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Abstract5

Warranty claims reported in recent months might carry more up-to-date information than6

those reported in earlier months. Using weighted maximum likelihood estimation for esti-7

mating model parameters might therefore lead to better performance of warranty forecast-8

ing models than maximum likelihood estimation. This paper examines this issue and also9

presents comparison of the forecasting performance of the parametric models such as Poisson10

processes and ARIMA models and non-parametric models such as artificial neural networks.11

It shows that mixed non-homogenous Poisson process models can lead to better forecasting12

results than other competing methods. The paper also shows that the models built with13

the weighted maximum likelihood estimation yield smaller error than those based on the14

maximum likelihood estimation.15

Keywords: Warranty forecasting, Poisson processes, weighted maximum likelihood16

method, overdispersion.17

1 Introduction18

Warranty claim forecasting is becoming increasingly important for businesses as the financial19

resources associated with warranty coverage are running into millions of pounds. Warranty20

has become a marketing tool that is utilised to assure the customer of a superior reliability21

of the product and the manufacturer’s commitment to post sale product service. As a22

result, many manufacturers offer longer warranty, which leads to larger warranty reserves23
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and requires a better resource management through a thorough analysis of warranty data.24

This study presents some results on improving the accuracy of forecasting warranty claims.25

Approaches to warranty data analysis have been addressed by many researchers. For26

example, Kalbfleisch et al. 1 uses Poisson models to analyse automobile warranty data with27

reporting delays, Murthy 2 discusses warranty cost analysis based on usage rate. Lawless and28

Kalbfleisch 3 , Kalbfleisch and Lawless 4 , Lawless 5 , and Suzuki et al. 6 discuss different sta-29

tistical aspects of warranty data analysis, Fredette and Lawless 7 discusses warranty claims30

forecasting, Akbarov and Wu 8 uses Poisson models to analyse warranty claim data of elec-31

tronics products with sales delay. Karim and Suzkui 9 and Wu 10 offers reviews of warranty32

literature, respectively. Many of these studies use non-homogeneous Poisson processes to33

model warranty data. Also, see Blischke et al. 11 for more recent discussion of the issues34

related to the analysis of the warranty data.35

Wasserman 12 presents application of dynamic linear models to predicting warranty claims.36

The author compares the Kalman filter method to the simple linear regression method.37

Wasserman and Sudjianto 13 presents the results of comparing the forecasting performance38

of three different modelling strategies. The methods are compared based o nthe analysis of39

automobile warranty data. The authors consider static predictive models such as ARIMA,40

Kalman filter and artificial neural networks. This study has shown that the neural networks41

have resulted in the least forecasting error.42

Some studies on the analysis of the warranty data have reported the phenomenon of43

overdispersion. The overdispersion occurs when the variance of the Poisson random variable44

is higher than its expectation, where the two should be equal. The phenomenon is thought45

to occur due to intrinsic discrepancies in the reliability of individual products, heterogeneity46

of users and operating environments. For more details see Kalbfleisch et al. 1 , Kalbfleisch47

and Lawless 4 , Fredette and Lawless 7 , and Akbarov and Wu 24 .48

In this study we consider the application of the following models. Auto-regressive inte-49

grated moving average (ARIMA) models as these models are standard models for forecasting50

time series. Non-homogenous Poisson process (NHPP) models as these models are commonly51

applied to warranty data. Mixed non-homogenous Poisson process (MNHPP) models as52

these models are suitable for dealing with overdispersion. Artificial neural networks (ANN)53

as these models have recently become a popular method for various purposes including the54

time series forecasting. To our knowledge none of the previous studies on warranty data55

analysis has looked at comparing Poisson processes against the ARIMA and neural networks56

models.57
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Wu and Akbarov 19 have shown that giving higher weights to recent data can lead to58

better forecasting results and use non-parametric approaches to building forecasting models.59

In this study we consider a similar approach for estimating the parameters of the Poisson60

processes. More specifically, we consider the weighted maximum likelihood method. To our61

knowledge this has not been considered for forecasting warranty claim data so far. We show62

that weighted maximum likelihood method applied to the mixed non-homogenous Poisson63

process gives better forecasts than other methods considered here and also better forecasts64

than when it is fitted using the maximum likelihood method.65

2 Parametric models66

2.1 Poisson process models67

This subsection discusses discrete time Poisson processes parametrised by µt. µt is the68

expectation of the increment of the process at time t and depends on the type of the process.69

