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Abstract

A learning context memory consisting of two main parts is
presented. The first part performs lossy data compression,
keeping the amount of stored data at a minimum by combin-
ing similar context attributes — the compression rate for the
presented GPS data is 150:1 on average. The resulting data is
stored in an appropriate data structure highlighting the level
of compression. Elements with a high level of compression
are used in the second part to form the start and end points
of episodes capturing common activity consisting of consec-
utive events. The context memory is used to investigate how
little context data can be stored containing still enough infor-
mation to capture regular human activity.

Introduction

Context-aware or, perhaps more correctly, context-sensitive
systems are an important aspect of Ubiquitous computing,
where Ubiquitous computing, Pervasive computing, and
Ambient Intelligence all refer in some way to addressing
similar goals based on Mark Weiser’s vision that comput-
ers should be perfectly integrated in all parts of our lives.
Weiser believed that devices should remain largely invisi-
ble and the user would interact with them often without re-
alising (Weiser 1991); if there are differences of emphasis
within this community, they mostly lie in details such as the
extent of invisibility. The definition of context we use is by
Abowd and Dey:

Context is any information that can be used to charac-
terise the situation of an entity. An entity is a person,
place, or object that is considered relevant to the in-
teraction between a user and an application, including
the user and applications themselves (Dey & Abowd
1999).

By context-awareness we understand the capability of a sys-
tem to recognise changes in its environment and adapt its be-
haviour accordingly, for example movement sensors which
turn the light on when someone enters the room. However,
there is a very large step between collecting values that de-
scribe easily measured aspects of the environment, such as
location or ambient temperature, and determining a user’s
current activity and resource needs. In order to perform this
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step one needs to solve the problem of how to capture in-
formation about the environment and interpret it in terms
that accurately reflect human perception of tasks and needs.
Additionally, environmental data is potentially of very high
dimensionality, raising another challenge in terms of com-
plexity and data storage, especially as such systems need to
be made available on small, portable, resource-constrained
devices, e.g. mobile phones or PDAs.

This paper presents an online learning context memory,
named Context-Aware Memory Structure (CAMS). Off the
shelf sensors, e.g. Wifi, Bluetooth, GPS, and Time, are used
by CAMS to acquire low level context of its user, which
is processed to construct a context memory reflecting that
user’s regular activity. Context memory is a mechanism for
retaining and recalling interesting and relevant past expe-
rience, consult (Mohr, Timmis, & Ryan 2005) for a more
detailed description. CAMS can provide context-aware sys-
tems with high level context information of current activities
and historic context, which helps to minimise partial loss of
sensor data.

Context-Aware Memory Structure

CAMS can be seen as middleware sitting between sensors
and context-aware applications, requiring it to bridge the gap
between collecting values that describe easily measured as-
pects of the environment provided by sensors, such as loca-
tion or ambient temperature, and determining a user’s cur-
rent activity. CAMS bridges this gap by learning its user’s
regular activity enabling it to recognise familiar situations;
as human activity is inherently complex the learning process
is non-trivial. In order to keep the complexity at a manage-
able level, the following design decisions have been made:

e Online learning: Learning rate can dynamically be
changed to cope with context shifts. No temporary stor-
age for training purposes.

e Lossy data compression: Storing all past context is in-
tractable, therefore the amount of stored context data
needs to be kept to a minimum; by removing duplicate
or very closely related context data and ‘forgetting’ po-
tentially obsolete context data.

e Data representation: The context-attributes are stored
more or less in their original format, allowing historic
context to be transparently used alongside current context



and as a user specific memory is often created over an ex-
tensive period of time it is valuable and therefore needs to
be readable by new or improved algorithms — all these
are difficult to achieve by Neural Networks where the in-
formation is embedded in the weights.

o Layered design: The system is designed in a layered fash-
ion, keeping the complexity of each layer at a manageable
level. In addition it allows the interface of the top level to
be easily adaptable to the requirements of a wide range of
context-aware applications.

e Episodic memory: Relationships between consecutive
context attributes need to be highlighted, as they play an
important part in capturing human activity made up of
consecutive events.

o Ubiquitous environment: The system needs to be made
available on small, portable, resource-constrained devices
and it needs to work in a range of networking environ-
ments with the real possibility that it must spend a pro-
portion of time working with no connectivity.

o Every day environments: In order for the system to diffuse
into every day environments, the user should very rarely
be required to be an active part of the system. This is
achieved by making use of unsupervised learning.

The input to CAMS is sensor data, which is provided in
the form of an attribute vector,

< Location.GPS = (67.2983, 4.06965),
Wlan 0A:40:C3:B1:01:43 "WlanHome",
Time = 19:30 , DayOfWeek = 2 >

which contains attributes (which can appear in an arbitrary
order) along with the class they belong to.

