
Optimal design for inspection and maintenance policy

based on the CCC chart

Abstract

In the paper, the concept of cumulative count of conforming chart (CCC chart) is ap-

plied in inspection and maintenance planning for systems where minor inspection, major

inspection, minor maintenance and major maintenance are available. Several inspection

and maintenance plans are defined and studied quantitatively. Analytic expressions of

relevant statistics and their expectations are derived. These inspection and maintenance

plans are optimized from an economic consideration.
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1. Introduction.

This paper attempts to apply the concept of cumulative count of conforming chart

(CCC chart) to monitor a system with three states.

Statistical process control is a widely used tool in the industry for process monitoring.

Very commonly, control charts are merely used for the purpose of “fire fighting” for

removal of assignable causes each time when the process parameter has shifted. However,

occurrence of assignable causes can sometimes be the result of gradual deterioration of
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the system such as aging of parts. Thus, signals on the control charts may be used

as indications of whether inspection or maintenance of the system should be carried

out, rather than just the state of fitness of the process. Tagaras and Lee (1988) and

Tagaras(1998) separated the X̄-chart into several zones and optimized the chart for

monitoring a process whose deterioration can be classified into two states in which one

state requires minor restoration and the other requires major restoration, and considered

economic design of the control chart. Cassady et al (2000) considered economic design of

control charts for optimization of preventive maintenance policies for systems. See also

Page (1955), Weindling et al (1970), Gordon and Weindling (1975), Montgomery (1980),

Chan et al (2000), Montgomery (2001), Chan et al (2002), Chan (2003), Liao et al (2006)

for related work.

In what follows, we shall assume that as production continues, the production system

will deteriorate from its normal state to a state that requires minor maintenance, and if

minor maintenance is not carried out the system will eventually deteriorate to a state that

requires major maintenance. We shall use the CCC chart defined based on the geometric

distribution to develop inspection and maintenance policies for a production system in

which each item produced can be classified as either conforming or nonconforming. The

CCC chart, first introduced by Calvin (1983), further developed by Goh (1987), and

extended by and Ranjan et al (2003), is an alternative to the classical np- and p-charts

that have serious drawbacks when the process nonconforming rate is low (Calvin(1983),

Lucas(1989), Chan (2000), and Chan et al (1997)). The CCC chart can be used effectively

for monitoring high-quality processes in which the fraction of nonconforming is low, even

as low as at the level of ppm (parts per million) or ppb (parts per billion).

2. The states and investigations of a system
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We consider process monitoring and maintenance of a system in which the fraction of

nonconforming items produced is p ∈ (0, 1), and all items are inspected. The number of

items inspected, n, until a nonconforming item is observed, is a geometric random variable

with the following probability function f(n) and cumulative distribution function F (n):

f(n) = p(1− p)n−1, F (n) = 1− (1− p)n (n = 1, 2, ...). (2.1)

In monitoring such a system using the CCC chart, control limits are obtained from F (n)

at p = p0, and an observed value of n falling beyond the control limits is a signal for out

of control which indicates possible shift of p from its target value p0.

Assume that the system has three states, the normal state S0 with nonconforming

fraction p = p0 > 0, the slightly deteriorated state S1 with p = p1 > p0, and the seriously

deteriorated state S2 with p = p2 > p1. (Throughout this paper we shall use S0, S1,

S2 with Roman type “S” to denote the states of a system, while S1, S2 with italic “S”

will be reserved to represent mathematical quantities. Likewise, in what follows, mγ ,

Mγ , iγ , Iγ and sγ (γ = 0, 1, 2 or 1 + 2) with Roman type “m”, “M”, “i”, “I” and “s”

will be used to denote “maintenance”, “inspection” and “signal” as appropriate, while

m, i, s in italic (with or without subscript) will be reserved to represent mathematical

quantities.) Suppose that two grades of maintenance actions, minor maintenance m1

and major maintenance m2 are available, where m1 is less thorough than m2 but is less

costly. For notational convenience, from time to time we shall use m0 to mean that no

maintenance action will be carried out. Based on practical consideration, we assume the

following:

1. No maintenance is required for S0, and when the system is in S0 neither m1 nor m2

will change its state.

2. When the system is in S0, it will deteriorate to S1 with probability π01 > 0, imme-
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diately before an item is produced.

3. Either m1 or m2 can bring the system from S1 back to S0.

4. When the system is in S1, it will deteriorate to S2 with probability π12 > 0, imme-

diately before an item is produced.

5. m1 has no effect on S2, but m2 can bring the system from S2 to S0.

6. The system will not deteriorate from S0 to S2 directly without passing through S1.

7. Complete failure (that is, malfunctioning) of the system does not occur, even though

as the system deteriorates from S0 to S1 and then to S2, the nonconforming fraction

p increases.

Suppose that n1 > n2 > 0. Divide the set of all positive integers Z+ into the

following three sets:

Z0 = {n ∈ Z+ : n1 + 1 ≤ n <∞},

Z1 = {n ∈ Z+ : n2 + 1 ≤ n ≤ n1},

Z2 = {n ∈ Z+ : 1 ≤ n ≤ n2}.

If a nonconforming item is observed at n ∈ Zγ (γ = 0, 1, 2), a type γ signal sγ is said

to have occurred. When s0 has occurred, no inspection of the system will be carried out,

and inspection will be carried out when s1 or s2 has occurred. When the system is in S0,

we expect that s0 will occur most of the time, and thus s0 is regarded as an indication

that the system is in its normal state S0. As the system deteriorates (p increases), the

chance for s1 to occur increases. When the system is in S2, we expect that s2 will occur

most of the time, and thus we regard s2 as an indication that the system is in the most

deteriorated state S2. However, any of s0, s1, s2 may occur when the system is in S0, S1 or

S2. Thus, when the system is in S0, signal s1 or s2 (which indicates system deterioration)

may be regarded as “Type I error”, and when the system is in S2, signal s0 or s0 (which
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indicates that the system is in state S0 or S1) may be regarded as “Type II error”. In

Section 6, we shall take into account such errors in economic design of inspection and

maintenance policies where expressions for the expected numbers of sγ(γ = 0, 1, 2) when

the system is S0, S1 or S2 will be required, and such expressions will be given in Section

5.

Suppose that two types of inspection, minor inspection i1 and major inspection

i2, are available, where i1 is not as thorough as i2 but is less costly. For notational

convenience, from time to time we shall use i0 to mean that no investigation will be

carried out. When the system is in S0 or S1, both i1 and i2 will correctly reveal the true

state of the system, but when the system is in S2, i1 will incorrectly indicate that the

system is in S1 and only i2 will correctly reveal that the system is in S2.

From the economic of view, whether to carry out inspection depends on the inspec-

tion cost relative to the maintenance cost, and to the penalty of wrong indication of the

state of the system. Consider the following three inspection arrangements, I1+2, I2, I0,

and three maintenance arrangements M1+2, M2, M0.

I1+2 — Both i1 and i2 are employed. When sγ occurs, iγ will be carried out (γ = 1, 2).

I2 — Only i2 is employed. When either s1 or s2 occurs, i2 will be carried out.

I0 — Neither i1 nor i2 will be employed. When s1 or s2 occurs, maintenance work

will be carried out without first inspecting the system.

M1+2 — Both m1 and m2 are employed.

M2 — Only m2 is employed.

