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Reliability analysis for a k/n(F ) system

with a repairable repair-equipment
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Abstract

In this paper, the reliability and replacement policy of a k/n(F ) (i.e. k−out−of−n : F )

repairable system with a repairable repair equipment is analyzed. We assume that both

the working and repair times of all components in the system and the repair-equipment

follow exponential distributions, and the repair on the components is perfect whereas

that on the repair equipment is imperfect. Under these assumptions, we derive reliabil-

ity indices for such a system and discuss its properties. We also optimize a replacement

policy N , under which the repair-equipment is replaced when its failure number reaches

N . The explicit expression for the average cost rate of the repair-equipment is derived,

and the corresponding optimal replacement policy N∗ can be obtained analytically or

numerically. Finally, a numerical example for policy N is given.

Key words: Geometric process, supplementary variables, vector Markov process,

M/M/1 queueing system, repairable repair-equipment.

1 Introduction

A k/n(F ) system consists of n components: it fails if and only if at least k components

have failed. The dual of a k/n(F ) is k/n(G)(i.e. k-out-of-n : G), which consists of n
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components but it works if and only if at least k components works. Obviously, a

k/n(F ) system is equivalent to a (n−k+1)/n(G) system. A 1/n(F ) system (or n/n(F ))

system is a n-component series (or parallel) system. If k components are consecutive

in a k/n(F or G) system, the system becomes a C(k, n : F or G) (i.e. consecutive-k-

out-of-n: F or G) system. Therefore, a k/n(F or G) can be seen as an extension of

various reliability systems, and it plays an important role in the reliability theory and

real applications., This important feature attracts considerable research. For example,

Barlow and Proschan [1], Linton and Saw [2], Phillips [3], Gupta and Sharma [4], Kenyon

and Newell [5], Nakagawa [6], McGrady [7] and Moustafa [8] etc. They studied such a

system with different approaches: they commonly assume that either the system is not

repairable or the repair equipment does not fail. However, in some real cases, a repair-

equipment may experience failures.

The purpose of this paper is to analyze the reliability of a k/n(F ) repairable system

with a repairable repair-equipment. We assume that a failed component of the system

can be repaired as good as new, whereas the survival times of the repair-equipment

after repairs follows a geometric process. The geometric process has been applied to

optimise maintenance policies in various repairable systems, including simple systems,

two-component systems and multi-component systems since it was first introduced by

Lam [9, 10]. For more references, the reader is referred to. Lam [11], Zhang [12, 13,

14, 15], Lam et al [16], Zhang et al [17, 18, 19], Lam and Zhang [20, 21, 22], Wu and

Clements-Croome [23], Wang and Zhang [24, 25], Zhang and Wang [26, 27, 28], and Lam

et al [29].

Using both queueing theory and stochastic process theory, we not only derive relia-

bility indices of such a k/n(F ) repairable system, but also optimize replacement policy

N . The replacement policy aims to search an optimum number N∗ of replacements such

that the average cost rate of the repair-equipment is minimized.

This paper is structured as follows. Section 2 introduces the definition of the geomet-

ric process and assumptions for the reliability analysis in the paper. Section 3 conducts

reliability analysis using the vector Markov chain. Section 4 discusses properties of the

k/n(F ) system. Section 5 derives replacement policy N∗ and provides numerical exam-

ples. Section 6 concludes this paper.

2 Definition and assumptions

Definition 1 Given two random variables ξ and η, ξ is said to be stochastically larger

than η or η is stochastically smaller than ξ, if

P (ξ > α) ≥ P (η > α), for all real α,
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denoted by ξ ≥st η or η ≤st ξ (see e.g., Ross[30]). Furthermore, we say that a stochastic

process {Xn, n = 1, 2, · · ·} is stochastically decreasing if Xn ≥st Xn+1 and stochastically

increasing if Xn ≤st Xn+1 for all n = 1, 2, · · ·.

Definition 2 A stochastic process {ξn, n = 1, 2, · · ·} is a geometric process, if there

exists a real a > 0 such that {an−1ξn, n = 1, 2, · · ·} forms a renewal process. The real a

is called the ratio of the geometric process (see e.g., Lam [10], Zhang [12] for more details).

Obviously, from Definition 2, we have:

(i) If a > 1, then {ξn, n = 1, 2, · · ·} is stochastically decreasing, i.e.

ξn ≥st ξn+1, n = 1, 2, · · ·

(ii) If 0 < a < 1, then {ξn, n = 1, 2, · · ·} is stochastically increasing, i.e.

ξn ≤st ξn+1, n = 1, 2, · · ·

(iii) If a = 1, then the geometric process becomes a renewal process.

(iv) If Eξ1 = 1
λ , then Eξn = 1

an−1λ
.

Suppose the following assumptions holds.

Assumption 1 A system consists of n identical components and a repairable repair-

equipment. The system fails if and only if at least k components have failed. The n

components are repairable, and the order of repair for failed components is with a “first

in first out” rule.

Assumption 2 At the beginning, a new k/n(F ) system, a repairable repair-equipment

and one repairman is installed. A failed component is maintained by the repair-equipment

and the repair equipment is maintained by the repairman. Repair for a failed component

in the system is perfect whereas repair for the repair-equipment is imperfect. Assume

the survival times after repairs for the repair-equipment follow a geometric process.

Assumption 3 If the repair-equipment fails while a component is being repaired,

the repairman will repair the repair-equipment immediately and the failed component

will be waiting for repair. The repair-equipment will be re-started immediately after the

completion of its repair, and the repair on the failed component will be continued. During

the repair for the repair-equipment, the system is shut down and the un-failed compo-

nents in the system do not fail any more. The repair-equipment does not fail when it
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is idle. As soon as at least k components are ready for work, the system will be re-started.

Assumption 4 Assume that the successive working times ξn, n = 1, 2, · · · and the

consecutive repair times ηn, n = 1, 2, · · · of all n components are respectively i.i.d. random

variables, and their survival distributions

F (t) = P (ξn ≤ t) = 1− e−λt

G(t) = P (ηn ≤ t) = 1− e−µt

where t ≥ 0, n = 1, 2, · · · , respectively. Assume that µ > λ.