The main components of CAMS are the “Snapshot Mem-
ory” and “Episodic Memory”. These are where the context
processing and context storage takes place. A detailed de-
scription of both components is given below.

Snapshot memory

The snapshot memory processes and stores context at-
tributes from context input vectors. Attributes are stored
in Artificial Recognition Balls ! (ARBs), which describe a
certain region around the context attribute —in the case of
2D GPS co-ordinates they are a circle— and enable CAMS
to perform data compression by eliminating the need for
repetition. For example, a place of interest can be repre-
sented by a single ARB instead of all individual GPS co-
ordinates which fall within this region; every ARB has a
resource level R associated with it, being an indicator for
how frequently it recognises context attributes. The algo-
rithm used in CAMS is based on the principles of unsu-
pervised and reinforcement learning. Unsupervised learn-
ing allows us to construct a system which can cluster input
data without any prior knowledge about the structure of ev-
ery class. Reinforcement learning requires feedback from a
trainer. However, an explicit trainer is not desirable in most
context-aware systems, therefore an ARB receives positive

'Concept derived from Artificial Immune Systems (Neal 2003)

feedback (stimulation) when context attributes fall within a
certain distance from the centre, resulting in an increase in
its resource level. Negative feedback is introduced by the
notion of ‘forgetting’, which gradually decays all resource
levels. For example, locations a user visits often have their
resource level reduced by a decay, but every visit stimulates
it again, which enables these locations to remain in memory.
Obsolete data does not undergo any new stimulation and so
is eventually removed from the system.

For context classes with continues attribute values, for ex-
ample GPS co-ordinates, the resource level affects the recog-
nition distance of an ARB, the distance is initially large but
decreases when the resource level rises, allowing areas fre-
quently visited by the user to be represented in CAMS with
a finer granularity. If these areas become less frequently vis-
ited the decay decreases the granularity again. For context
classes with discrete attribute values, for example a Mac-
address of a Wlan access point, the recognition distance is
not affected by the resource level — it is either 0 or 1. In
both cases the resource level reflects how frequently an ARB
is recognising context attributes. The stimulation and decay
mechanisms enable the smoothing of context data and allow
for a gradual context shift — a sudden shift is not desir-
able, as it puts too much emphasis on one off or irregular
events. In addition, the decay mechanism controls the mini-
mum amount of time an attribute remains in the system.

All ARBs are stored in an n-dimensional network struc-
ture, where each dimension represents a different class of
attributes, for example Time indicates that 19:30 be-
longs to the dimension ‘time’. ARBs from different di-
mensions which appear in the same context are connected
by cross-dimensional-links, for the example attribute vec-
tor a cross-dimensional-link would be created between the
Location.GPS and the Wlan attribute, as well as between
all the other attributes. These links exploit the information
present in the relationship between context attributes. Fur-
thermore, they have a resource level L associated with them
which reflects the likelihood that these attributes occur in
the same context. The resource level L undergoes stimula-
tion and decay mechanisms similar to those of the resource
level R.

We now provide a more formal description of the snapshot
memory, using the formalism of metric spaces and Hoare
triples. All attributes in an incoming attribute vector are
stored in their corresponding Class set within the snapshot
memory. Every class has a metric space associated, a set
of ARBs, a stimulation function, and a decay function. A
metric space is a 2-tuple (X, d), where X is a set containing
all possible elements of the space and d is a metric defined
over X. An ARB combines multiple context attributes into
one, by performing lossy data compression. This is done by
representing all elements which fall within a certain region
around the centre of the ARB, eliminating the need for rep-
etition. An ARB is represented by an n-tuple, and all ARBs
belonging to a certain class are stored in the corresponding
set Class(class). An ARB is an ordered 4-tuple contain-
ing a centre a, a radius d, a resource level R, and a counter
count. The centre a and the radius § define an open ball
B(a, ). The radius ¢ depends on the resource level R and



their relation can be described as: 6 = 0,4 — k * R, where
Omaz 1S the maximum radius and £ is a scaling constant. As
the resource level R increases the radius § decreases. The
variable count keeps track of how many observations have
been combined in the ARB. The specific implementations of
the stimulation and the decay functions depend on the class
they belong to. All ARBs behave according to the following
pre and post conditions, where all non dynamic ARBs omit
0

pre: {ARB(a,d, R, count)}

stimulation
post : {ARB'(a/,8',R',count’) N d = a N § <
§ N R >R A count’ = count+ 1}

pre: {ARB(a,d, R, count)}

decay
post : {ARB'(da/,8', R ,count’) N d = a N § >
d N R < R A count' = count}

The snapshot memory can only provide context-aware
systems with a time slice (snapshot) of context, it cannot
provide consecutive connections between them. These con-
nections are captured by the Episodic Memory described
next.