M0 — Neither m1 nor m2 is employed. That is, no maintenance work will be carried out.

The above concepts on states of the system and types of inspection and maintenance

are illustrated by the following real-life example in maintenance of buses in a bus com-
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pany. A dynamo supplies the power to a cooling fan in the cooling system of the engine.

By design, unfortunately this dynamo is installed near the engine with high temperature,

and a cooling fan system called System C is designed for cooling the dynamo.

(a) S0 is the state where System C is not blocked by dust and operates efficiently, and

the coolant will reach its boiling point with a small probability p0 > 0 at the end of

a day’s operation.

(b) Checking whether the coolant has reached it boiling point at the end of a day’s

operation is “inspection of an item”.

(c) S1 is the state where System C is partially block by dust, so that the dynamo is

over-heated and supplies insufficient electric current to drive the cooling fan, and

as a result the probability for the coolant to reach its boiling point at the end of a

day’s operation will be p1 > p0.

(d) After a day’s operation in state S0, a bus will change to S1 with probability π01 > 0.

(e) Minor inspection i1 opens the chassis cover and inspects whether System C requires

dust cleaning. Minor maintenance m1 removes the dust accumulated in System C.

If m1 is not performed, System C will be eventually blocked by dust resulting in

over-heating and dynamo damage, which is state S2.

(f) After a day’s operation in state S1, a bus will change to S2 with probability π12 > 0.

In state S2, there is a probability p2(> p1) for the coolant to reach its boiling point

which could possibly result in engine damage.

(g) Major inspection i2 disassembles System C and inspects whether the dynamo has

been damaged due to over-heating, and major maintenance m2 is to replace the

dynamo.

(h) The values of p0, p1, p2, π01, and π12 depend on the bus route.

(i) The costs for performing i1, i2, m1, and m2 depend on the model of the bus.
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3. Cycle of operation for the system.

A cycle of operation is said to be completed when the system starts at S0, deteriorates

to S1 or S2, and then is restored back to S0 by m1 or m2.

According to the framework of inspection and maintenance defined in Section 2,

to study the system analytically we need to consider different scenarios for a cycle to

complete as shown in Figure 1. The small circles, “◦’s”, denote nonconforming items

that either do not lead to any maintenance action or lead to a maintenance action that

does not change the state of the system. The bullet, “•”, denotes the last nonconforming

item in a cycle that leads to maintenance action that restores the system from states S1

or S2 back to S0. Hence a cycle ends only after a bullet • has occured. Seven different

cases (Case 0, ..., Case 6) are possible, and they are described below. A cycle may end

under one of the six cases, Case 1, ..., Case 6.

N1

S0 z }| { p0|
Case 0. | ◦ ◦ ◦ || {z } | {z }

i1 · · · iN1

N1

S0 z }| { p0|p1 S1
Case 1. | ◦ ◦ ◦ |+ •→S0| {z } | {z } | {z } | {z }

i1 · · · iN1 j k

N1 N2

S0 z }| { p0|p1 S1 z}|{
Case 2. | ◦ ◦ ◦ |+ ◦ ◦ ◦ •→S0| {z } | {z } | {z } | {z } | {z } | {z }

i1 · · · iN1 j k c1 · · · cN2+1
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N1 N2

S0 z }| { p0|p1 S1 z }| { p1|p2 S2
Case 3. | ◦ ◦ ◦ |+ ◦ ◦ ◦ ◦ |+ •→S0| {z } | {z } | {z } | {z } | {z } | {z } | {z } | {z }

i1 · · · iN1 j k c1 · · · cN2 m n

N1 N2 N3

S0 z }| { p0|p1 S1 z }| { p1|p2 S2 z}|{
Case 4. | ◦ ◦ ◦ |+ ◦ ◦ ◦ ◦ |+ ◦ ◦ ◦ •→S0| {z } | {z } | {z } | {z } | {z } | {z } | {z } | {z } | {z } | {z }

i1 · · · iN1 j k c1 · · · cN2 m n r1 · · · rN3+1

N1

S0 z }| { p0|p1 S1 p1 |p2 S2
Case 5. | ◦ ◦ ◦ |− |+ •→S0| {z } | {z } | {z } | {z } | {z }

i1 · · · iN1 j m n

N1 N3

S0 z }| { p0|p1 S1 p1 |p2 S2 z}|{
Case 6. | ◦ ◦ ◦ |− |+ ◦ ◦ ◦ •→S0| {z } | {z } | {z } | {z } | {z } | {z } | {z }

i1 · · · iN1 j m n r1 · · · rN3+1

Figure 1. Occurrence of nonconformity items.

Case 0. While the system is in S0, N1(≥ 0) nonconforming items ◦’s have occurred. As

the system is in S0 and has not yet changed to S1, no maintenance action is necessary,

there is no bullet • in the figure, and a cycle has not yet been formed. The figure shows

that before a nonconforming item ◦ occurs, iu − 1 (u = 1, ...,N1) conforming items are

produced.

Case 1. While the system is in S0, N1(≥ 0) nonconforming items ◦’s have occurred.

Next, another j − 1 conforming items have also occurred which is followed by changing
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of the system from S0 to S1, and then the j
th item occurs. Immediately after the system

has changed from S0 to S1, k + 1(≥ 1) items are produced, where the first k of these

k + 1 items are conforming items but the last one is a •. The plus sign “+” represents

the first item produced immediately after the system has changed to S1, where this item

is a conforming item if k > 0, and is a nonconforming item • if k = 0.

Case 2. This case represents the situation when the last nonconforming item in Case

1 is not a • but a ◦. In this case, when the system is in S1, N2 + 1(≥ 1) ◦’s occur

before the •. The plus sign “+” represents a conforming item if k > 0 and represents a

nonconforming item ◦ if k = 0. The figure shows that when the system is in S1, cu−1(≥ 0)

(u = 1, ..., N2+1) items are produced before each of the last N2+1 nonconforming items.

Case 3. This case represents the situation when the last nonconforming item in Case 2

is not a • but a ◦. In this case, when the system is in S1, N2+1(≥ 1) ◦’s have occurred.

Next, another m − 1 conforming items have occurred which is followed by changing of

the system from S1 to S2, and then the m
th item occurs. Immediately after the system

has changed from S1 to S2, n+1(≥ 1) items are produced, where the first n of these n+1

items are conforming items but the last one is a •. The plus sign “+” above the embrace

of “m” represents the first item produced immediately after the system has changed to

S2, where this item is a conforming item if n > 0 and is a nonconforming item • if n = 0.

Case 4. This case represents the situation when the last nonconforming item in Case 3

is not a • but a ◦. In this case, immediately after the system has changed from S1 to S2,

N3 + 1(≥ 1) ◦’s have occurred before the bullet •. The plus sign “+” above the embrace

of “m” represents a conforming item if n > 0 and represents a nonconforming item ◦ if

n = 0. The figure shows that when the system is in S2, ru − 1(≥ 0) (u = 1, ..., N3 + 1)
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conforming items are produced before each of the last N3 + 1 nonconforming items.

In Cases 5 and 6, no nonconforming item occurs when the system is in S1, and the

bar “−” denotes a conforming item.

Case 5. While the system is in S0, N1(≥ 0) nonconforming items ◦’s have occurred.

