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ABSTRACT 
The Ant-Miner algorithm, first proposed by Parpinelli and 
colleagues, applies an ant colony optimization heuristic to the 
classification task of data mining to discover an ordered list of 
classification rules. In this paper we present a new version of the 
Ant-Miner algorithm, which we call Unordered Rule Set Ant-Miner, 
that produces an unordered set of classification rules. The proposed 
version was evaluated against the original Ant-Miner algorithm in 
six public-domain datasets and was found to produce comparable 
results in terms of predictive accuracy. However, the proposed 
version has the advantage of discovering more modular rules, i.e., 
rules that can be interpreted independently from other rules – unlike 
the rules in an ordered list, where the interpretation of a rule requires 
knowledge of the previous rules in the list. Hence, the proposed 
version facilitates the interpretation of discovered knowledge, an 
important point in data mining.   

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – concept learning, 
induction. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Ant Colony Optimization, Data Mining, Classification Rules. 

1. INTRODUCTION 
Data Mining is the process of extracting useful knowledge from 
real-world data. Among the several data mining tasks – such as 
clustering and classification - this paper focuses on classification. In 
this task the aim is to discover, from training data (containing cases, 
or records, whose class is known), a classification model that can be 
used to predict the class of cases in the test data (containing 
unknown-class cases). One popular category of classification model 
consists of classification rules, which is the model category used in 
this paper. In this context, the aim of the classification algorithm is 
to discover a set of classification rules. 

One algorithm for solving this task is Ant-Miner, proposed by 
Parpinelli and colleagues [5], which employs ant colony 
optimization techniques [1] to discover classification rules of the 
form: 
IF (term1 AND term2 AND ….. termm) THEN (predicted class) 
where each term is of the form <attribute = value>, and different 
rules can have different number of terms in their antecedent (IF 
part). The consequent of a rule is a predicted class, i.e., the value 
that the rule predicts for the class attribute when an example 
satisfies the conjunction of terms in the rule antecedent. 
Classification rules have the advantage of representing knowledge at 
a high level of abstraction, so that they are intuitively 
comprehensible to the user [7].  
Ant-Miner has produced good results when compared with more 
conventional data mining algorithms [5], [8] and it is still a 
relatively recent algorithm, which motivates further research trying 
to improve it. This work proposes a modification to the Ant-Miner 
data mining algorithm called Unordered Rule Set Ant-Miner, with 
the aim of improving or at least maintaining the level of predictive 
accuracy obtained by the original Ant-Miner, whilst at the same 
time facilitating the interpretation of the discovered classification 
rules, as follows. In the original Ant-Miner, the goal of the 
algorithm was to produce an ordered list of rules, which was then  
applied to test data in the order in which they were discovered. This 
makes it difficult to interpret the rules at the end of the list, since 
their conditions make sense only in the context of all the previous 
rules in the ordered list of rules [7]. The new version of Ant-Miner 
proposed in this paper discovers, from training data, an unordered 
set of rules that can be applied to test data in any order. This makes 
the discovered rules easier for the user to interpret, since now the 
interpretation of each rule is independent from all the other 
discovered rules.  
Although some modifications to the Ant-Miner algorithm have 
already been proposed [2][3][4], to the best of our knowledge, an 
unordered rule set modification to the original Ant-Miner algorithm 
is an area of research that has not yet been explored. 
This paper is organised as follows. Section 2 presents an outline of 
the original Ant-Miner algorithm. Section 3 explains the proposed 
Unordered Rule Set Ant-Miner. Section 4 discusses computational 
results and performance of the algorithm. Section 5 concludes the 
paper and suggests further areas of research. 

2. A BRIEF DESCRIPTION OF  
THE ANT-MINER ALGORITHM 
The original Ant-Miner algorithm, upon which the Unordered Rule 
Set Ant-Miner proposed in this paper is based, is described in the 
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pseudo code of Algorithm 1, taken from [5]. We provide here just a 
brief overview of the algorithm; for more details the reader is 
referred to that reference. 
 

