
Patrascoiu, Octavian (2004) YATL: Yet Another Transformation Language
- Reference Manual Version 1.0. Technical report. University of Kent, Great
Britain

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14201/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14201/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer Science at Kent

YATL: Yet Another Transformation
Language - Reference Manual
Version 1.0

Octavian Patrascoiu

Technical Report No. 2-04
March 2004

Copyright  2004 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent CT2 7NF, UK

This report presents version 1.0 of YATL (Yet Another Transformation Language),

which is evolving in order to support all the features provided by [QVT02] and the

future QVT standard. The first subsection provides a quick overview of the YATL

language. Subsequent sections present the features of YATL in more details.

Chapter 1. YATL OVERVIEW

YATL is a hybrid language (a mix of declarative and imperative constructions)

designed to answer the Query/Views/Transformations Request For Proposals

[QVT02] issued by OMG and to express model transformations as required by the

MDA [MDA] approach.

YATL formulates queries to interrogate the model using constructions from the OCL

2.0 standard. A YATL query is a syntactic construct that wraps inside the description

of the request in terms of OCL 2.0 (see Appendix 3). The YATL processor invokes

the OCL processor to process the query and supply the results of interrogation.

A YATL transformation describes a mapping between a source MOF metamodel S,

and a target MOF metamodel T. The transformation engine uses the mapping to

generate a target model instance conforming to T from a source model instance

conforming to S. The source and the target metamodels may be the same metamodel.

Navigation over models is specified using OCL.

Each transformation contains one or more transformation rules. A transformation rule

consists of two parts: a left-hand side (LHS) and a right-hand side (RHS). The LHS of

a YATL transformation is specified using a filtering expression written either in OCL

or native code such as Java, C#, and scripts. This approach allows filter expressions to

include both modeling information (e.g. navigational expressions, properties values,

collections) and platform dependent properties (e.g. special conversion functions),

which makes them extremely powerful. A compound statement specifies the effect of

the RHS. The LHS and RHS for the YATL transformation are described in the same

syntactical construction, called transformation rule. A rule is invoked explicitly using

its name and with parameters.

The abstract syntax of YATL namespaces, translation units, queries, views,

transformations, and transformations rules is described in Figure1.

Figure1 Abstract Syntax

Chapter 2. MAIN FEATURES

The declarative features come mainly from OCL expressions and the description of

the LHS of transformation rules. YATL acts in a similar way to a database system that

uses SQL to interrogate the database and the imperative host language to process the

results of the query. We choose OCL to describe the matching part of YATL rules

because it is a well defined language for querying the UML models it provides a

standard library with an acceptable computational expressiveness, it is a declarative

language, and it is a part of the OMG’s standards.

YATL supports several kinds of imperative features, used in the RHS of

transformation rules, which are presented later in this chapter. This features were

selected so that YATL can provide lifecycle operations like creation and deletion,

operations to change the value of properties, declarations, decisions, and iteration

statements, native statements to interact to the host machine, and build statements to

ease the construction of target model instance. Compound statements contain a

sequence of instructions, which are to be executed in the given order. These syntactic

constructions make use of OCL expressions to specify basic operations such as adding

two integer values. YATL uses the same type system as OCL 2.0 [OCL].

YATL is described by an abstract syntax (a MOF metamodel) and a textual concrete

syntax. It does not yet have a graphical concrete syntax as QVT RFP suggested. A

transformation model in YATL is expressed as a set of transformation rules.

Transformations from Platform Independent Models (PIMs) to Platform Specific

Models (PSMs) can be written in YATL to implement the MDA.

A YATL transformation is unidirectional. We believe that a model transformation

language should be unidirectional, otherwise it cannot be used for large scale models.

The main difficulty with a bidirectional transformation language is that it needs some

reasoning to perform the transformation. For example, DSTC’s proposal [QVTD] uses

mechanisms similar to Prolog-unification to perform a bidirectional mapping. The

reverse transformation can be described as any other transformation using YATL.

For a real model-to-model transformation, traceability is absolutely necessary to make

the approach workable. To trace the mapping between source and target model

instances, YATL comprises an operator called track. Track expressions are, from the

concrete syntax point of view, similar to DSTC’s track constructions [QVTD]. The

main difference is that YATL’s tracks are defined using concepts like relation name,

domain, and imagine, and not Prolog-like concepts (e.g. unification). This approach

makes the traceability system of YATL suitable for large-scale systems.

Chapter 3. PROGRAMS

A YATL program consists of one or more source files, known formally as translation

units. A source file is an ordered sequence of Unicode standard characters.

Conforming implementations must accept Unicode source files encoded with the

UTF-8 encoding form [UNI], and transform them into a sequence of Unicode

characters. Implementations may choose to accept and transform additional character

encoding schemes, such as UTF-16, UTF-32, or non-Unicode character mappings.

Conceptually speaking, a YATL program is analysed in five steps:

(1) Character conversion, which converts a file from a particular character
repertoire and encoding scheme into a sequence of Unicode characters.

(2) Lexical analysis, which translates a stream of Unicode input characters into a
sequence of tokens.

(3) Syntactic analysis, which translates the sequence of tokens into an abstract
representation of the input structure.

(4) Semantic analysis, which checks if the input follows the semantic rules, and
produces an internal representation of both syntax and semantics.

(5) Code generation or interpretation where the semantic representation is either
used to generate code for the underlying machine or directly evaluated on the
same machine.

Chapter 4. GRAMMARS

This section presents the syntax of YATL language using two grammars, structured on

two levels. On the first level, the lexical grammar defines how Unicode characters are

combined to form line terminators, white space, comments, and YATL tokens. At the

second level, the syntactic grammar defines how the tokens resulting from the lexical

grammar are combined to form YATL programs. Both grammars are described using

the notation comprised in Appendix 1.