Next, another j−1 conforming items have occurred which is followed by changing of the

system from S0 to S1, and then the j
th item occurs which is a conforming one. When

the system is in S1, all the m items produced are conforming. Immediately after the

system has changed from S1 to S2, n + 1(≥ 1) items are produced, where the first n of

these n+ 1 items are conforming but the last one is a •. The plus sign “+” represents a

conforming item if n > 0, and represents the • if n = 0.

Case 6. This the case represents the situation when the last nonconforming item in Case

5 is not a • but a ◦. In this case, immediately after the system has changed from S1 to S2,

N3 + 1(≥ 1) ◦’s have occurred before the bullet •. The plus sign “+” above the embrace

of “m” represents a conforming item if n > 0 and represents a nonconforming item ◦ if

n = 0. The figure shows that when the system is in S2, ru − 1(≥ 0) (u = 1, ..., N3 + 1)

conforming items are produced before each of the last N3 + 1 nonconforming items.

Because a nonconforming item can only show up as a circle ◦ or a bullet • but

not both, from the different positions of occurrences of the bullets •’s in Figure 1, it is

not difficult to see that Case 1, ..., Case 6 are mutually exclusive. These cases are also

exhaustive for the system to complete a cycle, because a bullet • can occur only when

the system is in either stage S1 or S2, and Case 1, ..., Case 6 include all possible cases for

the bullet • to occur. At the end of Section 4 we shall prove that the total probability

of occurrence of these six cases is 1, which confirms that these cases are exhaustive.
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4. Quantitative Analysis of the Model (I1+2,M1+2)

In this section, we obtain the probabilities and expected items inspected for each of

Case 0, ..., Case 6. Based on these results, expected numbers of inspections and mainte-

nance actions can be derived, and using these results optimal inspection and maintenance

strategies can be obtained in Section 7.

Consider the inspection and maintenance model (I1+2,M1+2), where all of i1, i2, m1

and m2 are employed. Under this model, when sγ (γ = 1, 2) appears, iγ will be carried

out. If an inspection shows that the system is in Sγ , mγ will be carried out (γ = 1, 2).

When the system is in S0, the ◦’s in Figure 1 may indicate s0, s1 or s2. When the system

is in S1, the ◦’s indicate s0, and the bullet • indicates either s1 or s2. When the system

is in S2, the ◦’s may indicate either s0 or s1, and the • indicates s2.

In what follows, for convenience we let β0 = (1−π01)(1−p0), β1 = (1−π12)(1−p1).

In Case 0, while the system remains in S0, the probability for (i−1) conforming items

occurring followed by a nonconforming item ◦ is (1−π01)i(1−p0)i−1p0 = βi−10 (1−π01)p0.

The total probability over the entire range of i is

I. =I.;i =
∞X
i=1

βi−10 (1− π01)p0 =
(1− π01)p0
1− β0

=

ÃX
i∈Z0

+
X
i∈Z1

+
X
i∈Z2

!
βi−10 (1− π01)p0

=I0;i + I1;i + I2;i = I0 + I1 + I2,

where I0;i, I1;i, I2;i denote the last three summations, respectively, and for simplicity, we

also denote them by I0, I1, I2, respectively. (In what follows, similar notations will be

introduced to denote different summations.) The expected value of i in Case 0 is

I. [i] =I.;i[i] =
∞X
i=1

iβi−10 (1− π01)p0 =
(1− π01)p0
(1− β0)2

=
I(0)
1− β0

=

ÃX
i∈Z0

+
X
i∈Z1

+
X
i∈Z2

!
iβi−10 (1− π01)p0 = I0;i[i] + I1;i[i] + I2;i[i].
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Refer to Case 1. Consider the following sequence of events: (A1) j − 1(≥ 0) consec-

utive conforming items are produced while the system remains in S0, (A2) the system

changes from S0 to S1, (A3) k(≥ 0) consecutive conforming items are produced while the

system remains in S1, and (A4) when the system is in S1, the (k + 1)
th item produced

is nonconforming. The probability for the events (A1) — (A4) to occur in sequence is

(1−π01)
j−1(1− p0)

j−1π01× (1−π12)
k(1− p1)

kp1 = βj−10 βk1π01p1. The total probability

over the entire ranges of j and k is

JK. =JK.;j,k =
∞X
j=1

∞X
k=0

βj−10 βk1π01p1 =
π01
1− β0

× p1
1− β1

=

⎛⎜⎜⎝ X
j+k∈Z0
j≥1; k≥0

+
X

j+k∈Z1
j≥1; k≥0

+
X

j+k∈Z2
j≥1; k≥0

⎞⎟⎟⎠βj−10 βk1π01p1

=JK0;j,k + JK1;j,k + JK2;j,k = JK0 + JK1 + JK2.

The expected value of j + k for Case 1 is

JK.;j,k[j + k] =JKj,k[j + k] =
∞X
j=1

∞X
k=0

(j + k)βj−10 βk1π01p1

=

⎛⎜⎜⎝ X
j+k∈Z0
j≥1; k≥0

+
X

j+k∈Z1
j≥1; k≥0

+
X

j+k∈Z2
j≥1; k≥0

⎞⎟⎟⎠ (j + k)βj−10 βk1π01p1

=JK0;j,k[j + k] + JK1;j,k[j + k] + JK2;j,k[j + k].

In Case 2, while the system is in S1, the probability for (c−1) consecutive conforming

item to occur followed by a nonconforming item ◦ is (1− π12)
c(1− p1)

c−1p1 = βc−11 (1−

π12)p1. The total probability over the entire range of c is

L. =L.;c =
∞X
c=1

βc−11 (1− π12)p1 =
(1− π12)p1
1− β1

=

ÃX
c∈Z0

+
X
c∈Z1

+
X
c∈Z2

!
βc−11 (1− π12)p1

= L0;c + L1;c + L2;c = L0 + L1 + L2.
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The expected value of c in Case 2 is

L.;c[c] = Lc[c] =
∞X
c=1

cβc−11 (1− π12)p1 =
(1− π12)p1
(1− β1)2

=

ÃX
c∈Z0

+
X
c∈Z1

+
X
c∈Z2

!
cβc−11 (1− π12)p1 = L0;c[c] + L1;c[c] + L2;c[c].

Refer to Case 3. Consider the following sequence of events: (B1) m − 1(≥ 0)

consecutive conforming items are produced while the system remains in S1, (B2) the

system changes from S1 to S2, (B3) n(≥ 0) consecutive conforming items are produced

while the system remains in S2, and (B4) when the system is in S2, the (n + 1)
th item

produced is nonconforming. The probability for the events (B1) — (B4) to occur in

sequence is (1− π12)
m−1(1− p1)

m−1π12×(1− p2)
np2 = βm−11 π12(1− p2)

np2. The total

probability over the entire ranges of m and n is

MN. =MN.;m,n =
∞X

m=1

∞X
n=0

βm−11 π12(1− p2)
np2 =

π12
1− β1

=

⎛⎜⎜⎝ X
m+n∈Z0
m≥1;n≥0

+
X

m+n∈Z1
m≥1;n≥0

+
X

m+n∈Z2
m≥1;n≥0

⎞⎟⎟⎠βm−11 π12(1− p2)
np2

=MN0;m,n +MN1;m,n +MN2;m,n =MN0 +MN1 +MN2.

