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Optimal Maintenance Policies under Different
Operational Schedules

Shaomin Wu∗, Derek Clements-Croome†

Keywords: Preventive maintenance, corrective maintenance, cost optimization, geo-
metric process

Abstract

In the reliability literature, maintenance time is usually ignored during the opti-
mization of maintenance policies. In some scenarios, costs due to system failures may
vary with time, and the ignorance of maintenance time will lead to unrealistic results.
This paper develops maintenance policies for such situations where the system under
study operates iteratively at two successive states: up or down. The costs due to sys-
tem failure at the up state consist of both business losses & maintenance costs, whereas
those at the down state only include maintenance costs. We consider three models:
Model A, B, and C:

• Model A makes only corrective maintenance (CM).

• Model B performs imperfect preventive maintenance (PM) sequentially, and CM.

• Model C executes PM periodically, and CM; this PM can restore the system as
good as the state just after the latest CM.

The CM in this paper is imperfect repair. Finally, the impact of these maintenance
policies is illustrated through numerical examples.

Acronyms1

CM Corrective Maintenance, imperfect.

PM Preventative Maintenance, imperfect .

cdf Cumulative Distribution Function.

Nomenclature

∗Corresponding author. E-mail: shaomin.wu@reading.ac.uk. Telephone: +44 118 378 8201; Fax: +44 118
931 3856. School of Construction Management and Engineering, The University of Reading, Whiteknights,
Reading, RG6 6AW, UK

†School of Construction Management and Engineering, The University of Reading, Whiteknights, Read-
ing, RG6 6AW, UK, e-mail: shaomin.wu@reading.ac.uk, d.j.clements-croome@reading.ac.uk

1The singular and plural of an acronym are always spelled the same.
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Tu duration of the up state

Td duration of the down state, Td ≤ Tu

TL designed total operating time

Xa,n survival time after the (n− 1)th CM in Model A, n=1,2,.....

Xb,n survival time after the (n− 1)th PM in Model B, n=1,2,.....

Xn,m survival time after the (m− 1)th CM between the (n− 1)th PM & nth PM in Model
B, n, m=1,2,...

Xc,n survival time after the (n− 1)th CM in Model C, n=1,2,.....

Yr maintenance time of a CM activity, Yr ≤ Td

Fa,n(t) cdf of Xa,n

Fb,n(t) cdf of Xb,n

Fn,m(t) cdf of Xn,m

Fc,n(t) cdf of Xc,n

Gr(t) cdf of Yr

cb business losses per time unit due to the failure of the system during the up time

cr cost of CM (or repair) per time unit

cp, µp cost of PM per time unit, and expected time per PM respectively

τn time interval between the (n− 1)th & nth PM in Model B

τ time interval between two adjacent PM in Model C

Wa, Wb, Wc the whole life cycle time in Model A, Model B, and Model C, respectively.

Ca,L cost incurred in Model A in the whole life cycle time

Cb,L(τn) cost incurred in Model B in the whole life time

Cc,L(τ) cost incurred in Model C in the whole life time

Ca expected average cost incurred in Model A in the design life time

Cb(τn) expected average cost incurred in Model B in the design life time

Cc(τ) expected average cost incurred in Model C in the design life time
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1 INTRODUCTION

Critical systems include data processing facilities, call centers, control centrers, and so forth.

Most buildings today incorporate some types of critical systems. What they all have in com-

mon is their dependence on a reliability infrastructure. For such systems, it is of importance

to ensure that the system functions properly. The development of optimal maintenance

policies is therefore very important.

Two important points should be highlighted for the critical systems when the optimiza-

tion of maintenance policies are being studied.

1. The first is the huge difference between maintenance costs, and business losses due

to system failures. For example, based on research in office building services systems,

Evans et. al. [1] have identified the relationships among three costs incurred within

the systems’ whole lifecycle: initial capital costs, maintenance & building operating

costs, and business operating costs. They found that the operation & maintenance of

the building will cost five times the capital costs, and the business operating costs will

be two hundred times the capital costs over the life of the building. In other words,

business losses are forty times as large as maintenance costs. Another example comes

from transportation centers of underground train systems; the business losses will be

huge if the system fails to function properly, whereas maintenance activities cost less.

