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Abstract

Forecasting warranty claims for recently launched products that have short histories
of claim records is vitally important for manufacturers in preparing their fiscal plans.
Since the amount of historical claim data for such products is not large enough,
developing forecasting models with good performance has been a difficult problem.

The objective of this paper is to develop an algorithm for forecasting the number
of warranty claims of recently launched products. A two-phase modelling algorithm
is developed: in Phase I, we estimate the upper and the lower bounds of the warranty
claim rates of the reference products that have been in the market for a longer time;
in Phase II, we build forecasting models for the recently launched products and
assume that their future claim rates are subject to the bound constraints derived
from Phase I. Based on this algorithm, we use the NHPP (non-homogeneous Poisson
process) and the constrained maximum likelihood estimation to build forecasting
models on artificially generated data as well as warranty claim data collected from an
electronics manufacturer. The results show that the proposed algorithm outperforms
commonly used NHPP models.

Keywords: Non-homogenous Poisson process (NHPP), warranty claims, fore-
casting, constrained maximum likelihood estimation.

1 Introduction

In warranty management, forecasting the number of warranty claims is vi-
tally important for manufacturers in preparing their fiscal plans. Starting with
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Kalbfleisch et al. [1], considerable research on forecasting warranty claims has
been conducted (see [1–13,21], for example). A recently published review pa-
per on warranty data analysis can be found in [14], which includes comments
on different types of warranty forecasting techniques. In existing literature,
however, there has been found little research on warranty claim forecasting
for products that have short histories of claims (for example, those products
that have only 3-month or 6-month claim data), although it is extremely im-
portant for the manufacturers to make better prediction of the number of
warranty claims for their recently lunched products.

The objective of this paper is to develop an algorithm for forecasting the
number of warranty claims of a recently launched product, referred as tar-
get product in the following. We assume that the manufacturer has already
received quite long records of warranty claim data of similar products that
the manufacturer has produced and refer such products as reference products.
A two-phase forecasting algorithm is proposed: in Phase I, we estimate the
lower and the upper bounds of warranty claim rates of the reference products;
in Phase II, we build forecasting models for the recently launched products
and assume that the claim rates of the products lie in the bound constraints
derived from Phase I.

Although this work is motivated by the desire to forecast warranty claims,
the approach can also be used in similar cases such as inventory planning and
insurance claim forecasting, when the historical data of reference products are
available.

The remainder of this paper is structured as follows. Section 2 details the
problems in warranty claim forecasting. Section 3 proposes an algorithm for
forecasting warranty claims of recently launched products. Section 4 applies
the proposed algorithm to both artificially generated data and warranty claim
data collected from an electronics manufacturer, and compares the perfor-
mance of the proposed algorithm to the commonly used algorithm. Discussion
is carried out in Section 5. The final section concludes the paper.

2 Problem description

We assume that the claim data discussed in this paper are aggregated on a
monthly basis. These data can be expressed as shown in Table 1. At a given
calendar month T , our objective is to predict the total number of warranty
claims that might be reported in the next K months. In Table 1, the number
of warranty claims of a type of product shipped to the end-users in months
i and then claimed in month j is denoted as di,j, and the predicted number

of warranty claims is denoted as d̂i,j. ’MoS’ stands for the month when the
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Table 1
Field warranty data

MoS Shipments
Calendar months when claims are received.

1 2 3 . . . T T+1 T+2 . . . T+K

1 S1 d1,1 d1,2 d1,3 . . . d1,T d̂1,T+1 d̂1,T+2 . . . d̂1,T+K

2 S2 d2,2 d2,3 . . . d2,T d̂2,T+1 d̂2,T+2 . . . d̂2,T+K

3 S3 d3,3 . . . d3,T d̂3,T+1 d̂3,T+2 . . . d̂3,T+K

...
... . . .

...

T Sk dT,T d̂T,T+1 d̂T,T+2 . . . d̂T,T+K

products are shipped to the end-users.

When T is large, one can develop a forecasting model with good performance
as there is a long history of warranty claim data available. Research on such
a forecasting problem can be found in [1,3–6,8,10–12,15,16]. Most of those
publications, however, conduct little discussion on the availability of historical
claim data. For a manufacturer, one of their important concerns is how to
forecast the number of warranty claims when T is small. For example, T = 3
or T = 6, which means the manufacturer has only received warranty claims
of the first 3 months or the first 6 months. This usually happens for those
recently launched products.