Assumption 5 The time interval between the completions of the (n−1)th and nth

repairs of the repair-equipment is called the nth cycle of the repair-equipment. Let Xn

and Yn be respectively the working and the repair times of the repair-equipment in the

nth cycle, n = 1, 2, · · · . Then {Xn, n = 1, 2, · · ·} and {Yn, n = 1, 2, · · ·} form respectively

a decreasing geometric process with ratio a ≥ 1 and a increasing geometric process with

ratio 0 < b ≤ 1, and survival distributions of Xn and Yn are

Hn(t) = P (Xn ≤ t) = 1− e−an−1αt

Kn(t) = P (Yn ≤ t) = 1− e−bn−1βt

where t ≥ 0, α > 0, β > 0, n = 1, 2, · · · , respectively.

Assumption 6 ξn, ηn, Xn, Yn, n = 1, 2, · · · are all independent random variable

sequences.

Remarks

(1) The assumption µ > λ makes the k/n(F ) system closer to real situations.

(2) If we regard the three items, the repair-equipment, the failed component and the

repairman, as a service station, a customer and a service respectively, then the three

forms a queueing system. Under the above assumptions, the k/n(F ) repairable system is

equivalent to a repairable M/M/1 queueing system with finite customer-source. Hence,

the system in this paper can regard as a repairable M/M(M/M)/1/k/n queueing system,

where the symbol (M/M) denotes the working times and repair times of the service sta-

tion (i.e. the repair-equipment) to be exponential. The difference between our queueing

system and the classical M/M/1/k/n queueing system is that the service station in our

queueing system is subject to failure. In this paper, we shall study a k/n(F ) repairable
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system with repairable repair-equipment by dint of a M/M(M/M)/1/k/n queueing sys-

tem with repairable service station.

(3) Assumption 3 is reasonable. For example, consider a local area computer network

system with a repairable printer, and there are several workstations connectting to the

printer. Now, we regard the printer and a print job as a service station and a customer in

the print system respectively. Printing jobs submitted from a workstation have to queue

up as a customer in the print system. If the printer fails to work, it will be repaired, and

the jobs have to wait for printing. The printer will be restarted immediately after the

completion of its repair, and the queueing printing jobs can be conducted. The reader

is also referred Lam et al [29] for more detailed discussion. Hence, from an application

perspective, the research of this paper is helpful for some maintenance engineers.
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3 System analysis

Now, let N(t) be the system state at time t. According to the model assumptions,

we have

N(t) =



0, if at time t, all components work and the repair equipment is idle;

the system is working,

1w, if at time t, a component fails and the repair equipment is repairing

the failed component; the system is working,

1f , if at time t, a component fails and the repair equipment is being repaired,

the failed component is waiting for repair; the system is shut down,
...

...

mw, if at time t, m components fail and the repair equipment is

repairing one of the failed components and the rest m− 1 failed components are

waiting for repair; the system is working,

mf , if at time t, m components fail and the repair equipment is being repaired and

m failed components are waiting for repair; the system is shut down,
...

...

(k − 1)w, if at time t, k − 1 components fail and the repair equipment is repairing

one of the failed components and the rest k − 2 failed components are

waiting for repair; the system is working,

(k − 1)f , if at time t, k − 1 components fail and the repair equipment is being repaired and

the k − 1 failed components are waiting for repair; the system is shut down,

kw, if at time t, k components fail and the repair equipment is repairing

one of failed components and the rest k − 1 failed components are

waiting for repair; the system fails,

kf , if at time t, k components fail and the repair equipment is being repaired and

the k failed components are waiting for repair; the system fails.

In fact, the state N(t) of the k/n(F ) system as the above-discussed is equivalent to the

following state N(t) of a M/M(M/M)/1/k/n queueing system with a repairable service

station, i.e.
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N(t) =



0, if at time t, there is no customer in the queueing system; the service

station is idle and good,

1w, if at time t, there is one customer in the queueing system; the service

station is serving the customer,

1f , if at time t, there is one customer in the queueing system; the service

station is being repaired and the customer is waiting for service; no more

new customers arrive,
...

...

mw, if at time t, there are m customers in the queueing system, the service

station is serving one customer and the rest m− 1 customers are waiting

for service,

mf , if at time t, there are m customers in the queueing system, the service

station is being repaired and the m customers are waiting for service; no more

new customers arrive,
...

...

(k − 1)w, if at time t, there are k − 1 customers in the queueing system, the

service station is serving for one customer and the rest k − 2 customers are

waiting for service,

(k − 1)f , if at time t, there are k − 1 customers in the queueing system, the

service station is being repaired and the k − 1 customers are waiting for service;

no more new customers arrive,

kw, if at time t, there are k customers in the queueing system, the service

station is serving for one customer and the rest k − 1 customers are waiting

for service; no more new customers arrive,

kf , if at time t, there are k customers in the queueing system, the service

station is being repaired and the k customers are waiting for service; no more

new customers arrive.

Obviously, the state space is Ω = {0, 1w, 1f , · · · ,mw,mf , · · · , (k−1)w, (k−1)f , kw, kf},
the set of working states is W = {0, 1w, · · · ,mw, · · · , (k−1)w}, and the set of failure states

is F = {1f , · · · ,mf , · · · , (k−1)f , kw, kf}. Although {N(t), t ≥ 0} is not a Markov process,

we can obtain a vector Markov process by introducing a supplementary variable. Let

the supplementary variable S(t) = lw or lf , (l = 1, 2, · · ·) be the working state or the

repair state of the repair-equipment in lth cycle at time t, then {N(t), S(t), t ≥ 0} forms

a vector Markov process.
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Denote the state probability of the system by

pmlw(t) = P (N(t) = mw, S(t) = lw), (m = 0, 1, · · · , k − 1; l = 1, 2, · · ·),

and

pmlf (t) = P (N(t) = mf , S(t) = lf ), (m = 1, 2, · · · , k − 1, k; l = 1, 2, · · ·)

According to the classical probability theory, it is straightforward to derive the following

differential equations:

d

dt
p0lw(t) = −nλp0lw(t) + µp1lw(t), (l = 1, 2, · · ·) (1)

d

dt
pm1w(t) = −((n−m)λ+ µ+ α)pm1w(t) + (n−m+ 1)λp(m−1)1w(t) + µp(m+1)1w(t),

(m = 1, 2, · · · , k − 1) (2)

d

dt
pk1w(t) = −(µ+ α)pk1w(t) + (n− k + 1)λp(k−1)1w(t), (3)

d

dt
pmlw(t) = −((n−m)λ+ µ+ al−1α)pmlw(t) + (n−m+ 1)λp(m−1)lw(t) + µp(m+1)lw(t)