As we consider discrete time processes, we define rt to be the expected number of warranty70

claims per product unit at time t. rt can be derived from a continuous function as rt =71 ∫ t+∆
t h(x)dx, where h(x) can be a continuous function such the hazard rate function. Since72

we consider monthly data we let ∆ = 1. We also denote by Nt the number of products in73

the market at time t and dt the number of observed warranty claims in month t.74

The non-homogeneous Poisson process is one of the most common probability models75

used to model failure counts of repairable products, see Ascher and Feingold 20 . The NHPP76

assumes that upon repair the failure rate of a product is restored to the same level as it was77

just before the failure. Such a repair is referred to as a minimal repair. Many products that78

are subject to warranty can be thought of as repairable systems. Even in the cases where79

some part of the system is replaced by a new component, as a whole, the system can often80

still be viewed as repairable. The NHPP has been applied to model warranty data in studies81

such as Kalbfleisch et al. 1 , Lawless 5 , Karim et al. 21 , Wang et al. 22 , and Majeske 23 .82

The mean of the NHPP is a deterministic function of time. In our case, the intensity83

function of the NHPP is given by µt = Ntrt. The increments of the NHPP are independent84

from each other and distributed according to a Poisson distribution with mean µt.85

The mixed non-homogeneous Poisson process assumes that the intensity function of the86

process is subject to random changes from its expected value. For mathematical simplicity,87

such random changes are often modelled using a gamma distribution. Let α be a gamma88

random variable with E(α) = a/b and denote Mt =
∑t
i=1 µt . Then the number of events89
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in interval (0, t] is a random variable given by αMt. The increments of the mixed Poisson90

processes are not independent, therefore µt is given by µt = (α|Dt−1)Ntrt, where Dt−1 is91

the data observed prior to t, for more details, see Fredette and Lawless 7 and Akbarov and92

Wu 24 . For simplicity, we consider an MNHPP model, where E(α) = 1. The application of93

MNHPP to automobile warranty data is considered in Fredette and Lawless 7 .94

2.2 Weighted maximum likelihood estimation95

There are several methods that use weighted approach to finding maximum likelihood esti-96

mates, namely, local likelihood, relevance weighted likelihood and weighted likelihood. These97

methods define the log-likelihood function in terms of a weights function w(z) as:98

lnL(z;x1, x2, ..., xn) =
n∑
i=1

w(z)lnL(xi,Θ), (1)

where xi is the ith observation and n is the total number of observations.99

The general form of the local likelihood uses a kernel function to concentrate the weights100

around some value z with bandwidth h, w(z) = K(xi−z
h

), for more details refer to Eguchi101

and Copas 25 .102

The relevance weighted likelihood function is the weighted function of likelihoods of103

different data sets assumed to have been generated from distributions similar (at least in104

some qualitative sense) to the distribution whose parameters are being estimated. w(z), in105

this case, reflects the degree of similarity, for an example of the use of this approach see Hu106

and Zidek 26 .107

The term weighted likelihood function has been used in many different contexts, which108

are discussed in detail in Wang 17 . Often weighted likelihood methods are used for combining109

the likelihoods of data from different but somehow similar samples. Asymptotic properties110

of such estimates can be found in Wang et al. 27 .111

In this paper, we focus on weighing the likelihoods of the data samples based on their112

temporal distance from the current point in time. A similar approach has been applied by113

Wu and Akbarov 19 in the context of warranty claims forecasting using machine learning114

techniques such as support vector regression and neural networks. They have shown that115

the weighted approach can yield more accurate forecasts.116

In the context of warranty claims forecasting, the necessity for weighing the observed data117

based on their temporal distances from the current point in time can arise due to the following118

reasons. It is often happens that product lines undergo some design or other subtle changes119
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to remove problems identified from the failure of earlier production batches. This makes120

the earlier data less representative of the current failure tendencies. This is one of the most121

common reasons why more recent data plays a more important role for forecasting future122

warranty claims. Also, fast paced technological advances can lead to quick obsolescence of123

products which would have an impact on the propensity of customers to claim warranty due124

to a more preferable option of purchasing a new, more technologically advanced product.125

