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Abstract5

Forecasting warranty claims is vitally important for manufacturers in preparing their6

fiscal plans as well as in managing their inventory. One of the widely used forecasting7

models is the non-homogeneous Poisson process (NHPP), which assumes that the8

mean and the variance of the numbers of warranty claims at any given time interval9

are equal. However, this is not always the case. Warranty claim data often exhibit10

a phenomenon known as over-dispersion, which implies that the variance to mean11

ratio is larger than one. Furthermore, this ratio might change over time and can have12

a trend or a clearly discernible functional form, which has not yet been considered13

in the existing literature on warranty claims forecasting.14

This paper presents a warranty claim forecasting approach that tackles the prob-15

lem of the dynamic over-dispersion exhibited in warranty claims data. It considers16

the application of both mixed NHPP and Cox process models to warranty claims17

and assumes that the intensity of the mixed NHPP follows a gamma distribution18

and the intensity of the Cox process follows a gamma process. Warranty claim data19

collected from an electronics product manufacturer are used validate the models,20

which show that these models outperform conventional NHPP models.21

Key words: Warranty data, Poisson process, Cox process, mixed Poisson process,22

warranty forecasting, warranty prediction23

1 Introduction24

Product warranty has become a ubiquitous feature of product sales and serves25

many different purposes (see Murthy and Djamaludin (2002); Wu (2011), for26

∗ Suggested citation: Akbarov, A., Wu, S. Forecasting warranty claims considering
dynamic over-dispersion (2012) International Journal of Production Economics, 139
(2), pp. 615-622.
Corresponding author: s.m.wu@kent.ac.uk



example). Accurately forecasting the number of warranty claims can help man-27

ufacturers/warranty suppliers in preparing their fiscal plans and stocking their28

inventories. Starting with Kalbfleisch et al. (1991), research on forecasting war-29

ranty claims has received considerable attention (see Stephens and Crowder30

(2004); Majeske (2007); Fredette and Lawless (2007); Wu and Akbarov (2011),31

for example).32

Warranty data can often be represented as a contingency table shown in Table33

2. Count data in such a table is commonly modelled with Poisson processes34

(Bishop et al., 1975; Lawless and Kalbfleisch, 1992; Wang et al., 2002).35

A stochastic process might exhibit a phenomenon called over-dispersion, which36

has the variance to mean ratio of the process at any time interval larger than37

1. Modelling a stochastic process exhibiting the over-dispersion phenomenon38

has been addressed by previous studies such as Kalbfleisch et al. (1991), Fre-39

dette and Lawless (2007), and Kalbfleisch and Lawless (1996). However, the40

dynamic nature of the over-dispersion phenomenon in warranty claims data41

has received little attention. In the existing literature, when dealing with the42

over-dispersion, authors normally assume a stochastic process with a constant43

variance. However, this might not be true in reality. In this paper, we consider44

a measure of the over-dispersion, which changes with time. In particular, we45

consider a mixed Poisson process where the variance of the mixing distribu-46

tion changes with time, and a Cox process model where the parameters of the47

mixing distribution for each time period are different.48

Some previous studies use non-parametric modelling techniques to predict49

warranty claims. Wasserman and Sudjianto (1996) use the multi-layer per-50

ceptron (MLP) neural network to build warranty forecasting models. Rai and51

Singh (2005) use the radial basis function (RBF) neural network to forecast52

warranty claims. Hrycej et al. (2007) also use a MLP neural network to forecast53

warranty cost based on individual vehicle variables (i.e. age, monthly mileage54

rate, and road condition index) and the overall manufacturing quality fluctua-55

tion risk (i.e. different technical groups). Wu and Akbarov (2011) use support56

vector regression to build time series models and regression models to predict57

warranty claims and conclude that these models outperform MLP and RBF58

neural networks. It is known that, when the form of the failure rate is known,59

that is, the underlying failure generating process is known, the parametric60

methods can outperform the non-parametric methods. We will consider such61

a comparison in our future work.62

In this study, we focus only on Poisson processes, which are often used as fore-63

casting tools in applications such as forecasting demand for inventory control64

of spare parts (Kennedy et al., 2002; Lindsey and Pavur, 2009; Syntetos et al.,65