4.1. Lexical grammar

The lexical grammar of YATL is presented in Appendix 2. The terminal symbols of

the lexical grammar are the characters of the Unicode character set, and the lexical

grammar specifies how characters are combined to form white spaces, comments, and

tokens.

The lexical processing of a YATL source file consists of reducing the file into a

sequence of tokens that becomes the input to the syntactic analysis. Line terminators,

white space, and comments can serve to separate tokens, but otherwise these lexical

elements have no impact on the syntactic structure of a YATL program.

When several lexical grammar productions match a sequence of characters in a source

file, the lexical processing always forms the longest possible lexical element. For

example, the character sequence - is processed as the beginning of a single-line

comment because that lexical element is longer than a single – token.

Every source file in a YATL program must conform to the input production of the

lexical grammar.

4.2. Syntax grammar

The syntactic grammar of YATL is presented in Appendix 3 and the following

sections. The terminal symbols of the syntactic grammar are the tokens defined by the

lexical grammar, and the syntactic grammar specifies how tokens are combined to

form YATL programs.

Every source file in a YATL program must conform to the translation-unit production

of the syntactic grammar.

Chapter 5. TYPES AND VARIABLES

The types of the YATL language are derived from the OCL’s types [OCL2], [AP03],

[ALP03]. They can be used to encapsulate logical values, numbers, collections,

tuples, and user types. The type hierarchy of YATL is described in Figure1 and derives

from [ALP03].

Figure1 YATL types

YATL’s type system is unified such that a value of any type can be treated as a

Classifier. Every type in YATL directly or indirectly derives from the Classifier class

type, which is the ultimate base class of all types. On the other hand, undefined values

are represented using VoidType.

YATL defines two categories of variables: local variables and value parameters. In the

example

transformation T {
 rule r match java::Class (String s) {
 let i: Integer = 3;
 }
}

s is a value parameter and i is a local variable.

Variables represent storage locations. Every variable has a type that determines what

values can be stored in the variable. YATL is a type-safe language, and the

YATL processor guarantees that values stored in variables are always of the

appropriate type. The value of a variable can be changed through assignment. If the

value of a variable is not specified by an initialization or assignment, it is considered

to be the undefined value from OCL.

A variable must be definitely assigned before its value can be obtained. A variable is

said to be definitely assigned at a given location in the executable code, if the

compiler can prove, by a particular static flow analysis that the variable has been

automatically initialized or has been the target of at least one assignment.

Variables are either initially assigned or initially unassigned. An initially assigned

variable has a well defined initial value and is always considered definitely assigned.

An initially unassigned variable has no initial value. For an initially unassigned

variable to be considered definitely assigned at a certain location, an assignment to the

variable must occur in every possible execution path leading to that location.

5. EXPRESSIONS

This section defines the syntax, order of evaluation of operands and operators, and

meaning of expressions. YATL expressions are extensions of OCL 2.0 expressions

presented in Figure2 [ALP03].

Figure2 YATL expressions

More details about the expressions supported by OCL (e.g. concrete syntax, abstract

syntax, and semantics) and the way they are implemented can be found in

[OCL2][ALP03].

The extensions specific to YATL are presented in the following subsections.

5.1. The assignment operator

The assignment operator assigns a new value to a variable or a property.

assignment-expression →

ocl-expression ‘:=’ rhs-expression .

rhs-expression →

ocl-expression |

new-expression |

build-expression |

track-expression .

The left operand of an assignment must be an expression classified as a variable or a

property.

In an assignment, the right operand must be an expression of a type that is compatible

to the type of the left operand [OCL2]. The operation assigns the value of the right

operand to the variable or property given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand.

The result has the same type as the left operand and is always classified as a value.

5.1.1. The new operator

The new operator is used to create new instances of model element types [OCL2].

new-expression →

‘new’ path-name .

The new operator implies creation of an instance of the path-name type.

5.1.2. The build operator

The build operator is used to create new instances of model element types and set

their properties in the same time.

build-expression →

‘build’ path-name ‘{‘ list-pair ‘}’.

list-pair→

λ |

pair ‘,’ list-pair .

pair →

name ‘:=’ rhs-expression .

The new operator implies creation of an instance of the path-name type and sets the
values for the properties specified in list-pair. If there is at least one name for which
there is no such property in type path-name, a compile-error is reported.

5.1.3. The track operator

The track operator is used to store and retrieve mappings during and after the

transformation process.

track-expression →

‘track’ ‘(‘ ocl-expression ‘,’ simple-name ‘,’ ocl-expression ‘)’ |

‘track’ ‘(‘ ‘null’ ‘,’ simple-name ‘,’ ocl-expression ‘)’ |

‘track’ ‘(‘ ocl-expression ‘,’ simple-name ‘,’ ‘null’ ‘)’ .

Given a relation R and two objects X and Y, the meaning of the track operator is the

following:

• track(X, R, Y) stores the relation R(X, Y).

• Y := track(X, R, null) retrieves the element related to X.

• X := track(null, R, Y) retrieves the element related to Y.

The type of X and Y can be any OCL 2.0 type (e.g. integer, real, boolean, string,

model element type, collection, or tuple).

Chapter 6. STATEMENTS

This section contains the description of the statements supported by YATL and other

basic concepts such as: end point, reachability, name lookup, rule resolution etc. The

abstract syntax tree of YATL statements is described in Figure 6.1.