The corresponding expected number of items inspected for Case 3 is

MN. [m+ n] =MN.;m,n[m+ n] =
∞X

m=1

∞X
n=0

(m+ n)βm−11 π12(1− p2)
np2

=
∞X

m=1

∞X
n=0

mβm−11 π12(1− p2)
np2 +

∞X
m=1

∞X
n=0

nβm−11 π12(1− p2)
np2

=
π12

(1− β1)2
×+ π12

1− β1
× 1

p2
=

π12(p2 + 1− β1)

(1− β1)2p2

=

⎛⎜⎜⎝ X
m+n∈Z0
m≥1;n≥0

+
X

m+n∈Z1
m≥1;n≥0

+
X

m+n∈Z2
m≥1;n≥0

⎞⎟⎟⎠ (m+ n)βm−11 π12(1− p2)
np2

=MN0;m,n[m+ n] +MN1;m,n[m+ n] +MN2;m,n[m+ n].

13



In Case 4, when the system is in S2, the probability for (r − 1) conforming to be

produced followed by a nonconforming item is (1− p2)
r−1p2. The total probability over

the entire range of r is

R. =R.;r =
∞X
r=1

(1− p2)
r−1p2 = 1 =

ÃX
r∈Z0

+
X
r∈Z1

+
X
r∈Z2

!
(1− p2)

r−1p2

=R0;r +R1;r +R2;r = R0 +R1 +R2.

The expected value of r for Case 4 is

R. [r] =R.;r[r] =
∞X
r=1

r(1− p2)
r−1p2 =

1

p2
=

ÃX
r∈Z0

+
X
r∈Z1

+
X
r∈Z2

!
r(1− p2)

r−1p2

=R0;r[r] +R1;r[r] +R2;r[r].

Refer to Case 5. Consider the events: (C1) immediately after the system has changes

from S0 to S1, m(≥ 1) consecutive conforming items are produced, (C2) the system

changes from S1 to S2, (C3) immediately after the system has changes from S1 to S2,

n(≥ 0) consecutive conforming items are produced while the systems remains in S2, (C4)

when the systems is in S2, the (n+1)
th item produced is nonconforming. The probability

for events (A1), (A2), (C1), (C2), (C3), (C4) to occur in sequence is (1 − π01)
j−1(1 −

p0)
j−1π01(1 − p1) × (1 − π12)

m−1(1 − p1)
m−1π12 × (1 − p2)

np2] = βj−10 βm−11 π01(1 −

p1)π12(1− p2)
np2. The total probability over the entire ranges of j,m, n, is

JMN. =JMN. j,m,n =
∞X
j=1

∞X
m=1

∞X
n=0

βj−10 βm−11 π01(1− p1)π12(1− p2)
np2

=
π01
1− β0

×π12(1− p1)

1− β1

=

⎛⎜⎜⎝ X
j+m+n∈Z0

j≥1;m≥1;n≥0

+
X

j+m+n∈Z1
j≥1;m≥1;n≥0

+
X

j+m+n∈Z2
j≥1;m≥1;n≥0

⎞⎟⎟⎠βj−10 βm−11 π01(1− p1)π12(1− p2)
np2

=JMN0;j,m,n + JMN1;j,m,n + JMN2;j,m,n = JMN0 + JMN1 + JMN2.
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The expected value of j +m+ n for Case 5 is

JMN. = JMN.j,m,n[j +m+ n]

=
∞X
j=1

∞X
m=1

∞X
n=0

(j +m+ n)βj−10 βm−11 π01(1− p1)π12(1− p2)
np2

=
π01

(1− β0)2
×π12(1− p1)

1− β1
+

π01
1− β0

×π12(1− p1)

(1− β1)2
+

π01
1− β0

×π12(1− p1)

1− β1
× 1

p2

=
π01π12(1− p1)

(1− β0)2(1− β1)2p2

³ 1

1− β0
+

1

1− β1
+
1

p2

´

=

⎛⎜⎜⎝ X
j+m+n∈Z0

j≥1;m≥1;n≥0

+
X

j+m+n∈Z1
j≥1;m≥1;n≥0

+
X

j+m+n∈Z2
j≥1;m≥1;n≥0

⎞⎟⎟⎠ (j +m+ n)βj−10 βm−11 π01(1− p1)π12(1− p2)
np2

= JMN0;j,m,n[j +m+ n] + JMN1;j,m,n[j +m+ n] + JMN2;j,m,n[j +m+ n].

In Case 6, when the system is in S2, the probability for (r − 1) conforming to be

produced followed by a nonconforming item is (1− p2)
r−1p2. The total probability over

the entire range of r and the expected value of r are the same as those in Case 4, that is,

R. =R.;r =
∞X
r=1

(1− p2)
r−1p2 = 1 =

ÃX
r∈Z0

+
X
r∈Z1

+
X
r∈Z2

!
(1− p2)

r−1p2

=R0;r +R1;r +R2;r = R0 +R1 +R2,

R. [r] =R.;r[r] =
∞X
r=1

r(1− p2)
r−1p2 =

1

p2
=

ÃX
r∈Z0

+
X
r∈Z1

+
X
r∈Z2

!
r(1− p2)

r−1p2

=R0;r[r] +R1;r[r] +R2;r[r].
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Let P1, ..., P6 be the probabilities for Cases 1, ..., 6 to occur, respectively. We have

P1 =
∞X

N1=0

IN1
. (JK1 + JK2),

P2 =
∞X

N1=0

IN1
. JK0 ×

∞X
N2=0

LN2
0 (L1 + L2)

P3 =
∞X

N1=0

IN1
. JK0 ×

∞X
N2=0

LN2
0 MN2

P4 =
∞X

N1=0

IN1
. JK0 ×

∞X
N2=0

LN2
0 (MN0 +MN1)×

∞X
N3=0

(R0 +R1)
N3R2

=
∞X

N1=0

IN1
. JK0 ×

∞X
N2=0

LN2
0 (MN0 +MN1),

P5 =
∞X

N1=0

IN1
. JMN2,

P6 =
∞X

N1=0

IN1
. (JMN0 + JMN1)×

∞X
N3=0

(R0 +R1)
N3R2 =

∞X
N1=0

IN1
. (JMN0 + JMN1).

Since Case 1, ..., Case 6 are mutually exclusive, the sum (P1 + P2 + (P3 + P4)) +

(P5 + P6) = 1 ensures that these six cases include all the possible cases for the system

to complete a cycle.

5. Expected values associated with models (I1+2,M1+2) and (I0,M1+2)

We first consider the model (I1+2,M1+2). In what follows, for any function g(ν) the

summation
Pw

ν=u g(ν) will be interpreted as 0 if u > w.

The closed form of the formulas displayed below are established using the formulas

for the summations S1, S11, S2, S22, S3, S33 given in the Appendix.

From the definitions of I. , I0, I1, I2, J0, J1, ..., JMN2, we shall derive the expressions

for the expected number of items inspected Eη[isp], the expected number of type γ

(γ = 0, 1, 2) signals Eη[sγ ], the expected number of type γ investigation Eη[iγ ], and the

expected number type γ maintenance Eη[mγ ] for Case 1, ..., Case 6.
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For convenience in presentation, we shall use the notation

I. = I.;i =
∞X
i=1

βi−10 (1− π01)p0, I.;isp = I.;i[i] =
∞X
i=1

βi−10 (1− π01)p0×i, ...,

JK1+2;isp = JK1;isp + JK2;isp = JK1+2;j,k[j + k] =
X

j+k∈Z1∪Z2

βj−10 βk1π01p1×(j + k), ...,

and so on.

