
Smaldon, James and Freitas, Alex A. (2006) A New Version of the Ant-Miner
Algorithm Discovering Unordered Rule Sets. In: Keijzer, Maarten, ed. Proceedings
of the 8th annual conference on Genetic and evolutionary computation.
ACM, New York, USA, pp. 43-50. ISBN 1-59593-186-4.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14462/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/1143997.1144004

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14462/
https://doi.org/10.1145/1143997.1144004
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A New Version of the Ant-Miner Algorithm
Discovering Unordered Rule Sets

James Smaldon
University of Kent

Computing Laboratory
 Canterbury, CT2 7NF, UK

James.Smaldon@gmail.com

Alex A. Freitas
University of Kent

Computing Laboratory
 Canterbury, CT2 7NF, UK

A.A.Freitas@kent.ac.uk

ABSTRACT
The Ant-Miner algorithm, first proposed by Parpinelli and
colleagues, applies an ant colony optimization heuristic to the
classification task of data mining to discover an ordered list of
classification rules. In this paper we present a new version of the
Ant-Miner algorithm, which we call Unordered Rule Set Ant-Miner,
that produces an unordered set of classification rules. The proposed
version was evaluated against the original Ant-Miner algorithm in
six public-domain datasets and was found to produce comparable
results in terms of predictive accuracy. However, the proposed
version has the advantage of discovering more modular rules, i.e.,
rules that can be interpreted independently from other rules – unlike
the rules in an ordered list, where the interpretation of a rule requires
knowledge of the previous rules in the list. Hence, the proposed
version facilitates the interpretation of discovered knowledge, an
important point in data mining.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – concept learning,
induction.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Ant Colony Optimization, Data Mining, Classification Rules.

1. INTRODUCTION
Data Mining is the process of extracting useful knowledge from
real-world data. Among the several data mining tasks – such as
clustering and classification - this paper focuses on classification. In
this task the aim is to discover, from training data (containing cases,
or records, whose class is known), a classification model that can be
used to predict the class of cases in the test data (containing
unknown-class cases). One popular category of classification model
consists of classification rules, which is the model category used in
this paper. In this context, the aim of the classification algorithm is
to discover a set of classification rules.

One algorithm for solving this task is Ant-Miner, proposed by
Parpinelli and colleagues [5], which employs ant colony
optimization techniques [1] to discover classification rules of the
form:
IF (term1 AND term2 AND ….. termm) THEN (predicted class)
where each term is of the form <attribute = value>, and different
rules can have different number of terms in their antecedent (IF
part). The consequent of a rule is a predicted class, i.e., the value
that the rule predicts for the class attribute when an example
satisfies the conjunction of terms in the rule antecedent.
Classification rules have the advantage of representing knowledge at
a high level of abstraction, so that they are intuitively
comprehensible to the user [7].
Ant-Miner has produced good results when compared with more
conventional data mining algorithms [5], [8] and it is still a
relatively recent algorithm, which motivates further research trying
to improve it. This work proposes a modification to the Ant-Miner
data mining algorithm called Unordered Rule Set Ant-Miner, with
the aim of improving or at least maintaining the level of predictive
accuracy obtained by the original Ant-Miner, whilst at the same
time facilitating the interpretation of the discovered classification
rules, as follows. In the original Ant-Miner, the goal of the
algorithm was to produce an ordered list of rules, which was then
applied to test data in the order in which they were discovered. This
makes it difficult to interpret the rules at the end of the list, since
their conditions make sense only in the context of all the previous
rules in the ordered list of rules [7]. The new version of Ant-Miner
proposed in this paper discovers, from training data, an unordered
set of rules that can be applied to test data in any order. This makes
the discovered rules easier for the user to interpret, since now the
interpretation of each rule is independent from all the other
discovered rules.
Although some modifications to the Ant-Miner algorithm have
already been proposed [2][3][4], to the best of our knowledge, an
unordered rule set modification to the original Ant-Miner algorithm
is an area of research that has not yet been explored.
This paper is organised as follows. Section 2 presents an outline of
the original Ant-Miner algorithm. Section 3 explains the proposed
Unordered Rule Set Ant-Miner. Section 4 discusses computational
results and performance of the algorithm. Section 5 concludes the
paper and suggests further areas of research.

2. A BRIEF DESCRIPTION OF
THE ANT-MINER ALGORITHM
The original Ant-Miner algorithm, upon which the Unordered Rule
Set Ant-Miner proposed in this paper is based, is described in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

43

pseudo code of Algorithm 1, taken from [5]. We provide here just a
brief overview of the algorithm; for more details the reader is
referred to that reference.