Figure 6.1 YATL statements

6.1.1. End points and reachability

Every statement has an end point. In intuitive terms, the end point of a statement is the

location that immediately follows the statement. The execution rules for composite

statements (statements that contain embedded statements) specify the action that is

taken when control reaches the end point of an embedded statement. For example,

when control reaches the end point of a statement in a block, control is transferred to

the next statement in the block.

If a statement can possibly be reached by execution, the statement is said to be

reachable. Conversely, if there is no possibility that a statement will be executed, the

statement is said to be unreachable. In the example

rule r() {

 while (…) {

-- reachable
let i: Integer = 3;
break;

-- unreachable
 i := i+1;

}

}

6.1.2. Blocks

A block permits multiple statements to be written in contexts where a single statement
is allowed.

block →

‘ {‘ ‘}’

 |

‘{‘ statement-list ‘}’ .

A block consists of an optional statement-list, enclosed in braces. If the statement list

is omitted, the block is said to be empty.

A block may contain declaration statements. The scope of a local variable or constant

declared in a block is the block. Within a block, the meaning of a name used in an

expression context must always be the same.

A block is executed as follows:

• If the block is empty, control is transferred to the end point of the block.

• If the block is not empty, control is transferred to the statement list. When and
if control reaches the end point of the statement list, control is transferred to
the end point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the

statement list is reachable.

6.1.3. Statement lists

A statement-list consists of one or more statements written in sequence. Statement

lists occur in blocks.

statement-list →

statement |

statement-list statement .

A statement list is executed by transferring control to the first statement. When and if

control reaches the end point of a statement, control is transferred to the next

statement. When and if control reaches the end point of the last statement, control is

transferred to the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:

• The statement is the first statement and the statement list itself is reachable.

• The end point of the preceding statement is reachable.

The end point of a statement list is reachable if the end point of the last statement in

the list is reachable.

6.2. The empty statement

An empty-statement does nothing.

empty-statement→

‘;’ .

An empty statement is used when there are no operations to perform in a context
where a statement is required.

Execution of an empty statement simply transfers control to the end point of the
statement. Thus, the end point of an empty statement is reachable if the empty
statement is reachable.

6.3. Declaration statements

A declaration-statement declares a local variable. Declaration statements are

permitted in blocks.

declaration-statement→

local-variable-declaration .

6.3.1. Local variable declarations

A local-variable-declaration declares one or more local variables [OCL2], [ALP03].

local-variable-declaration →

‘let’ variable-declaration-list ‘;’

variable-declaration-list →

variable-declaration |

variable-declaration-list ‘,’ variable-declaration .

variable-declaration →

simple-name [‘:’ type] [‘=’ init-expression] .

The type of a local-variable-declaration specifies the type of the variables introduced

by the declaration [OCL2][ALP03]. The init-expression gives the initial value of the

variable. Both type and initial value are optional [OCL2].

The value of a local variable is obtained in an expression using a simple-name, and

the value of a local variable is modified using an assignment. A local variable must be

definitely assigned at each location where its value is obtained.

The scope of a local variable declared in a local-variable-declaration is the block in

which the declaration occurs. It is an error to refer to a local variable in a textual

position that precedes the local-variable-declarator of the local variable. Within the

scope of a local variable, it is a compile-time error to declare another local variable

with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple

declarations of single variables with the same type. Furthermore, a variable initializer

in a local variable declaration corresponds exactly to an assignment statement that is

inserted immediately after the declaration.

The example

rule r() {
 let x : Integer = 1,
 y : Integer,
 z : Integer = x * 2;
}

corresponds exactly to
rule r() {
 let x : Integer;

 x := 1;
 let y : Integer;
 let z : Integer;

 z := x * 2;
}

6.4. Expression statements

An expression-statement evaluates a given expression. The value computed by the

expression, if any, is discarded.

expression-statement →

expression ‘;’ .

expression →

assignment-expression |

ocl-expression |

track-expression .

Execution of an expression statement evaluates the contained expression and then

transfers control to the end point of the expression statement.

6.5. The apply statement

An apply-statement is used to invoke a rule.

apply-statement →

‘apply’ path-name’(‘ argument-list ‘)’ ‘;’ .

argument-list →

λ |

argument ‘,’ argument-list .

argument →

ocl-expression .

For a rule invocation, the compiler must first identify the one rule to invoke or the

group of overloaded rules from which to choose a specific rule to invoke. In the latter

case, determination of the specific rule to invoke is based on the context provided by

the types of the arguments in the argument-list.

The compile-time processing of a method invocation of the form R(A), where R is a

rule group and A is an optional argument-list, consists of the following steps:

• The set of candidate rules for the rule invocation is constructed. The set of
rules associated with path-name, which are found by a name lookup operation,
is reduced to those rules that are applicable with respect to the argument list A.
The set reduction consists of applying the following rules to each rule T::R in
the set, where T is the transformation in which the rule R is declared:

• If R is not applicable with respect to A, then R is removed from the set.

• If R is applicable with respect to A, then all rules declared in a base type of T
are removed from the set.

• If the resulting set of candidate rules is empty, then no applicable methods
exist, and a compile-time error occurs.

• The best rule of the set of candidate rules is identified using the overload
resolution rules. If a single best rule cannot be identified, the rule invocation is
ambiguous, and a compile-time error occurs.

Once a rule has been selected and validated at compile-time by the above steps, the

actual run-time invocation is processed according to the rules of invocation.

6.5.1. Name lookup

A name lookup is the process whereby the meaning of a name in the context of a

transformation is determined. A rule lookup may occur as part of evaluating a simple-

name in an apply statement.

