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Optimal inspection policy for 3-state systems

monitored by variable sample size control charts

Shaomin Wu∗

School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL, UK

Abstract

This paper presents the expected long-run cost per unit time for a system

monitored by an adaptive control chart with variable sample sizes (VSS):

if the control chart signals that the system is out-of-control, the followed

sampling will be conducted with a larger sample size. The system is supposed

to have three states: in-control, out-of-control, and failed. Two levels of

repair are applied to maintain the system. A minor repair will be conducted

if an assignable cause is confirmed by an inspection and a major repair will be

performed if the system fails. Both the minor and major repairs are assumed

to be perfect. We derive the expected long-run cost per unit time, which

can be used to obtain the optimal inspection policy. Numerical examples

are conducted to validate the derived cost.

Keywords: Quality control maintenance policy control chart repairable system

multi-state system adaptive control chart

1 Introduction

Condition-based maintenance has nowadays been widely applied to monitoring

the performance of important systems for improving their availabilities. Control

∗Suggested Citation: Wu, S. (2011). Optimal inspection policy for three-state systems moni-

tored by variable sample size control charts. The International Journal of Advanced Manufactur-

ing Technology, 55(5-8), 689-697. Contact: s.m.wu@cranfield.ac.uk
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charts are one of the monitoring tools employed in manufacture for the purpose of

removal of assignable causes every time when the process parameter has shifted. As

control charts – similar to other monitoring tools – may produce false signals that

incorrectly indicate the state of the system, optimally designing the parameters

of control charts to minimize the cost incurred by the false signals is a vitally

important topic in the research community of statistical process control. Various

control charts have been considered by researchers. Some examples are as follows.

[1] and [2] separated the X̄-chart into several zones and optimized the chart for

monitoring a process whose deterioration can be classified into two states, in which

one state requires minor repair and the other requires major repair. [3] used the p-

chart to derive thresholds for aviation inspection. [4] derived the expected long-run

costs per unit time for a system monitored by the cumulative count of conforming

chart (CCC chart) where the system is maintained with different levels of inspection

and maintenance. [5] considered economic design of control charts for optimization

of preventive maintenance policies for systems. Other examples of research in this

area can also be seen in [6] and [7].

When control charts are used, a general assumption is that the system being

monitored has three states: in-control, out-of-control, and failure. the in-control

state is the state that the system functions without any problem, the out-of-control

state means that the system has been disrupted by the occurrence of events called

assignable causes but it still functions, and a failure state is the state that the

system stops functioning. The decision variables in designing a control chart can be

the sampling interval between consecutive sampling points, the sample size, or the

control limits. Typical application areas can be found in continuous manufacturing

processes such as electronic item assembly lines.

The parameters in a control chart can be variable, based on which we have two

different kinds of control charts: static and adaptive. A static control chart has

fixed parameters such as sample size n, sampling interval h, lower control limit

(LCL), and upper control limit (UCL). On the other hand, an adaptive control

chart has at least one of its parameters (n, h, LCL and UCL) that is allowed to be

changed based on the values of the sample statistics, which provides information

about the current state of the process. An introduction to control charts can be

found in [8].
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An adaptive control chart can utilise the inspection capacity more effectively

for better process control ([9, 10, 11, 12, 13, 14, 4]). There has been little work in

investigating the potential of an adaptive control chart to monitor a system that has

different repair levels. However, it is vitally important for industrial practitioners

to have tools or formulas that can help them to design maintenance regimes or/and

parameters of in-control charts, especially for adaptive controls charts (as a static

control chart can be seen as a special case of an adaptive control).

This paper presents the formulas of the expected long-run cost per unit time

for a system monitored by an adaptive control chart with variable sample sizes

(VSS), which can ultimately be used to optimize the parameters in the control

chart. The system is assumed to have three states, in-control, out-of-control, and

failed. The adaptive chart has three zones: central, warning, and action zones. If

the quality characteristic (for example, the number of the non-defectives in the np

control chart or the average of the observations in a subgroup for the X̄ control

chart) falls in the central zone, no action will be taken and the next sampling

interval remains the same as its previous one. If the quality characteristic falls

in the warning zones, more products will immediately be sampled. If the quality

characteristic in the new sample falls in the central zone, then no action will be

taken, otherwise, an inspection will be performed. If the quality characteristic falls

in the action zone, then an inspection will immediately be carried out to check

the existence of a possible assignable cause. If the assignable cause is confirmed,

a minor repair will be conducted to remove the assignable cause. If the system

fails, then a major repair will be performed. Both the minor and major repairs are

perfect, that is, they can bring the system back to a good-as-new state.