Episodic Memory

To capture a significant part of human activity the connec-

tions between consecutive events are essential, for example
‘going to work’ involves leaving home and moving along
some streets in order to get to work. The snapshot mem-
ory is able to capture every individual part of the journey,
but not the whole journey. As the user is most likely to
spend more time at home and at work than at every other
point of the journey, the points "home” and “work” have a
higher resource level R. Once R reaches a predefined level,
the points "home” and “work” are passed from the Snapshot
Memory to the Episodic Memory, which captures all indi-
vidual attribute values between them. The division of the
memory mechanism into Snapshot and Episodic Memory is
essential for keeping the complexity of the search space at
a manageable level. Without this division all attributes and
connections between them would have to be stored in a di-
rected graph in order to detect and capture meaningful con-
secutive events — which would result in an NP complete
search problem. Instead, only the attribute vectors between
ARBs with a high resource level need to be stored; after the
validation of an episode (explained below) this is reduced to
storing only references to ARBs recognising the attributes
in these vectors. The ARBs with a high resource level R
passed on from the Snapshot Memory are stored in a list.
Once an ARB from this list is encountered all attribute vec-
tors are recorded until another or the same ARB from the list
is encountered. The first ARB forms the start point and the
second one forms the end point of the episode; the attributes
encountered in between form the trace. If the number of
attributes encountered rises above a predefined limit before
the second ARB from the list is encountered, the creation
of this particular episode is stopped to avoid the creation of
infinite episodes and then the episode is deleted.

w T alidate Episodes <3> J ¢

Start Wifi: eduroam
End Wifi: SMC

Episode name:

an:-m work to home
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Accept | Reject | Later
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Figure 1: Episode validation

The user is required to name and validate a preliminary
episode only once it has been created successfully, bridg-
ing the gap between the data representation within CAMS
and the real world meaning. Ideally, in order for the system
to diffuse into every day environments, the user should not
be required to be an active part of the system, but automatic
naming, for example through a priori entered domain knowl-
edge, is error prone. We feel the amount of work required
by the user is acceptable, as only those episodes which occur
frequently are presented. Figure 1 shows the screen which is
presented to the user to validate an episode. In the upper text
field the start and end point of an episode are presented and
by clicking on the “Trace” button a map showing the com-
plete trace is opened. In order to accept an episode a name
needs to be supplied.

An episode is an ordered 3-tuple containing a start ARB,
an end ARB and an ordered list of all context vectors en-
countered between start and end named trace. As part
of our ongoing research we are investigating how to substi-
tute the trace, consisting of GPS co-ordinates, between the
start and end ARB by a trace consisting of ARBs achiev-
ing uniformity in the data representation. Picking the ARBs
recognising the GPS co-ordinates in the trace is not suffi-
cient, as the difference in stimulation between these ARBs
and the start and end ARBs is too large at the time the
episodes are created. The ARBs in the new trace would have
detection radii which are too large and therefore not capable
of representing the trace with enough granularity. To over-
come this problem we are running experiments where the



ARBs detected by the GPS co-ordinates in the trace un-
dergo a higher stimulation than the other ARBs in CAMS.

Related Work

A range of systems exist for storing users’ context and try-

ing to predict their regular activity based on that data. Three
of them are briefly described and some differences to CAMS
are highlighted. In the work undertaken in (Patterson et al.
2003), as part of the ”Activity Compass”, a system able to
track and predict user movement, either consisting of walk-
ing, driving by car or taking a bus is developed. This is
done by combining historic context data with general com-
monsense knowledge of real-world constraints in order to
infer high-level activity. Graph-constrained particle filters
are used to integrate information from street maps, includ-
ing where bus stops or car parks are located. A lot of prior
knowledge is required about the area the system is being
used in, as it relies on a detailed graph representation of
the area; not being able to learn about new bus stops or car
parks automatically, but speeding up the learning process
of the user’s movements and not requiring the user to pro-
vide feedback. The graph has a set of vertices and a set of
directed edges, where the edges correspond to straight sec-
tions of roads and foot paths and the vertices are placed in
the graph to represent either an intersection, or to accurately
model a curved road. This model is not suitable to repre-
sent areas with a lot of curvy roads. The context input to the
system is currently restricted to GPS signals and therefore
cannot detect indoor movements. Despite sharing a number
of properties, it differs significantly from CAMS, for exam-
ple in CAMS prior knowledge about the area is not required
and a division between frequently and less frequently visited
locations is made in terms of data representation.