3 Algorithm development

3.1 The algorithm

Modern manufacturing is characterised by often nearly identical products due
to common components and technology being used [17]. This property has
been used in warranty data analysis such as early detection of reliability prob-
lems (see [18], for example). Denote r̂k as the estimated warranty claim rate
of the target product during its k-th month. For early detection of reliability
problems, the reference value for r̂k is denoted by r̂Uk , which can be obtained
from previous experience with similar products or design specifications, as
assumed in [18]. Then the early detection of reliability problems can be for-
mulated as a test of the multiple-parameter hypothesis [18]:

r̂1 ≤ r̂U1 , r̂2 ≤ r̂U2 , . . . , r̂T+K ≤ r̂UT+K (1)

The above inequalities have also been used as an assumption in designing early
detection algorithm (also see [19,20]). Similarly, we can assume that the other
reference values for r̂k, denoted by r̂Lk , which can also be obtained from other
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reference products and satisfies

r̂L1 ≤ r̂1, r̂
L
2 ≤ r̂2, . . . , r̂

L
T+K ≤ r̂T+K (2)

Denote the estimated claim rate of the i-th reference product in month k as
r̂i,k. The inequalities in (1) and (2) can be used to build models for forecasting
warranty claims, based on which we can derive a new algorithm to build a
model for forecasting warranty claims as following:

• Assume that the claim rates of both the reference and the target products
are stable over months in service 1 .
• If the observed claim rates of the target product in the first T months

are larger than the claim rates r̂Lk derived from a set of reference products
and less than the claim rates r̂Uk derived from this set reference products
for k = 1, 2, ..., T , then we can assume that the claim rates of the model in
months {T +1, T +2, ..., T +K} lie in (r̂Lk , r̂

U
k ) for k = T +1, T +2, ..., T +K.

The above algorithm can also be re-written in Table 2.

Table 2
The algorithm.

Assumptions: There are M reference products that have been in the market
for T + K months. A target product has been in the market
for T months, where T > 0.

Phase 1: Search the warranty claim database and find M0 reference
products from the M products that are similar to the target
product with respect to claim rates within the T months and
that satisfies r̂Lk ≤ r̂k ≤ r̂Uk for all of the M0 products, where
k = 1, 2, ..., T .

Phase 2: Develop a warranty forecasting model based on the warranty
claims received for the T months of the target product and
the claim rates, rk, derived from the model for products older
than T months are subject to r̂Lk ≤ rk ≤ r̂Uk , where k =
T + 1, T + 2, ..., T +K.

3.2 Implementation of the algorithm

The non-homogeneous Poisson process (NHPP) is a stochastic process that
has been widely used in the reliability engineering as well as in estimating
warranty claims (see [10,11] for example).

1 In practice, due to various reasons such as design modification, the claim rates of
a product over month in service can change dramatically.
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Denote the total number of warranty claims of the target product in month k
as dk and the total number of the target product on the market as N .

Then the likelihood function of the NHPP is given by:

LNHPP =
T∏
k=1

(
N
∫ k
k−1 r(x)dx

)dk
e
−
(
N
∫ k

k−1
r(x)dx

)
dk!

(3)

where r(x) is the intensity function of the NHPP, and E(dk) = N
∫ t
t−1 r(x)dx.

Thus the optimisation problem, based on the algorithm in Table 2, can be
stated as

Maximise LNHPP (4)

Subject to r̂Lk ≤
∫ k

k−1
r(x)dx ≤ r̂Uk for k = T + 1, T + 2, ..., T +K.

The above algorithm is constrained maximum likelihood estimation (CMLE).

3.3 Discussion

The selection of reference products in Phase I in the algorithm proposed (in
Table 2) is very important. For selecting such reference products, expert opin-
ions or mathematical algorithms might be pursued. Mathematical algorithms
such as the k-nearest-neighbour (K-NN) algorithm can be applied.

In this paper, we adopt the algorithm, as shown in Table 3.