In this paper, we only consider a 3-state situation, which forms a multistate

reliability system. Research in multistate systems is another interesting topic in

reliability theory and engineering, the reader is referred to [15, 16], and [17] for

more information.

This paper does not specify a typical type of control charts. The result can be

applied to either attribute control charts (e.g, X̄ control charts) or variable control

charts (e.g., np control charts). But the numerical example uses an np control

chart as an example.

This paper is structured as follows. The next section briefly introduces the
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VSS control chart. Section 3 presents assumptions and notation used in the paper.

Section 4 formulates the expected long-run cost per unit time for systems monitored

by the VSS control chart. Section 5 offers numerical examples to perform sensitivity

analysis for various parameter settings. Section 6 concludes the findings of this

paper.

2 VSS control chart

A static control chart has two zones (see Figure 2(a)): central zone Zf0 and action

zones Zf1, whereas an adaptive control chart has three zones (see Figure 2(b)):

central zone Za0, warning zones Za1, and action zones Za2. From a comprehensive

survey in the developments and the designs of adaptive control charts, the reader

is referred to [18].

A VSS control chart uses two different sample sizes alternatively, depending

on the quality characteristic of the process. If the quality characteristic is in the

central state, then a normal sample size n0 is employed. Conversely, if the quality

characteristic falls in the warning zones (see Figure 2(b)), then a larger number

n1(> n0) is used as the next sample size to confirm the existence of the possible

assignable cause.

3 Assumptions and notation

Consider a system with three states: in-control, out-of-control, and failed, we make

the following assumptions.

The first sampling interval is h unit times immediately after the start of the

system and n0 samples are then collected. After that, there are following four

situations.

A1. If the quality characteristic of the n0 samples falls in Za0 (see Figure 2(b)),

then the next sample size will remain the same (ie., n0), and no further action

will be taken.

A2. If the quality characteristic of the n0 samples falls in Za1, then the next

sample size will be n1 with zero time interval, and an inspection will be

4



carried out to check whether the system is in-control or out-of-control. If the

system is confirmed to be out-of-control, then a minor repair is performed,

otherwise, no further action will be taken and the next sampling interval will

be h and the sample size will be n0.

A3. If the quality characteristic of the n0 samples falls in Za2, then an inspection

will be carried out to check the existence of the assignable cause. If the

occurrence is confirmed by the inspection, then a minor repair is performed;

otherwise, no further action will be taken and the next sampling interval will

be h and the sample size will be n0.

A4. If the system fails, then a major repair will be conducted immediately.

The following assumptions are also held.

• Suppose that the system can shift from the in-control state to the out-of-

control state and then to the failure state; but it cannot shift directly from

the in-control state to the failure state without going through the out-of-

control state, see Figure 1. Neither the failure state nor the out-of-control

state can be restored back to the in-control state without any intervention.

• An inspection is assumed to be perfect in that it can reveal whether the

system is in-control or out-of-control. During an inspection, the system does

not stop and carries on running. Once the system has been confirmed to

be in the out-of-control state by the inspection, repairmen will carry out a

minor repair which can bring the system back to a good-as-new state. Once

the system fails, repairmen will conduct a major repair. The major repair

can bring the system back to a good-as-new state.

• For simplicity, times spent on an inspection, a minor or a major repair are

so short compared to the sampling interval that can be neglected. But their

costs are considered.

