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Garbage Collection Should Be Lifetime Aware

Richard Jones and Chris Ryder
{R E. Jones, C. Ryder }@ent . ac. uk

Computing Laboratory, University of Kent, Canterbury, CM2F, UK

Abstract. We argue that garbage collection should be more closelytbiexb-
ject demographics. We show that this behaviour is suffiiefistinctive to make
exploitation feasible and describe a novel GC frameworkekploits object life-
time analysis yet tolerates imprecision. We argue for fitollectors based on
combinations of approximate analyses and dynamic sampling

1 Introduction

Currently, much GC effort is, in a sense, wasted on prevgrtia premature reclama-
tion of live objects. it has long been known that programsijéat demographics’ are
not random, but objects are allocated, interact and die iiticpéar patterns. We argue
that understanding and exploiting this regularity offérs key to reducing tracing cost
by concentrating GC effort on those regions of the heap irckvféw objects are live.
Neither generational nor concurrent GC provides a goodisalto the huge heaps ex-
pected in the near future. Generational collection adésessly ‘youthful’ objects: it
handles very new, ‘middle-aged’ and ‘immortal’ objects gpoConcurrent collectors
cannot reclaim any space until their trace of live objectisiplete.

Lifetime Aware GC, LA, is a new paradigm for allocation andlection. Its goal
is to use object death-time predictions to lay out objecthétheap in death-order and,
at each collection, to scavenge only those objects expectbdve died. LA is thus
distinct from both generational [21] and older-first cottws [20].

Two requirements must be met in order to construct an LA ctileFirst, it must be
possible to identify good object death-time predictorgalty, such predictions would
be perfect but we argue that such accuracy is neither pessibinecessary. Second, we
require a GC architecture that can exploit these predistmm tolerate prediction errors
in an efficient manner. Below we describe how we acquire gaedigtors, describe in
detail the LACE architecture and outline future directiofshis project.

Suppose the object allocator has very good (but not nedlysgarfect) advice on
the expected lifetime of an object that it is about to allecetow could it take advantage
of such advice? Let us consider a horticultural analogy.

Some farmers grow a variety of crops. Each crop has a different expected ripening
time (i.e. from planting to harvesting) but this may vary between plants according to
environment, genetics, etc.

Full-Collection farmers walk up and down a single greenhouse, harvesting any ripe
plants, and planting new ones. Some FC farmers may move immature specimens in
order to get a contiguous bed for new planting. All FC farmers do a lot of walking.



The Generational farmer has 2 greenhouses. She plants seeds of every variety in
a single nursery greenhouse. When that is full, she harvests any ripe plants but also
has to replant any longer ripening varieties in her mature greenhouse. Occasionally, she
harvests the mature greenhouse as well, in the same way as the FC farmer. She does a
lot of replanting (and walking in the mature greenhouse).

The smart Lifetime-Aware (LA) farmer builds several greenhouses. All the crops in a
single greenhouse are expected to have the same ripening time. Each greenhouse has
a number of beds. The farmer places a label in each bed indicating when he expects to
harvest that bed (i.e. the ripening time plus some slack). He only plants seeds in a bed if
the label allows time for them to ripen; otherwise he prepares a new bed. The LA farmer
only ever harvests beds with expired labels. He never has to replant a crop of a variety
expected not to be ripe, although very occasionally he might have to replant an unripe
plant to another greenhouse with a different ripening time. He does not walk much.

Such a scenario can be modelled by modifying the Beltway G@éwork [2],
a generalisation of region-based, copying GC (we descrédeBy in more detail in
Section 5). Greenhouses are implemented by Beltbelts beds byincrementsand
expected ripening times by the expected lifetimes of objeBelts therefore model
expected lifetimes rather than generations. Tibedt is both an allocation abstraction
and a characterisation of a collection policy (e.g. whendlect) rather than just a
mechanism for delaying collection (c.f. generation). Nimstead of collecting the first
increment from théowestbelt (as per Beltway), we collect expired increments in Bxpi
date order fromall belts.