One of the well-known phenomena of warranty data is warranty data matu-
ration. This phenomenon witnesses that there is a tendency for the observed
warranty claim frequencies to increase with time [2]. Different approaches have
been suggested to tackle warranty data maturation in warranty data analy-
sis. For example, Singpurwalla and Wilson suggested that a better approach
would be the consideration of dynamic linear models, with innovation terms
that account for the added uncertainties due to a maturation of the data [2].
Weighted regression modelling and weighted maximum likelihood estimation
have also been suggested in [12,21]. In the present article, as the proposed
algorithm (shown in 2) aims to find a region defined by the lower and upper
bounds, which are not fixed values, the phenomena of warranty data matura-
tion does not affect the efficiency of the algorithm significantly. This can be
seen from the following data experiments, based on both artificially generated
data and data collected from a manufacturer.
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Table 3
The two-phase algorithm.

(1) Define a cut-off value Co, where 0 < Co ≤ 1;

(2) Calculate ρj =
∑T

i=1
(r̂i,j−µ̂j)(r̂i−µ̂)√∑T

i=1
(r̂i,j−µ̂j)2

∑T

i=1
(r̂i−µ̂)2

, which is the Pearson product-

moment correlation coefficient, where j = 1, 2, ...,M , and µ̂j =
∑T
i=1 ri,j,

and µ̂ =
∑T
i=1 ri; where ri,j is the claim rate of product j in month i and

ri is the claim rate of the target product in month i;

(3) Assume that there are M0 reference products satisfying ρj > Co and the
M0 products have claim rates {r̂i1,k, r̂i2,k, ..., r̂iM0

,k}, for k = 1, 2, ..., T+K;

(4) Calculate µ̂′k = 1
M0

∑M0
j=1 r̂ij ,k and σ̂k = 1

M0−1
∑M0
j=1(r̂ij ,k − µ̂′k)

2, where
k = 1, 2...T +K;

(5) Find r̂Lk and r̂Uk so that r̂Lk ≤ r̂k ≤ r̂Uk , where r̂Lk and r̂Uk are the least
lower bound and the greatest upper bound chosen from {µ̂′k − 5σ̂k, µ̂

′
k −

4σ̂k, ..., µ̂
′
k + 4σ̂k, µ̂

′
k + 5σ̂k} for v = −5,−4,−3, ..., 3, 4, 5;

(6) Build a model based on Eq. (5).

4 Data experiments

In this section, we evaluate the proposed algorithm shown in Table 3, based on
artificially generated data and data collected from an electronics manufacturer,
respectively.

We set T=6, 9, and 12, respectively, as the number of months that the recently
lunched products have been in the market and K=3, 6, 9, 12, 15, 18, 21, and
24 as prediction horizons, respectively.

For both the artificially generated dataset and the field data, and for given
M products, we choose one of the M products as the target product and the
rest M − 1 products as the candidate reference products for selection. We
build models based on the T month data and test the models on the claim
data within interval {T + 1, T + 2, ..., T + k}. The prediction performance of a
model is measured with the following normalised rooted mean squared error
(NRMSE):

NRMSE =

√√√√∑T+K
k=T+1(dk − d̂k)2∑T+K

k=T+1 d
2
k

(5)

The experiments are performed for different cut-off values of the Pearson cor-
relation coefficient, Co=0.6, 0.7, and 0.8, respectively.
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4.1 Simulation study

The number of warranty claims received in the k-th month is sampled from a
Poisson distribution with mean µk = N

∫ k
k−1 r(x)dx for k = 1, 2, ..., 36, where

r(x) is the hazard rate function of the inverse Weibull distribution, that is,

r(x) = βαβx−(β+1) exp

[
−
(
α

x

)β]{
1− exp

[
−
(
α

x

)β]}−1
(6)

where the parameters α and β in r(x) are randomly selected from uniform dis-
tributions, respectively. We have generated data based on the inverse Weibull
distributions with their hazard rates r(x), whose scale parameter α are ran-
domly selected from [100, 500] and whose shape parameter is randomly se-
lected from [0.2, 0.8]. The data generated with those different inverse Weibull
distributions represent warranty claim data of different products.

We have generated 30 (or M = 30) products using the parameters of r(x) as
shown in Table 4, and set N = 20000 for all products.

Table 4
Parameters of the inverse Weibull distributions.