+bl−2βpm(l−1)f (t), (m = 1, 2, · · · , k − 1; l = 2, 3, · · ·) (4)

d

dt
pklw(t) = −(µ+ al−1α)pklw(t) + (n− k + 1)λp(k−1)lw(t) + bl−2βpk(l−1)f (t),

(l = 2, 3, · · ·) (5)

d

dt
pmlf (t) = −bl−1β)pmlf (t) + al−1αpmlw(t), (m = 1, 2, · · · , k − 1, k; l = 1, 2, · · ·) (6)

The initial conditions are:

p01w(0) = 1; p0lw(0) = 0 (l = 2, 3, · · ·),

pmlw(0) = 0 (m = 1, 2, · · · , k − 1, k; l = 1, 2, · · ·),

and

pmlf (0) = 0 (m = 0, 1, · · · , k − 1, k; l = 1, 2, · · ·).

4 Some characters of the k/n(F ) system

It is known there are three important indices in the queueing theory, i.e. queue length,

waiting time and busy period and their distributions. This section will derive reliability

indices, including system availability, mean waiting time and the idle probability of the

repair-equipment, for the system, on the basis of the queueing theory. Let

p∗mlw(s) =

∫ ∞
0

e−stpmlw(t)dt, m = 0, 1, 2, · · · , k; l = 1, 2, · · ·
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p∗mlf (s) =

∫ ∞
0

e−stpmlf (t)dt, m = 1, 2, · · · , k; l = 1, 2, · · ·

be the Laplace transform of the state probability distribution. Then taking the Laplace

transform on the both sides of the differential equations (1)-(6), considering the initial

conditions, that the following equations are given

(s+ nλ)p∗01w(s) = µp∗11w(s) + 1 (7)

(s+ nλ)p∗0lw(s) = µp∗1lw(s), (l = 2, 3, · · ·) (8)

(s+ (n−m)λ+ µ+ α)p∗m1w(s) = (n−m+ 1)λp∗(m−1)1w(s) + µp∗(m+1)1w
(s),

(m = 1, 2, · · · , k − 1) (9)

(s+ µ+ α)p∗k1w(s) = (n− k + 1)λp∗(k−1)1w(s) (10)

(s+ (n−m)λ+ µ+ al−1α)p∗mlw(s) = (n−m+ 1)λp∗(m−1)lw(s) + µp∗(m+1)lw
(s)

+bl−2βp∗m(l−1)f (s),

(m = 1, 2, · · · , k − 1; l = 2, 3, · · ·) (11)

(s+ µ+ al−1α)p∗klw(s) = (n− k + 1)λp∗(k−1)lw(s) + bl−2βp∗k(l−1)f (s),

(l = 2, 3, · · ·) (12)

(s+ bl−1β)p∗mlf (s) = al−1αp∗mlw(s),

(m = 1, 2, · · · , k − 1; l = 1, 2, · · ·) (13)

To solve equations (7)-(13), we recall from classical M/M/1 queueing system, the busy

periods {b1, b2, · · ·} are i.i.d. with distribution B(t) = P (b ≤ t), where b is denoted the

busy length.

Lemma 1 The Laplace-Stieltjes tranform of B(t) is given by

B∗(s) =

∫ ∞
0

e−stdB(t) =
s+ λ+ µ−

√
(s+ λ+ µ)2 − 4λµ

2λ

The proof of Lemma 1 can be find in Takacs[31] or Kleinrock[32].

Lemma 2 The distribution of
n∑
i=1

Xi is given by

H(n)(t) = 1−
n∑
i=1

n∏
j=1

(j 6=i)

aj−1

aj−1 − ai−1
e−a

i−1αt

Proof It is known that if n random variables X1, X2, · · · , Xn are independent, and

Xi has exponential distribution with the parameter λi, i.e.

Hi(t) = 1− e−λit,where, λi = ai−1α; i = 1, 2, · · · , n
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with the definition of Laplace-Stieltjes transform of H(n)(t), we have

H∗(n)(s) =

∫ ∞
0

e−stdH(n)(t)

= E{e
−s(

n∑
i=1

Xi)

} =
n∏
i=1

E{e−sXi}

=
n∏
i=1

∫ ∞
0

e−stdHi(t) =
n∏
i=1

λi
s+ λi

=
n∑
i=1

ciλi
s+ λi

where

ci =
n∏

j=1

j 6=i

λj
λj − λi

In reverse, we can obtain

H(n)(t) =
n∑
i=1

ciHi(t) =
n∑
i=1

ci(1− e−λit) =
n∑
i=1

ci −
n∑
i=1

cie
−λit

If t −→∞and H(n)(t) −→ 1,
n∑
i=1

ci = 1. Hence, Lemma 2 holds.

Theorem 1 At time t, the probabilities of all components working in the system

are given by

p01w(t) = e−λt +
∞∑
n=2

∫ t

0
[F (n−1)(t− u)− F (n)(t− u)]e−αudB(n−1)(u),

p0lw(t) =
∞∑
n=2

∫ t

0
[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]

·[H(l−1)(u)−H(l)(u)]dB(n−1)(u), (l = 2, 3, · · ·)

where

F (n)(t) = F (t) ∗ F (t) ∗ · · · ∗ F (t)

B(n)(t) = B(t) ∗B(t) ∗ · · · ∗B(t)

H(n)(t) = H(t) ∗H(at) ∗ · · · ∗H(an−1t)

and

K(n)(t) = K(t) ∗K(bt) ∗ · · · ∗K(bn−1t)

are respectively the cumulative probability distribution functions of
n∑
i=1

ξi,
n∑
i=1

bi,
n∑
i=1

Xi

and
n∑
i=1

Yi.