2 Related work

The requirements made of the GC by applications running fierdnt environments

vary in the priorities they assign to different performangetrics but, even within a sin-
gle domain of interest, the memory behaviour of applicatioray differ substantially.

No ‘one size fits all’ solution is possible even within a sghvironment [7, 16]. The

simplest forms of regional organisation distinguish otgdxy their age or by their mor-

tality. Large objects are commonly allocated into a sepaaeta. Objects known to the
JVM implementer to be immortal may be kept in an immortal 4i¢a

Generational GC segregates objects by age, with differeméigtions collected at
different frequencies (younger more frequently). The gigte underlying generational
collection is to concentrate effort on reclaiming thoseeolg most likely to be garbage.
Variations on generational collection include older-ficstlection [20, 19, 8] and the
Beltway framework [2].

Most approaches to tailoring the GC to the behaviour of théatouare based on
generic heuristics, i.e. the same heuristic is applied ltolgects, regardless of their
class or the point in the program at which they were allocafed example, gener-
ational GCs seek to exploit the weak generational hypathisit most objects die
young by first allocatingall objects in a nursery. Adaptive tenuring techniques and
hot-swapping collectors also address only ‘average’ alijebaviour. We believe that
programs exhibit distinctive behaviour at a much finer graétated to the design of
the program, and given good object lifetime predictionsamimplementation that can



exploit them, significant performance gains can accrue bjdawy processing live ob-
jects before their expected time of death (improving botbulghput and pause times)
and reclaiming objects promptly after their death [15].

Four studies have taken a step in this direction. Cheng E]4CHL) gathered pro-
files from a generational collector for ML. By tagging obgutith the progransitethat
allocated them, they identify those sites that allocateaisjpromoted consistently by
their collector. This advice is then used to allocate olsjécim those sites directly into
the old generation. Because their pre-tenuring threslsadinction of their particular
collector configuration, the wider applicability of thiqudly is reduced. Blackburn et
al. [3] remove this dependency from pretenuring advice bymadising object lifetime
as a multiple of the maximum volume of live objects at any tifdarris [9] gathers
feedback dynamically to pretenures objects. None of thesleniques exploited any
finer age distinction than ‘short’, 'long lived’ or 'immottaHirzel et al. [11] find a
correlation between object connectivity and object lifeti They propose to use con-
nectivity to convert the object graph into a tree of strongdpnected components, thus
removing the need for write barriers.

3 Experimental methodology

An ideal lifetime predictor would indicate, for each object alloaét precisely when it
would die (thereby allowing its space to be reclaimed shdinireafter). Unfortunately,
ideal prediction is possible only in special cases. Howeaern agoodpredictor offers
the promise of reductions in processing costs (e.g. unsacgsopying) and floating
garbage by avoiding processing an object until soon afietéath. Even if the predic-
tion is ‘wrong’, either in the sense that the object turnstoube still alive or had died
long before, the correctness of the collector is not com@ed) it will simply either
‘waste’ effort. But this is what a generational collectorvdedo inall cases.

We considered the role of allocation sites in phase behaghich sites allocate
in which phases of the program?) and how well sites prediaigelt lifetimes. In con-
trast with previous work, we examine allocation patterna &ner level of detail than
‘short-lived/long-lived/immortal’ and we find that the kmhour of very many sites—
according to the program phases in which they participageoording to the lifetime
distributions of the objects that they allocate—is strgragirrelated. We further refine
our predictors by considerirgrope(all objects are allocated on behalf of either the JIT
compiler or the application—the run-time system merelywegrthese), angackage
(was the allocating method from Jikes RVM, a standard Jéwarly or an application
class). Such context is cheap to determine, and its expitwiteequires neither special-
isation of methods nor examination of threads’ stacks. @yrrkesults are

— Most sites allocate objects with lifetimes in only a smalirher of narrow ranges.

— Sites cluster strongly with respect to both the lifetimetrilisitions of the objects
they allocate, and the phases in which the site’s objeas 8\clusters account for
almost all allocation.

— Clusterings are stable and largely unaffected by diffepeogram inputs.