We also denote

• X1, random time from the beginning of the in-control state to the occurrence

of an assignable cause;
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• f1(x1), pdf. of X1, and F1(x1) = Pr(X1 < x1), cdf. of X1;

• X2, random time from the beginning of the out-of-control state to failure;

• f2(x2), pdf. of X2, and F2(x2) = Pr(X2 < x2), cdf. of X2;

• n0, normal sample size;

• n1, larger sample size;

• h, sampling interval;

• cs, sampling cost per sample;

• ci, inspection cost for a possible assignable cause;

• cr1, cost for a minor repair;

• cr2, cost for a major repair;

• αij, probability that the quality characteristic falls in Zaj (j = 0, 1, 2) when

the system is in the in-control state for i = 0, or in the out-of-control state

for i = 1. It is for the situation when a sample size n0 is applied;

• βij, the probability that the quality characteristic falls in Zaj (j = 0, 1, 2)

when the system is in the in-control state for i = 0, or in the out-of-control

state for i = 1. It is for the situation when a sample size n1 is applied;

• Ta, renewal cycle length;

• Ta1, time to the first minor repair with an assignable cause detected by the

control chart in a sampling interval where a longer sample size is used;

• Ta2, time to the first minor repair with an assignable cause detected by the

out-of-control signal by the control chart when a normal sample size is used;

• Ta3, time to failure; and

• Ca1, Ca2, Ca3, costs incurred within times Ta1, Ta2 and Ta3, respectively.

In the following, we use the renewal reward theorem, which simply states that the

expected long run cost per unit time is the ratio between the expected renewal

cycle cost and expected renewal cycle length [19].
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4 Expected long-run cost per unit time

From the above assumptions, the system can be renewed by either a minor repair

or a major repair, which are listed in Assumptions A2, A3, and A4. As such, these

three cases are listed in the following.

Case 1: From Assumption A2, a minor repair is conducted due to an assignable

cause that is confirmed by a warning appeared in Za1. Namely, the system

is in the out-of-control state and the quality characteristic falls in Za1. In

this case, the warning is signaled when the sample size n1 is applied. There

might be the following three cases.

• When the system is in the out-of-control state, a warning is signaled

during a sampling with the normal sample size n0. Then an additional

sampling with the larger sample size n1 is immediately conducted, and

then an inspection is taken. A minor repair is then conducted.

• The system transits to the out-of-control state when a sampling with

the normal sample size n0 is being conducted. In this case, the signal

from this sampling is false and an additional sampling is conducted.

• The system transits to the out-of-control state when a sampling with

the normal sample size n1 is being conducted.

Case 2: Based on Assumption A3, a minor repair is conducted due to an assignable

cause that is confirmed by a warning appeared in Za2. In this case, the warn-

ing is signaled when the sample size n0 is applied.

Case 3: Based on Assumption A4, the system fails, but before the failure, no

warning has been signaled.

Below, the expected renewal cycle length of the above three cases are denoted by

E(Ta1), E(Ta2), and E(Ta3), respectively.

4.1 Expected renewal cycle length

The expected renewal cycle length is E(Ta) = E(Ta1) +E(Ta2) +E(Ta3), which is

explained as follows.
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The expected time between the start and a minor repair triggered by an in-

spection due to a signal in zone Za1 is given by

E(Ta1) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
αk1−k2−k310 (α11β10)

k3α11(1− β10)H0

∫ H1−h

H1−2h
f1(x1)(1− F2(H0 − x1))dx1

+ α01α
k1−k2−k3
10 (α11β10)

k3+1(1− β10)(H0 + 2h)

∫ H1

H1−h
f1(x1)(1− F2(H0 + 2h− x1))dx1

}
+

∞∑
k2=0

{
α01(1− β10)H2

∫ H2

H2−h
f1(x1)(1− F2(H2 − x1))dx1

}
, (1)

where H0 = k1h + (α01(k2 − 1) + k3 + 1)h, H1 = k2h + α01(k2 − 1)h + h, and

H2 = k2h+ α01k2h+ 2h.

Proof. The description of three terms in equation (1) is given below.

Denote k1 as the total number of sampling intervals in both the in-control and

out-of-control states, k2 as the total number of sampling intervals in an in-control

state, and k3 as the number of false signals followed by true ones in the out-of-

control state. The number k2 includes two scenarios: (1) the quality characteristics

with the normal sample size n0 signal warnings that correctly indicate the system in

the in-control state; and (2) the quality characteristics with the normal sample size

n0 signal warnings that wrongly indicate that the system is in the out-of-control

state, and then further samplings with the larger sample size n1 are conducted.