10



Proof According to the model assumptions and N(0) = 0, at t = 0, the repair-

equipment is idle. Since the idle period vi and the busy period bi (i = 1, 2, · · ·) occur

alternatively, we have

p01w(t) = P{N(t) = 0, S(t) = 1w}

= P (v1 > t) +
∞∑
n=2

P{
n−1∑
i=1

(vi + bi) ≤ t <
n−1∑
i=1

(vi + bi) + vn;
n−1∑
i=1

bi < X1}

= 1− F (t) +
∞∑
n=2

∫ t

0
P{

n−1∑
i=1

vi ≤ t− u <
n∑
i=1

vi;X1 > u}dB(n−1)(u)

= e−λt +
∞∑
n=2

∫ t

0
[F (n−1)(t− u)− F (n)(t− u)]e−αudB(n−1)(u),

p0lw(t) = P{N(t) = 0, S(t) = lw}

=
∞∑
n=2

P{
n−1∑
i=1

(vi + bi) +
l−1∑
i=1

Yi ≤ t <
n−1∑
i=1

(vi + bi) + vn +
l−1∑
i=1

Yi;

l−1∑
i=1

Xi ≤
n−1∑
i=1

bi <
l∑

i=1

Xi}

=
∞∑
n=2

∫ t

0
P{

n−1∑
i=1

vi +
l−1∑
i=1

Yi ≤ t− u <
n∑
i=1

vi +
l−1∑
i=1

Yi;
l−1∑
i=1

Xi ≤ u <
l∑

i=1

Xi}

dB(n−1)(u)

=
∞∑
n=2

∫ t

0
[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]

·[H(l−1)(u)−H(l)(u)]dB(n−1)(u), (l = 2, 3, · · ·).

Theorem 2

p∗01w(s) =
1

s+ λ− λB∗(s+ α)
, (14)

p∗0lw(s) =
l−1∏
j=1

(ab)j−1β

s+ bj−1β

l∑
i=1

[
l∏

r=1

r 6=i

1

ar−1 − ai−1
]

λB∗(s+ ai−1α)

(s+ λ)[s+ λ− λB∗(s+ ai−1α)]
, (15)

(l = 2, 3, · · ·).

Proof It follows from Theorem 1 that

p∗01w(s) =

∫ ∞
0

e−stp01w(t)dt

=

∫ ∞
0

e−st{
∞∑
n=2

∫ t

0
[F (n−1)(t− u)− F (n)(t− u)]e−αudB(n−1)(u) + e−λt}dt

11



=
∞∑
n=2

∫ ∞
0
{
∫ ∞
u

e−st[F (n−1)(t− u)− F (n)(t− u)]dt}e−αudB(n−1)(u) +
1

s+ λ

=
∞∑
n=2

∫ ∞
0

[

∫ ∞
0

e−s(u+v)(F (n−1)(v)− F (n)(v))dv]e−αudB(n−1)(u) +
1

s+ λ

=
∞∑
n=2

∫ ∞
0

e−su[

∫ ∞
0

e−svF (n−1)(v)dv −
∫ ∞
0

e−svF (n)(v)dv]e−αudB(n−1)(u) +
1

s+ λ

=
1

s+ λ
+
∞∑
n=2

1

s
[(

λ

s+ λ
)n−1 − (

λ

s+ λ
)n]

∫ ∞
0

e−(s+α)udB(n−1)(u)

=
1

s+ λ
+
∞∑
n=2

λn−1

(s+ λ)n
[B∗(s+ α)]n−1

=
1

s+ λ− λB∗(s+ α)

Similarly, from Theorem 1 and Lemma 2, we have

p∗0lw(s) =

∫ ∞
0

e−stp0lw(t)dt

=

∫ ∞
0

e−st{
∞∑
n=2

∫ t

0
[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]

[H(l−1)(u)−H(l)(u)]dB(n−1)(u)}dt

=
∞∑
n=2

∫ ∞
0
{
∫ ∞
u

e−st[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]dt}

[H(l−1)(u)−H(l)(u)]dB(n−1)(u)

=
∞∑
n=2

∫ ∞
0
{
∫ ∞
0

e−s(u+v)[F (n−1) ∗K(l−1)(v)− F (n) ∗K(l−1)(v)]dv}

[H(l−1)(u)−H(l)(u)]dB(n−1)(u)

=
∞∑
n=2

1

s
[

λn−1

(s+ λ)n−1
− λn

(s+ λ)n
](
l−1∏
j=1

bj−1β

s+ bj−1β
)

∫ ∞
0

e−su[H(l−1)(u)−H(l)(u)]

dB(n−1)(u)

=
l−1∏
j=1

bj−1β

s+ bj−1β

∞∑
n=2

λn−1

(s+ λ)n

∫ ∞
0

e−su[
l∑

i=1

l∏
r=1

(r 6=i)

ar−1

ar−1 − ai−1
e−a

i−1αu −

l−1∑
i=1

l−1∏
r=1

(r 6=i)

ar−1

ar−1 − ai−1
e−a

i−1αu]dB(n−1)(u)
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=
l−1∏
j=1

bj−1β

s+ bj−1β
[
l∑

i=1

l∏
r=1

(r 6=i)

ar−1

ar−1 − ai−1
∞∑
n=2

λn−1

(s+ λ)n
(B∗(s+ ai−1α))n−1 −

l−1∑
i=1

l−1∏
r=1

(r 6=i)

ar−1

ar−1 − ai−1
∞∑
n=2

λn−1

(s+ λ)n
(B∗(s+ ai−1α))n−1]

=
l−1∏
j=1

bj−1β

s+ bj−1β
[
l∑

i=1

l∏
r=1

(r 6=i)

ar−1

ar−1 − ai−1
λB∗(s+ ai−1α)

(s+ λ)[s+ λ− λB∗(s+ ai−1α)]
−

l−1∑
i=1

l−1∏
r=1

(r 6=i)

ar−1

ar−1 − ai−1
λB∗(s+ ai−1α)

(s+ λ)[s+ λ− λB∗(s+ ai−1α)]
]

=
l−1∏
j=1

(ab)j−1β

s+ bj−1β

l∑
i=1

[
l∏

r=1

(r 6=i)

1

ar−1 − ai−1
]

λB∗(s+ ai−1α)

(s+ λ)[s+ λ− λB∗(s+ ai−1α)]

On the basis of Theorem 2, we can derive the Laplace transform p∗mlw(s) of pmlw(t).

To do this, first of all it follows from the equation (7) that

p∗11w(s) =
s+ nλ

µ
p∗01w(s)− 1

µ
=

(n− 1)λB∗(s+ α)

µ[s+ λ− λB∗(s+ α)]
(16)

Furthermore, we have the following theorem.