2010) and forecasting insurance claims (Fahrmeir and Echavarria, 2006). More66

specifically, we focus on the non-homogeneous Poisson process (NHPP) and67
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its extensions. The NHPP models are widely used in reliability and warranty68

claim data analysis (see Kalbfleisch et al. (1991); Lawless (1998); Majeske69

(2007); Fredette and Lawless (2007); Yun et al. (2008), for example).70

The remainder of this paper is structured as follows. Section 2 discusses the71

over-dispersion phenomenon in warranty claims data and presents a brief re-72

view of literature concerned with modelling warranty data considering this73

phenomenon. Section 3 presents models that can deal with over-dispersion,74

namely, mixed non-homogeneous Poisson process and Cox process models.75

Section 4 presents case studies based on warranty claims data collected from76

an electronics manufacturer. Section 5 discusses the strengths and weaknesses77

of the models presented in Section 3. Section 6 draws conclusions from this78

study.79

Table 1
Notation

t months since the date of manufacture.

di,t number of warranty claims in month t from production batch of month i.

dt =
∑

i di,t, number of warranty claims in month t summed over all i.

si number of products shipped in month i.

S =
∑n

i si, total number of products shipped out.

h(x) intensity function of the Poisson process.

Mt random variable, which is the number of warranty claims in month t.

2 Problem statement and prior work80

The warranty data used for the case study in this paper are collected from81

a leading electronics manufacturer and consist of two parts, see Table 2. The82

first part is monthly records of warranty claims matched to the product’s date83

of manufacture, and the second is the number of monthly shipments. Table 284

shows the format of the available data. In this study we assume that the num-85

ber of monthly shipments adequately represents the number of manufactured86

products in corresponding months.87

2.1 Problem statement88

The non-homogenous Poisson process (NHPP) assumes that the mean and89

the variance of a stochastic process at a given time interval are equal. That90

is, the variance to mean ratio is 1. However, in some cases, count data such as91
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Table 2
Warranty data: si shipments in month i, S total shipments, di,t warranty claims in
month t for products produced in month i, and dt total claims in month t.

Manufacture Shipment Months since the date of manufacture

date amount 1 2 . . . n-1 n

1 s1 d1,1 d1,2 . . . d1,n−1 d1,n

2 s2 d2,1 d2,2 . . . d2,n−1 d2,n

...
...

...
...

...
...

...

n sn dn,1 dn,2 . . . dn,n−1 dn,n

Total S d1 d2 . . . dn−1 dn

insurance data and warranty data might exhibit over-dispersion (Kalbfleisch92

et al., 1991), where the variance to mean ratio is larger than 1.93

Warranty data, as shown in Table 2, include monthly warranty claims, di,t, and94

monthly shipments, si. The over-dispersion phenomenon can be detected using95

Pearson residuals. If there is no over-dispersion, Pearson residuals distribute96

according to a normal distribution with variance 1 (Kalbfleisch et al., 1991;97

Bishop et al., 1975). The Pearson residuals are ri,t = (di,t − d̂i,t)2/d̂i,t, where98

d̂i,t can be estimated in two different ways. The first is to use warranty claim99

data only, that is d̂i,t = (
∑
i di,t

∑
t di,t)/

∑
i

∑
t di,t, see Bishop et al. (1975). This100

method is referred to as non-parametric method. The second is to use warranty101

claim data along with the shipment data, that is d̂i,t = si(
∑
i di,t/

∑
i si). This102

method is referred to as parametric method. The non-parametric method is103

used to estimate the mean of a Poisson distribution when the sample sizes104

are not known, that is, monthly manufactured amounts are not known. Since,105

monthly shipments only roughly represent the manufactured amounts in a106

month and we use both methods to estimate the Pearson residuals.107

Figure 1 shows the variance of the Pearson residuals for one of the products108

(Product 1) using both the non-parametric and parametric methods. It is clear109

from the figure that the variances of the Pearson residuals are larger than 1. It110

can also be noted that the variances estimated with the parametric method are111

much larger than the variances estimated with the non-parametric method.112

This is due to the fact that shipment amounts do not accurately represent113

manufactured amounts, and thus introduce additional variation into the data.114

Similar results were obtained for other products.115

Figure 2 shows the variance to mean ratio for Product 2. It is clear from the116

figure that the variance is larger than the mean at any given month t.117

Figure 3 is the Q-Q plot for the Pearson residuals estimated with the non-118

parametric method for Product 1 at time t = 5. It is clear from the figure that119
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Fig. 1. Variances of Pearson residuals for Product 1.