Algorithm 1 – Original Ant-Miner

TrainingSet = {all training cases};
DiscoveredRuleList = []; /* initialize rule list with empty list */
WHILE (TrainingSet > Max_uncovered_cases)
 t = 1; /* ant index, and also rule index */
 j = 1; /* convergence test index */
 Initialize all trails with the same amount of pheromone;
 REPEAT
 Antt starts with an empty rule and incrementally
 constructs a classification rule Rt by adding one
 term at a time to the current rule;
 Prune rule Rt; /* remove irrelevant terms from rule */
 Update the pheromone of all trails by increasing
 pheromone in the trail followed by Antt (proportional
 to the quality of Rt) and decreasing pheromone in the
 other trails (simulating pheromone evaporation);
 IF (Rt is equal to Rt – 1) /* update convergence test */
 THEN j = j + 1;
 ELSE j = 1;
 END IF
 t = t + 1;
 UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg)
 Choose the best rule Rbest among all rules Rt constructed by
 all the ants;
 Add rule Rbest to DiscoveredRuleList;
 TrainingSet = TrainingSet - {set of cases correctly covered
 by Rbest};
END WHILE

Ant-Miner discovers an ordered list of classification rules based on
a heuristic function involving information gain – a popular heuristic
function in data mining [6] – and positive feedback involving
artificial pheromone. For each iteration of the Repeat-Until loop, an
ant attempts to discover a rule by selecting terms in a probabilistic
manner, until all the attributes have been used to make the current
rule, or adding any other available term would make the rule
coverage less than min_cases_per_rule – a user-specified threshold.
The discovered rule is then pruned in an attempt to reduce over-
fitting to the training data and increase rule quality. Afterwards, the
pheromone values for the terms in the current rule are increased, in
order to increase the probability that other ants will select those
terms, and then the pheromone values for all terms are normalised.
The While loop iterates until the number of training examples
remaining in the dataset becomes less than or equal to
Max_uncovered_cases – another user-specified threshold. The rule

discovered in the Repeat-Until loop that has the highest quality is
then added to the list of discovered rules, and the training examples
correctly covered by that rule are removed from the training dataset.
An example is correctly covered by a rule if the example satisfies
the rule antecedent and has the class predicted by the rule.

2.1 Pheromone Initialisation
Pheromone values for each term are all initialised to the same value
at the beginning of each While loop iteration. The initial value of
each pheromone is given by the function:

()
∑

a

=i
i

ij

b
==tτ

1

10

Where a is the total number of attributes, i is the index of an
attribute, j is the index of a value in the domain of attribute i, and bi
is the number of values in the domain of attribute i.

2.2 Pheromone Updating
In Ant-Miner pheromone levels are increased for all terms in a rule
just constructed by an ant, based on the quality of that rule, as
measured by the rule quality formula “sensitivity * specificity”,
defined as follows:

TN+FP
TN

FN+TP
TP=Q ⋅

where TP / (TP + FN) is the sensitivity, TN / (FP + TN) is the
specificity, and:
TP (true positives) is the number of cases covered by the rule that
have the class predicted by the rule.
FP (false positives) is the number of cases covered by the rule that
have a class different from the class predicted by the rule.
FN (false negatives) is the number of cases that are not covered by
the rule but that have the class predicted by the rule.
TN (true negatives) is the number of cases that are not covered by
the rule and that do not have the class predicted by the rule.

2.3 Term Selection
The probability that a term will be added to the current rule is given
by the following formula:

()

()()∑∑ ⋅⋅

⋅
ib

j=
ijij

a

=i
i

ijij
ij

tτηx

tτη
=P

11

where:
ηij is the value of a problem-dependent heuristic function – more
precisely information gain [6] – for termij (a condition of the form
attributei = valuej). The higher the value of ηij the more relevant for
classification the termij is, and so the higher its probability of being
chosen.

τij(t) is the amount of pheromone associated with termij at iteration t.
a is the total number of attributes.

44

xi is set to 1 if the attribute ai was not yet used by the current ant, 0
otherwise.
bi is the number of values in domain of the ith attribute.

3. UNORDERED RULE SET
MODIFICATIONS TO THE ANT-MINER
ALGORITHM
As mentioned in the Introduction, we propose a modification to the
original Ant-Miner so that the algorithm discovers a set of rules
which do not need to be applied to test data in the order in which
they were discovered. The pseudocode of the new algorithm is
described in Algorithm 2.