In all the cases in the Figure, when the system is in S0, each of the N1 circles ◦’s

represents a nonconforming item which gives either a type 0 signal s0, a type 1 signal

s1, or a type 2 signal s2; since these three types of signal occur in the ratio I0 : I1 : I2

and I. = I0 + I1 + I2, the expected numbers of type 0, type 1 and type 2 signals are

I0
I.
× N1,

I1
I.
× N1 and

I2
I.
× N1, respectively. When the system is in S1, a circle ◦

represents a nonconforming item which gives a signal s0. When the system is in S2, a

circle ◦ represents a nonconforming item which gives either a signal s0 or s1.

When the system is in S1, a bullet • represents a nonconforming item which gives

either a signal s1 or s2. When the system is in S2, a bullet • represents a nonconforming

item which gives a signal s2.

Since sγ causes iγ (γ = 0, 1, 2), for all η = 1, ..., 6 we have

E1[i0] = E1[s0], E1[i1] = E1[s1], E1[i2] = E1[s2].

Derivations of the expected numbers of inspections and signals are based on the ex-

pressions of the probabilities P1, ..., P6 given in Section 4. The calculations are straight-

forward but cumbersome, and here an illustration is given for Case 1. Corresponding

formulas for Cases 2 — 6 can be obtained in a similar way, but the expressions are lengthy

and they will not be displayed here.

Expected numbers associated with Case 1.
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For Case 1, it is shown from Figure 1 that N1 circles ◦’s have occurred, and that

inspection is required if and only if j + k ∈ Z1 or j + k ∈ Z2. The expected number of

items inspected is E1[isp] = E
N1

[E
i1

· · · [E
iN1

[E
j,k
[i1+· · ·+iN1+j+k]]]]. Here when N1 = 0, we

interpret the sum i1+ · · ·+ iN1 as 0 and interpret I.;i1 · · · I.;iN1 in the following derivation

for E1[isp] as 1. (This convention will be used for the rest of this paper.)

We recall that the probability associated with Case 1 is

P1 =
∞X

N1=0

⎧⎨⎩
∞X
i1=1

βi1−10 (1− π01)p0 · · ·
∞X

iN1=1

β
iN1−1
0 (1− π01)p0

⎫⎬⎭× X
j+k∈Z1∪Z2
j≥1; k≥0

βj−10 π01p1

=
∞X

N1=0

©
I.;i1 · · · I.;iN1

ª
JK1+2;j,k =

∞X
N1=0

IN1
. (JK1 + JK2),

It follows that

E1[isp] = E
N1

[E
i1

· · · [E
iN1

[E
j,k
[i1+· · ·+iN1+j+k]]]]

=
∞X

N1=0

⎧⎨⎩
∞X
i1=1

βi1−10 (1− π01)p0 · · ·
∞X

iN1=1

β
iN1−1
0 (1− π01)p0

⎫⎬⎭×X
j+k∈Z1∪Z2
j≥1; k≥0

βj−10 π01p1[i1+· · ·+iN1+j+k]

=
∞X

N1=0

©
I.;i1 · · · I.;iN1

ª
JK1+2;j,k[i1+· · ·+iN1+j+k]

=
∞X

N1=0

³
I.;i1 [i1]×I.;i2×· · ·×I.;iN1×JK1+2;j,k +

...

I.;i1×· · ·×I.;iN1−1×I.;iN1 [iN1 ]×JK1+2;j,k +

I.;i1×I.;iN1×· · ·×I.;iN1×JK1,2;j,k[j+k]
´

=
∞X

N1=0

¡
N1I.;ispI

N1−1
. (JK1 + JK2) + IN1

. JK1+2;isp

¢
=

I.;isp(JK1 + JK2)

(1− I. )2
+

JK1+2;isp

1− I.
.
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For Case 1, as shown in Figure 1 the last of the j + k items inspected indicated by

the bullet • gives either a signal s1 or s2, and the expected number of occurrence of these

two types of signal are in the ratio JK1 : JK2. Hence from the expression for P1 we have

E1[s0] =
∞X

N1=0

IN1
. (JK1 + JK2)

µ
I0
I.
×N1

¶
=

I0(JK1 + JK2)

(1− I. )2
,

E2[s1] =
∞X

N1=0

IN1
. (JK1 + JK2)

µ
I1
I.
×N1 +

JK1

JK1 + JK2
×1
¶

=
I1(JK1 + JK2)

(1− I. )2
+

JK1

1− I.
,

E2[s2] =
∞X

N1=0

IN1
. (JK1 + JK2)

µ
I2
I.
×N1 +

JK2

JK1 + JK2
×1
¶

=
I2(JK1 + JK2)

(1− I. )2
+

JK2

1− I.
.

When the system is in S0, no maintenance will be carried out. When the system is

in S1, either i1 or i2 will indicate the true state of the system, and m1 will be carried

out, while m2 will not be necessary. Thus, looking at Case 1 in Figure 1 and using the

expressions of E1[s1] and E1[s2], we obtain

E1[m1] =
∞X

N1=0

IN1
. (JK1 + JK2)

µ
JK1 + JK2

JK1 + JK2
×1
¶
= P1,

E1[m2] = 0.

Model (I0,M1+2).

As for this model investigations will not be carried out, and signal sγ will immediately

trigger maintenance action mγ (γ = 0, 1, 2). This situation occurs when the costs of

investigations i1 and i2 are nearly as high as the costs of maintenance m1 and m2, so

that it is economically not viable to carry out investigation. Under the model (I0,M1+2),

all the expressions for P1, ..., P6 are identical to those of the model (I1+2,M1+2), and so
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are the expressions E1[isp], ..., E6[isp] for expected number of items inspected, and the

expressions E1[si], ..., E6[si] for the expected numbers of type i signals (i = 0, 1, 2). It is

clear that

Eη[iγ ] = 0, Eη[mγ ] = Eη[sγ ] (η = 1, ..., 6; γ = 0, 1, 2).

6. Other models without minor investigation.

When the cost of minor investigation i1 is nearly as high as i2, it will be economically

viable to replace i1 by i2. When the costs of i1 and i2 are nearly as high as m1 and m2,

it will be economically viable to replace i1 by m1 and replace i2 by m2. When the cost

of m1 is nearly as high as m2, it will be economically viable to replace m1 by m2.

Under the models (I2,M1+2), (I2,M2) and (I0,M2), when the system is in S0, the ◦’s

in Figure 1 may indicate signals s0, s1 or s2. When the system is in S1, the ◦’s indicate

signal s0, and the bullet • indicate either s1 or s2. When the system is in S2, the ◦’s

indicate s0, and the • indicate either s1 or s2. Under these models, either s1 or s2 will

cause i2 or i0, and therefore n2 is irrelevant and only n1 will appear in the formulas

for various probabilities and expected values. (For the definitions of n1, n2, refer to the

sets Z0, Z1, Z2 defined in Section 1.) Under the model (I0,M0), neither investigation nor

maintenance will be carried out, and both n1 and n2 are irrelevant.

6.1. Model (I2,M1+2).

Under this model, when either s1 or s2 appears, i2 will be carried out. If i2 shows

that the system is in state Sγ , mγ (γ = 1, 2) will be carried out which will restore the

system back to S0.