Theorem 3

p∗m1w(s) =
(n− 1)λB∗(s+ α)(Mm −Nm) + µ(MNm −NMm)

µ(M −N)[s+ λ− λB∗(s+ α)]
, (m = 0, 1, 2, · · · , k−1)

where M and N are two roots of the quadratic equation

t2−s+ (n−m)λ+ µ+ α

µ
t+

(n−m+ 1)λ

µ
= 0 (17)

proof According to (9), we have

p∗(m+1)1w
(s) =

s+ (n−m)λ+ µ+ α

µ
p∗m1w(s)− (n−m+ 1)λ

µ
p∗(m−1)1w(s), (18)

(m = 1, 2, · · · , k − 1)

Because M and N are two roots of the equation (17),then

M +N =
s+ (n−m)λ+ µ+ α

µ
, MN =

(n−m+ 1)λ

µ

13



and equation (18) becomes

p∗(m+1)1w
(s)−Mp∗m1w(s) = N [p∗m1w(s)−Mp∗(m−1)1w(s)]

or

p∗(m+1)1w
(s)−Np∗m1w(s) = M [p∗m1w(s)−Np∗(m−1)1w(s)]

By iteration, it is straightforward that

p∗m1w(s)−Mp∗(m−1)1w(s) = Nm−1[p∗11w(s)−Mp∗01w(s)] (19)

and

p∗m1w(s)−Np∗(m−1)1w(s) = Mm−1[p∗11w(s)−Np∗01w(s)] (20)

According to the equations (14), (16), (19) and (20), we can obtain

p∗m1w(s) =
Mm −Nm

M −N
p∗11w(s) +

MNm −NMm

M −N
p∗01w(s)

=
(n− 1)λB∗(s+ α)(Mm −Nm) + µ(MNm −NMm)

µ(M −N)[s+ λ− λB∗(s+ α)]
, (m = 0, 1, 2, · · · , k − 1)

According to the equation (13) and Theorem 3, we have

p∗m1f
(s) =

α

s+ β
p∗m1w(s)

=
(n− 1)λαB∗(s+ α)(Mm −Nm) + µα(MNm −NMm)

µ(M −N)(s+ β)[s+ λ− λB∗(s+ α)]
, (m = 1, 2, · · · , k) (21)

According to the equation (15) in Theorem 2, we have

p∗02w(s) =
λβ

(s+ β)(a− 1)

B∗(s+ α)−B∗(s+ aα)

[s+ λ− λB∗(s+ α)][s+ λ− λB∗(s+ aα)]
(22)

According to the equations (8), (11), (12), (21) and (22), we can obtain

p∗12w(s) =
λβ(s+ nλ)

µ(s+ β)(a− 1)
· B∗(s+ α)−B∗(s+ aα)

[s+ λ− λB∗(s+ α)][s+ λ− λB∗(s+ aα)]

p∗22w(s) =
λβ[(s+ nλ)(s+ (n− 1)λ+ µ+ aα)− nλµ][B∗(s+ α)−B∗(s+ aα)]

µ2(s+ β)(a− 1)[s+ λ− λB∗(s+ α)][s+ λ− λB∗(s+ aα)]

− (n− 1)λαβB∗(s+ α)

µ2(s+ β)[s+ λ− λB∗(s+ α)]

Then we can determine p∗m2w(s), for m = 3, 4, · · · , k−1, k by using the equations (11),

(12) and the above obtained results again and again. And by using the equation (13),

we can get p∗m2f
(s), for m = 1, 2, · · · , k − 1, k. In general, on the basis of Theorem 2 and

3, we can also determine the Laplace transform p∗mlw(s) and p∗mlf (s) from the equations

(7) to (13) recurrently.
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4.1 System availability

By the definition, the availability of the system at time t is given by

A(t) = P{N(t) ∈W} =
∞∑
l=1

[
k−1∑
m=0

pmlw(t)]

= p01w(t) +
∞∑
l=1

[
k−1∑
m=1

pmlw(t)]

and the Laplace transform of A(t) is given by

A∗(s) = p∗01w(s) +
∞∑
l=1

[
k−1∑
m=1

p∗mlw(s)]

4.2 Mean of waiting time

A failed component at time t is repaired immediately when the repair-equipment is

idle, otherwise it will wait for repair according to the ”first in first out” rule. Thus, the

mean waiting time of a failed component at time t is an interesting index for the k/n(F )

system. Let Wt be the waiting time for repair of a failed component at time t, and let

Gm be the total chain-repair time for m failed components in the system and denote the

distribution of Gm by G(m). Moreover, let X̂i be the residual life of Xi. Then we can

obtain the following theorem about the distribution of waiting time.

Theorem 4 Let the distribution of Wt be Wt(x), then

Wt(x) =
∞∑
l=1

k−1∑
m=1

pmlw(t)
∞∑
n=0

∫ x

0
K

(n)
l (x− u)[H

(n)
l (u)−H(n+1)

l (u)]dG(m)(u)

where n is the failed number of the repair-equipment during the time Gm. And

K
(n)
l (u) = Kl(u) ∗Kl+1(u) ∗ · · · ∗Kl+n−1(u)

H
(n)
l (u) = Hl(u) ∗Hl+1(u) ∗ · · · ∗Hl+n−1(u)

G(m)(u) = G(u) ∗G(u) ∗ · · · ∗G(u)

Proof According to the conditional probability and the formula of total probability,

we have

Wt(x) = P{Wt ≤ x}

=
∞∑
l=1

k−1∑
m=1

P{Wt ≤ x,N(t) = mw, S(t) = lw}
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=
∞∑
l=1

k−1∑
m=1

P{N(t) = mw, S(t) = lw}P{Wt ≤ x|N(t) = mw, S(t) = lw}

=
∞∑
l=1

k−1∑
m=1

pmlw(t)
∞∑
n=0

P{Gm +
l+n−1∑
i=l

Yi ≤ x, X̂l +
l+n−1∑
i=l+1

Xi ≤ Gm < X̂l +
l+n∑
i=l+1

Xi}

=
∞∑
l=1

k−1∑
m=1

pmlw(t)
∞∑
n=0

∫ x

0
P{

l+n−1∑
i=l

Yi ≤ x− u, X̂l +
l+n−1∑
i=l+1

Xi ≤ u < X̂l +
l+n∑
i=l+1

Xi}

dG(m)(u)

=
∞∑
l=1

k−1∑
m=1

pmlw(t)
∞∑
n=0

∫ x

0
K

(n)
l (x− u)[H

(n)
l (u)−H(n+1)

l (u)]dG(m)(u)

Thus, the mean of waiting time to a failed component for repair is given by

EWt =

∫ ∞
0

xdWt(x)

Clearly, if the value of EWt is larger, we should improve the repair efficiency of the

repair-equipment so that the cost of the system is decreased.