In the original Ant-Miner, ants chose terms for a rule with the goal
of decreasing entropy in the class distribution of examples matching
the rule in construction. The consequent of the rule was then
assigned afterwards by determining the class value that would
produce the highest quality rule. In Unordered Rule Set Ant-Miner,
by contrast, an extra For-Each loop is added as the outer loop of the
algorithm, iterating over the values in the class attribute domain, as
indicated in Algorithm 2. As a result of this loop, the consequent for
the rule is known by the ant during rule construction and does not
change. The current ant tries to choose terms that will produce the
rule predicting the class value in the current iteration of the For-
Each loop with an optimum level of accuracy. In theory, such an
approach should lead to faster convergence on good rules, by
comparison with the original Ant-Miner. The reason is that in
Unordered Rule Set Ant-Miner each term’s pheromone value
directly represents that term’s relevance for predicting a fixed target
class value. By contrast, in the original Ant-Miner each term’s
pheromone is associated with that term’s relevance in reducing the
entropy associated with the entire class distribution, a less focused
relevance.

Each iteration of the For-Each loop discovers an unordered set of
rules, all of which predict the current class value. At the beginning
of each iteration, the entire training set is reinstated, so that a
maximal number of negative examples are available to the
algorithm. Ants discover rules from the training data until the
number of positive examples (belonging to the current class)
remaining in the dataset that have not been covered by a discovered
rule is less than or equal to the value determined by the
max_uncovered_cases parameter. Note that in the original Ant-
Miner max_uncovered_cases referred to all examples in the training
set, rather than to the positive examples only as in the proposed
algorithm.

Rule construction occurs as follows. For each iteration of the
WHILE loop, the amount of pheromone for each term is set to an
initial value. This initialization is the same as the one used in the
original Ant-Miner. However, unlike the original Ant-Miner, in the
proposed algorithm an ant starts with a rule containing the known
consequent (the current class value of the FOR loop) and an empty
antecedent. The rule is constructed incrementally by selecting terms
with a probabilistic method that favours terms with a large amount
of pheromone and a high Laplace-corrected confidence value (see
below). The ant stops constructing a rule if all the attributes have
been used in the rule antecedent constructed so far, or if there are no
terms available that, when added to the rule antecedent, would not
make the rule cover fewer cases than the limit min_cases_per_rule.
The rule is then pruned in an attempt to increase its quality, and if

the rule is of a high enough confidence, the terms making up the
rule have their pheromone levels increased. The best rule discovered
during the REPEAT UNTIL loop is added to the unordered set of
discovered rules.

Algorithm 2 – Proposed Unordered Rule Set Ant-Miner

Discovered Rule Set = {} /* initialize rule set with empty set */
FOR EACH Class
 TrainingSet = {all training cases}
 PositiveSet = {training cases of current class}
 NegativeSet = TrainingSet – PositiveSet
 WHILE (|PositiveSet| > max_uncovered_cases)
 t = 1;
 j = 1;
 initialise all trails to the same amount of pheromone;
 REPEAT
 Antt starts with an empty rule and incrementally
 constructs a classification rule Rt by adding one term
 at a time to the current rule;

Prune rule Rt;
 IF (LaplaceCorrectedConfidence(Rt) >
 RuleConfidenceThreshold)

 THEN increase pheromone of terms in rule Rt
END IF
Update pheromones in all other terms by normalising the
pheromone values (simulating evaporation)
IF (Rt equals Rt -1)
 THEN j = j + 1;
 ELSE j = 1;
END IF
t = t+1;

 UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg)
 Choose the best rule Rbest among all rules Rt constructed
 by all ants;
 Add rule Rbest to DiscoveredRuleSet;
 TrainingSet = TrainingSet – {set of positive cases
 covered by Rbest };
 PositiveSet = PositiveSet – {set of positive cases
 covered by Rbest};
 END WHILE
END FOR

3.1 Problem dependent heuristic function
Since the consequent of the rule is already known when the ants
discover rules, the heuristic function of the original Ant-Miner must
be altered to favour the selection of terms that increase the
probability that the rule will predict the current class of the For-Each

45

loop. The problem dependent heuristic function chosen is the
Laplace-corrected confidence for each term, given by:

sesNo_of_clas
1

+|term|
+|k,term|

=η
ij

ij
ij

where |termij, k| is the number of training cases having termij and the
current positive class k, |termij| is the number of training cases
having termij and No_of_classes is the number of values in the class
attribute’s domain. The Laplace correction is also used in other rule
induction algorithms such as CN2 [9], and it has the advantage of
penalizing rules that are too specific (covering too few cases),
helping to reduce overfitting. For instance, suppose a terms occurs
in just one case, and that case has the current positive class, so that
|termij| = |termij, k| = 1. Without the Laplace correction, the
confidence of that term would be 1 / 1 = 100%, a too optimistic
value for such an extremely specific rule, which is unlikely to
generalize well for test data unseen during training. With the
Laplace correction, and supposing No_of_classes = 2, the
confidence of the rule is corrected to (1 + 1) / (1 + 2) = 67%, a more
realistic value. Note that the Laplace correction will have little effect
when |termij| is large, which is consistent with the fact that there is a
lot of statistical support for such a generic rule.