Algorithm 1 – Original Ant-Miner 
 

TrainingSet = {all training cases}; 
DiscoveredRuleList = [ ]; /* initialize rule list with empty list */ 
WHILE (TrainingSet > Max_uncovered_cases) 
       t = 1; /* ant index, and also rule index */ 
       j = 1; /* convergence test index */ 
       Initialize all trails with the same amount of pheromone; 
      REPEAT 
             Antt  starts with an empty rule and incrementally  
             constructs a classification rule Rt  by adding one 
             term at a time to the current rule; 
             Prune rule Rt;   /* remove irrelevant terms from rule */ 
             Update the pheromone of all trails by increasing  
             pheromone in the trail followed by Antt  (proportional 
             to the quality of Rt) and decreasing pheromone in the  
             other trails (simulating pheromone evaporation); 
             IF (Rt is equal to Rt – 1) /* update convergence test */ 
   THEN j = j + 1; 
   ELSE j = 1; 
             END IF 
             t = t + 1; 
       UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg) 
       Choose the best rule Rbest  among all rules Rt constructed by 
       all the ants; 
       Add rule Rbest to DiscoveredRuleList; 
       TrainingSet = TrainingSet - {set of cases correctly covered 
       by Rbest}; 
END WHILE 
 

Ant-Miner discovers an ordered list of classification rules based on 
a heuristic function involving information gain – a popular heuristic 
function in data mining [6] – and positive feedback involving 
artificial pheromone. For each iteration of the Repeat-Until loop, an 
ant attempts to discover a rule by selecting terms in a probabilistic 
manner, until all the attributes have been used to make the current 
rule, or adding any other available term would make the rule 
coverage less than min_cases_per_rule – a user-specified threshold. 
The discovered rule is then pruned in an attempt to reduce over-
fitting to the training data and increase rule quality. Afterwards, the 
pheromone values for the terms in the current rule are increased, in 
order to increase the probability that other ants will select those 
terms, and then the pheromone values for all terms are normalised. 
The While loop iterates until the number of training examples 
remaining in the dataset becomes less than or equal to 
Max_uncovered_cases – another user-specified threshold. The rule 

discovered in the Repeat-Until loop that has the highest quality is 
then added to the list of discovered rules, and the training examples 
correctly covered by that rule are removed from the training dataset. 
An example is correctly covered by a rule if the example satisfies 
the rule antecedent and has the class predicted by the rule. 

2.1 Pheromone Initialisation 
Pheromone values for each term are all initialised to the same value 
at the beginning of each While loop iteration. The initial value of 
each pheromone is given by the function: 
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Where a is the total number of attributes, i is the index of an 
attribute, j is the index of a value in the domain of attribute i, and bi 
is the number of values in the domain of attribute i. 

2.2 Pheromone Updating 
In Ant-Miner pheromone levels are increased for all terms in a rule 
just constructed by an ant, based on the quality of that rule, as 
measured by the rule quality formula “sensitivity * specificity”, 
defined as follows: 

TN+FP
TN

FN+TP
TP=Q ⋅  

where TP / (TP + FN) is the sensitivity, TN /  (FP + TN) is the 
specificity, and: 
TP (true positives) is the number of cases covered by the rule that 
have the class predicted by the rule. 
FP (false positives) is the number of cases covered by the rule that 
have a class different from the class predicted by the rule. 
FN (false negatives) is the number of cases that are not covered by 
the rule but that have the class predicted by the rule. 
TN (true negatives) is the number of cases that are not covered by 
the rule and that do not have the class predicted by the rule. 

2.3 Term Selection 
The probability that a term will be added to the current rule is given 
by the following formula: 
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where: 
ηij is the value of a problem-dependent heuristic function – more 
precisely information gain [6] – for termij (a condition of the form 
attributei = valuej). The higher the value of ηij the more relevant for 
classification the termij is, and so the higher its probability of being 
chosen. 

τij(t) is the amount of pheromone associated with termij at iteration t. 
a is the total number of attributes. 
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xi is set to 1 if the attribute ai was not yet used by the current ant, 0 
otherwise. 
bi is the number of values in domain of the ith attribute. 

3. UNORDERED RULE SET 
MODIFICATIONS TO THE ANT-MINER 
ALGORITHM 
As mentioned in the Introduction, we propose a modification to the 
original Ant-Miner so that the algorithm discovers a set of rules 
which do not need to be applied to test data in the order in which 
they were discovered. The pseudocode of the new algorithm is 
described in Algorithm 2. 