2. The second is that such systems are often operated at two successive states: up, and

down. Namely, they are operated in sequence as: up state → down state → up state

→ down state . . . . In the up state, the system is operating but may fail, and CM is

conducted upon failures. In the down state, the system is not operating, but available

for any maintenance. A failure only occurs at the up state, but not at the down

state. For example, the up time of some systems can be only eight or sixteen hours

a day, and the systems are then put into the down state for rest of the day. If a

maintenance activity is executed during the up time, the costs due to system failures

consist of both business losses, and maintenance costs. If a maintenance activity is

carried out during system down time, the costs due to system failures only include

maintenance costs. When we optimize the maintenance policies for such systems, the

costs for maintenance should be composed of two elements: business losses, and/or

maintenance costs for different time periods. In these scenarios, maintenance time

may have two parts: one within the up state, and one within the down state. Ignoring

the maintenance time will lead to unrealistic results.

With different maintenance levels, maintenance models can be divided into three classes:

models for perfect maintenance, models for normal maintenance, and models for minimal

maintenance. A perfect maintenance can restore the system as good as new, a normal maintenance
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can bring the system to any condition, and a minimal maintenance can restore the system

to the state in which it resided just before failure. Normal maintenance, and minimal main-

tenance are considered to be imperfect. Maintenance policies are usually broken down into

two categories: corrective maintenance (CM), and preventive maintenance (PM). CM is any

maintenance one carries out when the system fails. Some authors refer to CM as ’repair’,

and we will use the terms interchangeably throughout this paper. PM is a planned activity

aimed at improving the overall reliability & availability of a system. Sequential PM may be

one of the most practical maintenance policies to implement in some industries. We define

sequential PM as the situation where a system is preventively maintained at unequal time

intervals, and undergoes only CM upon failures between these PM. Usually, the time inter-

vals between PM become shorter as time passes, considering that most units of interest to

us degrade, and so need more frequent maintenance with age.

Optimal maintenance policies aim to provide optimum system reliability/availability &

safety performance at the lowest possible maintenance costs. In the past several decades, a

huge number of maintenance policies have been produced. The reader is referred to Pham &

Wang [2], Wang [3], and Scarf [4] for detailed & comprehensive discussions on the theoretic

discussion, and the application of maintenance policies, respectively.

This paper considers the optimization of maintenance policies for systems with different

costs within the up time & the down time. Section 2 introduces model assumptions that

are used in this paper. Section 3 formulates the expected costs of the three models. Sec-

tion 4 considers the situation when system failure processes can be modeled by geometric

processes. Numerical examples are given in Section 5 with a discussion about the three

models. Concluding remarks are given in the Section 6.

2 MODEL ASSUMPTIONS

We make the following assumptions:

A. At the beginning, the repairable system under study is new. It operates iteratively in

two states: up, and down.

B. A CM is executed immediately upon failure, and a PM is only performed within a

system’s down state. Both CM & PM can be completed within time interval (0, Td).

The system is only started at time point 0, Tu + Td, 2(Tu + Td), 3(Tu + Td), .... In other

words, although a CM can be finished before the next down state, the system will not

be started until the next up state.

C. We consider three models. In the following three models, a CM is assumed to be an

imperfect repair.

In Model A, no PM is conducted; only the effect of CM exists.
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In Model B, both PM & CM are carried out. The PM is sequentially executed with τn

time units after the (n− 1)th PM, where n=1,2,.... Between two adjacent PM, a CM

is carried out immediately on failure. The PM in Model B is assumed to be normal

maintenance.

In Model C, periodic PM is executed, and a CM is performed on failure. The PM in

Model C can restore the system to the state it was in just after its last CM.

D. When a CM is performed during the up state, both business losses & maintenance

costs are taken into account. When a CM or a PM is being performed during the

down state, only maintenance costs are incurred.

E. Xa,n, Xb,n, Xn,m, and Yr are s-independent, where n,m = 1, 2, 3, ....

3 PROBLEM FORMULATION

3.1 Model A

A possible scenario is shown in Figure 1 where the system fails at the up state, and is repaired

at the down state.

Figure 1: Model A, where only CM is performed.

Costs incurred in Model A include costs on CM, and business losses due to failure at the

up state.

Denote the time from the occurrence of the nth failure in an up state to the end of this

up state by Ua,n, the repair time within the coming down state of the nth failure by Va,n,

the cdf of Ua,n by Ha,n(t), the cdf of Va,n by Qa,n(t), and the cdf of
∑k

n=1 Xa,n by F (k)
a (t).

Let υa,n = E[Ua,n], ϕa,n = E[Va,n], and λa,n = E[Xa,n]. Apparently, Ua,n is a main factor in

the cost function of Model A. With our assumptions, we can obtain

Ua,n =



Tu −Xa,n if Xa,n < Tu

2Tu −Xa,n if Tu ≤ Xa,n < 2Tu

...
jTu −Xa,n if (j − 1)Tu ≤ Xa,n < jTu

...