The platform used was Jikes RVM version 2.3.1 with GNU Cla#is{®.06, and
benchmarks drawn from SPEGts$H2000 [18] andjvm98 suites [17], and the new Da-



Capo suite, versioff041020 [12]. We experimented with several different sizZieig-o
put: 1, 10 and 100 fojvm98, small, default and large inputs for DaCapo and different
numbers ofbb2000 ‘warehouses’ and threads.

To generate traces of allocation and death events, we mibdifies RVM'’s com-
pilers so that, as each allocating bytecode is compiledicquendentifieraid is created,

a map entry(site, aid)generated and additional instructions are emitted to vthie
aid into the object’'s header, We used a dynamic scoping meahavoigncode further
context into an object’said field when it is allocated without having to crawl the call
stack. We thus distinguish allocation due to the compilgghée directly or indirectly),
by Jikes RVM classes6m i bm Ji kesRVM * oror g. mt k. * packages), Java libraries
(java. * orgnu. java. *) and application classes. Objects allocated by the Jiked RV
in the boot-image are immortal and were not tracked.

The compiler-modification approach gave good performameck @nportantly, al-
lows the same framework to be used both to tag allocatiomadetgathering runs and
to provide allocators with advice in performance runs. lgesrto capture death times,
we force full heap GCs at 64KB intervals. Although this logescision, little would
be gained from collecting at finer intervals (although thigrmlarity does exaggerate
the space rental of short-lived objects). Performance wasmable for trace gather-
ing, extending the elapsed time favac, for example, from approximately 10s to 3.5h
(instead of a week with the Merlin trace gathering tool [10])

4 Object lifetimes

A large object that lives for a long time incurs a greater GGt¢ban a small, short-
lived one. This cost depends on the object’s size (it ocauppace in the heap, each
reference field must be scanned, and the object may be ca@mddhe number of times
the memory manager processesSpace renta[3], the product of an object’s size
and its lifetime, provides an estimate of this cost to a sanpbn-generational, tracing
collector. We focus attention on (groups of) sites with héglace rental.

We wanted to examine to what extent site predicts objedtriife We characterise
a site by itslifetime density functianthe probability density function of the lifetimes
of its objects allocated. From a program trace, we obtairfietitie density function,
Idf(t) = vs(t) for a sites wherevg(t) = fraction of volume (bytes) of objects allocated
by swith lifetimes in the rangét, (t + &)]. Time is measured in bytes allocated.

Our results show that most sites allocate objects with somarange of lifetimes.
Even better, other than for very short-lived data, many éwiged objects allocated by
a site tend to die at the same point in the program (often gimtour is repeated in
phases). Such sites are good candidates for special tngatme

Programs typically have many hundreds or a few thousand. dfteom an im-
plementation viewpoint, a 1:1 mapping between site andalty is undesirable: the
heap would become badly fragmented if each allocator weedldoate into a differ-
ent region, and cache performance might become an issues¥detine Kolmogorov-
Smirnov Two-sample test [4] to cluster similar distribuigo The advantages of this
test are that it is computationally cheap, non-parametritdistribution-free it does



All sites All packages Jikes  |Application |Java library
default compilefdefault |default default
Benchmark 1 4 8 1 4 8§ 1 4 1 4 1 4 §g 1 4 8
compress | 0.7 83.6 91.90.7 84.291.866.4 99.8 9.299.1 0 92 100 28 73.7 74.
jess 0.499.199.90.499.299.90.2 96.9 9.799.9 099.8 100 13 84.7 87.
raytrace | 0.6 97.999.30.698.199.8 3 99.4 8.491.5 0099.5 10010.3 88 93.
db 1149422 114141549 99.9 9596.4 099.9 100 1 10.498.
javac 0.7 8889.40.788.189.5.3 100 3.7 99.7 0.1 30.6 99.8 0.8 98.4 98.
mpegaudigl3.7 68.5 77.6819.2 88 98.21.8 74.111.5 97.995.4 98.7 98.827.1 74.3 93.
mtrt 0.6 97.599.20.6 97.8 99.83.6 100 7.386.3 099.2 100 6.592.3 9
jack 0.497.398.60.497.5 9%.1 100 126.1 0.198.7 99.9 0.3 98.8 99.
ibb2000 [ 0.447.59550.492.9950.2 100 2.7 73.1 044.2 100 0.7 90.4 91.6
antlr 0.3 0.891.60.388.791.80.1 100 5.899.5 099.2 100 0.2 90.3 99.
bloat 0.199.1 100 0.1 99.7 10(0.1 10Q 5.599.6 0 100 100 0.1 100 10
fop 558.160.9 5.4 56.6 85.40.2 95.5 9.598.2 2152.399.Y 1.8 7.3 80.
hsqldb 0.2 6.591.30.2 6.599.90.2 10Q 2.9 100 099.8 100 0.1 100 10
jython 0.199.899.90.199.899.90.4 10013.5 100 0 100 100 0.3 99.7 99.
pmd 0.229.230.80.230.130.0.4 99.9 6.899.6 038.7 100 0.1 100 10
ps 04 110004 1 1000.4 100 O 10Q 7.4 100 100 0.899.9 10