In the original Ant-Miner, ants chose terms for a rule with the goal 
of decreasing entropy in the class distribution of examples matching 
the rule in construction. The consequent of the rule was then 
assigned afterwards by determining the class value that would 
produce the highest quality rule. In Unordered Rule Set Ant-Miner, 
by contrast, an extra For-Each loop is added as the outer loop of the 
algorithm, iterating over the values in the class attribute domain, as 
indicated in Algorithm 2. As a result of this loop, the consequent for 
the rule is known by the ant during rule construction and does not 
change. The current ant tries to choose terms that will produce the 
rule predicting the class value in the current iteration of the For-
Each loop with an optimum level of accuracy. In theory, such an 
approach should lead to faster convergence on good rules, by 
comparison with the original Ant-Miner. The reason is that in 
Unordered Rule Set Ant-Miner each term’s pheromone value 
directly represents that term’s relevance for predicting a fixed target 
class value. By contrast, in the original Ant-Miner each term’s 
pheromone is associated with that term’s relevance in reducing the 
entropy associated with the entire class distribution, a less focused 
relevance. 

Each iteration of the For-Each loop discovers an unordered set of 
rules, all of which predict the current class value. At the beginning 
of each iteration, the entire training set is reinstated, so that a 
maximal number of negative examples are available to the 
algorithm. Ants discover rules from the training data until the 
number of positive examples (belonging to the current class) 
remaining in the dataset that have not been covered by a discovered 
rule is less than or equal to the value determined by the 
max_uncovered_cases parameter. Note that in the original Ant-
Miner max_uncovered_cases referred to all examples in the training 
set, rather than to the positive examples only as in the proposed 
algorithm. 

Rule construction occurs as follows. For each iteration of the 
WHILE loop, the amount of pheromone for each term is set to an 
initial value. This initialization is the same as the one used in the 
original Ant-Miner. However, unlike the original Ant-Miner, in the 
proposed algorithm an ant starts with a rule containing the known 
consequent (the current class value of the FOR loop) and an empty 
antecedent. The rule is constructed incrementally by selecting terms 
with a probabilistic method that favours terms with a large amount 
of pheromone and a high Laplace-corrected confidence value (see 
below). The ant stops constructing a rule if all the attributes have 
been used in the rule antecedent constructed so far, or if there are no 
terms available that, when added to the rule antecedent, would not 
make the rule cover fewer cases than the limit min_cases_per_rule. 
The rule is then pruned in an attempt to increase its quality, and if 

the rule is of a high enough confidence, the terms making up the 
rule have their pheromone levels increased. The best rule discovered 
during the REPEAT UNTIL loop is added to the unordered set of 
discovered rules. 

Algorithm 2 – Proposed Unordered Rule Set Ant-Miner 
 

Discovered Rule Set = {} /* initialize rule set with empty set */ 
FOR EACH Class 
      TrainingSet = {all training cases} 
      PositiveSet = {training cases of current class} 
      NegativeSet = TrainingSet – PositiveSet 
      WHILE (|PositiveSet| > max_uncovered_cases) 
            t = 1; 
            j = 1; 
            initialise all trails to the same amount of pheromone; 
            REPEAT 
               Antt  starts with an empty rule and incrementally  
               constructs a classification rule Rt  by adding one term  
               at a time to the current rule; 

Prune rule Rt; 
 IF (LaplaceCorrectedConfidence(Rt)  >  
                      RuleConfidenceThreshold) 

    THEN increase pheromone of terms in rule Rt  
END IF 
Update pheromones in all other terms by normalising the 
pheromone values (simulating  evaporation) 
IF (Rt equals Rt -1) 
     THEN j = j + 1; 
     ELSE j = 1; 
END IF 
t = t+1;  

            UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg) 
            Choose the best rule Rbest among all rules Rt  constructed 
            by all ants;  
            Add rule Rbest to DiscoveredRuleSet; 
            TrainingSet = TrainingSet – {set of positive cases  
                                                           covered by Rbest }; 
            PositiveSet = PositiveSet – {set of positive cases  
                                                          covered by Rbest}; 
      END WHILE 
END FOR 
 