A lookup of a name N in a transformation T is processed as follows:

• The set of all accessible rules named N declared in T and the base
transformations of T is constructed.

• If no members named N exist and are accessible, then the lookup produces no
match.

• Otherwise, this group of rules is the result of the lookup.

6.5.2. Rule applicable to A

A rule is said to be an applicable rule with respect to an argument list A when all of

the following are true:

• The number of arguments in A is identical to the number of parameters in the
function member declaration.

• For each argument in A, the type of the argument is compatible to the type of
the corresponding parameter, according to OCL 2.0 specification [OCL2].

6.5.2.1. Better function member

Given an argument list A = A1, A2, …, AN with a set of argument types T1, T2, …, TN

and two applicable rules RP and RQ with parameter types P1, P2, …, PN and Q1, Q2,

…, QN , RP is defined to be a better rule than MQ if

• For each argument, the implicit conversion from TI to PI is not worse than the
implicit conversion from TI to QI, and

• For at least one argument AJ, the conversion from TJ to PJ is better than the
conversion from TJ to QJ.

6.5.2.2. Better conversion

Given an implicit conversion C1 that converts from a type S to a type T1, and an

implicit conversion C2 that converts from a type S to a type T2, the better conversion

of the two conversions is determined as follows:

• If T1 and T2 are the same type, neither conversion is better.

• If S is T1, C1 is the better conversion.

• If S is T2, C2 is the better conversion.

• If an implicit conversion from T1 to T2 exists, and no implicit conversion from
T2 to T1 exists, C1 is the better conversion.

• If an implicit conversion from T2 to T1 exists, and no implicit conversion from
T1 to T2 exists, C2 is the better conversion.

6.5.3. Rule invocation

This section describes the process that takes place at run-time to invoke a particular

rule R. It is assumed that a compile-time process has already determined the particular

rule to invoke, possibly by applying overload resolution to a set of candidate rules.

The run-time processing of a rule member invocation consists of the following steps:

• The argument list is evaluated from left to right.

• The resulting values are used to build an activation record.

• The body of rule R is applied over every source model element for which the
filter attached to rule R is true. If the source model and target model are
identical, the elements added by other previous rules are discarded.

For example, the rule
rule r match A(self.name=’John’) {
 let x:B;
 x := new B;
 ...
}

creates a B instance for each A instance whose property name has the value John. The

filter expression can be any OCL expression (e.g. navigation expressions, operation

on primitive types and collections, and iterator expressions as select and forall).

6.6. The delete statement

A delete-statement destroys an object created by a new-expression.

delete-statement →

‘delete’ ocl-expression ‘;’ .

The operand must have a model element type [OCL20].

6.7. Decision statements

Selection statements select one of a number of possible statements for execution

based on the value of some expression.

selection-statement →

if-statement.

6.7.1. The if statement

The if statement selects a statement for execution based on the value of a boolean

expression.

if-statement →

‘iff ’ expression ‘then’ statement [‘else’ statement] ‘endif’ .

An else part is associated with the lexically nearest preceding iff that is allowed by the

syntax. Thus, an if statement of the form

iff x iff y then y:= x; else x:=y;

is equivalent to

iff x then
 if y then
 y:=x;
 else
 G();
 endif
endif

An if statement is executed as follows:

• The expression is evaluated.

• If the expression yields true, control is transferred to the first embedded
statement. When and if control reaches the end point of that statement, control
is transferred to the end point of the if statement.

• If the expression yields false and if an else part is present, control is
transferred to the second embedded statement. When and if control reaches the
end point of that statement, control is transferred to the end point of the if
statement.

• If the expression yields false and if an else part is not present, control is
transferred to the end point of the if statement.

The first embedded statement of an if statement is reachable if the if statement is

reachable and the expression does not have the constant value false.

The second embedded statement of an if statement, if present, is reachable if the if

statement is reachable and the expression does not have the constant value true.

The end point of an if statement is reachable if the end point of at least one of its

embedded statements is reachable. In addition, the end point of an if statement with no

else part is reachable if the if statement is reachable and the expression does not have

the constant value true.

6.8. Iteration statements

Iteration statements repeatedly execute an embedded statement.

iteration-statement →

while-statement |

do-statement |

foreach-statement.

6.8.1. The while statement

The while statement conditionally executes an embedded statement zero or more

times.

while-statement →

‘while’ expression ’do’ statement .

A while statement is executed as follows:

• The expression is evaluated.

• If the expression yields true, control is transferred to the embedded statement.
When and if control reaches the end point of the embedded statement
(possibly from execution of a continue statement), control is transferred to the
beginning of the while statement.

• If the expression yields false, control is transferred to the end point of the
while statement.

Within the embedded statement of a while statement, a break statement may be used

to transfer control to the end point of the while statement (thus ending iteration of the

embedded statement), and a continue statement may be used to transfer control to the

end point of the embedded statement (thus performing another iteration of the while

statement).

The embedded statement of a while statement is reachable if the while statement is

reachable and the expression does not have the constant value false.

The end point of a while statement is reachable if at least one of the following is true:

• The while statement contains a reachable break statement that exits the while
statement.

• The while statement is reachable and the expression does not have the constant
value true.

6.8.2. The do statement

The do statement conditionally executes an embedded statement one or more times.

do-statement→

‘do’ statement ‘while’ ‘(‘ expression ‘)’ ‘;’

A do statement is executed as follows:

• Control is transferred to the embedded statement.

• When and if control reaches the end point of the embedded statement
(possibly from execution of a continue statement), the expression is evaluated.
If the expression yields true, control is transferred to the beginning of the do

statement. Otherwise, control is transferred to the end point of the do
statement.