In this study we consider the weights function, wt, for discrete time series, given by a126

normalised cumulative distribution function of the geometric distribution:127

wt =
1

c
(1− (1− θ)t), (2)

where the normalising constant c =
∑T
t=1(1− (1− θ)t) with T being the most recent month,128

and parameter p > 0, which controls the spread of weights. For example θ = 1 leads to129

equal weights for all t. In general, larger values of θ lead to relatively more equal wights130

for longer time lags, whereas smaller values of θ lead to more variable weights, see Figure 1.131

The choice of the above function implies that the weights are in a strictly increasing order132

from month 1 to month T and
∑T
t=1wt = 1. It also insures that there is no over-reliance on133

the most recent data, where the most recent values have high weights and the rest have very134

small weights. In this study we choose the parameter θ that maximises the log-likelihood135

function.136

The weighted log-likelihood function of the non-homogenous Poisson process is given by:137

lnL =
T∑
t=1

wt
{
dtln(Ntrt)−Ntrt + ln(dt!)

}
, (3)

where Ntrt is the expected number of claims in month t and dt is the number of observed138

claims in month t.139

The weighted log-likelihood function of the mixed non-homogenous Poisson process is140

given by:141

lnL =
T∑
t=1

wt
{

ln(Γ(a+ At + dt)) + (a+ At)ln(b+Bt) + dtln(Ntrt)

−ln(Γ(a+ A))− (a+ At + dt)ln(b+Bt +Ntrt)− ln(dt!)
}
, (4)

where At =
∑t−1
i=1 di and Bt =

∑t−1
i=1 Ntrt, see Akbarov and Wu24.142
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Figure 1: Weights function, wt, given in continuous form to emphasise the shape of the
function.

2.3 ARIMA models143

The auto-regressive integrated moving average model (ARIMA) is a widely used time series144

model (see Montgomery28 and Chatfield29, for example). The ARMA (p, q) model for time145

series Xt with t = 1, 2, ... is given by146

Xt =
p∑
i=1

βiXt−i +
q∑
j=0

γjεt−j (5)

where the first term is the auto-regressive model (AR) of order p and the second term is the147

moving average model (MA) of order q and γ0 = 1. When the dth difference of a time series148

follows an ARMA(p, q), the model becomes an ARIMA(p, q, d). The process can be given a149

mean by adding some constant c to the above equation.150

In this paper, the time series under consideration is dt. The order terms of the models,151

p, q and d are determined on the basis of the Akaike information criterion (AIC).152
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3 Neural networks153

Neural networks have become a popular method applied to a wide range of problems such as154

function fitting, classification, regression and time series forecasting, the reader is referred to155

Bishop30 for detailed discussion of neural networks. The credibility of the neural networks has156

been established by the universal approximation property (Hornik et al.31 and Funuhashi32).157

Here, we consider a neural network model, or called multilayer perceptron (MLP), which158

is a feedforward artificial neural network model that maps sets of input data onto a set of159

appropriate output. The time series forecasting problem can be formulated as follows:160

x̂t+i = f(xt−K+i, xt−K+i−1, ..., xt−K+i−p), (6)

where x̂t+i is the forecast for time t+i, for i = 1, 2, ..., K, and p is the order of auto-regression.161

The number, H, of hidden nodes, controls the complexity of the network. A complex162

model with a large number of nodes can lead to over-fitting, which means the model performs163

exceptionally well on the training set but has very poor generalisation on the test data.164

Here, we consider two forecasting horizons, K = 3, and K = 6. The available data165

consists of 24 months of observations for eight products. We use the first 18 months of the166

data to fit the models and the remaining 3 and 6 months to test the forecasting accuracy of167

the models. The first 18 months of the data are divided into two parts: the first 15 months168

are used to train the neural network and the last 3 months, from 16 to 18 are used as the169

validation set. The model that results in the lowest error on the validation set is then used170

for forecasting purposes.171

The auto-regression order p and the number H of neurons in the hidden layer are chosen172

in a way that gives the least error on the validation set. H is sought in the range of 2 to173

7 neurons, and the range of p is chosen accordingly depending on K. Since training neural174

networks can results in local optima, the network training is performed 30 times for each175

combination of H and p.176

4 Case study177

This section presents the results of data experiments using a data set from electronics in-178

dustry consisting of eight different products. We use the first 18 months of the data to fit179

the models and then measure the forecasting accuracy based on forecasts of 3 and 6 months180

ahead.181
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Figure 2: Claim rates for Products 2 and 4.