3.1 Problem dependent heuristic function 
Since the consequent of the rule is already known when the ants 
discover rules, the heuristic function of the original Ant-Miner must 
be altered to favour the selection of terms that increase the 
probability that the rule will predict the current class of the For-Each 
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loop. The problem dependent heuristic function chosen is the 
Laplace-corrected confidence for each term, given by: 

sesNo_of_clas 
1

+|term|
+|k,term|

=η
ij

ij
ij  

where |termij, k| is the number of training cases having termij and the 
current positive class k, |termij| is the number of training cases 
having termij and No_of_classes is the number of values in the class 
attribute’s domain. The Laplace correction is also used in other rule 
induction algorithms such as CN2 [9], and it has the advantage of 
penalizing rules that are too specific (covering too few cases), 
helping to reduce overfitting. For instance, suppose a terms occurs 
in just one case, and that case has the current positive class, so that 
|termij| = |termij, k| = 1. Without the Laplace correction, the 
confidence of that term would be 1 / 1 = 100%, a too optimistic 
value for such an extremely specific rule, which is unlikely to 
generalize well for test data unseen during training. With the 
Laplace correction, and supposing No_of_classes = 2, the 
confidence of the rule is corrected to (1 + 1) / (1 + 2) = 67%, a more 
realistic value. Note that the Laplace correction will have little effect 
when |termij| is large, which is consistent with the fact that there is a 
lot of statistical support for such a generic rule. 

3.2 Pheromone Updating 
As mentioned earlier, in the unordered rule set algorithm the 
consequent (predicted class) of each rule is fixed during the 
construction of the rule by an ant. Due to the probabilistic nature of 
the algorithm, it is possible to generate rules where the number of 
true positives (TP) is less that the number of false positives (FP). 
Such rules tend to be bad rules, because they have a low predictive 
accuracy. It is important that the pheromone of terms occurring in 
the rule be increased only when the just-constructed rule has an 
acceptable confidence value. The threshold that determines if a rule 
is acceptable or not (i.e., whether or not the pheromone of its terms 
should be increased) is expressed by the following formula. 
 

)
||

|k|(=oldenceThreshRuleConfid
set training

0.5,MAX  

Where |k| is the number of training cases with the current (positive) 
class, and |training set| is the total number of cases in the current 
training set.  
The rule confidence threshold is therefore the maximum of the 
relative frequency of the predicted class and 0.5. The motivation for 
the use of the max operator in this formula is as follows. In the case 
of a predicted class whose relative frequency is “large” (greater than 
0.5), the rule is considered acceptable only if its confidence is at 
least as great as the relative frequency of that class. For instance, if 
the relative frequency of a class is 70%, a rule predicting that class 
with a confidence of 60% is clearly a bad rule. This requirement is 
not enough, however, when the predicted class has a “small” 
relative frequency (lower than 50%). For instance, suppose a class 
has a relatively frequency of 10%. A rule with a confidence of 15% 
satisfies the criterion of having a confidence greater than the relative 
frequency of the predicted class, but it is still a weak rule. Hence, 
the use of the max operator guarantees that, when the predicted class 
has a low relative frequency, the confidence threshold is raised to 
50%. We make no claim that the threshold value 0.5 is an optimal 

value, but this value worked well in our preliminary experiments. 
Optimizing this parameter is a topic left for future research. 
Once a rule has been considered acceptable, the amount of 
pheromone increase to be applied to each of the terms in that rule is 
determined by the following formula.  
 

( ) ( ) ( )( )δtτ+tτ=tτ ijijij ⋅+1  

where τij(t) is the current (at time index t) amount of pheromone 
associated with termij, and δ is set to the rule quality Q (the formula 
in section 2.2, which is also the formula used in the original Ant-
Miner) if the Laplace-corrected confidence for the rule was above 
RuleConfidenceThreshold or set to 0 otherwise. The basic idea of 
the Laplace-correction was already explained in section 3.1, in the 
context of the problem-dependent heuristic function. A conceptually 
similar idea is used in the context of the confidence of a rule. A 
rule’s confidence (before the use of Laplace correction) is defined as 
follows. Let IF A THEN C be a rule, where A is the antecedent 
(conjunction of terms) and C be the predicted class. The confidence 
of a rule is given by: 

|A and C| / |A| 
i.e., the number of training cases satisfying both A and C divided by 
the total number of cases satisfying A. The Laplace-corrected 
confidence is then given by: 

(|A and C| + 1) / (|A| + No_of_classes) . 
The effect of the Laplace correction in the confidence of a rule is 
conceptually similar to the effect of this correction in the value of 
the problem-dependent function, as explained in section 3.1. 