3.2 Pheromone Updating
As mentioned earlier, in the unordered rule set algorithm the
consequent (predicted class) of each rule is fixed during the
construction of the rule by an ant. Due to the probabilistic nature of
the algorithm, it is possible to generate rules where the number of
true positives (TP) is less that the number of false positives (FP).
Such rules tend to be bad rules, because they have a low predictive
accuracy. It is important that the pheromone of terms occurring in
the rule be increased only when the just-constructed rule has an
acceptable confidence value. The threshold that determines if a rule
is acceptable or not (i.e., whether or not the pheromone of its terms
should be increased) is expressed by the following formula.

)
||

|k|(=oldenceThreshRuleConfid
set training

0.5,MAX

Where |k| is the number of training cases with the current (positive)
class, and |training set| is the total number of cases in the current
training set.
The rule confidence threshold is therefore the maximum of the
relative frequency of the predicted class and 0.5. The motivation for
the use of the max operator in this formula is as follows. In the case
of a predicted class whose relative frequency is “large” (greater than
0.5), the rule is considered acceptable only if its confidence is at
least as great as the relative frequency of that class. For instance, if
the relative frequency of a class is 70%, a rule predicting that class
with a confidence of 60% is clearly a bad rule. This requirement is
not enough, however, when the predicted class has a “small”
relative frequency (lower than 50%). For instance, suppose a class
has a relatively frequency of 10%. A rule with a confidence of 15%
satisfies the criterion of having a confidence greater than the relative
frequency of the predicted class, but it is still a weak rule. Hence,
the use of the max operator guarantees that, when the predicted class
has a low relative frequency, the confidence threshold is raised to
50%. We make no claim that the threshold value 0.5 is an optimal

value, but this value worked well in our preliminary experiments.
Optimizing this parameter is a topic left for future research.
Once a rule has been considered acceptable, the amount of
pheromone increase to be applied to each of the terms in that rule is
determined by the following formula.

() () ()()δtτ+tτ=tτ ijijij ⋅+1

where τij(t) is the current (at time index t) amount of pheromone
associated with termij, and δ is set to the rule quality Q (the formula
in section 2.2, which is also the formula used in the original Ant-
Miner) if the Laplace-corrected confidence for the rule was above
RuleConfidenceThreshold or set to 0 otherwise. The basic idea of
the Laplace-correction was already explained in section 3.1, in the
context of the problem-dependent heuristic function. A conceptually
similar idea is used in the context of the confidence of a rule. A
rule’s confidence (before the use of Laplace correction) is defined as
follows. Let IF A THEN C be a rule, where A is the antecedent
(conjunction of terms) and C be the predicted class. The confidence
of a rule is given by:

|A and C| / |A|
i.e., the number of training cases satisfying both A and C divided by
the total number of cases satisfying A. The Laplace-corrected
confidence is then given by:

(|A and C| + 1) / (|A| + No_of_classes) .
The effect of the Laplace correction in the confidence of a rule is
conceptually similar to the effect of this correction in the value of
the problem-dependent function, as explained in section 3.1.

3.3 Rule Pruning
It is necessary to make some alterations to the rule pruning in the
Ant-Miner algorithm to support unordered rule sets. In the original
Ant-Miner rules were pruned to remove irrelevant terms and to
improve the predictive accuracy of rules. This involved
speculatively removing each term in turn and evaluating the quality
of the rule without that term; and then definitely removing the term
whose removal provided the largest increase in rule quality. This
process was then repeated until there was only one term left in the
rule antecedent or no increase in rule quality was observed during
the speculative removal process. A new consequent – namely, the
class with the largest frequency among all cases covered by the rule
– was assigned to the rule after each term was speculatively
removed. For Unordered Rule set Ant-Miner the consequent must
remain the same during this process, and so the rule pruning
procedure is simplified. After each term is speculatively removed,
there is no need to compute the quality of the new reduced rule for
all possible classes in the consequent, just the quality for the current
positive class is computed.