Within the embedded statement of a do statement, a break statement may be used to

transfer control to the end point of the do statement (thus ending iteration of the

embedded statement), and a continue statement may be used to transfer control to the

end point of the embedded statement (thus performing another iteration of the do

statement).

The embedded statement of a do statement is reachable if the do statement is

reachable.

The end point of a do statement is reachable if at least one of the following is true:

• The do statement contains a reachable break statement that exits the do
statement.

• The end point of the embedded statement is reachable and the boolean
expression does not have the constant value true.

6.8.3. The foreach statement

The foreach statement enumerates the elements of a collection, executing an

embedded statement for each element of the collection.

foreach-statement→

‘foreach’ variable-declaration ‘in’ expression ‘do’ statement

The variable-declaration contains the declaration of the iteration variable of the

statement. The iteration variable corresponds to a read-only local variable with a

scope that extends over the embedded statement. During execution of a foreach

statement, the iteration variable represents the collection element for which an

iteration is currently being performed. The iteration variable can be modified or

passed as an argument.

The type of the expression of a foreach statement must be a collection type (as defined

below), and an explicit conversion must exist from the element type of the collection

to the type of the iteration variable. If expression has the undefined value, a dynamic

semantics error is reported.

A type C is said to be a collection type if it is declared as an OCL collection type or

implements the collection pattern by meeting all of the following criteria:

• C is the type of a UML attribute whose multiplicity describes a set of at least 2
elements.

• C is the type of a UML association end whose multiplicity describes a set of at
least 2 elements.

6.8.4. The break statement

The break statement exits the nearest enclosing while, do, or foreach statement.

break-statement →

‘break’ ‘;’

The target of a break statement is the end point of the nearest enclosing while, do, or

foreach statement. If a break statement is not enclosed by a while, do, or foreach

statement, a compile-time error occurs.

When multiple while, do, or foreach statement statements are nested within each

other, a break statement applies only to the innermost statement. To transfer control

across multiple nesting levels, decision statements and boolean flags must be used.

A break statement is executed as follows:

• Control is transferred to the target of the break statement.

Because a break statement unconditionally transfers control elsewhere, the end point

of a break statement is never reachable.

6.8.5. The continue statement

The continue statement starts a new iteration of the nearest enclosing while, do, or

foreach statement.

continue-statement →

‘continue’ ‘;’

The target of a continue statement is the end point of the embedded statement of the

nearest enclosing while, do, or foreach statement. If a continue statement is not

enclosed by a while, do, or foreach statement, a compile-time error occurs.

When multiple while, do, or foreach statements are nested within each other, a

continue statement applies only to the innermost statement. To transfer control across

multiple nesting levels, decision statements and boolean flags must be used.

A continue statement is executed as follows:

• Control is transferred to the target of the continue statement.

Because a continue statement unconditionally transfers control elsewhere, the end

point of a continue statement is never reachable.

Chapter 7. NAMESPACES AND
TRANSLATION UNITS

A YATL program consists of one or more translation units, each contained in a

separate source file. When a YATL program is processed, all of the translation units

are processed together. Thus, translation units can depend on each other, possibly in a

circular fashion. A translation unit consists of zero or more import directives followed

by zero or more declarations of namespace members: queries, views, or

transformations.

The concept of namespace was introduced to allow YATL programs to solve the

problem of names collision that is a vital issue for large-scale transformation systems.

Namespaces are used both as an “internal” organization system for a program, and as

an “external” organization system - a way of presenting program elements that are

exposed to other programs. A YATL program can reuse a transformation or a query by

importing the corresponding namespaces and invoking the appropriate rules.

A YATL query is an OCL expression, which is evaluated into a given context such as

a package, classifier, property, or operation. The returned value can be a primitive

type, model elements, collections or tuples. Queries are used to navigate across model

elements and to interrogate the population stored in a given repository. YATL uses the

OCL implementation that was initially developed under KMF and then under Eclipse

as an open source project [OCLP].

A YATL transformation is a construct that maps a source model instance to a target

model instance by matching a pattern in a source model instance and creating a

collection of objects with given properties in the target model instance. The matching

part is performed using the declarative features of OCL, while the creation of target

instances is done using the imperative features provided by YATL. YATL provides

also the possibility of interacting with the underlying machine using native

statements. Although we do not encourage the use of such features, they were

provided to support the modeller when some operations are not available at the

metamodel level (e.g. the standard library of OCL 2.0 does not provide a function to

convert lowercase letters to uppercase letters).

Chapter 8. CONCLUSIONS

This section contains a description of the compliance to RFP requirements, other

design requirements, and related work in this area.

8.1.1. Compliance to RFP requirements

OMG’s QVT RFT [QVT02] comprises a set of mandatory and optional requirements

for the Query/Views/Transformations proposal. Meeting these requirements,

especially the mandatory ones, is very important, because they are crucial for

describing model transformations in the model driven engineering framework. This

section presents these requirements and analyzes YATL’s compliance with them.

8.1.1.1. Mandatory requirements

“1. Proposals shall define a language for querying models. The query language shall

facilitate ad-hoc queries for selection and filtering of model elements, as well as for the

selection of model elements that are the source of a transformation.”

YATL queries described using OCL 2.0 concepts can be used to query the source

model instance. The data returned by a query can be any OCL value: number, string,

boolean value, collection, tuple, or any value from the metamodel. The selection and

filtering of model elements that are the source of transformation is done through the

LHS of transformation rules.

“2. Proposals shall define a language for transformation definitions. Transformation

definitions shall describe relationships between a source MOF metamodel S, and a

target MOF metamodel T, which can be used to generate a target model instance

conforming to T from a source model instance conforming to S. The source and target

metamodels may be the same metamodel.”