There are three scenarios for the system transiting from the in-control state to

the out-of-control state. These three states correspond to the following the three

terms in equation(1).

Term 1. The system transits from the in-control state to the out-of-control state

with a normal sample size n0. When the system is in the out-of-control state,

there might be false signals (with a probability of αk1−k2−k310 ) with a normal

sample size n0 and the false signals wrongly indicate that the system is in

the in-control state, or true signals with a larger sample size n1 but followed

by false signals (with a probability of (α11β10)
k3): the true signals correctly

indicate that the system is in the out-of-control state but its following sam-

pling wrongly indicates that the system is in the in-control state. These two
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scenarios make up an event with a probability of (α10)
k1−k2−k3(α11β10)

k3 , and

take time (k1 − k2 + k3)h. Eventually, a correct signal with a normal sample

size is followed by another correct signal with a larger sample size, which has

a probability of α11(1− β10) and a time length of 2h.

Before the system has transited from the in-control state to the out-of-control

state, the time length is (k2 − 1)h+ α01(k2 − 1)h. Hence, the total length is

k1h+(α01(k2−1)+k3 +1)h = H0. The transition occurs in the time interval

((k2 − 1)h+ α01(k2 − 1)h, k2h+ α01(k2 − 1)h), or (H1 − 2h,H1 − h).

Term 2. The system might also transit from the in-control state to the out-of-

control state within a normal sample size after a false signal appears in the

in-control state, but a correct signal follows. This event has a probability

of α01(1 − β10) and a time length of h + h. The time length of the system

in the in-control state is (k2 − 1)h + α01(k2 − 1)h, then the transition from

the in-control state to the out-of-control state occurs in (H1 − h,H1). After

the system has transited to the out-of-control state, the probability of the

appearance of a correct signal is given by αk1−k2−k310 (α11β10)
k3+1α01(1 − β10)

and has a time length of H0 + 2h.

Term 3. When the system is in the in-control state, a false signal appears with a

normal sample size. Then a larger sample size is used and the system transits

to the out-of-control state in this sampling interval, and then a true signal

appears. This event has a probability of α01(1− β10).

The expected time between the start and a minor repair triggered by an in-

spection due to a signal in zone Za2 is given by

E(Ta2) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
αk1−k2−k310 (α11β10)

k3α12(H0 − h)

∫ H1−h

H1−2h
f1(x1)(1− F2(H0 − h− x1))dx1

}
.

(2)

Proof. The proof is similar to that of E(Ta1), apart from the appearance of the

out-of-control signals in a longer interval h in this case.

The expected time between the start and a major repair is given by
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E(Ta3) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

αk1−k2−k310 αk311β
k3
10

{∫ H0−h

H0−2h

∫ τk1k2k3

H1−2h
xf1(x1)f2(x− x1)dx1dx

+ α11

∫ H0

H0−h

∫ τk1k2k3

H1−2h
xf1(x1)f2(x− x1)dx1dx

+

∫ H0−h

H0−2h

∫ τ
′
k1k2k3

H1−h
xf1(x1)f2(x− x1)dx1dx

+ α11

∫ H0

H0−h

∫ τ
′
k1k2k3

H1−h
xf1(x1)f2(x− x1)dx1dx

}
, (3)

where τk1k2k3 =

{
H1 − h if k1 − k2 6= 0

x if k1 − k2 = 0,
and τ

′

k1k2k3
=

{
H1 if k1 − k2 6= 0

x if k1 − k2 = 0.

Proof. The system might transit from the in-control state to the out-of-control

state either in a sampling interval using a normal sample size or in a sampling

interval using a larger sample size, and the system can then fail in both sam-

pling intervals, which creates four scenarios. The first two terms in equation (3)

correspond to the scenarios when the transition from the in-control state to the

out-of-control state occurs in a sampling interval when a normal sample size n0

is conducted, and they correspond to the scenarios when the transition from the

in-control state to the out-of-control state occurs in a sampling interval when a

larger sample size n1 is conducted.