3.4 Classifying Test Data with an Unordered
Rule Set
In the original Ant-Miner algorithm, classifying test data with the
ordered list of rules was accomplished by finding for each case the
first rule in the ordered list that covered the case (i.e. the case’s
attribute values matched the rule antecedent), and then assigning the
consequent class value of that rule to the case. A default rule that
assigned the majority class in the training set to a case was used to

46

classify a test case if none of the discovered rules matched the test
case.
When classifying test data with Unordered Rule Set Ant-Miner, a
different approach is required as a case might be covered by more
than one rule. One of the following scenarios will occur when
classifying a given test case with rules discovered by the Unordered
Rule Set Ant Miner.

1. If none of the discovered rules cover the test case, that
case is assigned the default class, which is the majority class in
the training data set.
2. If only one of the discovered rules covers the test case,
that case is assigned the class predicted by that rule.
3. If more than one of the discovered rules covers the test
case, but all those rules predict the same class, the case is
assigned that class.
4. If more than one of the discovered rules covers the test
case, but the rules do not all predict the same class, a rule
conflict strategy is required to determine which class should be
assigned to that case.

Two rule conflict strategies were evaluated in this work:
1. Classify the test case with the rule that has the highest
rule quality.
2. Apply a rule conflict resolution procedure based on the
class distribution of the rules covering the current test case to
determine that case’s class value [9]. The pseudocode for this
procedure is shown in Algorithm 3.

Algorithm 3 –Rule Conflict Resolution Procedure Based on the
Class Distribution of the Rules Covering a Case

FOR EACH Class c
 Count(c) = 0;
END FOR
FOR EACH Rule r covering the current test case
 FOR EACH Class c
 Count(c) = Count(c) + Coverage(r, c);
 END FOR
END FOR
Assign to the current test case the class with maximum value of
Count(c), among all candidate classes.

The first For-Each-Class loop of Algorithm 3 initializes the class
counts to zero. The For-Each-Rule loop up iterates over all the rules
covering the current test case, i.e., the rules whose conflict must be
solved. The function Coverage(r, c) returns the number of training
cases having class c covered by rule r. Hence, for each of the rules
covering the current test case, the Algorithm adds, to each class
count, the number of training cases covered by the current rule.
Therefore, at the end of the For-Each-Rule loop, each class count
will contain the frequency of the corresponding class in the total
class distribution associated with all rules covering the current test

case. Finally, the test case is assigned the class with the largest value
of class count, i.e., the most frequent class in the total class
distribution associated with all conflicting rules.

4. COMPUTATIONAL RESULTS
4.1 Datasets Used in the Experiments
The performance of the proposed Unordered Rule Set Ant-Miner
was evaluated using six public-domain data sets from the UCI
(University of California at Irvine) data set repository – available
from: http://www.ics.uci.edu/~mlearn/MLRepository.html. Table 1
shows the main characteristics of the datasets, which were the same
datasets used to evaluate the original Ant-Miner in [5].
Note that Ant-Miner (both the original one and the unordered rule
set version proposed in this paper) cannot cope directly with
continuous attributes, i.e., continuous attributes have to be
discretized in a preprocessing step. For the datasets having
continuous attributes in Table 1, we used the same discretized
version of the data used in the experiments with the original Ant-
Miner reported in [5]. Those discretized datasets were kindly
provided by Parpinelli.

Table 1 – Dataset Characteristics

DataSet Number of
examples

Number of
categorical
attributes

Number of
continuous
attributes

Number of
classes

Ljubljana breast
cancer 282 9 0 2
Wisconsin breast
cancer 683 0 9 2
Cleveland heart
disease 303 8 5 5
Dermatology 366 33 1 6
Hepatitis 155 13 6 2
Tic-tac-toe 958 9 0 2

4.2 Comparison of Results
Both the original Ant-Miner algorithm and the proposed Unordered
Rule Set Ant-Miner have four parameters:

1. Number of ants (No_of_ants).
2. Minimum number of cases per rule (Min_cases_per_rule).
3. Maximum number of uncovered cases in the training set
(Max_uncovered_cases).
4. Number of rules used to test convergence of the ants
(No_rules_converg).