(1)
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and

Va,n =



Xa,n + Yr − Tu if Xa,n < Tu and Yr + Xa,n ≥ Tu

Xa,n + Yr − 2Tu if Tu ≤ Xa,n < 2Tu and Yr + Xa,n ≥ 2Tu

...
Xa,n + Yr − jTu if (j − 1)Tu ≤ Xa,n < jTu and Yr + Xa,n ≥ jTu

...

(2)

The distributions of repair time at the up state, and at the down state, can be obtained

through Equations (1), and (2), respectively. That is

Lemma 1

Ha,n(t) =
∞∑

j=1

(Fa,n(jTu)− Fa,n(jTu − t)) where 0 ≤ t < Tu (3)

Qa,n(t) =
∞∑

j=1

∫ jTu

(j−1)Tu

(Gr(jTu − x + t)−Gr(jTu − x)) dFa,n(x) where 0 ≤ t < Td(4)

The appendix contains proofs of the lemmas & theorems for these equations.

A CM may be started at the up state, and finished at the adjacent down state. Results

from Lemma 1 can be used to calculate the expected time of CM at the two states. From

Lemma 1, we can get

Lemma 2

υa,n = Tu

∞∑
j=1

j(Fa,n(jTu)− Fa,n((j − 1)Tu))− λa,n (5)

ϕa,n =
∞∑

j=1

[∫ jTu

jTu−Td

(∫ Td

jTu−x
ydG(y) + xG(Td)− xG(jTu − x) + jTuG(jTu − x)

)
dFa,n(x)

]

−
∞∑

j=1

(jTuG(Td)(Fa,n(jTu)− Fa,n(jTu − Td))) (6)

In Lemma 2, υa,n is the expected time of the nth CM when the system is in the up state,

and ϕa,n is the expected time of the nth CM when the system is in the down state.

The whole life time includes operating time, CM time at the up state, and CM time at

the down state. The costs in the whole life time include costs due to CM in different states.

That is

Lemma 3 The expected whole life time, and the expected cost in the whole life time, are

E[Wa] = TL +
∞∑

k=1

(
(F (k)

a (TL)− F (k+1)
a (TL))

k∑
n=1

(υn + ϕn)

)
, (7)

and

E[Ca,L] =

[ ∞∑
k=1

(
(F (k)

a (TL)− F (k+1)
a (TL))

k∑
n=1

((cb + cr)υa,n + crϕa,n)

)]
(8)

respectively.
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In Equation (7) of Lemma 3, the first item (i.e. TL) is the designed total operating time,

and the second element includes the expected total time of CM at the up state, and at the

down state. Equation (8) includes business losses due to failure at the up state, and CM

costs incurred at both the up state & the down state.

Theorem 1 The average cost incurred within the design life time in Model A is

Ca =
1

TL

E[Ca,L] (9)

3.2 Model B

There are two main alternatives for modeling an imperfect PM: the one with the assumption

that PM is equivalent to minimal repair with probability p & equivalent to replacement with

probability 1 − p [5], and the one which focuses on studying the change of the hazard rate

function after PM. Lie and Chun [6] and Nakagawa [7] introduce the concept of adjustment

factors in hazard rate functions & effective ages to model the effects of PM. In Model B, we

assume that the failure process after each PM is a generalized renewal process.

A possible scenario is shown in Figure 2, where PM activities are executed during the

down state. Costs incurred in Model B include costs on CM, costs on PM, and business

losses due to failure.

Figure 2: Model B and Model C, where both CM and PM are used.

Denote the operating time interval, the total time, and costs incurred between the (n−
1)th & the nth PM activity by τn, τb,n, and Cb,n, respectively. When PM activities are

performed, the maintenance situation for failures between two adjacent PM is similar to the

case in Model A. The time interval between the (n − 1)th PM & the nth PM, i.e. τn, in

Model B can be regarded as the whole life time in Model A. We can obtain Lemma 3 if TL,

Xa,n, and Fa,n(t) are replaced with τn, Xn,m, and Fn,m(t) in Section 3.1, respectively. Let

Mb satisfy
Mb∑
n=1

τn ≤ TL <
Mb+1∑
n=1

τn (10)

Mb is the number of PM activities. The expected operating time, and maintenance time

between the (n − 1)th PM & the nth PM can be calculated by mimicking the calculation

process in Section 3.1. Let τMb+1 = TL −
Mb∑
n=1

τn. Then, we have
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Lemma 4 The expected values of τb,n, and Cb,n are

E[τb,n] = τn +
∞∑

k=1

[
(F (k)

n (τn)− F (k+1)
n (τn))

k∑
m=1

(υn,m + ϕn,m)