3.3 Rule Pruning 
It is necessary to make some alterations to the rule pruning in the 
Ant-Miner algorithm to support unordered rule sets. In the original 
Ant-Miner rules were pruned to remove irrelevant terms and to 
improve the predictive accuracy of rules. This involved 
speculatively removing each term in turn and evaluating the quality 
of the rule without that term; and then definitely removing the term 
whose removal provided the largest increase in rule quality. This 
process was then repeated until there was only one term left in the 
rule antecedent or no increase in rule quality was observed during 
the speculative removal process. A new consequent – namely, the 
class with the largest frequency among all cases covered by the rule 
– was assigned to the rule after each term was speculatively 
removed. For Unordered Rule set Ant-Miner the consequent must 
remain the same during this process, and so the rule pruning 
procedure is simplified. After each term is speculatively removed, 
there is no need to compute the quality of the new reduced rule for 
all possible classes in the consequent, just the quality for the current 
positive class is computed. 

3.4 Classifying Test Data with an Unordered 
Rule Set 
In the original Ant-Miner algorithm, classifying test data with the 
ordered list of rules was accomplished by finding for each case the 
first rule in the ordered list that covered the case (i.e. the case’s 
attribute values matched the rule antecedent), and then assigning the 
consequent class value of that rule to the case. A default rule that 
assigned the majority class in the training set to a case was used to 
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classify a test case if none of the discovered rules matched the test 
case.  
When classifying test data with Unordered Rule Set Ant-Miner, a 
different approach is required as a case might be covered by more 
than one rule. One of the following scenarios will occur when 
classifying a given test case with rules discovered by the Unordered 
Rule Set Ant Miner. 
 

1. If none of the discovered rules cover the test case, that 
case is assigned the default class, which is the majority class in 
the training data set. 
2. If only one of the discovered rules covers the test case, 
that case is assigned the class predicted by that rule. 
3. If more than one of the discovered rules covers the test 
case, but all those rules predict the same class, the case is 
assigned that class. 
4. If more than one of the discovered rules covers the test 
case, but the rules do not all predict the same class, a rule 
conflict strategy is required to determine which class should be 
assigned to that case. 

Two rule conflict strategies were evaluated in this work:  
1. Classify the test case with the rule that has the highest 
rule quality. 
2. Apply a rule conflict resolution procedure based on the 
class distribution of the rules covering the current test case to 
determine that case’s class value [9]. The pseudocode for this 
procedure is shown in Algorithm 3.  

 

Algorithm 3 –Rule Conflict Resolution Procedure Based on the 
Class Distribution of the Rules Covering a Case 

 

FOR EACH Class c 
     Count(c) = 0;   
END FOR 
FOR EACH Rule r covering the current test case 
          FOR EACH Class c 
       Count(c) = Count(c) + Coverage(r, c);  
   END FOR 
END FOR 
Assign to the current test case the class with maximum value of 
Count(c), among all candidate classes. 
 

The first For-Each-Class loop of Algorithm 3 initializes the class 
counts to zero. The For-Each-Rule loop up iterates over all the rules 
covering the current test case, i.e., the rules whose conflict must be 
solved. The function Coverage(r, c) returns the number of training 
cases having class c covered by rule r. Hence, for each of the rules 
covering the current test case, the Algorithm adds, to each class 
count, the number of training cases covered by the current rule. 
Therefore, at the end of the For-Each-Rule loop, each class count 
will contain the frequency of the corresponding class in the total 
class distribution associated with all rules covering the current test 

case. Finally, the test case is assigned the class with the largest value 
of class count, i.e., the most frequent class in the total class 
distribution associated with all conflicting rules. 

4. COMPUTATIONAL RESULTS 
4.1 Datasets Used in the Experiments 
The performance of the proposed Unordered Rule Set Ant-Miner 
was evaluated using six public-domain data sets from the UCI 
(University of California at Irvine) data set repository – available 
from: http://www.ics.uci.edu/~mlearn/MLRepository.html. Table 1 
shows the main characteristics of the datasets, which were the same 
datasets used to evaluate the original Ant-Miner in [5].  
Note that Ant-Miner (both the original one and the unordered rule 
set version proposed in this paper) cannot cope directly with 
continuous attributes, i.e., continuous attributes have to be 
discretized in a preprocessing step. For the datasets having 
continuous attributes in Table 1, we used the same discretized 
version of the data used in the experiments with the original Ant-
Miner reported in [5]. Those discretized datasets were kindly 
provided by Parpinelli. 