α 466.23 100.97 329.01 309.33 346.65 395.15 122.27 374.71 324.40 366.03

β 0.390 0.534 0.442 0.435 0.344 0.283 0.394 0.300 0.475 0.460

α 112.28 337.42 206.94 448.50 401.07 390.48 427.22 488.84 120.49 233.01

β 0.465 0.381 0.378 0.399 0.320 0.305 0.334 0.447 0.389 0.363

α 151.03 465.64 464.42 113.19 457.55 495.59 286.92 217.95 308.77 481.33

β 0.520 0.417 0.271 0.374 0.298 0.279 0.422 0.364 0.379 0.309

Table 5 shows the NRMSE values derived from the forecasting models with the
maximum likelihood estimation on the artificially generated dataset, where we
use Eq. (3) to build the forecasting models. Those values in Table 5 are the
average values over the 30 simulated products. It is clear from the table that
as T increases, the prediction accuracy improves.

Table 5
Average NRMSE values from the forecasting models based on the maximum likeli-
hood estimation on the artificially generated dataset.

K = 3 K = 6 K = 9 K = 12 K = 15 K = 18 K = 21 K = 24

T = 6 0.170 0.220 0.207 0.219 0.228 0.238 0.233 0.234

T = 9 0.139 0.138 0.140 0.145 0.151 0.147 0.147 0.150

T = 12 0.131 0.130 0.134 0.137 0.136 0.136 0.137 0.140

Table 6 shows the NRMSE values derived from the forecasting models with
the constrained maximum likelihood estimation on the artificially generated
dataset, where different Pearson correlation coefficients Co are applied. We
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use Eq. (4) to estimate the parameters in the models. Those values in Table
6 are the average values over the 30 simulated products.

Table 6
Average NRMSE values from the forecasting models based on the constrained max-
imum likelihood estimation on the artificially generated dataset.

K = 3 K = 6 K = 9 K = 12 K = 15 K = 18 K = 21 K = 24

Co = 0.60

T = 6 0.143 0.171 0.159 0.166 0.171 0.176 0.173 0.173

T = 9 0.141 0.137 0.138 0.142 0.148 0.144 0.144 0.146

T = 12 0.126 0.126 0.131 0.134 0.133 0.132 0.133 0.136

Co = 0.70

T = 6 0.139 0.166 0.157 0.164 0.168 0.173 0.171 0.171

T = 9 0.139 0.137 0.139 0.143 0.150 0.146 0.145 0.148

T = 12 0.128 0.128 0.134 0.136 0.135 0.134 0.135 0.139

Co = 0.80

T = 6 0.137 0.164 0.156 0.163 0.168 0.173 0.170 0.170

T = 9 0.140 0.138 0.139 0.145 0.150 0.147 0.146 0.149

T = 12 0.129 0.128 0.134 0.136 0.135 0.135 0.136 0.139

We then use the t-test (using paired two sample for means in Microsoft Excel c©)
to compare the NRMSE values with the same combination (T,K) (for exam-
ple, T=6 and K=9) in Table 5 and Table 6, and found the assumption that
the NRMSE values shown in Table 5 are larger than those in Table 6 is sta-
tistically significant with a level of significance 0.95, except the case when
Co = 0.8 and T = 9.

To further investigate the performance of the models, we create another table,
Table 7, to compare the averages of NRMSE values under each combination
(T,K) based on Tables 5 and 6. The percentage columns represent the differ-
ence between the NRMSE averages obtained with the constrained maximum
likelihood estimation and the NRMSE averages obtained with the maximum
likelihood estimation. The negative values show that the proposed algorithm,
i.e., the NHPP with a constrained maximum likelihood estimation, outper-
forms the commonly used NHPP, which is especially the case for T = 6. It
also shows that the model performance of the proposed algorithm becomes
similar to that of commonly used NHPP for larger T , as expected.

Table 7
Comparing the average NRMSE values over K’s, based on Table 5 and Table 6.

ML
CML

Co = 0.60 Co = 0.70 Co = 0.80

average average percentage average percentage average percentage

T = 6 0.219 0.166 -23.9% 0.164 -25.1% 0.163 -25.7%

T = 9 0.145 0.143 -1.4% 0.143 -0.80% 0.144 -0.18%

T = 12 0.135 0.131 -2.7% 0.134 -1.2% 0.134 -0.88%
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4.2 Validation of the algorithm on warranty claims of an electronic manu-
facturer

The warranty claim data used in this paper are provided by an electronics
manufacturer. Its name will not be disclosed here for the confidentiality reason.
The products are internet networking equipment. The original dataset includes
three variables: monthly sales amounts, monthly warranty claims, and months
in service (MIS).