The first term in equation (3) is the scenario when the two transitions (i.e.,

from the in-control state to the out-of-control state and then fail) occur in longer

sampling intervals. The second term means that a correct signal appears in a longer

sampling interval h (with a probability β11) followed by a shorter sampling interval

h for confirmation, but the system fails within this h. The third term means that

the transition from the in-control state to the out-of-control state occurs (with a

probability β01 followed by a shorter sampling interval). The last term means that

the two scenarios occur in short sampling intervals.

4.2 Expected renewal cycle cost

The costs incurred during periods E(Tf1), E(Tf2), and E(Tf3) are derived in the

following.
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E(Ca1) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
αk1−k2−k310 (α11β10)

k3α11(1− β10)
∫ H1−h

H1−2h
C0f1(x1)(1− F2(H0 − x1))dx1

+ α01α
k1−k2−k3
10 αk3+1

11 βk3+1
10 (1− β10)

∫ H1

H1−h
C1f1(x1)(1− F2(H0 + 2h− x1))dx1

}
+

∞∑
k2=0

{
α01(1− β10)

∫ H2

H2−h
C2f1(x1)(1− F2(H2 − x1))dx1

}
, (4)

where C0 = k1n0cs+(α01(k2−1)+k3+1)n1cs+((α02+α01(1−β00))(k2−1)+1)ci+cr1,

C1 = C0 + (n0 + n1)cs, and C2 = k2n0cs +α01k2n1cs + (n0 + n1)cs + (α02 +α01(1−
β00))k2ci + ci + cr1.

Proof. After the system transited from the in-control state to the out-of-control

state in a sampling interval when a normal sample size n0 is conducted, there

will be two possible scenarios before two warning signals appear consecutively in

two sampling intervals with a normal sample size n0 and a larger sample size

n1, respectively. The first scenario is that incorrect signals (with a probability of

β10) appears, the second scenario is that a correct signal followed by an incorrect

signal (with a probability of β11β10). These two scenarios make up an event with

a probability of (β10)
k1−k2−k3(β11β10)

k3β11(1− β10), and the event incurs sampling

cost (k1 − k2 + 1)ncs + (k3 + 1)ncs. Before the system has transited from the

in-control state to the out-of-control state, the sampling cost is k2ncs + β01k2ncs,

inspection cost (β02 + β01(1 − β00)k2 + 1)ci, and cost cr1 on minor repair. Hence,

the sub-total cost is C0.

The system might also transit from the in-control state to the out-of-control

state within a interval when a larger sample n1 is conducted after a false signal

appear in the in-control state. This event incurs cost ncs + ci + cr1. The cost

incurred before the transition is k2ncs + β01k2ncs + β01β01k2ci. The sub-total cost

is C1.

A similar explanation to the third term in equation (4) can be given.

Similarly,

E(Ca2) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
αk1−k2−k310 (α11β10)

k3α12

∫ H1−h

H1−2h
C3f1(x1)(1− F2(H0 − h− x1))dx1

}
,

(5)
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where C3 = C0 − n1cs.

And finally, we have

E(Ca3) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

αk1−k2−k310 αk311β
k3
10

{∫ H0−h

H0−2h

∫ τk1k2k3

H1−2h
C4f1(x1)f2(x− x1)dx1dx

+ α11

∫ H0

H0−h

∫ τk1k2k3

H1−2h
C5f1(x1)f2(x− x1)dx1dx

+

∫ H0−h

H0−2h

∫ τ
′
k1k2k3

H1−h
C6f1(x1)f2(x− x1)dx1dx

+ α11

∫ H0

H0−h

∫ τ
′
k1k2k3

H1−h
C7f1(x1)f2(x− x1)dx1dx

}
, (6)

where C4 = k1n0cs+(α01(k2−1)+k3)n1cs−n0cs+((α02+α01(1−β00))(k2−1))ci+cr2,

C5 = C4 + n0cs + ci, C6 = C4, and C7 = C5.