]
(11)

E[Cb,n] =
1

E[τb,n]

∞∑
k=1

(
(F (k)

n (τn)− F (k+1)
n (τn))

k∑
m=1

((cb + cr)υn,m + crϕn,m)

)
(12)

respectively, where F (m)
n is the cdf of

∑k
i=1 Xn,m, υn,m =

∫∞
0 tdHn,m(t), ϕn,m =

∫∞
0 tdQn,m(t),

Hn,m(t) =
∞∑

j=1

(Fn,m(jτn)− Fn,m(jτn − t)), (13)

and

Qn,m(t) =
∞∑

j=1

∫ jτn

(j−1)τn

(Gr(jτn − x + t)−Gr(jτn − x)) dFn,m(x) (14)

Similarly, υn,m, and ϕn,m can be obtained through Equations (13), and (14). The expected

whole life time includes the total operating time, total time on CM, and the total time on

PM. The total cost includes business losses, and costs due to PM & CM.

Lemma 5 The expected whole life time, and the expected cost in the whole life time are

E[Wb] =
Mb+1∑
n=1

E[τb,n] + Mbµp, (15)

and

E[Cb,L(τn)] =
Mb+1∑
n=1

E[Cb,n] + Mbµpcp (16)

respectively,

where µp is the expected time per PM.

Theorem 2 The average cost incurred within the design life time in Model B is

Cb(τn) =
1

TL

Mb+1∑
n=1

E[Cb,n] + Mbµpcp

 (17)

Because Equation (17) is a function of τn only, we can determine τ ∗n so that

τ ∗n = min
τn

Cb(τn) (18)

Once the value of τn is determined, the optimal period can be obtained. Then Cb,L(τn)

achieves the minimum.

If τn is independent of n, the sequential PM policy becomes a periodic PM policy.

When a sequential PM policy is considered, τn is a function of n which can be obtained

by minimizing Cb(τn) in Equation (17).

Based on the above discussion, we derive the following algorithm for obtaining the optimal

PM schedule.
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• Step 1. Calculate υn,m, and ϕn,m from Equations (13), and (14), respectively.

• Step 2. Solve Equation (10) with respect to Mb.

• Step 3. Substitute E[Cb,n] in Equation (12) into (17).

• Step 4. Choose τn to minimize the value Cb(τn) in Equation (17).

3.3 Model C

In Model C, a PM is assumed to restore the system to the state it was after last CM. Denote

the operating time interval between two adjacent PM by τ . The expected survival time after

the (n− 1)th CM is

Xc,n = rnτ + 1A(Xa,n)Xa,n (19)

where rn is a random variable with probability distribution Pr(rn = k) = (1−Fa,n(τ))kFa,n(τ);

1A(x) = 1 if x ∈ A, and 0 otherwise, while A = (0, τ).

Denote the time from the occurrence of the nth failure to the end of this up state by

Uc,n, the repair time within the down state of the nth failure by Vc,n, υc,n = E[Uc,n], and

ϕc,n = E[Vc,n]. Let Mc satisfy

Mcτ ≤ TL < (Mc + 1)τ (20)

Mc is the number of PM activities. The cdf of Xc,n is given as follows.

Fc,n(t) = Pr{Xc,n < t}

= Pr{rnτ + 1A(Xa,n)Xa,n < t}

= Fa,n(t− kτ)(1− Fa,n(τ))k +
k−1∑
j=0

(1− Fa,n(τ))jFa,n(τ)

= Fa,n(t− kτ)(1− Fa,n(τ))k + 1− (1− Fa,n(τ))k (21)

where kτ ≤ t < (k + 1)τ , and k ≥ 1. Then we have

λc,n =
∫ ∞
0

tdFc,n(t)

=
∞∑

k=0

∫ (k+1)τ

kτ
t(1− Fa,n(τ))kdFa,n(t− kτ)

=
∞∑

k=0

∫ τ

0
(y + kτ)(1− Fa,n(τ))kdFa,n(y)

=

∫ τ
0 tdFa,n(t)

Fa,n(τ)
+

τ(1− Fa,n(τ))

Fa,n(τ)
(22)

υc,n, and ϕc,n can be obtained by substituting Equations (21), and (22) into Equations

(5), and (6).

Let the cdf of
∑k

n=1 Xc,n be F (k)
c (t). We have
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Lemma 6 The expected whole life time, and the expected cost in the whole life time are

E[Wc] = TL + Mcµp +
∞∑

k=1

[(
F (k)

c (TL)− F (k+1)
c (TL)

)( k∑
n=1

(υc,n + ϕc,n)

)]
, (23)

and

E[Cc,L(τ)] = Mcµpcp +
∞∑

k=1

(
F (k)

c (TL)− F (k+1)
c (TL)

)( k∑
n=1

(υc,n + ϕc,n)(cb + cr)

)
(24)

respectively.