The data set consists of two main pieces of information, the number of products in the182

market in month t, Nt, and the number of warranty claims in month t, dt. The observed183

claim rate rt estimated as dt/Nt for two different products is shown in Figure 2. The figure184

shows that the claim rates have a single mode, where after initial increase the claim rate185

start decreasing with time. Other products considered in this study also exhibit a similar186

behaviour, which can be modelled using the hazard rate function of the inverse-Weibull187

distribution given by:188

h(t) = αβαt−(α+1)e−(β
t

)α(1− e−(β
t

)α)−1. (7)

Thus, the expected number of warranty claims per product unit in month t is given by189

rt =
∫ t
t−1 h(x)dx for t = 1, 2, ....190

The forecasting error is measured using the normalised rooted mean squared error (NRMSE)191

given by:192

NRMSE =

√√√√∑T+K
t=T+1(dt − d̂t)2∑T+K

t=T+1 d
2
t

, (8)

where d̂t is the forecasted value of dt, T is the number of months used for fitting the models,193

and K is the forecasting horizon.194

Table 1 and Table 2 show the results of measuring the forecasting accuracy for all eight195
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products. We can note from these two tables that the MNHPP and the weighted MNHPP196

have the lowest NRMSE for both forecasting periods. Also, we can note that the weighted197

MNHPP and the weighted NHPP have better forecasting accuracy than the MNHPP and198

NHPP respectively.199

Table 3 shows the results of the paired two-sample test for means between different models200

across all eight products for K = 3, and Table 4 shows similar results for K = 6. The tables201

should read as comparing the rows to columns, so the positive sign of the t statistic indicates202

that the mean of the method given in the row is higher than the mean of the method given203

in the column. The values in the parenthesis represent the associated significance values.204

From both tables, 3 and 4, we can note that the difference between weighted MNHPP,205

NHPP and their counterparts is statistically significant. So, we can conclude that the use of206

weighted maximum likelihood method can give better forecasting results.207

The wMNHPP column in Table 3 shows that the average of the forecasting error is208

statistically significantly lower than for other methods except for the ARIMA method. Nev-209

ertheless, even compared to the ARIMA method the average of the wMNHPP method is210

28% lower.211

The wMNHPP column in Table 4 shows similar results. In this case, the average of the212

wMNHPP is statistically significantly lower than for all other methods except for the ANN.213

Even for the case of ANN, the difference is just outside the 0.05 significance level. However,214

the wMNHPP average is 51% lower than the average of ANN.215

Table 1: Normalised rooted mean squared error for forecasting horizons K = 3 and K = 6.

Product
NHPP ANN ARIMA MNHPP

K = 3 K = 6 K = 3 K = 6 K = 3 K = 6 K = 3 K = 6
1 0.026 0.065 0.245 0.270 0.226 0.319 0.025 0.065
2 0.293 0.341 0.370 0.417 0.229 0.321 0.134 0.156
3 0.365 0.400 0.241 0.302 0.332 0.490 0.242 0.254
4 0.546 0.609 0.432 0.397 0.089 0.149 0.247 0.260
5 0.186 0.175 0.124 0.130 0.035 0.045 0.067 0.058
6 0.178 0.340 0.230 0.430 0.180 0.290 0.239 0.230
7 0.483 0.552 0.255 0.338 0.210 0.471 0.089 0.105
8 0.254 0.619 0.154 0.442 0.185 0.523 0.136 0.379

Average 0.291 0.388 0.256 0.341 0.186 0.326 0.147 0.188
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Table 2: Normalised rooted mean squared error for forecasting horizons K = 3 and K = 6
based on weighted maximum likelihood estimation. Prefix ”w” stands for weighted.

Product
wNHPP wMNHPP

K = 3 K = 6 K = 3 K = 6
1 0.024 0.059 0.024 0.059
2 0.249 0.293 0.120 0.140
3 0.309 0.338 0.197 0.201
4 0.429 0.481 0.216 0.225
5 0.130 0.119 0.035 0.043
6 0.151 0.278 0.258 0.243
7 0.391 0.450 0.070 0.085
8 0.204 0.547 0.146 0.336

Average 0.236 0.321 0.133 0.166

Table 3: Paired two-sample test for means: estimated t-statistic (associated significance
level), K = 3. Prefix ”w” stands for weighted.