Table 1: The volume of allocation (as percentages) due to the top & 8dlietime clusters for
large program inputs (speed 100 fan98, 8 warehouses and 2 threads jgy2000, and ‘large’
for DaCapo).

not matter what the underlying distribution is — this is imfamt as lifetimes are not
normally distributed.

Table 1 shows the volume of allocation due to the top few ehgsof sites. The
number of statistically distinct lifetime density funati® is only a small fraction of
the number of allocation sites. The top 8 clusters accounbyer 90% of allocation
in all but 5 benchmarks. These clusters also account for arage of 97.7% of space
rental. Furthermore, when compiler, Jikes RVM and apphcedllocation are clustered
separately, only 4 clusters account for over 99% of bothatigiler and all Jikes RVM
space rental. We conclude that sites cluster sufficierglytlyy to exploit with just a
small number of allocators.

To exploit these behaviour patterns without having to gatfece data for every
program input size, we want to be able to use data gathereal particular program
from one input for a different input. Although we cannot hdpe expected lifetimes
of clusters to remain constant as input grows, we do find thatation sites share the
same clusters from one input to another.

Table 2 compares stability of the top 8 clusters of jime98 and DaCapo bench-
marks across three different input sizes. If, for every telus of input A, every site
of clusteri appears in a single clust¢rof input B, then the clusterings are equivalent
and ARI=1 (e.g. across ghhb2000 configurations). With the exception ofpegaudio,
all ARIs are sufficiently close to 1 to conclude that the auisigs change little across
inputs.

This suggests that a feasible implementation strategyAocdllection might be to
acquire clustering data from a single training run. Thessters would indicate which



SPEC jvm98 100:10 10iDaCapo large:default default:small
compress 1.000 0.9%ntIr 1.000 0.89p

db 0.998 1.00loat 0.946 0.859

jack 0.991 0.9780op 1.000 0.98y7

javac 0.975 0.99hsqldb 1.000 0.983

jess 0.991 0.99¢/thon 0.819 0.958

mpegaudio  0.642 0.638md 0.957 0.984

mtrt 0.989 0.98%s 0.949 0.976

raytrace 0.980 0.993

Table 2: Adjusted Rand Index of top 8 clusters for three differentingizes (speeds 1, 10 and

100 forjvm98, and small, default and large for DaCapo).

sites had similar behaviours, and therefore should beatkacunder the same policy. A
lightweight run-time sampling (from few clustergather tharmany sitescould then
be used to measure lifetimes, or to report when most objdicisated on a belt are
dead; this also has the benefit of being able to respond tepanges.

5 The LACE framework

The LACE collector is built on top of Beltway, but with diffent rules for collection

of increments and promotion of objects that survive a ctibec Beltway groups ob-
jects into one or more region¢rementy held on queuesbelty, that are collected
independently. Increments, the unit of collection, ardeméd in first-in-first-out order:

the increment at the front of the lowest numbered belt is gdvemllected first, and any
survivors are copied to the last increment on that or a higherbered belt. Beltway
can thus be configured as any copying semispace, genetatioolaer-first collector

as well as a number of novel collectors [2]). A key insightibdiBeltway is the separa-
tion of age (by varying the number of increments allowed oelg from incrementality

(increments provide the unit of collection).