Mayrhofer et al. (Rene Mayerhofer, Harald Radi, & Alois
Ferscha 2003) have developed a framework trying to predict
its user’s activity in order to be able to adapt to her needs in
advance. It consists of four major steps, the first performs
feature extraction turning raw sensor data into usable con-
text attributes, the second classifies the input data, the third
labels the set of context attributes to give them a real world
meaning, and the fourth predicts the user’s future context. A
strong emphasis is put on the exchangeability of individual
components by providing well defined interfaces. The pre-
diction can be performed by a range of algorithms, including
the Growing Neural Gas algorithm. The user is required to
give the context attributes a real world meaning, but cannot
provide a meaning to the predicted situations. In CAMS, on
the other hand, labelling gives episodes a real-world mean-
ing.

The work presented above cannot be regarded as context
memory structures, as it is not possible to retrieve context
attributes in their original format once processed. In the
work by Mayrhofer et al. they are for instance embedded in
weights of a neural network. An example of a true context
memory structure is the Context Cube (Lonnie D. Harvel
et al. 2004), it is an n-dimensional data abstraction which
is an extension to SQL databases. Context attributes are
stored in the appropriate class, as well as the relationships
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Figure 2: Wlan scans
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days | scans Wilan BT GPS
Userl 32 70711 183978 | 201486 | 23985
total 254 diff. | 430 diff.
Userl 254 430 105
CAMS
User2 34 | 112827 | 105800 23447 2794
total 435 diff. | 919 diff.
User2 435 919 37
CAMS

Table 1: Scans and CAMS compression for two users

between the attributes. This is similar to the Snapshot Mem-
ory in CAMS, but no mechanisms are present for assigning
resource levels to context attributes or dynamically changing
the granularity of stored context attributes.

Results

Two CAMS prototypes running on HP h2210 Linux hand-
helds are deployed, continuously scanning their user’s con-
text. The gathered context data consists of GPS, Wlan, Blue-
tooth, week day, and time readings. Table 1 shows the distri-
bution of the scanning results of two users over a period of
32 and 34 days respectively. User 1 performed 70711 scans
during which 183978 Wlan, 201486 Bluetooth, and 23985
GPS readings where taken. The Wlan readings where taken
from 254 different devices and the Bluetooth readings where
taken from 430 different ones — these values are equivalent
to the values for CAMS, as Wlan and Bluetooth are rep-
resented as discrete attributes. User 2 performed 112827
scans during which 105800 Wlan, 23447 Bluetooth, and
2794 GPS readings where taken. The Wlan readings where
taken from 435 different devices and the Bluetooth readings
where taken from 919 different ones. Figure 2 shows a dia-
gram presenting the number of times a particular Wlan de-
vice was scanned. From the diagram we can see that a Wlan
device was either scanned very rarely or very often, backing
up the claim we made in the “Episodic Memory” subsection
that certain points, such as home and work, can be distin-
guished from other points based on the frequency they are
encountered. The diagram for the Bluetooth devices shows
very similar curves and is therefore omitted.

Figures 4 and 5 show the size of the ARBs for the GPS
class after 6 days and after 34 days respectively from the
data recorded by user 2, for comparison figure 3 shows all
GPS points recored by the same user. After 6 days 13 ARBs
have been created and after 34 days 37 ARBs have been cre-
ated. Out off the created ARBs after 6 days 4 ARBs and
after 34 days 12 ARBs represent frequently visited areas at
and around user 2’s home and office with a fine granularity.

Conclusions

Context memory and user profiling systems are essential
for recognising familiar situations and activities. But their
creation is non trivial as context information is very numer-
ous and human activity is inherently complex. In order to

Figure 5: CAMS after 34 days



deal with these problems a Context-aware Memory Struc-
ture (CAMS) is proposed which is capable of performing
lossy context data compression, determining relevant con-
text attributes, and creating Episodes capturing human activ-
ity consisting of consecutive events. The division of CAMS
into Snapshot Memory and Episodic Memory is essential for
keeping the complexity of the system at an acceptable level.
Context prediction is partly already present in CAMS in par-
ticular in the Episodic Memory, therefore a possible applica-
tion using CAMS is a context predictor using resource levels
included in the snapshot and episodic memory to calculate
probabilities of future context, enabling applications to be
pro-active. Promising results have been presented, but more
experiments involving a larger number of users and addi-
tional context classes, such as accurate indoor location, are
needed to evaluate CAMS further.
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