NHPP ANN ARIMA MPP wNHPP wMPP
NHPP - 1.30 (0.12) 1.53 (0.08) 2.77 (0.01) 4.40 (0.00) 2.80 (0.01)
ANN - 1.15 (0.14) 3.5 (0.00) - 0.22 (0.41) 3.37 (0.01)
ARIMA - 0.94 (0.19) - 0.88 (0.2) 1.29 (0.12)
MPP - - 2.14 (0.04) 1.85 (0.05)
wNHPP - 2.25 (0.03)

Table 4: Paired two-sample test for means: estimated t-statistic (associated significance
level), K = 6. Prefix ”w” stands for weighted.

NHPP ANN ARIMA MPP wNHPP wMPP
NHPP - 2.78 (0.01) 0.86 (0.21) 3.95 (0.00) 5.22 (0.00) 4.13 (0.00)
ANN - -2.08 (0.04) 0.97 (0.18) -2.07 (0.04) 1.75 (0.06)
ARIMA - 2.52 (0.02) 0.09 (0.47) 2.88 (0.01)
MPP - -3.34 (0.01) 2.96 (0.01)
wNHPP - 3.61 (0.00)

5 Discussion216

The results of this study show that MNHPP models have the best forecasting performance.217

For short forecasting horizon K = 3 the next best method is the ARIMA models. This is to218

be expected as ARIMA models often perform well for short forecasting horizons. The NHPP219

model has not given good forecasting results, this can be explained by potential presence of220

overdispersion in the data, where the NHPP model becomes rather inadequate. The neural221

networks have not resulted in better forecasts than the ARIMA or MNHPP models. In222
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general, the neural networks are often do not to generalise well on unseen data. Also, neural223

networks can have many local optima which can make it difficult to achieve consistent results224

on different runs. Here, we have chosen the neural network model that performs best on the225

validation set.226

The MNHPP models are dependent on the choice of the form of the intensity function.227

In our examples, we have chosen the inverse-Weibull distribution, because the observed228

rate of the products can be adequately modelled by this function. This is often useful, as229

companies produce many similar products and we can choose the intensity function form230

depending on the observed behaviour of warranty rates for old products. More flexible forms231

of the intensity function can be contemplated. The reliance on the similarity between the232

new products and older products can lead to good extrapolations. This is especially true for233

electronics industry where many products share similar components.234

The results of this study emphasise the importance of giving higher weights for more235

recent data samples when forecasting warranty claims. We have discussed that the reasons236

for this are often justified by external factors that can have an impact on the warranty claim237

arrival process.238

The field warranty data often exhibits overdispersion, where the variance of the incre-239

ments of the process is higher than its expectation. From the above results we have seen240

that models that can deal with overdispersion fit the data better than the non-homogenous241

Poisson process, where the variance and the expectation of the increments are equal. In prac-242

tise, the overdispersion can be expected to have a dynamic nature. Mixed non-homogenous243

Poisson process updates the level of overdispersion as more data becomes available.244

6 Conclusions245

In this study we have focused on forecasting warranty claims using the following methods,246

ARIMA, NHPP, MNHPP and neural networks. It is clear from the results that the MNHPP247

model has the best forecasting accuracy, and that estimating the parameters of the Poisson248

processes with the weighted maximum likelihood method gives better forecasting results249

than those with the maximum likelihood method. Based on those warranty claim data we250

have collected, we can draw the following conclusions from this study:251

• Weighted maximum likelihood methods using weights depending on the temporal dis-252

tance of data samples from the current point in time can yield more accurate forecasts253

than those obtained by maximum likelihood method for Poisson processes. Although,254
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this can be conditional on the choice of the weights function and its parameters, a255

suitable choice can have a significant positive impact.256

• Mixed non-homogenous Poisson process can often yield better forecasting results than257

the non-homogenous Poisson process. This is mainly due to the fact that many field258

warranty data exhibit overdispersion.259

We recommend that, when fitting forecasting models to field warranty data, one should260

consider giving more weights to recent data samples and take into account the phenomenon261

of overdispersion, which is often present in real life data sets.262
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