The probabilities for Cases 1 and 2 in Figure 1 to occur are identical to those shown

in Section 4 for models (I1+2,M1+2) and (I0,M1+2); and thus the expected values Eη[isp],
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Eη[sγ ] and Eη[mγ ] (η = 1, 2, γ = 0, 1, 2) are identical to those of the models (I1+2,M1+2)

and (I0,M1+2). We denote the probabilities for Cases 3, 4, 5 and 6 in Figure 1 by

P ∗3 , P
∗
4 , P

∗
5 and P ∗6 , respectively, These probabilities are as follows.

P1 =
∞X

N1=0

IN1
. (JK1 + JK2),

P2 =
∞X

N1=0

IN1
. JK0 ×

∞X
N2=0

LN2
0 (L1 + L2)

P ∗3 =
∞X

N1=0

IN1
. JK0 ×

∞X
N2=0

LN2
0 (MN1 +MN2)

P ∗4 =
∞X

N1=0

IN1
. JK0 ×

∞X
N2=0

LN2
0 MN0 ×

∞X
N3=0

RN3
0 (R1 +R2)

=
∞X

N1=0

IN1
. JK0 ×

∞X
N2=0

LN2
0 MN0,

P ∗5 =
∞X

N1=0

IN1
. (JMN1 + JMN2),

P ∗6 =
∞X

N1=0

IN1
. JMN0 ×

∞X
N3=0

RN3
0 (R1 +R2) =

∞X
N1=0

IN1
. JMN0.

It is straightforward to show that P ∗3 + P ∗4 = P3 + P4, and P ∗5 + P ∗6 = P5 + P6.

Refer to Figure 1 for Cases 3, 4, 5, 6. Under the model (I2,M1+2), when the system

is in S1, the 1 +N2 circles ◦’s represent type 0 signals s0’s. In Cases 6, when the system

is in S2, the 1 +N3 circles ◦’s represent type 0 signals s0’s, and the bullet • represents

either a type 1 signal s1 or a type 2 signal s2, where these two types of signal occur in

the ratio R1 : R2.

Replacing i1 in the model (I1+2,M1+2) by i2 forms the model (I2,M1+2), and hence

for model (I2,M1+2) we have

Eη[i0] = Eη[s0], Eη[i1] = 0, Eη[i2] = Eη[s1] +Eη[s2] (η = 1, ..., 6).

For Cases 1 and 2, all the expected values of the number of signals, inspections and

maintenance actions are identical to those for the model (I1+2,M1+2). For Cases 3 — 6,
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corresponding results can be obtained based on the probabilities P ∗3 , P
∗
4 , P

∗
5 , P

∗
6 , and the

detailed are omitted here.

6.2 Model (I2,M2).

Under this model, an s1 or s2 will be followed by i2 which will correctly reveal the

state of the system, and if the system is in S1 or S2, m2 will be carried out which will

restore the system back to S0. The expressions P
∗
3 , ..., P

∗
6 for the probabilities of Cases

3, ..., 6 in Figure 1 are as the same as those for the model (I2,M1+2) in Sub-section 6.1.

The expressions P1 and P2 for the probabilities of Cases 1 and 2 in Figure 1 are identical

to those of the model (I1+2,M1+2) in Section 4.

Since i1 is not carried out, we have

Eη[i0] = Eη[s0], Eη[i1] = 0, Eη[i2] = Eη[s1] +Eη[s2] (η = 1, ..., 6).

For Cases 1 and 2, it can be seen that E1[m0] and E2[m0] are also identical to those

of the model (I1+2,M1+2), and we have E1[m2] = P1, E2[m2] = P2.

Refer to Cases 3, 4, 5, 6 in the Figure 1. Under model (I2,M2), when the system

is in S1, the 1 +N2 circles ◦’s represent type 0 signals s0’s. In Case 4, when the system

is in S2, the 1 +N3 circles ◦’s represent type 0 signals s0’s, and the bullet • represents

either a type 0 signal s0 or a type 1 signal s1, where these two types of signal occur

in the ratio R1 : R2. Hence from the expression for the numbers of items inspected

E4[isp], E4[sγ ], E4[isp], E4[sγ ] (γ = 0, 1, 2) are identical to those of the model (I2,M1+2).

In Cases 3, 4, 5 and 6, since m1 is absent and the • represent m2, the expressions for

Eη[mγ ] (η = 3, 4, 5, 6, γ = 0, 1, 2) are identical to those of model (I2,M1+2).

6.3 Model (I0,M2).
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Under this model, no inspection will be carried out, and s1 or s2 will always lead

to m2. If the system is in Si (i = 1, 2), m2 will always restore the system back to S0.

The expressions of the probabilities for Cases 1 and 2 in Figure 1 are the same as the

P1 and P2 for model (I1+2,M1+2) in Section 4. The expressions for the probabilities for

Case 3, ..., 6 in Figure 1 and the expected number of items inspected are the same as

the P ∗3 , ..., P
∗
6 and E3[isp], ..., E6[isp] for model (I2,M1+2) in Sub-Section 6.1.

For the model (I0,M2), for all η = 1, ..., 6 we have

Eη[i1] = Eη[i2] = Eη[i3] = 0,

Eη[m0] = Eη[s0], Eη[m1] = 0, Eη[m2] = Eη[s1] +Eη[s2].

6.4 Model (I0,M0).

Under this model, none of i1, i2, m1 and m1 will be employed. The system starts at

S0, deteriorates to S1 if π01 > 0, and then deteriorates to S2 if π12 > 0. This model may

be applied when the cost required to carry out investigation and maintenance are high

compared to the penalty cost due to occurrence of nonconforming items.

7. Economic design of inspection and maintenance policy

In reality, various factors determine whether to perform investigation and mainte-

nance on the system. These factors include resources available, operational convenience,

loss due to system failure and nonconforming items, and others. Generally speaking,

investigation and maintenance should be carried out if the loss due to occurrence of

nonconforming items is considerable.

We consider the following three types of cost: (1) penalty cost Cnc due to occurrence

of nonconforming items, (2) investigation cost Civs, (3) maintenance cost Cm. If Ntol is
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the expected total number of items produced in a cycle, the average total cost per item

per cycle is

c̄ = (Cnc + Civs + Cm)/Ntol.

In accordance with the investigation and maintenance policies defined in the previous

sections, we consider the following fixed costs:

cnc = the penalty cost incurred when a nonconforming item is produced,

civs,1 = cost of carrying out i1 each time,

civs,2 = cost of carrying out i2 each time,

cm,1 = cost of carrying out m1 each time,

cm,2 = cost of carrying out m2 each time.

In what follows,
P

η will denote the summation over η = 1, ..., 6 for Cases 1, ..., 6

in Figure 1. Since all items are inspected, for all the models (I1+2,M1+2), (I2,M1+2),

(I0,M1+2), (I2,M2) and (I0,M2) we have

Ntol =
X
η

Eη[isp],

where the expressions for Eη[isp] for the different models are given in Sections 4, 5,

6 (and so are the expressions for Eη[s0], Eη[s1], Eη[s2], Eη[m1], Eη[m2] in the following

Cnc, Civs, Cm).