Hence, the expected long-run cost per unit time is given by

Ea(T,C) =
E(Ca1) + E(Ca2) + E(Ca3)

E(Ta1) + E(Ta2) + E(Ta3)
. (7)

Ea(T,C) in equation (7) can be minimized to obtain the optimal parameters

such as αij and βij, which is equivalent to optimize inspection policy for 3-state

systems monitored by the adaptive control charts.

5 A data example

In this section, we conduct use one numerical data example to investigate th im-

pacts of the cost parameters, assuming F1(x1) = 1− exp(−( x1
300

)2.5), and F2(x2) =

1− exp(−( x2
200

)4).

We also assume the parameter values in Table 1 for the numerical example

where an np chart is used.

Table 2 indicates the results of the minimum expected long-run cost per unit

time. For example, the optimum n1 is 144 when n0 = 80. This ensures the expected

long-run cost per unit time to be minimal, or Ea(T,C) = 5.87. Comparing all of

the costs Ea(T,C), it can be found that the expected long-run cost per unit time

reaches the minimal Ea(T,C) = 2.276 when n0 = 130 and n1 = 131. We also

notice that the ratio n1

n0
becomes smaller when n0 increases.
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5.1 Sampling cost cs

If cs changes from 0.1 to 9.1 with step 1, the optimal n0 and n1 will change from

125 and 137 to 95 and 104 as shown in Table 3. It can be seen that Ea(T,C)

changes from 2.285 to 11.761 when cs changes from 0.1 to 9.1.

5.2 Inspection cost ci

If ci changes from 10 to 460, the optimal n0 and n1 will change from 140 and 154

to 120 and 132 as shown in Table 4. It is noticed that the sample sizes n0 and n1

remain unchanged when ci changes in intervals (40,90), (100,110), or (160,460).

5.3 Minor repair cost cr1

If cr1 changes from 50 to 4500, the optimal n0 and n1 changes as shown in Table 5.

It is noticed that the optimum samples n0 and n1 do not change dramatically

when cr1 changes from 50 to 4500: the optimum n0 and n1 change from 130 and

143 to 110 and 121, respectively. This suggests that parameter cr1 is not sensitive

to Ea(T,C) when cr1 is in intervals (50,1500) or (2000,4000). We also notice that

Ea(T,C) has a large change, from 0.867 to 14.862 when cr1 changes from 50 to

4500.

It is noticed that in the above three situations, optimum sample sizes are moving

in an opposite direction to that of the changes of costs, cs, ci, and cr1: the optimum

sample sizes become smaller when those costs become larger.

5.4 Major repair cost cr2

If cr2 changes from 500 to 10000, the optimal n0 and n1 change as shown in Table

6.

When the major repair cr2 increases, the optimum sample sizes increase. It is

noticed that the optimum sample sizes n0 and n1 remain their respective values,

130 and 143, unchanged, when cr2 changes from 4000 to 10000. The optimum

sample sizes n0 and n1 change when cr2 changes from 500 to 1000. This suggests

that the parameter cr2 is not sensitive to the cost Ea(T,C) when cr2 is in the

interval (4000,1000), but it is sensitive to the cost Ea(T,C) when cr2 changes from
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500 to 1000. In other words, parameter cr2 is not sensitive to cost Ea(T,C) when

cr2 is bigger, whereas cr2 is sensitive to the cost Ea(T,C) when it is smaller. It is

also noticed that Ea(T,C) has only a slight change, from 1.986 to 2.516, when cr2

conducts a big change, from 500 to 10000.

5.5 Discussion

From the above analysis, one can see that in some cases, the optimum sample sizes

n0 and n1 remain unchanged although cost may change.

It is also noticed that the sampling cost is the most sensitive one impacting

Ea(T,C). For cost cr2, it is interesting to notice that the cost Ea(T,C) changes in

different directions from the above three costs: ci, cs and cr1: the optimum sample

sizes increases when cost cr2 on major repair increases, and the optimum sample

sizes decreases when cost cr2 on major repair increases.