We present a figure, see Figure 1, showing the warranty claim rates of the 9
products (or M = 9). The warranty claims data have the following properties:

• The warranty claims are aggregated on a monthly basis.
• The warranty policy of the products is a long-term warranty policy. It ex-

pires after the technological obsolescence is announced.
• The products are repairable. Once a claim is received, the manufacturer

will immediately send out an identical product with the same age to the
customer. The received (or claimed) product will be tested and/or repaired.

In order to use the NHPP model, we further assume that the repair is minimal
repair.

Figure 2 shows the bounds derived in Phase I, after the first five steps in the
algorithm shown in Table 3 are conducted.

Table 8 shows the NRMSE values derived from the maximum likelihood
method, (i.e., with the Eq. (3)).

Table 8
Prediction NRMSE estimated using constrained maximum likelihood method on
the case study dataset as an average over 9 tests.

K = 3 K = 6 K = 9 K = 12 K = 15 K = 18 K = 21 K = 24

T = 6 0.477 0.728 0.790 0.907 0.946 1.011 1.073 1.126

T = 9 0.917 0.885 1.052 1.036 1.113 1.185 1.251 1.171

T = 12 0.637 0.774 0.760 0.816 0.867 0.922 0.865 0.884

Table 9 shows the NRMSE values derived from the constrained maximum
likelihood method, (i.e., with the Eq. (4)).

We have used the t-test (using paired two sample for means in Microsoft
Excel c©) to compare the NRMSE values with the same combination (T,K)
(for example, T=6 and K=9) in Table 8 and Table 9, and found the assump-
tion that the NRMSE values shown in Table 5 are larger than those in Table
6 is statistically significant with a level of significance: 0.05.

To further investigate the performance of the models, we create another table,
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Table 9
Prediction NRMSE estimated using constrained maximum likelihood on the case
study dataset as an average over 9 tests.

K = 3 K = 6 K = 9 K = 12 K = 15 K = 18 K = 21 K = 24

Co = 0.60

T = 6 0.356 0.510 0.537 0.615 0.625 0.665 0.705 0.741

T = 9 0.776 0.715 0.849 0.822 0.877 0.932 0.981 0.888

T = 12 0.451 0.606 0.599 0.637 0.677 0.719 0.652 0.669

Co = 0.70

T = 6 0.356 0.510 0.537 0.615 0.625 0.665 0.705 0.741

T = 9 0.818 0.757 0.904 0.882 0.946 1.004 1.058 0.971

T = 12 0.458 0.628 0.628 0.674 0.715 0.760 0.695 0.714

Co = 0.80

T = 6 0.329 0.520 0.569 0.657 0.676 0.723 0.768 0.809

T = 9 0.863 0.762 0.907 0.878 0.937 0.993 1.043 0.951

T = 12 0.632 0.769 0.757 0.813 0.863 0.918 0.860 0.880

Table 10, to compare the averages of NRMSE values under each combina-
tion (T,K) based in Table 8 and Table 9. The percentage columns represent
the difference between the NRMSE averages obtained using the constrained
maximum likelihood estimation and the NRMSE averages obtained using the
maximum likelihood estimation, respectively. The negative values show that
the proposed algorithm, i.e., the NHPP with constrained maximum likelihood
estimation, outperforms the commonly used NHPP.

Table 10
Comparing the average NRMSE values over K’s, based on Table 8 and Table 9.

ML
CML

Co = 0.60 Co = 0.70 Co = 0.80

average average percentage average percentage average percentage

T = 6 0.882 0.594 -32.66% 0.594 -32.66% 0.631 -28.44%

T = 9 1.076 0.855 -20.56% 0.918 -14.75% 0.917 -14.81%

T = 12 0.815 0.626 -23.22% 0.659 -19.18% 0.812 -0.46%

5 Conclusions

This paper developed an algorithm for forecasting warranty claims for recently
launched products, i.e., target products. We develop a constrained maximum
likelihood estimation, where the objective function is the likelihood function
based on warranty claims observed from the target products and the con-
straints are the claim rates estimated from the reference products.

The data experiments show that the proposed algorithm outperforms the com-
monly used approach, especially for the case when the history of the warranty
claims of the target products is short.
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Fig. 1. Warranty claim rates of the 9 products in the case study.

Fig. 2. Estimated warranty claim rates and the bounds for one of the products in
the case study.
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