Since each nonconforming item gives a signal (either s0, s1 or s2), the expected total

number of nonconforming items is
P

η(Eη[s0] +Eη[s1] +Eη[s2]), giving

Cnc = cnc
X
η

(Eη[s0] +Eη[s1] +Eη[s2]).

As for Civs and Cm, we have

Civs = civs,1
X
η

Eη[i1] + civs,2
X
η

Eη[i2],

Cm = cm,1

X
η

Eη[m1] + cm,2

X
η

Eη[m2].
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For the model (I0, M0), the system will change to state S2 eventually and remain in

S2 indefinitely. The average number of items produced when the system is in states S0

and S1 are 1/π01 and 1/π12, respectively. Therefore the average total cost is

c̄ = lim
N→∞

p0cnc/π01 + p1cnc/π12 + p2Ncnc
1/π01E1 + 1/π12 +N

= p2cnc,

where N denotes the number of items produced after the process has shifted to state S2.

Referring to the sets Z0, Z1, Z2 defined in Section 2, we see that the c̄ for each

inspection and maintenance model can be minimized with respect to n1 and n2 in the

region N = {(n1, n2) : 2 ≤ n2 + 1 ≤ n1 ≤ ∞}. Since c̄ is an algebraic function of n1

and n2, minimization can be carried out easily using software such as Mathematica. The

minimum of c̄ for the six maintenance models, say c̄min, can be compared, and the most

cost-effective model can be selected. It is clear that c̄ depends on the parameters p0, p1,

p2, π01, π12, cnc, cinv,1, cinv,2, cm,1, cm,2, and the minimum cost c̄min may be attained

under any of the five models (I1+2,M1+2), (I2,M1+2), (I0,M1+2), (I0,M2), (I0,M0). Table

1 gives the numerical values of c̄ for different values of the parameters and for different

models. In each of the Cases (a) — (h) in Table 1, the minimum c̄’s among the different

models are high-lighted with square brackets. In Cases (a), (b), (c), the minimum c̄ is

attained under model (I1+2,M1+2). In Cases (d), (e), (f), (g), the minimum c̄ is attained

under the models (I0,M1+2), (I2,M1+2), (I0,M2), (I0,M0), respectively.

Since cm,1< cm,2, given any values of p0, p1, p2, π01, π12, cnc, cinv,1, cinv,2, cm,1,

cm,2, it is easy to see from the expressions of Cm that the c̄ for model (I2, M2) cannot be

smaller that of model (I2, M1+2). This is based on the assumption that cm,2 is the same

for both M2 and M1+2. However, in some cases an additional cost ∆ per maintenance

action is required to provide two types of maintenance services m1 and m2, rather than

just a single type m2. If ∆ is included into the the maintenance cost, the cost to carry
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out m2 each time under the model (I2, M1+2) will be cm,2 + ∆ which is larger than the

cost cm,2 under the model (I2, M2). In this case, it is possible that c̄min under the model

(I2, M2) will be smaller than that under the model (I2, M1+2), and this is illustrated by

Case (h) in Table 1. This idea can be extended to the case when an additional cost is

incurred in order to maintain two types of inspection (minor i1 and major i2), instead of

just one type (major i2).

For models (I1+2,M1+2) and (I0,M1+2), the minimum of c̄ can be attained in the

interior or on the boundary of N . Cases (a) and (g) in Table 1 illustrate that for model

(I1+2,M1+2), the minimum of c̄ is attained in the interior of N (where 2 < n2+1 < n1 <

∞), and Cases (b), (c), (d), (e), (f), (h) illustrate that the minimum of c̄ is attained on the

boundary of N (where either 1 < n2 < n1 =∞, n2 = n1 =∞ or 2 < n2 +1 = n1 <∞).

In Case (b), n1 = ∞ means that i0 does not exist, and occurrence of a nonconforming

item is either i1 or i2. In Case (c), n1 = n2 = ∞ indicates that both i0 and i1 do not

exist, and any occurrence of nonconforming item is i2.

Table 1. Numerical examples.

Here (p0, p1, p2, π01, π12) = (0.015, 0.019, 0.05, 0.0004, 0.0035).

(a) (cnc, cinv,1, cinv,2, cm,1, cm,2) = (2.3, 4.8, 10, 4.9, 260).

Investigation = I1+2 I0 I2 I2 I0 I0
Maintenance = M1+2 M1+2 M1+2 M2 M2 M0

c̄min = [0.11024] 0.16171 0.11365 0.13279 0.17553 0.115
Ntol = 2671.82 2834.03 2705.25 3141.35 3141.35 ∞
n2 = 6 1 − − − −
n1 = 17 15 9 1 1 −

(b) (cnc, cinv,1, cinv,2, cm,1, cm,2) = (120, 3, 18, 11, 22).
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Investigation = I1+2 I0 I2 I2 I0 I0
Maintenance = M1+2 M1+2 M1+2 M2 M2 M0

c̄min = [1.90466] 1.93549 1.92969 1.93181 1.93550 6
Ntol = 2559.19 2674.08 2666.93 2666.93 2679.38 ∞
n2 = 6 12 − − − −
n1 = ∞ 13 14 14 12 −

(c) (cnc, cinv,1, cinv,2, cm,1, cm,2) = (220, 0.1, 0.5, 10, 20).

Investigation = I1+2 I0 I2 I2 I0 I0
Maintenance = M1+2 M1+2 M1+2 M2 M2 M0

c̄min = [3.33543] 3.47997 [3.33543] 3.33876 3.48091 11
Ntol = 2547.64 2633.66 2547.64 2547.64 2644.92 ∞
n2 = ∞ 16 − − − −
n1 = ∞ 24 ∞ ∞ 19 −

(d) (cnc, cinv,1, cinv,2, cm,1, cm,2) = (11, 2.7, 15, 2.8, 17).

Investigation = I1+2 I0 I2 I2 I0 I0
Maintenance = M1+2 M1+2 M1+2 M2 M2 M0

c̄min = 0.20333 [0.19967] 0.20272 0.20490 0.20036 0.55
Ntol = 2784.10 2754.99 2804.82 2804.82 2804.82 ∞
n2 = 4 3 1 1 1 −
n1 = 5 9 4 4 4 −

(e) (cnc, cinv,1, cinv,2, cm,1, cm,2) = (120, 5, 10, 411, 650).

Investigation = I1+2 I0 I2 I2 I0 I0
Maintenance = M1+2 M1+2 M1+2 M2 M2 M0

c̄min = 2.11196 2.73581 [2.08753] 2.14071 2.58369 6
Ntol = 2621.72 2824.78 2627.87 2648.57 2927.14 ∞
n2 = 27 3 − − − −
n1 = 28 4 25 18 2 −

(f) (cnc, cinv,1, cinv,2, cm,1, cm,2) = (20, 9, 15, 10, 17).

Investigation = I1+2 I0 I2 I2 I0 I0
Maintenance = M1+2 M1+2 M1+2 M2 M2 M0

c̄min = 0.35242 0.34863 0.34984 0.35073 [0.34742] 1
Ntol = 2736.77 2756.84 2748.31 2748.31 2770.65 ∞
n2 = 6 5 − − − −
n1 = 7 6 6 6 5 −

(g) (cnc, cinv,1, cinv,2, cm,1, cm,2) = (1, 4.8, 10, 4.9, 260).
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Investigation = I1+2 I0 I2 I2 I0 I0
Maintenance = M1+2 M1+2 M1+2 M2 M2 M0

c̄min = 0.08977 0.13875 0.09315 0.11371 0.20811 [0.05]
Ntol = 2871.82 2843.04 2705.25 2927.14 2927.14 ∞
n2 = 6 1 − − − −
n1 = 17 14 9 2 2 −

(h) (cnc, cinv,1, cinv,2, cm,1, cm,2) = (120, 5, 10, 11, 250) under M2 and = (120, 5, 10, 11+

∆, 250 + ∆) under M1+2, where ∆ = 400.