 
Table 1 – Dataset Characteristics 

DataSet Number of 
examples

Number of 
categorical 
attributes

Number of 
continuous 
attributes

Number of 
classes

Ljubljana breast 
cancer 282 9 0 2
Wisconsin breast 
cancer 683 0 9 2
Cleveland heart 
disease 303 8 5 5
Dermatology 366 33 1 6
Hepatitis 155 13 6 2
Tic-tac-toe 958 9 0 2  

4.2 Comparison of Results 
Both the original Ant-Miner algorithm and the proposed Unordered 
Rule Set Ant-Miner have four parameters: 

1. Number of ants (No_of_ants). 
2. Minimum number of cases per rule (Min_cases_per_rule). 
3. Maximum number of uncovered cases in the training set 
(Max_uncovered_cases). 
4. Number of rules used to test convergence of the ants 
(No_rules_converg). 

As explained earlier, in Unordered Rule Set Ant-Miner, 
Max_uncovered_cases refers to the maximum number of uncovered 
positive cases in the training set, whilst in the original Ant-Miner it 
refers to the maximum number of cases (either positive or negative 
ones) in the training set. For this reason, this parameter may need to 
be set lower in Unordered Rule Set Ant-Miner than in the original 
Ant-Miner. The value of 5 (half the value used for the original Ant-
miner) was used in this work as a reasonable value. The other 
parameters of Unordered Rule Set Ant-Miner were set to the same 
values as in the original Ant-Miner, since those other parameters 
have the same meaning in both versions of the algorithm. We make 
no claim that these are optimal parameter values, and finding the 
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optimum values for Unordered Rule Set Ant-Miner’s parameters is 
an area requiring further research. (In any case, the optimum value 
for a parameter tends to be strongly problem-dependent, as usual in 
bio-inspired algorithms.) Table 2 shows the parameter settings used 
when testing both versions of Ant-Miner. 

Table 2 – Parameter settings 

Parameter Original 
Ant-Miner

Unordered Rule 
Set Ant-Miner

No_of_ants 3000 3000
Min_cases_per_rule 5 5
Max_uncovered_cases 10 5
No_rules_converg 5 5  

 
Ten-fold cross validation [7] was performed on each of the datasets 
with the following versions of the Ant-Miner algorithm: 

1.  Original, Ordered Rule List Ant-Miner. 
2.  Unordered Rule Set Ant-Miner using highest-quality rule 
conflict resolution strategy. 
3.  Unordered Rule Set Ant-Miner using class-distribution 
rule conflict resolution strategy. 

Table 3 shows a comparison of the mean classification accuracy (%) 
on the test set and corresponding standard deviation of the rule sets 
discovered by each version of Ant-Miner during the cross validation 
procedure. In the last two columns of that table, the presence of the 
symbol (+) or (-) in a cell indicates that the predictive accuracy of 
the corresponding version of Unordered Rule Set Ant-Miner is 
significantly better or worse than the predictive accuracy of the 
original Ordered List Ant-Miner in the corresponding dataset. A 
difference in predictive accuracy is considered significant if the 
standard deviation intervals (containing plus or minus one standard 
deviation around the mean) of the two accuracies do not overlap.  
 

Table 3 – Mean accuracy (%) of discovered rules 

DataSet Ordered List Unordered Rules 
Class Distribution

Unordered Rules 
Highest Quality

Ljubljana 
breast cancer 72.98 +/- 1.97 78.42 +/- 1.70 (+) 60.31 +/- 3.52 (-)
Wisconsin 
breast cancer 95.91 +/- 0.48 92.38 +/- 0.84 (-) 95.61 +/- 0.92
Cleveland 
heart disease 57.20 +/- 1.77 64.84 +/- 2.60 (+) 56.38 +/- 1.49
Dermatology 92.74 +/- 1.38 80.50 +/- 1.56 (-) 96.05 +/- 1.46 (+)
Hepatitis 88.81 +/- 2.94 95.42 +/- 2.50 (+) 96.35 +/- 1.88 (+)
Tic-tac-toe 72.24 +/- 1.24 72.45 +/- 0.87 64.39 +/- 1.57 (-)  

The results in Table 3 show that the accuracy of both versions of 
Unordered Rule Set Ant-Miner is comparable to the accuracy of the 
original Ant-Miner algorithm in most cases. The largest gain in 
accuracy occurred in the Hepatitis dataset, where both versions of 
Unordered Rule Set Ant-Miner obtained a significantly higher 
accuracy than the original Ordered Rule List Ant-Miner. The only 
datasets in which there was no improvement associated with the 
Unordered Rule Set versions of Ant-Miner were the Tic-tac-toe  and 
Wisconsin breast cancer sets.  