As explained earlier, in Unordered Rule Set Ant-Miner,
Max_uncovered_cases refers to the maximum number of uncovered
positive cases in the training set, whilst in the original Ant-Miner it
refers to the maximum number of cases (either positive or negative
ones) in the training set. For this reason, this parameter may need to
be set lower in Unordered Rule Set Ant-Miner than in the original
Ant-Miner. The value of 5 (half the value used for the original Ant-
miner) was used in this work as a reasonable value. The other
parameters of Unordered Rule Set Ant-Miner were set to the same
values as in the original Ant-Miner, since those other parameters
have the same meaning in both versions of the algorithm. We make
no claim that these are optimal parameter values, and finding the

47

optimum values for Unordered Rule Set Ant-Miner’s parameters is
an area requiring further research. (In any case, the optimum value
for a parameter tends to be strongly problem-dependent, as usual in
bio-inspired algorithms.) Table 2 shows the parameter settings used
when testing both versions of Ant-Miner.

Table 2 – Parameter settings

Parameter Original
Ant-Miner

Unordered Rule
Set Ant-Miner

No_of_ants 3000 3000
Min_cases_per_rule 5 5
Max_uncovered_cases 10 5
No_rules_converg 5 5

Ten-fold cross validation [7] was performed on each of the datasets
with the following versions of the Ant-Miner algorithm:

1. Original, Ordered Rule List Ant-Miner.
2. Unordered Rule Set Ant-Miner using highest-quality rule
conflict resolution strategy.
3. Unordered Rule Set Ant-Miner using class-distribution
rule conflict resolution strategy.

Table 3 shows a comparison of the mean classification accuracy (%)
on the test set and corresponding standard deviation of the rule sets
discovered by each version of Ant-Miner during the cross validation
procedure. In the last two columns of that table, the presence of the
symbol (+) or (-) in a cell indicates that the predictive accuracy of
the corresponding version of Unordered Rule Set Ant-Miner is
significantly better or worse than the predictive accuracy of the
original Ordered List Ant-Miner in the corresponding dataset. A
difference in predictive accuracy is considered significant if the
standard deviation intervals (containing plus or minus one standard
deviation around the mean) of the two accuracies do not overlap.

Table 3 – Mean accuracy (%) of discovered rules

DataSet Ordered List Unordered Rules
Class Distribution

Unordered Rules
Highest Quality

Ljubljana
breast cancer 72.98 +/- 1.97 78.42 +/- 1.70 (+) 60.31 +/- 3.52 (-)
Wisconsin
breast cancer 95.91 +/- 0.48 92.38 +/- 0.84 (-) 95.61 +/- 0.92
Cleveland
heart disease 57.20 +/- 1.77 64.84 +/- 2.60 (+) 56.38 +/- 1.49
Dermatology 92.74 +/- 1.38 80.50 +/- 1.56 (-) 96.05 +/- 1.46 (+)
Hepatitis 88.81 +/- 2.94 95.42 +/- 2.50 (+) 96.35 +/- 1.88 (+)
Tic-tac-toe 72.24 +/- 1.24 72.45 +/- 0.87 64.39 +/- 1.57 (-)

The results in Table 3 show that the accuracy of both versions of
Unordered Rule Set Ant-Miner is comparable to the accuracy of the
original Ant-Miner algorithm in most cases. The largest gain in
accuracy occurred in the Hepatitis dataset, where both versions of
Unordered Rule Set Ant-Miner obtained a significantly higher
accuracy than the original Ordered Rule List Ant-Miner. The only
datasets in which there was no improvement associated with the
Unordered Rule Set versions of Ant-Miner were the Tic-tac-toe and
Wisconsin breast cancer sets.

