
burn-in times increase rapidly when « change from 0.1 to 1, and 8 = 1, whereas
the optimal burn-in times increase slowly when g = 0.1. Figures 7 shows the
change of the optimal mean total warranty costs when the values of o changes.
It shows that in all cases the optimal mean total warranty costs increase. This
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is true as the bigger the value of « is, the bigger the failure rate is, and hence
burn-in costs and time increase.

6 Conclusions

This paper considers two policies that can be used to two different scenar-
ios. The first policy performs a burn-in procedure for products under normal
operating environment. The products are then installed, but not used when
a building is constructed. After a time period, the building is commissioned
and the products are used. The second policy first conducts a burn-in proce-
dure for products in a dormant mode for a time period, and then in a normal
operating environment for a time period. After the two burn-in stages, the
products are then installed when a building is constructed, and put into use
when the building is commissioned. Costs for the two burn-in policies have
been derived, and the relationships between the life distributions at different
stages are discussed. Numerical examples are given to verify the results of the
mathematical models.
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Appendix

Proof of Theorem 1

The mean burn-in cost within time interval (0, by,) is obtained by

S F,(t)dt Fu(bu)

b w) = u u = =
Vl( 1 ) Co+Cl + Co Fu<blu) +03Fu<blu)

The proof for the above equation can be found in [14].

The product is at the dormant state within time interval (by,, b1, + to). At
time by, +to, if the product fails to operate, a new identical one will replace it.
Within time interval (by, +tg, b1, + 1o +w), replacement is made upon failures.

The life distribution of the product within time interval (by,, b1, + to) is as-
sumed to be Fi4(t) if the product has survived from burn-in time by,. If the
product does not fail to operate at the commissioning time by, + tg, the life
distribution of the product is assumed to be Fy,(t) after the dormant state.

If the product fails to operate at commissioning time by, + to, the expected
number of replacements within time interval (by, + to, b1y + to + w) is

Mi(w) = Fi4(to)(1 + My(w)) (25)

where My(w) =332, Fzgf)(w), and Fj,;(w) is the life distribution of a product
after burn-in period by, in the one-stage burn-in policy.

If the first failure of the product is in time interval (b, + to, b1y + to +w), the
expected number of replacements within this time interval is

Mafw) = (1= Fuate) [ (1+ Mol — 0) dFia(0) (26)

14



Using the proof for Theorem 1 in [14], we can obtain Eq. (3).

It is evident that v4(by,) given in Eq. (24) is strictly increasing in by, > 0 (see
[14]).

Denote M (w) = Mo(w)pyuzpis Fro (t) = Fr(i)]prumsi, and FJ () = Fia(i)|oyu=si,

lu
where ¢ = 1,2. From Theorem 4 in Mi [12] for any given w > 0 there exists

by € [0,t1], such as Mél)(w) > MO(Z) (w), Vby > t;. As the failure rate function
is assumed to be increasing after the first change point z, Fl(é)(w) > Ffﬁ)(w),
F(l)(w) > F(Q)(w), and

lu lu
(U4 M w = 1)) dF (1) > f (1+ MgD (w — 1)) dFL (8).
Let
B (w) = F{j (b, w) + A1 = fu+ Ay,

1+Mé2)( )_1+M0 (b17 >+A2:mO+A27

and

/ (1+ MP(w—t)) dF2 1+ M§D (w — 1)) dFD(8) + A
0

O\S

=my + A3

where Ay, Ay, Az > 0. As 1 > fig+ A1 and mg > mq, hence

M (w) + M3 (w) + 1 = M3 (w) = My (w) — 1
= (fia + A1) (mo + A2) + (1 = fra — Ay)(ma + Asz) — fiamo — (1 = fig)m
= f1alz +moA; + A1 As + Az —mi Ay — f1aAsz — A1 Az
> frala + A1A,
>0 (27)

Therefore, M;(w) + My(w) + 1 is increasing in by, if by, > t1. This proves that
the optimal burn-in time b7, must satisfy b7, < ;.0
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Table 1
Different costs incurred

Parameters Change point Policy A Policy B
Group | A1 A2 A3 A 1 biw Ci(biw) | ba  bay  Co(bg,b2y)
1 0.1 1.5 1 0.1 2.59 0.76 131.79 | 0.1 1.1 145.91
2 0.8 1.1 0.06 0.3 1.06 0.15 192.12 | 0.1 0.2 270.74
3 0.5 10 0.0001 0.1 0.9133 0.48 11891 | 0.05 0.5 116.60
4 02 2 5 0.5 3.66 0.33 273.72 | 0.15 04 405.11
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Fig. 1. A broken bathtub curve.
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Fig. 2. one-stage burn-in policy.
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Fig. 3. two-stage burn-in policy.
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Fig. 4. Expected cost vs. burn-in time for two different life distributions as shown.
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Fig. 5. Expected cost vs. burn-in time for two different life distributions as shown.
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Fig. 6. Optimal burn-in times when the values of « change from 0.1 to 1, and =0.1,
0.5, and 1.

17



—+— =01
3201 |02
E ——f=l
Q
300
280 -
—i
o
260 . . . . = . . .

Fig. 7. Costs when the values of a change from 0.1 to 1, and $=0.1, 0.5, and 1.
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