Therefore, the following results can be obtained.

Theorem 3 The average cost incurred within the design life time in Model C is

Cc(τ) =
1

TL

E[Cc,L(τ)] (25)

Because Equation (25) is a function of τ only, we can determine τ ∗ so that CL,c is minimized.

4 GEOMETRIC PROCESS CASE

The geometric process introduced by Lam [8, 9] is a kind of generalized renewal processes

that has been commonly used for the optimization of maintenance policies, and reliability

analysis [10], [11], [12], [13], [14]. Below we present the definition of the geometric process.

Definition 1 [15] (a) A random variable ξ is said to be stochastically not less (not greater)

than another random variable ζ, denoted by ξ ≥st ζ (ξ ≤st ζ), if Pr(ξ > a) ≥ Pr(ζ > a)

(Pr(ξ > a) ≤ Pr(ζ > a)) for all real a.

(b) A stochastic process {ξn}n=1,2,... is said to be stochastically increasing (decreasing) if

ξn <st ξn+1 (ξn >st ξn+1) for all n = 1, 2, ....

(decreasing) processes are defined.

Definition 2 [12] A sequence of non-negative independent random variables {ξn}n=1,2,... is

called a geometric process if for some a > 0, the distribution of ξn is S(an−1t). The constant

a is called the parameter of the geometric process.

Remark 1 : From Definition 2, it follows that

(1) If a > 1, then {ξn}n=1,2,... is stochastically decreasing: ξn ≥ ξn+1

(2) If 0 < a < 1, then {ξn}n=1,2,... is stochastically increasing: ξn ≤ ξn+1

(3) If a = 1, then {ξn}n=1,2,... is a renewal process.
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Some authors [10], [11], [12], [13], [14] apply the geometric process to model life times between

failures of a deteriorating system with parameter a > 1. Zhang [10] optimized periodic

preventive maintenance policies under the assumptions that the failure process after CM

activities forms a geometric process, and PM activities can rectify a failed system to a state

as good as the state after the last repair. Zhang [10] did not present the relationship between

the two probability density functions of the survival lives after the nth repair in Model A

and Model C. From Equation (21), the relationship is obtained easily.

The depth of the improvement of PM is an interesting research topic. Malik [16], and Lie

& Chun [6] introduce the concept of the improvement factor to model the age restoration of

imperfect PM. They regarded that an imperfect PM can reduce a system’s age from t to t/k,

and result in restoring the system’s reliability to R(t/k) from R(t). If we let k = a−n, where

n is the number of PM, then this failure process is identical to the geometric progress. The

difference between these two approaches is that Malik’s, and Lie & Chun’s work originally

focused on modeling the survival life time after PM activities, in which the time between

two adjacent PM is fixed. The geometric process was introduced to model the survival life

time after a CM, in which the time between two adjacent CM activities is random.

Let the cdf of ξ1 be S(t), having the hazard rate function h1(t); then the hazard rate

function of S(an−1t) is given by

hn(t) = an−1h1(t) (26)

Example 1 : Assume that S(t) = 1− e(−t/33.32)5.28
, and a = 1.2; the hazard rate functions

of S(t), S(at), S(a2t), S(a3t), and S(a4t) are shown in Figure 3. From this figure, we can

see that the hazard rate increases more quickly with the increase of n.

Figure 3: Intensity Function in the First Five Cycles.
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5 NUMERICAL EXAMPLES

Numerical examples are discussed in what follows.

Assume the designed life time of a system is 5 years when the default duration of the

up state is 16 hours per day, i.e., TL = 29, 200(hours). Let Fa,1(t) = Fb,1(t) = Fc,1(t) =

1−e(−t/5,000)2 . The repair time distribution of CM activities is a uniform distribution Gr(t) ={
t/Td 0 ≤ t ≤ Td

0 otherwise
. In all three models, the expected duration of PM is assumed to be

Td/2.

5.1 Model A case

Let Fa,n(t) = Fa,1(α
n−1
a t), with αa = 1.08, and n = 1, 2, ... in Model A; and assume Td =

24 − Tu. If the duration of the up state Tu changes from 9 to 18, the change of Ca,L is

shown in Figure 4. From this figure, the expected cost Ca,L increases with the increase of

Tu. Therefore, a suggestion from Model A is that the duration of the up state should be as

short as possible.

Table 1 presents the numerical results to investigate the pattern changes of Tu & Td.