The relations between source metamodel S and target metamodel T are described in

YATL by translation rules with LHS and RHD. Current instances of relations can be

stored so that they can be retrieved latter, using the track mechanism. YATL can be

used to describe transformations for which the source model is identical with the

target model. To avoid unnatural behavior in this particular case, the transformation

engine applies the transformation rules only on the elements contained initially in the

source model instance. The model elements that are added into the model instance by

invoking transformation rules are not considered when the LHS of a rule is matched

against the model instance.

“3. The abstract syntax for transformation, view and query definition languages shall

be defined as MOF (version 2.0) metamodels.”

The abstract syntax of YATL is described using MOF concepts and is independent of

the concrete syntax. The abstract syntax of YATL is described in Figure1. There is an

ongoing research on the graphical syntax of YATL.

“4. The transformation definition language shall be capable of expressing all

information required to generate target model from a source model automatically.”

Both the LHS and RHS of the rules are capable of expressing all the necessary

information for transformations. The LSH is used to match a specific pattern against

the source model instance, while the RSH is capable of describing the objects which

are added into the target model instance.

“5. The transformation definition language shall enable the creation of a view of a

metamodel.”

YATL does not support yet views. This is an area of ongoing research.

“6. The transformation definition language shall be declarative in order to
support transformation execution with the following characteristic:

• Incremental changes in a source model may be transformed into changes
in a target model immediately.”

YATL is partially declarative, containing a mixture of declarative and imperative

features. The declarative features are inherited from OCL while the imperative

features are provided mainly by YATL statements.

“7. All mechanisms specified in Proposals shall operate on model instances of

metamodels defined using MOF version 2.0.”

Both LHS and RHS of the transformation rules operate on model instances using

names, pathnames, and concepts specific to the metamodels and not to their specific

implementation on a given platform.

8.1.1.2. Optional requirements

“1. Proposals may support transformation definitions that can be executed in
two directions. There are two possible approaches:

• Transformations are defined symmetrically, in contrast to
transformations that are defined from source to target.

• Two transformation definitions are defined where one is the inverse of
the other.”

The transformations described by YATL are executed in one direction, usually from

source model to target model. If a reverse transformation is needed, the modeler must

write that transformation by himself.

“2. Proposals may support traceability of transformation executions made between

source and target model elements.”

The current version of YATL supports only explicit traceability of the execution,

through explicit use of track constructions. Adding implicit traceability mechanisms is

an ongoing research area.

“3. Proposals may support mechanisms for reusing and extending generic

transformation definitions. For example: Proposals may support generic definitions of

transformations between general metaclasses that are automatically valid for all

specialized metaclasses. This may include the overriding of the transformations defined

on base metaclasses. Another solution could be support for transformation templates or

patterns.”

To support the reusability of the code YATL programs are organized in translation

units and namespaces. Future versions of YATL will support abstract, overridden, and

virtual transformation rules.

“4. Proposals may support transactional transformation definitions in which parts of a

transformation definition are identified as suitable for commit or rollback during

execution.”

Future versions of YATL will support transactional transformations for which all

contained transformation rules are either committed or rolled back together.

“5. Proposals may support the use of additional data, not contained in the source

model, as input to the transformation definition, in order to generate a target model. In

addition proposals may allow for the definition of default values for this data.”

YATL allows the invocation of the transformation rules by passing additional data as

arguments.

“6. Proposals may support the execution of transformation definitions where the target

model is the same as the source model; i.e. allow transformation definitions to define

updates to existing models. For example a transformation definition may describe how

to calculate values for derived model elements.”

YATL allows the definition of transformations for which the source model is identical

to the target model. For example, YATL transformations can be used to change

properties’ values or remove objects. To avoid unnatural behavior in this particular

case, the transformation engine applies the transformation rules only on the elements

contained initially in the source model instance. The model elements that are added

into the model instance by invoking transformation rules are not considered when the

LHS of a rule is matched against the model instance.

8.1.1.3. Issues to be discussed

“1. The OMG CWM specification already has a defined transformation model that is

being used in data warehousing. Submitters shall discuss how their transformation

specifications compare to or reuse the support of mappings in CWM.”

YATL uses the concept of repository and warehouse to store source and target model

instances. These concepts are mapped into an implementation by KMF-Studio, a tool

from KMF. Mapping support in CWN can easily be reformulated using YATL.

“2. The OMG Action Semantics specification already has a mechanism for
manipulating instances of UML model elements. Submitters shall discuss how
their transformation specifications compare to or reuse the capabilities of the
UML Action Semantics.”

A YATL program specification can be described in terms of the Action Semantics.

“3. How is the execution of a transformation definition to behave when the
source model is not well-formed (according to the applicable constraints?). Also
should transformation definitions be able to define their own preconditions. In
that case: What’s the effect of them not being met? What if a transformation
definition applied to a well-formed model does not produce a well-formed
output model (that meets the constraints applicable to the target metamodel)?”

YATL does not check implicitly if the source model instance or if the generated target

model instance are well formed. YATL queries can be used explicitly before and after

the transformation to check the pre and post conditions associated with a

transformation.

“4. Proposals shall discuss the implications of transformations in the presence
of incremental changes to the source and/or target models.”

YATL and YATL-Studio cannot automatically detect if the source or the target model

instance suffered incremental changes. At this stage it is the modeler’s task to keep

track of the changes. In the near future, mechanisms to detect automatically if the a

model instance suffered some changes will be added to the KMF warehouse and

repository concepts.