Table 3 also shows that the rule conflict resolution strategy used by
Unordered Rule Set Ant-Miner when classifying test data is very
important. The difference in accuracy between the Highest Rule
Quality-based and Class Distribution-based strategies is almost 20%
for the Ljubljana Cancer dataset, and the Dermatology and
Cleveland HD datasets also show large discrepancies between the
results for the two strategies. Overall, Class Distribution-based rule
conflict resolution strategy slightly outperformed Highest Rule
Quality-based rule conflict resolution. In particular, the Class
Distribution-based strategy obtained a predictive accuracy
significantly better (worse) than the original Ant-Miner in 3 (2)
datasets; whilst the Highest Quality-based strategy obtained a
predictive accuracy significantly better (worse) than the original
Ant-Miner in 2 (2) datasets.
One could argue that, although the Class Distribution-based rule
conflict resolution strategy slightly outperformed the Highest Rule
Quality-based rule conflict resolution strategy with respect to
predictive accuracy, the former hinders the interpretability of the
discovered rules, because it involves combining the predictions of
several rules, rather than just using the prediction of an individual
rule. This is to some extent a concern, but there is a reply to this
argument. The reply is that the interpretation of the rules by the user
is, conceptually, independent of whether or not the rules are
combined for making a prediction about the class of a specific
example in the test. The rules were discovered by following a
sequential covering strategy, consisting of discovering one rule at a
time. Due to the details of the procedure used for discovering the
rules (in the Unordered Rule Set version of Ant-Miner), each rule
does have a modular meaning independent of the others – regardless
of how the rule is used to classify test examples. In addition, note
that it is not practical to ask the user to interpret at the same time the
set of all rules used to classify a test example because this set varies
from example to example. I.e., a given rule can sometimes be the
only rule used to classify a certain test example (if the rule is the
only to cover that example), whilst in other occasions the same rule
might be combined with other rules to classify another test example
(if there are two or more rules of different classes covering the same
test example). The main motivation for showing the rules to the user
is to try to give the user more insight about the data and the
application domain. Users can potentially get such insight by
interpreting the rules individually, one rule at a time, even when
using the Class Distribution-based rule conflict resolution strategy.
We now consider the simplicity of the rules discovered by the
Unordered Rule Set Ant-Miner. As usual in the data mining
literature, simplicity is measured by the number of rules and the
number of terms per rule – the smaller these values, the simpler the
rule set is. The original Ant-Miner was competitive with CN2 and
C4.5 with respect to accuracy, while producing much more simple
rules [5], [8]. This is desirable as discovered rule sets that are more
simple are easier to interpret and understand, and are potentially less
likely to over fit the training data. A comparison of the mean
number of rules discovered by the different versions of Ant-Miner is
shown in Table 4 and the mean number of terms per rule is shown in
Table 5. The values after the mean are standard deviations. In Table
4 in the last two columns, the presence of the symbol (+) or (-) in a
cell indicates the mean number of rules discovered by the
corresponding version of Unordered Rule Set Ant-Miner is
significantly greater or smaller than the mean number of rules
discovered by the Ordered Rule List Ant-Miner in the
corresponding dataset. In Table 5 in the last two columns, the

48

presence of the symbols (+) or (-) in a cell indicates the number of
terms in the rules discovered by the corresponding version of
Unordered Rule Set Ant-Miner is significantly greater or smaller
that the number of terms in the rules discovered by the Ordered Rule
List Ant-Miner in the corresponding dataset. As in Table 3, a
difference between two results is considered significant if the
standard deviation intervals do not overlap.

Table 4 – Mean number of rules discovered without counting
the default rule

DataSet Ordered List
Unordered Rules

Class
Distribution

Unordered Rules
Highest Quality

Ljubljana
breast cancer 6.70 +/- 0.37 6.10 +/- 0.11 (-) 6.00 +/- 0.00 (-)
Wisconsin
breast cancer 5.60 +/- 0.30 6.50 +/- 0.19 (+) 6.20 +/- 0.15 (+)
Cleveland
heart disease 14.20 +/- 0.43 11.00 +/- 0.00 (-) 11.00 +/- 0.00 (-)
Dermatology 6.00 +/- 0.00 6.00 +/- 0.00 6.00 +/- 0.00
Hepatitis 2.70 +/- 0.17 3.00 +/- 0.00 (+) 3.00 +/- 0.00 (+)
Tic-tac-toe 4.60 +/- 0.48 6.30 +/- 0.17 (+) 6.30 +/- 0.17 (+)

Table 5 – Average No. of terms per rule

DataSet Ordered List
Unordered Rules

Class
Distribution

Unordered Rules
Highest Quality

Ljubljana
breast cancer 1.79 +/- 0.08 1.85 +/- 0.02 1.83 +/- 0.00
Wisconsin
breast cancer 2.27 +/- 0.09 2.55 +/- 0.08 (+) 2.37 +/- 0.08
Cleveland heart
disease 2.69 +/- 0.10 2.54 +/- 0.01 (-) 2.53 +/- 0.02 (-)
Dermatology 13.25 +/- 0.14 13.10 +/- 0.07 13.28 +/- 0.11
Hepatitis 3.81 +/- 0.15 3.33 +/- 0.05 (-) 3.33 +/- 0.00 (-)
Tic-tac-toe 1.26 +/- 0.10 1.10 +/- 0.04 (-) 1.10 +/- 0.04 (-)