4.3 Mean of busy period

It is well known that a busy period for the repair-equipment will start when a com-

ponent in the system fails and the number of failed component in the system is 1, it will

end at the time that the number of the failed components in the system reduces to 0.

To determine the mean of busy period for the repair-equipment, we study a stochastic

process {Ñ(t), t ≥ 0}. The only difference between the processes {N(t), t ≥ 0} and

{Ñ(t), t ≥ 0} is that the state 0 is an absorbing state in {Ñ(t), t ≥ 0}.
Let B̃ be the length of a busy period, then the distribution function is given by

B̃(t) = P{B̃ ≤ t} = P{Ñ(t) = 0}

Furthermore, we can obtain the following theorem about the distribution of busy period.

Theorem 5

B̃(t) =
∞∑
l=1

B(t)[1−Hl(t)] +
∞∑
l=1

∞∑
n=1

∫ t

0
B(t− u)[H

(n)
l (t− u)−H(n+1)

l (t− u)]dK
(n)
l (u)

where B(t) is the distribution of a busy period in the classical M/M/1 queueing system.

Proof First of all, we introduce a supplementary variable S̃(t) which is the same

as the S(t) in the process {N(t), t ≥ 0}, such that S̃(t) = lw, if the (l − 1)th repair has
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been completed. Thus we can also obtain a vector Markov process {Ñ(t), S̃(t), t ≥ 0}.
Thus

B̃(t) = P{Ñ(t) = 0}

=
∞∑
l=1

∞∑
j=l

P{Ñ(t) = 0, S̃(t) = jw, S̃(0) = lw}

=
∞∑
l=1

P{Ñ(t) = 0, S̃(t) = lw, S̃(0) = lw}

+
∞∑
l=1

∞∑
j=l+1

P{Ñ(t) = 0, S̃(t) = jw, S̃(0) = lw}

=
∞∑
l=1

P{Ñ(t) = 0, the repair-equipment works in(0, t], S̃(0) = lw}

+
∞∑
l=1

∞∑
n

∆
=j−l=1

P{Ñ(t) = 0, the repair-equipment fails for n times in(0, t], S̃(0) = lw}

=
∞∑
l=1

P{B ≤ t, X̂l > t}+
∞∑
l=1

∞∑
n=1

P{B +
l+n−1∑
i=l

Yi ≤ t, X̂l +
l+n−1∑
i=l

Yi +
l+n−1∑
i=l+1

Xi ≤ t

< X̂l +
l+n−1∑
i=l

Yi +
l+n∑
i=l+1

Xi}

=
∞∑
l=1

B(t)[1−Hl(t)]

+
∞∑
l=1

∞∑
n=1

∫ t

0
P{B ≤ t− u, X̂l +

l+n−1∑
i=l+1

Xi ≤ t− u < X̂l +
l+n∑
i=l+1

Xi}dK(n)
l (u)

=
∞∑
l=1

B(t)[1−Hl(t)] +
∞∑
l=1

∞∑
n=1

∫ t

0
B(t− u)[H

(n)
l (t− u)−H(n+1)

l (t− u)]dK
(n)
l (u)

Thus, the mean of busy period for the repair-equipment is given by

EB̃ =

∫ ∞
0

tdB̃(t)

4.4 The idle probability of the repair-equipment

Clearly, the repair-equipment will be idle when all components are working at time

t. Thus, according to Theorem 1, the idle probability of the repair-equipment at time t

is given by

I(t) = P{N(t) = 0} = p01w(t) + p0lw(t)
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= e−λt +
∞∑
n=2

∫ t

0
[F (n−1)(t− u)− F (n)(t− u)]e−αudB(n−1)(u)

+
∞∑
n=2

∫ t

0
[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]

·[H(l−1)(u)−H(l)(u)]dB(n−1)(u), (l = 1, 2, · · ·)

4.5 Repair-equipment MTTFF

To determine the mean time to first failure(MTTFF) of the repair-equipment, we

derive the distribution of the time to first failure of the repair-equipment. Given that

there is no failed component in the system at the beginning, let Tf be the time to the

first failure of the repair-equipment, and let the distribution of Tf be

Ψ0(t) = P{Tf ≤ t|N(0) = 0} (23)

and denote the Laplace-Stieltjes tranform of Ψ0(t) by Ψ∗0(s) =
∫∞
0 e−stdΨ0(t). Then we

have the following theorem.

Theorem 6

Ψ∗0(s) =
λα[1−B∗(s+ α)]

(s+ α)[s+ λ− λB∗(s+ α)]

Proof As before, let vi be the ith idle period, then it follows from the equation

(23) that

Ψ0(t) = P{Tf ≤ t|N(0) = 0}

=
∞∑
n=1

P{
n∑
i=1

vi +X1 ≤ t,
n−1∑
i=1

bi < X1 ≤
n∑
i=1

bi}

=
∞∑
n=1

∫ t

0
P{

n∑
i=1

vi ≤ t− u,
n−1∑
i=1

bi < u ≤
n∑
i=1

bi}dH1(u)

=
∞∑
n=1

∫ t

0
F (n)(t− u)[B(n−1)(u)−B(n)(u)]dH1(u)

Consequently, we have

Ψ∗0(s) =

∫ ∞
0

e−stdΨ0(t)

=
∞∑
n=1

(
λ

s+ λ
)n

∫ ∞
0

e−st[B(n−1)(t)−B(n)(t)]dH1(t)

=
∞∑
n=1

(
λ

s+ λ
)n

∫ ∞
0

αe−(s+α)t[B(n−1)(t)−B(n)(t)]dH1(t)

18



=
∞∑
n=1

(
λ

s+ λ
)n[

α

s+ α
(B∗(s+ α))n−1 − α

s+ α
(B∗(s+ α))n]

=
α

s+ α

∞∑
n=1

[
λ

s+ λ
(
λB∗(s+ α)

s+ λ
)n−1 − (

λB∗(s+ α)

s+ λ
)n]

=
λα[1−B∗(s+ α)]

(s+ α)[s+ λ− λB∗(s+ α)]

Thus, the mean time to first failure (MTTFF) of the repair-equipment is given by

ETf = − d

ds
Ψ∗0(s)|s=0 =

1

α
+

1

λ[1−B∗(α)]

4.6 Availability of the repair-equipment

Let the availability of the repair-equipment at time t be

Af (t) = P{the repair-equipment works at time t|N(0) = 0}.