Beltway has been modified in a number of ways to support LA.LFgrwe tune
GC to application behaviour by associatingalicy with one of more of each of the
top n (n=8) allocation site clusters (with other sites associatét & default policy).
Practically, each policy is mapped to a Beltway/LA belt. Aippincludes the expected
time to die(TTD) of the objects allocated by that cluster(s). It mayaisludehowwe
expect cluster objects to die. For some clusters, objeldisadéd have varying lifetimes
but all objects die at the same point (e.g. at the end of a phseother clusters, all
objects share similar lifetimes but do not die together. \Wendt require predictions
to be accurate. It is therefore possible that the GC dissoadew live objects when
it collects an increment. A policy therefore also specifiea lsuch survivors are to be
handled. There are a number of possibilities.

— Itis common for survivors to be immortal: these may be copaegh immortal belt.
— Other clusters exhibit a small number of distinct objecttlihes: here survivors
may be copied to a belt corresponding to the next expectetihtié of this cluster
— If we have no better information, objects may be copied todifault belt or to a

belt that is only collected as a last resort.



Using a mechanism similar to that used to tag objects foirtgaSection 3), we
modified the compiler to pass a belt number to the allocatbe allocator uses the
belt’'s policy to allocate the object into an increment ort theit.

— For clusters (belts) that expect all objects allocated iwithphase to die together,
we allocate a fresh increment stamped witinge of deathT OD = now-+ TT D for
that belt. All subsequent allocations for that cluster asgleto the same increment
until now> T OD, after which an allocation causes this increment talbeedand
a new increment to be appended to the belt.

— For clusters in which objects are predicted to share lifeitout not to die together
(such as typical young generation objects), the incrensestamped with a TOD
sufficient to allow the increment to hold many objects. Theément is only closed
when an object is allocated at a time such th@at+TTD > TOD.

In either case, the collector is invoked when we run out otspand all increments
with TOD < noware collected in increasing TOD order, with any survivorsmpoted
according to their belt’s policy.

LA uses more increments than Beltway but still requireseaxibn to be complete,
that is all garbage including cyclic garbage to be colleeeehtually. This means that
any cyclic garbage structure will eventually be promoted single increment. This has
two consequences: survivor policies must not contain eyatel this ‘final’ increment
must be sufficiently large to handle the worst case (half the ef the heap if the
increment is collected by copying). We therefore allow @ments to grow (up to a
maximum size) in units of pages.

As in Beltway, we usdrames 2"-aligned contiguous regions to allow a fast write-
barrier that records inter-increment references. Howawvenrements may comprise more
than one frame since a 1:1 mapping would exhaust a 32-bieaddpace. In the worst
case, this might lead to a slower slow-path in the writeibarHowever, we expect
good write-barrier performance for two reasons. Firstrahie ample evidence that
most pointer ‘lengths’ are short and hence such writes wilchught by the fast-path
(the source and target will be in the same frame). Secon@usecwve expect our life-
time predictions to be reasonably accurate and becausetetijat die at similar times
will tend to be allocated to the same increment, we expectréfarences from other
increments, and hence expect remsets to be small.

6 Conclusions

We argue that next generation GC should exploit mutatoryieba Analysis of pro-
gram traces shows that program sites allocate objects vatinctive and largely con-
sistent behaviour, that sites cluster strongly with respethe lifetime distributions of
the objects they allocate, and that these clusterings testagainst changes of input.
We described LACE, a garbage collector framework that cguoéqprogram knowl-
edge to both avoid unnecessary copying and reduce floatifage, but importantly
tolerates imprecise allocation advice.

We plan to investigate how on-line sampling can be combini#idl @ur static clus-
ter analysis. We also intend to investigate static analggibniques, both to identify



clusters of similar sites and to identify points in the pargrwhere it idikely but not
guaranteedthat objects allocated by a site will be dead. We also beliba¢ phase
boundary analysis, e.g. [14], might be profitably combinéithwur approach.
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