Table 3 also shows that the rule conflict resolution strategy used by 
Unordered Rule Set Ant-Miner when classifying test data is very 
important. The difference in accuracy between the Highest Rule 
Quality-based and Class Distribution-based strategies is almost 20% 
for the Ljubljana Cancer dataset, and the Dermatology and 
Cleveland HD datasets also show large discrepancies between the 
results for the two strategies. Overall, Class Distribution-based rule 
conflict resolution strategy slightly outperformed Highest Rule 
Quality-based rule conflict resolution. In particular, the Class 
Distribution-based strategy obtained a predictive accuracy 
significantly better (worse) than the original Ant-Miner in 3 (2) 
datasets; whilst the Highest Quality-based strategy obtained a 
predictive accuracy significantly better (worse) than the original 
Ant-Miner in 2 (2) datasets. 
One could argue that, although the Class Distribution-based rule 
conflict resolution strategy slightly outperformed the Highest Rule 
Quality-based rule conflict resolution strategy with respect to 
predictive accuracy, the former hinders the interpretability of the 
discovered rules, because it involves combining the predictions of 
several rules, rather than just using the prediction of an individual 
rule. This is to some extent a concern, but there is a reply to this 
argument. The reply is that the interpretation of the rules by the user 
is, conceptually, independent of whether or not the rules are 
combined for making a prediction about the class of a specific 
example in the test. The rules were discovered by following a 
sequential covering strategy, consisting of discovering one rule at a 
time. Due to the details of the procedure used for discovering the 
rules (in the Unordered Rule Set version of Ant-Miner), each rule 
does have a modular meaning independent of the others – regardless 
of how the rule is used to classify test examples. In addition, note 
that it is not practical to ask the user to interpret at the same time the 
set of all rules used to classify a test example because this set varies 
from example to example. I.e., a given rule can sometimes be the 
only rule used to classify a certain test example (if the rule is the 
only to cover that example), whilst in other occasions the same rule 
might be combined with other rules to classify another test example 
(if there are two or more rules of different classes covering the same 
test example). The main motivation for showing the rules to the user 
is to try to give the user more insight about the data and the 
application domain. Users can potentially get such insight by 
interpreting the rules individually, one rule at a time, even when 
using the Class Distribution-based rule conflict resolution strategy.  
We now consider the simplicity of the rules discovered by the 
Unordered Rule Set Ant-Miner. As usual in the data mining 
literature, simplicity is measured by the number of rules and the 
number of terms per rule – the smaller these values, the simpler the 
rule set is. The original Ant-Miner was competitive with CN2 and 
C4.5 with respect to accuracy, while producing much more simple 
rules [5], [8]. This is desirable as discovered rule sets that are more 
simple are easier to interpret and understand, and are potentially less 
likely to over fit the training data. A comparison of the mean 
number of rules discovered by the different versions of Ant-Miner is 
shown in Table 4 and the mean number of terms per rule is shown in 
Table 5. The values after the mean are standard deviations. In Table 
4 in the last two columns, the presence of the symbol (+) or (-) in a 
cell indicates the mean number of rules discovered by the 
corresponding version of Unordered Rule Set Ant-Miner is 
significantly greater or smaller than the mean number of rules 
discovered by the Ordered Rule List Ant-Miner in the 
corresponding dataset. In Table 5 in the last two columns, the 
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presence of the symbols (+) or (-) in a cell indicates the number of 
terms in the rules discovered by the corresponding version of 
Unordered Rule Set Ant-Miner is significantly greater or smaller 
that the number of terms in the rules discovered by the Ordered Rule 
List Ant-Miner in the corresponding dataset. As in Table 3, a 
difference between two results is considered significant if the 
standard deviation intervals do not overlap. 
 