The two versions of Unordered Rule Set Ant-Miner produced
significantly fewer rules for the Ljubljana breast cancer and
Cleveland heart disease datasets. The largest difference was for the
Cleveland HD dataset, where the original, Ordered Rule List Ant-
Miner produced 14.20 rules on average, whereas the two versions of
Unordered Rule Set Ant-Miner produced 11, with the number of
terms per rule being significantly smaller for the rules discovered by
Unordered Set Ant Miner than for the rules discovered by Ordered
List Ant-Miner in that dataset.
Although the two versions of Unordered Rule Set Ant-Miner
produced a significantly increased number of rules for three out of
the six data sets (Wisconsin breast cancer, Hepatitis and Tic-tac-
toe), the unordered rule sets discovered for two of those three
datasets (Hepatitis and Tic-tac-toe) had a significantly smaller
number of terms per rule than the corresponding rule lists
discovered by Ordered Rule List Ant-Miner. In any case, overall the
two versions of Ant-Miner (with Ordered and Unordered Rules)
obtained rule sets with similar levels of simplicity.

Interestingly for the Cleveland HD, Dermatology and Hepatitis
datasets there was no deviation from the mean number of rules
during the cross validation, for the two versions of Unordered Rule
Set Ant-Miner.

5. CONCLUSIONS AND FUTURE
RESEARCH
Our experimentation has shown that, overall, the proposed
Unordered Rule Set Ant-Miner is capable of discovering rules that
are comparable to those discovered by the original Ant-Miner
algorithm, in terms of both predictive accuracy and rule set
simplicity (size of the classification model). In any case, it should be
recalled that the rules discovered by Unordered Rule Set Ant-Miner
are more modular than the rules discovered by the original Ordered
List Ant-Miner. This is the case because in the former kind of
algorithm each rule can be interpreted independently from the
others, whereas in the rule list discovered by the original Ant-Miner
a given rule should be interpreted only in the context of all the
previous rules in the list. This modularity facilitates the
interpretation of the rules by the user, an important point in data
mining [7], and therefore an advantage of the Unordered Rule Set
Ant-Miner proposed in this paper.
The results also highlight the importance of the rule conflict
resolution strategy in the application of discovered unordered rules
to test data. Further research in this area could be focused on
developing rule conflict resolution strategies that are more robust
across a number of datasets.
In this work the algorithm parameters were not optimised for any
particular data set, since the focus was on comparing the different
versions of Ant-Miner, rather than optimizing parameters for each
data set. Hence, another area of further research might be to attempt
to determine the optimum parameter settings that would maximise
the accuracy of the discovered classification rules for each dataset.

6. ACKNOWLEDGMENTS
Discretized versions of the data sets Wisconsin breast cancer,
Cleveland heart disease, Dermatology and Hepatitis – which
originally contained one or more continuous attributes – were kindly
provided by Rafael Parpinelli.
The Ljubljana breast cancer data set was obtained from the
University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing
the data.

7. REFERENCES
[1] M. Dorigo, A. Colorni and V. Maniezzo, “The Ant System:

optimization by a colony of cooperating agents,” IEEE
Transactions on Systems, Man, and Cybernetics-Part B, vol.
26, no. 1, pp. 29-41, 1996.

[2] B. Liu, H.A. Abbass, B. Mckay. Classification rule discovery
with ant colony optimization. Proceeding of the IEEE/WIC
International Conference on Intelligent Agent Technology,
Beijing, China (2003), pp. 83–88.

[3] M. P. Oakes, “Ant Colony Optimisation for Stylometry: The
Fedaralist Papers.” International Conference on Recent
Advances in Soft Computing, November 2004.

49

[4] Ziqiang Wang, Boqin Feng, Classification Rule Mining with
an Improved Ant Colony Algorithm, Lecture Notes in
Computer Science, Volume 3339, Jan 2004, pp. 357 – 367.

[5] R.S. Parpinelli, H.S. Lopes, and A.A. Freitas. Data mining with
an ant colony optimization algorithm. IEEE Transactions on
Evolutionary Computing 6(4), 2002, pp. 321–332.

[6] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[7] I.H. Witten and E. Frank. Data Mining: practical machine
learning tools and techniques. 2nd Edition. Morgan Kaufmann,
2005.

[8] R.S. Parpinelli, H.S. Lopes and A.A. Freitas. An Ant Colony
Algorithm for Classification Rule Discovery. In: H.A. Abbass,
R.A. Sarker, C.S. Newton. (Eds.) Data Mining: a Heuristic
Approach, pp. 191-208. London: Idea Group Publishing, 2002.

[9] P. Clark and R. Boswell. Rule induction with CN2: some
recent improvements. Proc. European Working Session on
Learning (EWSL-91), LNAI 482, pp. 151-163. Springer, 1991.

50