Figure 4: Expected cost of Model A.

Table 1: Average cost of Model A with TL = 29200, cb = 200, cc = 5.
Tu 8 9 10 11 12 13 14 15 16
Td 16 15 14 13 12 11 10 9 8
Ca 0.2148 0.2393 0.2642 0.2893 0.3146 0.3399 0.3655 0.3911 0.4168
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5.2 Model B case

Let Fb,n(t) = Fb,1(β
n−1t), and Fn,m(t) = F1,1(α

m−1
b βn−1t), where αb = 1.08, β = 1.05.

Assume that Tu = 16, Td = 8, cb = 200, cc = 5, and τn = τ1/β
n−1.

Table 2 presents the numerical results to investigate the pattern changes of τ1, and

cp. From this table, when τ1 changes from 2,700 to 5,500, the expected cost increases

monotonously when Cp = 10, and changes ”wavelike” in other cases.

Four cases are selected from Table 2 to be shown in Figure 5. The X-axis indicates

different values of τ1, and the Y-axis corresponds to the average cost values based on Equation

(17).

For example, from Figure 5, when cp = 10, the minimized expected cost can be found if

τ1 = 2700. When cp = 50, the minimized expected cost can be found if τ1 = 4500.

Figure 5: Average cost of Model B, with four cases selected from Table 1.

5.3 Model C case

Let Fc,n(t) = Fc,1(α
n−1
c t), with αc = 1.08, and n = 1, 2, ... in Model C. Assume that Tu = 16,

Td = 8, cb = 200, and cc = 5.

Table 3 gives the average costs of Model C when τ , and Cp change. For example, when

cp = 30, the average cost first decreases from 0.16 to 0.1186 with τ changing from 700 to

1500, then it increases from 0.1186 to 0.3183 when τ changes from 1500 to 4500.

Table 3 indicates that the average cost may decrease with the suitable increase of the

time interval of two adjacent PM for a cp, and it will eventually increase if the time interval

is larger than a certain value.

The X-axis indicates different values of τ , and the Y-axis corresponds to the expected

cost values based on Equation 25. Four cases are selected from Table 3, to be shown in
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Table 2: Average cost of Model B with TL = 29200, Tu = 16, Td = 8, cb = 200, cc = 5.
Cp=10 Cp=20 Cp=30 Cp=40 Cp=50 Cp=60 Cp=70

τ1=2700 0.031 0.0515 0.0721 0.0926 0.1132 0.1337 0.1543
τ1=2900 0.0311 0.0503 0.0695 0.0886 0.1078 0.127 0.1462
τ1=3100 0.0326 0.0504 0.0683 0.0861 0.1039 0.1217 0.1395
τ1=3300 0.0337 0.0501 0.0666 0.083 0.0994 0.1159 0.1323
τ1=3500 0.0347 0.0498 0.0649 0.0799 0.095 0.1101 0.1251
τ1=3700 0.0365 0.0502 0.0639 0.0776 0.0913 0.105 0.1187
τ1=3900 0.0407 0.0544 0.0681 0.0818 0.0955 0.1092 0.1229
τ1=4100 0.042 0.0543 0.0666 0.079 0.0913 0.1036 0.116
τ1=4300 0.0469 0.0592 0.0715 0.0838 0.0962 0.1085 0.1208
τ1=4500 0.0473 0.0583 0.0692 0.0802 0.0912 0.1021 0.1131
τ1=4700 0.0521 0.0631 0.074 0.085 0.096 0.1069 0.1179
τ1=4900 0.0565 0.0661 0.0757 0.0852 0.0948 0.1044 0.114
τ1=5100 0.0582 0.0678 0.0774 0.087 0.0966 0.1062 0.1158
τ1=5300 0.0638 0.0734 0.083 0.0926 0.1021 0.1117 0.1213
τ1=5500 0.0724 0.0806 0.0889 0.0971 0.1053 0.1135 0.1217

Figure 6. For example, when cp = 30, the minimized expected cost can be found if τ = 1500

in Figure 6.

Figure 6: Expected cost of Model C, with four cases selected from Table 2.

The above numerical examples show that optimal PM policies for Model B, and Model

C can be obtained by minimizing Equations (17), and (25), respectively.