8.1.2. Other design features

As well as supporting the ongoing QVT requirements, we designed YATL to support

the following additional requirements:

• The syntax and semantics of YATL must be well defined.

• The process of applying the transformation rules must be deterministic.

• Queries, views, and transformations are organized in namespaces to provide
reusability and avoid name collision.

• The transformation engine must be capable of performing efficient
transformation for large-scale systems.

• YATL must provide enough computational expressiveness power, regardless of
the host platform or language. For example, YATL should support a complete
set of operations on basic types like strings, integers, or floating point
numbers.

8.1.3. Relationship to existing OMG specifications

Object Constraint Language OCL forms the basis of the query language and is also

used to match the LHS of the transformation rules.

Meta Object Facility The abstract syntax of YATL and OCL is described in terms of

MOF; the superstructure is a slightly more involved extension of MOF.

Common Warehouse Metamodel Concepts like warehouse and repository are used

to store source and target model instances.

8.1.4. Comparison to QVT submissions

Since OMG launched its QVT RFP [QVT02] in 2002, several submissions were

made. DSTC’s submission [QVTD] contains a declarative definition of QVT and uses

high-level concepts that are similar with those from Prolog. Unfortunately it cannot

cope with large-scale transformations because its concepts make the implementation

very slow. QVT Partners submission [QVTP] considers that transformations are

special cases of relations and describes them using a graphical syntax. This approach

is similar to the one presented in [ASP03]. This submission provides a mechanism for

relations’ refinement. In the near future YATL will provide a similar support, although

it will be described in a textual way. The French submission [QVTF] is very similar to

the approach that we took. But, there are a lot of differences such as the concrete

syntax, the semantics of the rules, the tracking mechanism, the support for interaction

with the host machine and creation of target model instance.

Appendix 1. GRAMMAR
SPECIFICATION RULES

Grammar specification is done using the following rules:

1) Left hand-side and right hand-side are separated by symbol →.

2) Each production ends with a dot.

3) Terminal symbols are written using capital letter or delimited by
apostrophes.

4) The following shortcuts are permitted:

Shortcut Meaning

 X → α (β) γ . X → α Y γ . Y → β .

 X → α [β] γ . X → α γ | α (β) γ .

 X → α u + γ . X → α Y γ . Y → u | u Y .

 X → α u * γ . X → α Y γ . Y → u | u Y | λ .

 X → α || a. X → α (a α) * .

where α, β and γ are strings over the language alphabet, Y is a symbol which does not

appear elsewhere in the specification, u is either a unique symbol or an expression

delimited by parentheses, and a is a terminal symbol.

Appendix 2. YATL-LEXICAL
GRAMMAR

Five basic elements make up the lexical structure of a YATL source file: line

terminators, white space, comments, and tokens. Of these basic elements, only tokens

are significant in the syntactic grammar of a YATL program.

For compatibility with source code editing tools that add end-of-file markers, and to

enable a source file to be viewed as a sequence of properly terminated lines, the

following transformations are applied, in order, to every source file in a C# program:

• If the last character of the source file is a Control-Z character, this character is
deleted.

• A carriage-return character is added to the end of the source file if that source
file is non-empty and if the last character of the source file is not a carriage
return, a line feed, a line separator, or a paragraph separator.

The input production defines the lexical structure of a YATL source file. Each source

file in a YATL program must conform to this lexical grammar production.

input → λ | input-element | input input-element.

input-element → line-terminator | whitespace| comment| token.

Line terminators divide the characters of a C# source file into lines. YATL uses the

following markers to indicate the end of a line:

• Carriage return character (U+000D)

• Line feed character (U+000A)

• Carriage return character (U+000D) followed by line feed character
(U+000A)

• Next line character (U+0085)

• Line separator character (U+2028)

• Paragraph separator character (U+2029)

YATL’s tokens are based on OCL tokens [OCL20],[ALP03]. It adds only the

following keywords:

apply do namespace start

break foreach new track

build import null transformation

continue in query while

delete match rule

and the assignment operator :=.

Appendix 3. YATL-SYNTAX
GRAMMAR

translation-unit →

import-list starting-rule namespace-declaration-list .

import-list →

λ |

import-list import-declaration .

import-declaration →

‘import’ simple-name ‘.’ ‘*’ ‘;’ .

starting-rule →

‘start’ pathname ‘;’ .

namespace-declaration-list →

λ |

namespace-declaration-list namespace-declaration .

namespace-declaration →

 'namespace' simple-name '(' models ')' '{' (query|transformation)* '}' .

models →

source-model [',' target-model].

transformation →

‘transformation’ simple-name ‘{‘ rule* ‘}’ .

rule →

'rule' simple-name filter '(' [param (',' param)*] ')' compound-stm .

filter →

 'match' filter-path .

filterPath →

 filter-step |

filter-path '::' filter-step .

filter-step →

simple-name ['[' ocl-expression ']']

statement-list →

λ |

 statement-list statement .

statement →

declaration-stm |

expression-stm |

compound-stm |

if-stm |

loop-stm |

break-stm |

continue-stm |

apply-stm .

declaration-stm →

‘let’ variable-declaration-list ‘;’ .

expression-stm →

[expression ‘;’] .

compound-stm →

‘{‘statement-list:list ‘}’.

if-stm →

‘iff ’ ocl-expression ‘then’ statement [‘else’ statement] ‘endif’.

loop-stm →

‘while’ ocl-expression ‘do’ statement |

‘do’ statement ‘while’ ‘(‘ocl-expression ‘)’ ‘;’ |

‘foreach’ variable-declaration ‘in’ ocl-expression ‘do’ statement .

break-stm →

‘break’ ‘;’ .