6 Concluding remarks

In this paper, the expected long-run cost per unit time is derived for the situation

where adaptive control charts with variable sample size are applied to monitor a

system with three states: in-control, out-of-control and failure states. This cost

can be minimized to obtain the optimal parameters of the control charts. We have

also used one data example to investigate the impact of each cost to the expected

long-run cost per unit time. It is found that the sample sizes become smaller when

any of the individual cost (including sampling cost, inspection cost, and cost on

minor repair) increases. However, the sample sizes become larger when cost on

major repair increases. Among the four costs, sampling cost is the most sensitive

one impacting the expected long-run cost per unit time.

In practice, it is often found that estimating real costs incurred by sampling,

inspection or repair is not easy. The sensitivity analysis on the parameters suggests

that practitioners can obtain optimum solutions although costs estimated may fall

in intervals, instead of precise values.

Our further work will be focused on investigating the scenario when different

types of maintenance models (see [20], for example) are considered.
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In− control state //
mm

major repair

rr minor repair

Out− of − control state // Failed state

Figure 1: Transitions between the states of the system (where the dash line repre-

sents repair type and the solid line represents transition).

(a) Static control chart (b) Adaptive control chart

Figure 2: Control zones in the control charts.

Table 1: Parameters used in the numerical example.

α0 α1 β00 β01 β02 β10 β11 β12 cs ci cr1 cr2 n

0.98 0.1 0.833 0.147 0.02 0.02 0.08 0.9 1 100 500 5000 100
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Table 2: Ea(T,C) with values of n0 and n1.

n0 n1 Ea(T,C) n0 n1 Ea(T,C)

80 144 5.870 120 121 2.293

85 140 4.592 125 126 2.278

90 139 3.679 130 131 2.276

95 133 3.088 135 136 2.283

100 130 2.731 140 141 2.295

105 121 2.521 145 146 2.314

110 119 2.399 145 147 2.315

115 116 2.329 150 151 2.337

Table 3: The expected long-run cost per unit time with cs, n0 and n1.

cs n0 n1 Ea(T,C) cs n0 n1 Ea(T,C)

0.1 125 137 2.285 5.1 100 110 7.818

1.1 115 126 3.497 6.1 100 110 8.832

2.1 110 121 4.635 7.1 100 110 9.846

3.1 105 115 5.720 8.1 95 104 10.805

4.1 105 115 6.786 9.1 95 104 11.761

Table 4: The expected long-run cost per unit time with ci, n0 and n1.

ci n0 n1 Ea(T,C) ci n0 n1 Ea(T,C)

10 140 154 1.964 100 125 137 2.286

20 135 148 2.002 110 125 137 2.319

30 135 148 2.039 160 120 132 2.495

40 135 148 2.075 210 120 132 2.658

50 130 143 2.111 260 120 132 2.822

60 130 143 2.146 310 120 132 2.985

70 130 143 2.181 360 120 132 3.149

80 130 143 2.216 410 120 132 3.312

90 130 143 2.251 460 120 132 3.476
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Table 5: The expected long-run cost per unit time with cr1, n0 and n1.

cr1 n0 n1 Ea(T,C) cr1 n0 n1 Ea(T,C)

50 130 143 0.867 900 130 143 3.547

100 130 143 1.025 1000 130 143 3.862

200 130 143 1.340 1500 130 143 5.438

300 130 143 1.656 2000 120 132 7.014

400 130 143 1.971 2500 120 132 8.585

500 130 143 2.286 3000 120 132 10.157

600 130 143 2.601 3500 120 132 11.729

700 130 143 2.916 4000 120 132 13.301

800 130 143 3.232 4500 110 121 14.862

Table 6: The expected long-run cost per unit time with cr2, n0 and n1.

cr2 n0 n1 Ea(T,C) cr2 n0 n1 Ea(T,C)

500 90 125 1.986 5500 130 143 2.309

1000 110 121 2.064 6000 130 143 2.332

1500 120 132 2.104 6500 130 143 2.355

2000 120 132 2.132 7000 130 143 2.378

2500 120 132 2.160 7500 130 143 2.401

3000 120 132 2.187 8000 130 143 2.424

3500 120 132 2.215 8500 130 143 2.447

4000 130 143 2.241 9000 130 143 2.470

4500 130 143 2.264 9500 130 143 2.493

5000 130 143 2.286 10000 130 143 2.516
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