5.4 Discussions

The above mentioned three models can be applied in accordance with the real situation in

practice. If no PM is conducted, the average cost of Model B (or Model C) equals to the

14



Table 3: Average cost of Model C with TL = 29200, Tu = 16, Td = 8, cb = 200, and cc = 5.
Cp=30 Cp=90 Cp=150 Cp=210 Cp=270 Cp=330 Cp=390 Cp=450

τ= 700 0.16 0.4111 0.6622 0.9134 1.1645 1.4156 1.6667 1.9178
τ= 900 0.1353 0.3206 0.5059 0.6912 0.8765 1.0618 1.247 1.4323
τ= 1100 0.1238 0.2695 0.4152 0.5608 0.7065 0.8522 0.9979 1.1436
τ= 1300 0.1193 0.239 0.3586 0.4782 0.5978 0.7175 0.8371 0.9567
τ= 1500 0.1186 0.2199 0.3213 0.4226 0.524 0.6253 0.7266 0.828
τ= 1700 0.1206 0.2085 0.2963 0.3842 0.4721 0.5599 0.6478 0.7357
τ= 1900 0.1265 0.2039 0.2814 0.3588 0.4362 0.5136 0.5911 0.6685
τ= 2100 0.1327 0.2018 0.2708 0.3399 0.409 0.478 0.5471 0.6162
τ= 2300 0.1403 0.2025 0.2647 0.3269 0.3892 0.4514 0.5136 0.5758
τ= 2500 0.1482 0.2046 0.2609 0.3172 0.3736 0.4299 0.4863 0.5426
τ= 2700 0.164 0.2178 0.2716 0.3254 0.3792 0.433 0.4868 0.5406
τ= 2900 0.1849 0.2375 0.2902 0.3429 0.3955 0.4482 0.5009 0.5536
τ= 3100 0.2002 0.2518 0.3035 0.3552 0.4069 0.4585 0.5102 0.5619
τ= 3300 0.2167 0.266 0.3153 0.3646 0.4139 0.4632 0.5125 0.5618
τ= 3500 0.2459 0.2927 0.3395 0.3864 0.4332 0.48 0.5269 0.5737
τ= 3700 0.2637 0.3075 0.3513 0.3951 0.4388 0.4826 0.5264 0.5702
τ= 3900 0.2827 0.3238 0.365 0.4061 0.4473 0.4884 0.5296 0.5707

average cost of Model A. That is, Cb(τn) = Ca if τn > TL for n = 1, 2, ... in Model B, and

Cc(τ) = Ca if τ > TL in Model C.

Comparing the average cost of Model A to Model B, we can find that costs of Model B

in Table 2 is smaller than those of Model A in Table 1. With the increase of Cp, the average

cost of Model B becomes larger. Comparing the average cost of Model A to Model C, we

get that the average cost of Model C from Table 3 is smaller that those in any case of Model

A, when Cp = 30 & τ ≤ 3100. When Cp becomes larger, the average cost of both Model B

& Model C becomes larger. We therefore suggest that PM should be applied when PM cost

is small. From Tables 2 & 3, when Cp = 30, and the time to first PM changes from 2700 to

3900, the costs of Model B is smaller than those of Model C.

In practice, a maintenance policy can be selected from the three models based on the

real situation, and the depth of PM.

6 CONCLUSIONS AND FURTHER WORK

In this paper, we have developed the optimal PM policies for the critical system that operates

periodically, and is maintained with higher cost at the up state than at the down state.

The criterion used to determine the optimality of the PM is the average maintenance cost

per unit time during the designed life time. Given the cost structures of maintaining the

system, we determine the optimal time intervals of PM. We have considered three models:

maintenance with no PM, maintenance with sequential PM, and maintenance with periodic
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PM. In addition, we investigate the pattern changes of those objective parameters of our

interests, such as the average cost, and optimal PM period, by assuming that the failure

processes after CM are geometric processes.

Numerical analysis indicates that (1) the increase in the duration of the up state increases

the average cost when no PM is performed, and (2) the increase of the time interval of PM

may decrease or increase the average cost when PM is performed.

The following achievements have been made in this paper.

(1) The average costs for the three models, Model A, Model B, and Model C, are obtained.

Optimal time interval PM activities can therefore be developed by minimizing the

average cost of Model B & Model C.

(2) Numerical examples are presented when the failure process is the geometric process.

(3) The relationship between the geometric process, and improvement factors of the im-

perfect PM is investigated.

The application of geometric process models is rather restricted in the sense that a geo-

metric process model with a fixed parameter θ (see Definition 2) can only describe a system

in which the hazard rate function decreases or increases exponentially with the number of

repairs. Further work may focus on the application of non-homogeneous Poisson processes

following different laws to optimize maintenance policies under the consideration of mainte-

nance costs within different time periods.