Then

Āf (t) = P{the repair-equipment fails at time t|N(0) = 0}

is the probability that the repair-equipment fails at time t. Now, denote the Laplace

transforms of Af (t) and Āf (t) by A∗f (s) and Ā∗f (s) respectively. Then, the following

theorem follows directly.

Theorem 7

A∗f (s) =
k−1∑
m=0

∞∑
l=1

p∗mlw(s)

Proof It is clear that

Af (t) = P{the repair-equipment works at time t|N(0) = 0}

=
k−1∑
m=0

∞∑
l=1

P{N(t) = mw, S(t) = lw|N(0) = 0}

=
k−1∑
m=0

∞∑
l=1

pmlw(t)

Therefore

A∗f (s) =
k−1∑
m=0

∞∑
l=1

p∗mlw(s)

Furthermore, due to the fact Af (t) + Āf (t) = 1, we have

A∗f (s) + Ā∗f (s) =
1

s

Consequently, Ā∗f (s) can also be determined.
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4.7 Repair-equipment ROCOF

The ROCOF is one of important indices in reliability theory. Let Mf (t) be the mean

failure number of the repair-equipment in (0, t], then its derivative mf (t) = d
dtMf (t) is

called the rate of occurrence of failure (ROCOF). According to Lam [33], the ROCOF

can be evaluated in the following way:

mf (t) =
∑

m∈W,n∈F

∞∑
l=1

pmlw(t)rmnl

where rmnl is transition rate from state m to state n in lth cycle. Thus, we can obtain

m∗f (s) =
k∑

m=1

∞∑
l=1

al−1αp∗mlw(s)

where m∗f (s) is the Laplace transform of mf (t). Since p∗mlw(s) has been determined in

Section 4, we can then evaluate m∗f (s).

5 Replacement policy for the repair-equipment

5.1 Average cost rate under policy N

In this section, we consider a replacement policy N based on the number of failures

of the repair-equipment. The repair-equipment will be replaced by a new and identical

one when the failure number of the repair-equipment reaches N . Our objective is to

choose an optimal replacement policy N∗ such that the average cost rate of the repair-

equipment is minimized. To do this, besides the model assumptions in Section 2, we add

some assumptions as follows.

Assumption 7 A replacement policy N based on the number of failures of the

repair-equipment is used. The repair-equipment will be replaced sometime by a new and

identical one, and the replacement time is negligible.

Assumption 8 The repair cost rate of the repair-equipment is cr, the working

reward rate of the repair-equipment is cw, and the fixed replacement cost of the repair-

equipment is C.

Let τ1 be the first replacement time of the repair-equipment after installation, and

τn(n ≥ 2) be the time between the (n − 1)th and the nth replacements of the repair-

equipment under policy N. Clearly, {τ1, τ2, · · ·} forms a renewal process, and the time

between two consecutive replacements is called a renewal cycle.

Let C(N) be the average cost rate of the repair-equipment under policy N . Thus,

according to the model assumptions and the renewal reward theorem (see, for example
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Ross [30]), we have

C(N) =
the expected cost incurred in a renewal cycle

the expected length of a renewal cycle

=

E(cr
N−1∑
j=1

Yj + C − cw
N∑
j=1

Xj)

E(
N−1∑
j=1

Yj +
N∑
j=1

Xj)

=

cr
N−1∑
j=1

1
bj−1β

+ C − cw
N∑
j=1

1
aj−1α

N−1∑
j=1

1
bj−1β

+
N∑
j=1

1
aj−1α

(24)

Obviously, we can determine an optimal replacement policy N∗ by analytical or

numerical methods such that C(N) is minimized.

5.2 Optimal replacement policy N ∗

In order to determine the optimal replacement policy N∗ for minimizing C(N) ex-

plicitly, we rewrite the equation (24) as

C(N) = A(N)− cw,

where

A(N) =

(cr + cw)
N−1∑
j=1

1
bj−1β

+ C

N∑
j=1

1
aj−1α

+
N−1∑
j=1

1
bj−1β

.

Thus, to minimize C(N) is equivalent to minimize A(N). The difference of A(N + 1)

and A(N) is given as:

A(N + 1)−A(N) =

(cr + cw)
N∑
j=1

1
bj−1β

+ C

N+1∑
j=1

1
aj−1α

+
N∑
j=1

1
bj−1β

−
(cr + cw)

N−1∑
j=1

1
bj−1β

+ C

N∑
j=1

1
aj−1α

+
N−1∑
j=1

1
bi−1β

=

cr+cw
bN−1β

N∑
j=1

bj−1 + C

1
aNα

N+1∑
j=1

aj−1 + 1
bN−1β

N∑
j=1

bj−1
−

cr+cw
bN−2β

N−1∑
j=1

bj−1 + C

1
aN−1α

N∑
j=1

aj−1 + 1
bN−2β

N−1∑
j=1

bj−1

=
(cr + cw)h(N)− C(aNα+ bN−1β)

aNbN−1αβ[ 1
aNα

N+1∑
j=1

aj−1 + 1
bN−1β

N∑
j=1

bj−1][ 1
aN−1α

N∑
j=1

aj−1 + 1
bN−2β

N−1∑
j=1

bj−1]

,
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where h(N) =
N∑
j=1

aj −
N−1∑
j=1

bj .

We now structure an auxiliary function

B(N) =
(cr + cw)h(N)

C(aNα+ bN−1β)
(25)

Because the denominator of A(N + 1)−A(N) is always positive, the sign of A(N + 1)−
A(N) is the same as the sign of its numerator. Thus, the following lemma is straightfor-

ward.

Lemma 3

A(N + 1)
>

<
A(N) ⇐⇒ B(N)

>

<
1.

Lemma 1 shows that the monotonicity of A(N) is determined by the value of B(N).

We can simplify the difference of B(N + 1) and B(N) as follows.