Table 4 – Mean number of rules discovered without counting 
the default rule 

DataSet Ordered List
Unordered Rules 

Class 
Distribution

Unordered Rules 
Highest Quality

Ljubljana 
breast cancer 6.70 +/- 0.37 6.10 +/- 0.11 (-) 6.00 +/- 0.00 (-)
Wisconsin 
breast cancer 5.60 +/- 0.30 6.50 +/- 0.19 (+) 6.20 +/- 0.15 (+)
Cleveland 
heart disease 14.20 +/- 0.43 11.00 +/- 0.00 (-) 11.00 +/- 0.00 (-)
Dermatology 6.00 +/- 0.00 6.00 +/- 0.00 6.00 +/- 0.00
Hepatitis 2.70 +/- 0.17 3.00 +/- 0.00 (+) 3.00 +/- 0.00 (+)
Tic-tac-toe 4.60 +/- 0.48 6.30 +/- 0.17 (+) 6.30 +/- 0.17 (+)  

 
Table 5 – Average No. of terms per rule 

DataSet Ordered List
Unordered Rules 

Class 
Distribution

Unordered Rules 
Highest Quality

Ljubljana 
breast cancer 1.79 +/- 0.08 1.85 +/- 0.02 1.83 +/- 0.00
Wisconsin 
breast cancer 2.27 +/- 0.09 2.55 +/- 0.08 (+) 2.37 +/- 0.08
Cleveland heart 
disease 2.69 +/- 0.10 2.54 +/- 0.01 (-) 2.53 +/- 0.02 (-)
Dermatology 13.25 +/- 0.14 13.10 +/- 0.07 13.28 +/- 0.11
Hepatitis 3.81 +/- 0.15 3.33 +/- 0.05 (-) 3.33 +/- 0.00 (-)
Tic-tac-toe 1.26 +/- 0.10 1.10 +/- 0.04 (-) 1.10 +/- 0.04 (-)  

 
The two versions of Unordered Rule Set Ant-Miner produced 
significantly fewer rules for the Ljubljana breast cancer and 
Cleveland heart disease datasets. The largest difference was for the 
Cleveland HD dataset, where the original, Ordered Rule List Ant-
Miner produced 14.20 rules on average, whereas the two versions of 
Unordered Rule Set Ant-Miner produced 11, with the number of 
terms per rule being significantly smaller for the rules discovered by 
Unordered Set Ant Miner than for the rules discovered by Ordered 
List Ant-Miner in that dataset. 
Although the two versions of Unordered Rule Set Ant-Miner 
produced a significantly increased number of rules for three out of 
the six data sets (Wisconsin breast cancer, Hepatitis and Tic-tac-
toe), the unordered rule sets discovered for two of those three 
datasets (Hepatitis and Tic-tac-toe) had a significantly smaller 
number of terms per rule than the corresponding rule lists 
discovered by Ordered Rule List Ant-Miner. In any case, overall the 
two versions of Ant-Miner (with Ordered and Unordered Rules) 
obtained rule sets with similar levels of simplicity. 

Interestingly for the Cleveland HD, Dermatology and Hepatitis 
datasets there was no deviation from the mean number of rules 
during the cross validation, for the two versions of Unordered Rule 
Set Ant-Miner. 

5. CONCLUSIONS AND FUTURE 
RESEARCH 
Our experimentation has shown that, overall, the proposed 
Unordered Rule Set Ant-Miner is capable of discovering rules that 
are comparable to those discovered by the original Ant-Miner 
algorithm, in terms of both predictive accuracy and rule set 
simplicity (size of the classification model). In any case, it should be 
recalled that the rules discovered by Unordered Rule Set Ant-Miner 
are more modular than the rules discovered by the original Ordered 
List Ant-Miner. This is the case because in the former kind of 
algorithm each rule can be interpreted independently from the 
others, whereas in the rule list discovered by the original Ant-Miner 
a given rule should be interpreted only in the context of all the 
previous rules in the list. This modularity facilitates the 
interpretation of the rules by the user, an important point in data 
mining [7], and therefore an advantage of the Unordered Rule Set 
Ant-Miner proposed in this paper. 
The results also highlight the importance of the rule conflict 
resolution strategy in the application of discovered unordered rules 
to test data. Further research in this area could be focused on 
developing rule conflict resolution strategies that are more robust 
across a number of datasets.  
In this work the algorithm parameters were not optimised for any 
particular data set, since the focus was on comparing the different 
versions of Ant-Miner, rather than optimizing parameters for each 
data set. Hence, another area of further research might be to attempt 
to determine the optimum parameter settings that would maximise 
the accuracy of the discovered classification rules for each dataset. 
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