Investigation = I1+2 I0 I2 I2 I0 I0
Maintenance = M1+2 M1+2 M1+2 M2 M2 M0

c̄min = 2.11196 2.73581 2.08753 [1.98957] 2.25668 6
Ntol = 2621.72 2824.78 2627.87 2644.92 2846.52 ∞
n2 = 27 3 − − − −
n1 = 28 4 25 19 3 −

8. Discussion.

In this paper, the authors apply the concept of cumulative count of conforming chart

(CCC chart) to develop inspection and maintenance plans for production systems where

an item produced can be classified as either conforming or nonconforming. All products

items produced are inspected, and the number of items inspected until a nonconforming

item is observed is used as an indicator for system monitoring. When a nonconform-

ing item is observed, either minor investigation, major investigation or no investigation

on the system may be carried out, and subsequently, either minor maintenance, major

maintenance or no maintenance on the system may be carried out. The author derived

analytic expressions of the probabilities for different cases to occur, expected numbers

of signals, expected numbers of investigations and maintenance actions. With these re-

sults, optimized investigation and maintenance strategies are obtained numerically from

an economic approach.

This paper assumes that minor deterioration of the system can be detected by minor
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investigation, and major deterioration of the system can only be detected only by major

investigation, which is illustrated by an example on maintenance of a bus fleet. In reality,

there is another situation where minor deterioration in the system is well-hidden and can

be detected only by major inspection, whereas major deterioration is conspicuous and can

be detected by minor inspection. Separate models can be established for this situation,

and optimized investigation and maintenance strategies can be obtained.

This paper considers the case when system has three discrete states S0, S1, S2 and

changes from state Sγ to state Sγ+1 with probability πγ,γ+1 (γ = 0, 1). This assumption

has been used in the literature (for example, in Das and Jain (1997), Das et al (1996),

Lorenzen and Vance (1986)) for the purpose of economic design of control charts. Sep-

arate studies can be carried out for the situation when deterioration of the system is

continuous and the system has continuous states (see for example, Liao et al (2006)).

In practice, due to cost constraint or operational constraints, maintenance may not

be carried out immediately even when investigations show that the system is in an early

state of deterioration (Christer (1999), Liao et al (2008)). Signals on the control chart

indicating minor deterioration of the system may be used an warnings, and actions will

be taken only when there are signals showing more serious deterioration.
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Appendix.

To find the expected number of items inspected and the expected number of each of

type of signal in different cases, we need to find closed-form expressions of I0, I1, ..., JMN2.

The following identities will be used, in which i, j, k, u,w ≥ 1 are integers, u < w, a 6= 1,

b 6= 1 and c 6= 1. These identities are derived using 1+u+ · · ·+un = (1−un+1)/(1−u)

and its derivative, where u 6= 1. Corresponding results when a = 1, b = 1 or c = 1 can

be more easily derived.

S1 =
wX
i=u

ai−1 =
au−1 − aw

1− a
.

S11 =
wX
i=u

iai−1 =
au − aw+1

(1− a)2
+

uau−1 − (w + 1)aw
(1− a)

=
aS1
1− a

+
uau−1 − (w + 1)aw

1− a

=
au−1(a+ u− au)− aw(a+w − aw)

(1− a)2
.

S2 =
wX

i+j=u

ai−1bj−1

=

⎧⎪⎨⎪⎩
au−1 − aw

(1− a)(a− b)
− bu−1 − bw

(1− b)(a− b)
, (a 6= b),

(u− 1)au−2 − (u− 2)au−1 −waw−1 + (w − 1)aw
(1− a)2

, (a = b).

S22 =
wX

i+j=u

(i+ j)ai−1bj−1 =

µ
1

1− a
+

1

1− b

¶
× S2 +

1

(1− a)(1− b)
× [Q22], where

[Q22] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(bu−1 − au−1) + (u− 1)[(1− b)au−1 − (1− a)bu−1]
a− b

−(b
w − aw) +w[(1− b)aw − (1− a)bw]

a− b , (a 6= b),

−(u− 1)au−2 + (u− 1)au−2[(u− 1)− (u− 2)a]
+waw−1 −waw−1[w − (w − 1)a], (a = b).
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S3 =
wX

i+j+k=u

ai−1bj−1ck−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(au−1 − aw)
(1− a)(a− b)(a− c)

− (bu−1 − bw)
(1− b)(a− b)(b− c)

+
(cu−1 − cw)

(1− c)(a− c)(b− c)
, (a 6= b 6= c),

(au−1 − aw)
(1− a)(a− b)2

− a((u− 1)bu−2 −wbw−1)
(1− b)2(a− b)2

+
(1 + a)((u− 2)bu−1 − (w − 1)bw)

(1− b)2(a− b)2
− (u− 3)b

u − (w − 2)bw+1
(1− b)2(a− b)2

, (a 6= b = c),

au−1 − aw

(1− a)3
+
(u− 1)au−2 −waw−1

(1− a)2
+
(u− 1)(u− 2)au−3 −w(w − 1)aw−2

2(1− a)
, (a = b = c).

S33 =
wX

i+j+k=u

(i+ j + k)ai−1bj−1ck−1

=

µ
1

1− a
+

1

1− b
+

1

1− c
− 1
¶
× S3 +

1

(1− a)(1− b)(1− c)
× [Q33], where

[Q33] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− b)(1− c)[(u− 1)au−1 − waw] + (−1 + bc)[au−1 − aw]
(a− b)(a− c)

−(1− a)(1− c)[(u− 1)bu−1 −wbw] + (−1 + ac)[bu−1 − bw]
(a− b)(b− c)

+
(1− a)(1− b)[(u− 1)cu−1 −wcw] + (−1 + ab)[cu−1 − cw]

(a− c)(b− c)
, (a 6= b 6= c),

(1− b)2((u− 1)au−1 −waw) + (−1 + b2)(au−1 − aw)
(a− b)2

+
−(1− a)

¡
(u− 1)[(u− 3)bu − (u− 2)(1 + a)bu−1 + a(u− 1)bu−2]

¢
(a− b)2

+
(1− a)

¡
w[(w − 2)bw+1 − (w − 1)(1 + a)bw + awbw−1]

¢
(a− b)2

+
a((u− 3)bu − (w − 2)bw+1)

(a− b)2
+
−(1 + a2)((u− 2)bu−1 − (w − 1)bw)

(a− b)2

+
a((u− 3)bu − (w − 2)bw+1)

(a− b)2
, (a 6= b = c),

=
3(au − aw+1)
(1− a)4

+
3(uau−1 − (w + 1)aw)

(1− a)3
+
3(u(u− 1)au−2 − (w + 1)waw−1)

2(1− a)2

+
u(u− 1)(u− 2)au−3 − (w + 1)w(w − 1)aw−2)

2(1− a)
, (a = b = c).

33