APPENDIX

Proof of Lemma 1

Ha,n(t) = Pr{Ua,n < t}

=
∞∑

j=1

Pr{jTu −Xa,n < t|(j − 1)Tu ≤ Xa,n < jTu)P ((j − 1)Tu ≤ Xa,n < jTu}

=
∞∑

j=1

Pr{(jTu − t < Xa,n)
⋂

((j − 1)Tu ≤ Xa,n < jTu)}

=
∞∑

j=1

Pr{jTu − t < Xa,n < jTu}

=
∞∑

j=1

(Fa,n(jTu)− Fa,n(jTu − t)) (27)

Qa,n(t) = Pr{Va,n < t)}

=
∞∑

j=1

Pr{jTu ≤ Xa,n + Yr < jTu + t|(j − 1)Tu ≤ Xa,n < jTu)P ((j − 1)Tu ≤ Xa,n < jTu}

=
∞∑

j=1

Pr{(jTu −Xa,n ≤ Yr < jTu + t−Xa,n)
⋂

((j − 1)Tu ≤ Xa,n < jTu)}
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=
∞∑

j=1

∫ jTu

(j−1)Tu

(Gr(jTu − x + t)−Gr(jTu − x)) dFa,n(x) (28)

The proof is completed.

Proof of Lemma 2

υa,n =
∫ ∞
0

tdHa,n(t)

= −
∞∑

j=1

(∫ Tu

0
tdFa,n(jTu − t)

)

=
∞∑

j=1

(∫ jTu

(j−1)Tu

(jTu − x)dFa,n(x)

)

=
∞∑

j=1

∫ jTu

(j−1)Tu

jTudFa,n(x)−
∞∑

j=1

(∫ jTu

(j−1)Tu

xdFa,n(x)

)

= Tu

∞∑
j=1

j(Fa,n(jTu)− Fa,n((j − 1)Tu))− λa,n (29)

When (j − 1)Tu < x < jTu, then jTu − x > 0, and Td > jTu − x

ϕa,n =
∫ ∞
0

tdQa,n(t)

=
∞∑

j=1

[∫ jTu

(j−1)Tu

(∫ Td

0
tdG(jTu − x + t)

)
dFa,n(x)

]

=
∞∑

j=1

[∫ jTu

(j−1)Tu

(∫ jTu−x+Td

jTu−x
(y + x− jTu)dG(y)

)
dFa,n(x)

]

=
∞∑

j=1

[∫ jTu

jTu−Td

(∫ Td

jTu−x
(y + x− jTu)dG(y)

)
dFa,n(x)

]

=
∞∑

j=1

[∫ jTu

jTu−Td

(∫ Td

jTu−x
ydG(y) + (x− jTu)(G(Td)−G(jTu − x))

)
dFa,n(x)

]

=
∞∑

j=1

[∫ jTu

jTu−Td

(∫ Td

jTu−x
ydG(y) + xG(Td)− xG(jTu − x) + jTuG(jTu − x)

)
dFa,n(x)

]

−
∞∑

j=1

(jTuG(Td)(Fa,n(jTu)− Fa,n(jTu − Td))) (30)

This completes the proof.

Proof of Lemma 3

From the definition of Wa, it follows

Wa = TL +
K(TL)∑
n=1

(Ua,n + Va,n) (31)
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where K(TL) is the number of failures within time interval (0, TL). K(TL) is a random

variable. Because

Pr{K(TL) ≥ k) = P (
k∑

n=1

Xa,n < TL} = F (k)
a (TL) (32)

the expected value of Wa is

E[Wa] = TL + E

K(TL)∑
n=1

(Ua,n + Va,n)


= TL + E

E
K(TL)∑

n=1

(Ua,n + Va,n)|K


= TL +

∞∑
k=1

(
Pr{K(TL) = k}

k∑
n=1

E[Ua,n + Va,n)

)

= TL +
∞∑

k=1

(
(Pr{

k∑
n=1

Xa,n < TL} − Pr{
k+1∑
n=1

Xa,n < TL)}
k∑

n=1

(υa,n + ϕa,n)

)

= TL +
∞∑

k=1

(
(F (k)

a (TL)− F (k+1)
a (TL))

k∑
n=1

(υa,n + ϕa,n)

)
(33)

The costs due to failure at the up state are
∞∑

k=1

(
(F (k)

a (TL)− F (k+1)
a (TL))

k∑
n=1

(cb + cr)υa,n

)
,

and the costs due to failure at the down state are
∞∑

k=1

(
(F (k)

a (TL)− F (k+1)
a (TL))

k∑
n=1

crϕa,n

)
.

By adding these costs together, we can obtain Equation (8).

This completes the proof.

Proofs of other lemmas & theorems All of the remaining lemmas & theorems can

be obtained by following the methods as in Lemmas 1, 2, & 3.
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