B(N + 1)−B(N) =
(cr + cw)h(N + 1)

C(aN+1α+ bNβ)
− (cr + cw)h(N)

C(aNα+ bN−1β)

=
cr + cw
C

(
h(N + 1)(aNα+ bN−1β)− h(N)(aN+1α+ bNβ)

(aN+1α+ bNβ)(aNα+ bN−1β)
)

=
cr + cw
C

(
aNα[h(N + 1)− ah(N)] + bN−1β[h(N + 1)− bh(N)]

(aN+1α+ bNβ)(aNα+ bN−1β)
),

where

h(N + 1)−ah(N) = (
N+1∑
j=1

aj−
N∑
j=1

bj)−a(
N∑
j=1

aj−
N−1∑
j=1

bj) = (a− bN ) + (a−1)
N−1∑
j=1

bj ≥ 0,

h(N+1)−bh(N) = (
N+1∑
j=1

aj−
N∑
j=1

bj)−b(
N∑
j=1

aj−
N−1∑
j=1

bj) = (1−b)
N∑
j=1

aj +(aN+1−b) ≥ 0.

Thus, B(N + 1)−B(N) ≥ 0, this implies:

Lemma 4 B(N) is nondecreasing in N .

According to Lemmas 3 and 4, an analytic expression for an optimal policy for min-

imizing A(N) can be obtained. The following theorem can be obtained.

Theorem 8 The optimal replacement policy N∗ can be determined by

N∗ = min{N | B(N) ≥ 1} (26)
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Furthermore, if B(N∗) > 1, then the optimal policy N∗ is unique.

Because B(N) is nondecreasing in N , there exists an integer N∗ such that

B(N) ≥ 1 ⇐⇒ N ≥ N∗

and

B(N) < 1 ⇐⇒ N < N∗.

Note that N∗ is the minimum satisfying (26), and the policy N∗ is an optimal re-

placement policy. Furthermore, it is easy to see that if B(N∗) > 1, then the optimal

policy is also uniquely existent.

5.3 A numerical example for policy N

In this section, we provide a numerical example to illustrate the optimal replacement

policy N∗ for minimizing C(N). Now, let

l1 =
N∑
j=1

1

aj−1
, l2 =

N−1∑
j=1

1

bj−1
, l3 =

N∑
j=1

aj , l4 =
N−1∑
j=1

bj ,

then equations (24) and (25) become respectively

C(N) =

cr
β l2 + C − cw

α l1
l1
α + l2

β

(27)

and

B(N) =
(cr + cw)(l3 − l4)
C(aNα+ bN−1β)

. (28)

Further let a = 1.15, b = 0.85, α = 0.02, β = 1, cr = 15, cw = 60 and C = 4000.

Substituting the above values into equations (27) and (28), we can respectively obtain

the results presented in Figure 1 and Table 1.

It is easy to find that C(10) = −42.3998 is the minimum of the average cost rate of the

repair-equipment. In other words, the optimal policy is N∗ = 10 and we should replace

the repair-equipment at the time of the 10th failure. And the optimal policy N = 10 is

unique from Figure 1, Table 1 or the conclusion of Theorem 8 because B(10) = 1.1396 >

1.
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Table 1: Results obtained from Equations (27) and (28)

N C(N) B(N) N C(N) B(N) N C(N) B(N)

1 20.0000 0.0211 11 -42.3063 1.5166 21 -31.1221 5.9243

2 -16.8684 0.0347 12 -42.0093 1.9569 22 -29.0294 6.1500

3 -28.8058 0.0603 13 -41.5236 2.4485 23 -26.7891 6.3349

4 -34.5588 0.1027 14 -40.8560 2.9723 24 -24.4224 6.4856

5 -37.8255 0.1682 15 -40.0090 3.5050 25 -21.9552 6.6080

6 -39.8282 0.2646 16 -38.9820 4.0234 26 -19.4178 6.7074

7 -41.0853 0.4007 17 -37.7733 4.5075 27 -16.8432 6.7882

8 -41.8512 0.5862 18 -36.3815 4.9439 28 -14.2662 6.8541

9 -42.2633 0.8302 19 -34.8067 5.3255 29 -11.7212 6.9080

10 -42.3998 1.1396 20 -33.0515 5.6513 30 -9.2408 6.9523

6 Concluding remarks

In this paper, the reliability and replacement policy of a k/n(F ) system with a re-

pairable repair-equipment are conducted. The following findings are achieved.

(1) According to the model assumptions, we have indicated that the k/n(F ) system

with a repairable repair-equipment is equivalent to a M/M(M/M)/1/k/n queueing sys-

tem with repairable service station. By using the queueing theory we derived properties

and reliability indices of the k/n(F ) system on the basis of the concept of busy period

for classical M/M/1 queueing system. Hence, the work in this paper is a generalization

of the existing work.

(2) Although the geometric process has been wildly applied to the maintenance prob-

lem for the simple repairable system and the multi-component series, parallel and cold

standby repairable systems, this is the first work to apply the geometric process to a

k/n(F ) system with a repairable repair-equipment.

(3) Let N(t) be the state of the k/n(F ) system with a repairable repair-equipment at

time t. It is clear from model assumptions that {N(t), t ≥ 0} is not a Markov process.

However, it can be extended to be a vector Markov process (i.e. a two-dimensional

Markov process) by introducing a supplementary variable. To obtain properties and

reliability indices, we need to determine the state probabilities of the system at time

t. Accordingly, we can derive the system of differential equations about pmlw(t), (m =

0, 1, · · · , k − 1; l = 1, 2, · · ·) and pmlf (t), (m = 1, 2, · · · , k − 1, k; l = 1, 2, · · ·). Finally,
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the Laplace transform results of the system reliability indices are obtained. In general,

conducting an inverse Laplace transformation to obtain transient results of reliability

indices is not easy, and results from Laplace transformation of reliability indices of the

system are hard to obtain for practical application. Thus, for practical use, a numerical

method based on the Runge-Kutta method is often adopted (see, e.g., Zhang and Wang

[28]).

(4) In this paper, we consider a replacement policy N based on the number of failures

of the repairable repair-equipment. An optimal replacement policy N∗ for minimizing

C(N) is determined. The uniqueness of the optimal replacement policy N∗ is proved.

And a given numerical example can also illustrate the theoretical result. Theorem 8 can

be used in practice as one can stop searching the optimum whenever B(N) crosses over

1.

(5) Our future work will be to conduct research for the situation where all components

in the system are not ”as good as new” or there are r(r > 1) repairable repair-equipment.
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