continue-stm →

‘continue’ ‘;’ .

apply-stm →

‘apply’ pathname ‘(‘ [ocl-expression (‘,’ ocl-expression)*] ‘)’ ‘;’

delete-stm →

‘delete’ ocl-expression ‘;’ .

expression →

 assignment-expression |

ocl-expression |

track-expression .

assignment-expression →

ocl-expression ‘:=’ rhs-expression .

rhs-expression →

ocl-expression |

new-expression |

build-expression |

track-expression .

new-expression →

‘new’ path-name .

build-expression →

‘build’ path-name ‘{‘ [pair (‘,’ pair)*] ‘}’.

pair →

 name ‘:=’ rhs-expression .

track-expression →

‘track’ ‘(‘ ocl-expression ‘,’ simple-name ‘,’ ocl-expression ‘)’ |

‘track’ ‘(‘ ‘null’ ‘,’ simple-name ‘,’ ocl-expression ‘)’ |

‘track’ ‘(‘ ocl-expression ‘,’ simple-name ‘,’ ‘null’ ‘)’ .

query →

‘query’ simple-name ‘{‘ context-declaration-list ‘}’ .

Nonterminal ocl-expression, variable-declaration, and context-declaration-list are

described in [OCL2] and [ALP03].

BIBLIOGRAPHY

[AP03] Akehurst D. and Patrascoiu O. (2003). OCL 2.0 – Implementing the Standard for Multiple
Metamodels. In OCL2.0-"Industry standard or scientific playground?" - Proceedings of the UML'03
workshop, page 19. Electronic Notes in Theoretical Computer Science.

[ALP03] Akehurst D., Linington P., and Patrascoiu O. (2003). OCL 2.0 – Implementing the Standard.
Technical Report No. 12-03, Computer Laboratory, University of Kent, UK.

[AKP03] Akehurst D., Kent S., and Patrascoiu O. (2003). A relational approach to defining and
implementing transformations between metamodels. In Journal of Software and Systems Modeling
(SoSym), 2(4), 215-239.

[CH03] Czarnecki K., and Helsen S. (2003). Classification of Model Transformation Approaches. In
Generative techniques in the context of MDA – Proceedings of OOPSLA 2003 workshop.

[CWM] OMG, Common Warehouse Metamodel Specification. OMG Document formal/2003-03-02,
available at http://www.omg.org/cwm.

[EMF] IBM, Eclipse Modeling Framework. http://www.eclipse.org.

[Fra03] Frankel D. S. (2003) Model Driven Architrecture: Applying MDA to Enterprise Computing.
John Wiley & Sons, 2003.

[GLRSW02] Gerber A., Lawley M., Raymond K., Steel J., and Wood A. (2002). Transformation: The
Missing Link of MDA, in A. Corradini, H. Ehring, H. J. Kreowsky, G. Rozenberg (Eds): In Proc. of
Graph Transformation: First International Conference (ICGT 2002)

[GHK99] Gil J., Howse J, and Kent S. (1999) Formalising Spider Diagrams, In Proc.of IEEE
Symposium on Visual Languages (VL99), IEEE Press, 130-137.

[Java] Java standard http://www.sun.com

[KMF] Kent Modeling Framework. http://www.cs.kent.ac.uk/projects/kmf.

[MDA] MDA. Model Driven Architecture Specification. OMG document omg/03-06-01, available at.
http://www.omg.org/mda.

[MOF] OMG, MOF Meta Object Facility Specification, OMG Document formal/2002-04-03, available
at http://www.omg.org/mof

[OCL] OMG, OCL Object Constraint Language Specification Revised Submission, Version 1.6,
January 6, 2003, OMG document ad/2003-01-07.

[OCL2P] OCL Open source project: Object Constraint Language for Kent Modeling Framework and
Eclipse Framework. http://www.cs.kent.ac.uk/projects/kmf.

[OMG] OMG Object Management Group. http://www.omg.org.

[UML] OMG, Unified Modeling Language Specification, Version 1.5, 2003, OMG Document
formal/2003-03-01, available at. http://www.omg.org/uml.

http://www.omg.org/cwm
http://www.eclipse.org/
http://www.sun.com/
http://www.cs.kent.ac.uk/projects/kmf
http://www.omg.org/mda
http://www.omg.org/mof
http://www.cs.kent.ac.uk/projects/kmf
http://www.omg.org/
http://www.omg.org/uml

[QVT02] OMG, QVT Query/Views/Transformations RFP, OMG Document ad/02-04-10, revised on
April 24, 202. http://www.omg.org/cgi-bin/doc?ad/2002-4-10

[QVTD] OMG, MOF Query/Views/Transformation, Initial submission, DSTC and IBM.

[QVTP] OG, MOF Query/Views/Transformation, Initial submission, QVT Partners.

[QVTF] OMG, MOF Query/Views/Transformation, Initial submission, Alcatel, SoftTeam, Thales, TNI-
Valiosys.

[Pat04] Patrascoiu O. (2004) YATL:Yet Another Transformation Language. In Proc. of First European
Workshop MDA-IA, University of Twente, the Nederlands.

[RJB99] Rumbaugh, J., Jacobson I., and Booch G.. (1999). The Unified Modeling Language –
Reference Manual. Addison-Wesley.

[WK99] Warmer, J. and Kleppe A. (1999). The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley.

[UNI] Unicode standard. http://www.unicode.org

[XMI] OMG, MOF Meta Object Facility Specification OMG Document 2003-05-02, available at
http://www.omg.org/uml

http://www.omg.org/cgi-bin/doc?ad/2002-4-10
http://www.unicode.org/
http://www.omg.org/uml