Fig. 2. Variance to mean ratio for Product 2.

the residuals are not normally distributed. Similar results were obtained for120

other products at different time periods.121

2.2 Prior work122

This section gives a brief literature review on the use of Poisson processes for123

modelling warranty data. It also includes the review of methods for tackling124
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Fig. 3. Q-Q plot of Pearson residuals for Product 1 at time t = 5.

the issue of over-dispersion exhibited in warranty data.125

Kalbfleisch et al. (1991) use the Poisson model to analyse automobile warranty126

data with reporting delays, where the reporting delay is the time from a prod-127

uct failure to the time when the failure claim is entered into a database. Hence,128

the observed data represents the time from the date of sale until the date of a129

failure plus the reporting delay. The authors recognise that the repair rates of130

individual cars will vary, however, the repair counts obtained by considering a131

large fleet of cars are expected to be close to Poisson counts when the repair132

rates are small. The authors also consider the presence of over-dispersion in133

the data and tackle the issue by introducing an unobservable random variable134

αi, which is associated with each automobile unit i. The αis are assumed to be135

independent and identically distributed with E(αi) = 1 and Var(αi) = σ2. So136

that, the ith unit is assumed to generate claims according to a Poisson model137

with expected claims at a given age ta, αiλ(ta). σ
2 is constant for all units. The138

extra variation in the data is thought to have risen due to the heterogeneity139

of automobile units.140

Kalbfleisch and Lawless (1996) also consider a NHPP that allows for over-141

dispersion. The over-dispersion is handled by assuming that the number of142

claims at age ta for cars sold at time ts, n(ts, ta) is a random variable with143

mean µ(ts, ta) = N(ts)λ(ta) and variance Var(n(ts, ta)) = σ2µ(ts, ta). When144

σ2 = 1, the model is a Poisson model, and when σ2 > 1, the model allows145

for extra variation. σ2 is estimated as the variance of the whole data set;146

thus, it is constant for all ta. The authors also state that over-dispersion arises147

from several sources, including inherent variation in the robustness of units,148

variations in usage environment, and non-Poisson claim patterns for individual149
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units. Lawless (1998) considers similar models as in Kalbfleisch et al. (1991)150

and Kalbfleisch and Lawless (1996) on a product unit level.151

Fredette and Lawless (2007) propose a mixed NHPP model for dealing with152

over-dispersion caused by heterogeneity of products. The expected number153

of warranty claims for each product (or equivalently for a single process) is154

assumed to be given by λ(t) = αf(t), where λ(t) is the intensity function of155

the NHPP, α represents the overall frequency of failures, and f(t) describes156

the shape of the intensity function. For a collection of products, the expected157

number of failures at time t can be expressed as αif(t), where αis are inde-158

pendently and identically distributed random variables with the same gamma159

distribution parametrised so that E(αi) = a/b and Var(αi) = a/b2.160

Lawless et al. (2009) consider a mixed Poisson process model for repeated161

events based on age and usage scales. They accommodate heterogeneity with162

random effects Zi for each ith unit, where each Zi is independently and iden-163

tically distributed (iid) according to the same probability distribution G(·).164

They consider an intensity function conditioned on Zi given by λ(t|Zi) =165

Zβ
i λ0(tZβ; γ). They deal with over-dispersion, which is thought to be due to166

heterogeneity of users and the usage environment, by introducing a new iid167

random variable vi with mean 1 and variance φ so that λ(t|Zi) = viZ
β
i λ0(tZβ; γ),168

leading to a mixed Poisson process model.169

Lawless and Crowder (2010) also deal with over-dispersion by introducing a170

random variable Zi for each unit i, with mean 1 and variance φ, with the same171

gamma distribution for all i, Ga(φ, φ−1).172

Some authors use the Poisson model to estimate warranty claims but they173

do not consider the phenomenon of over-dispersion. For example, Karim et al.174

(2001) consider the application of NHPP to analyse automobile warranty data.175

They estimate the probability of failure of a unit at an age using the marginal176

counts data. Wang et al. (2002) estimate warranty claims based on claims given177

in terms of time to failure from the date of sale with no monthly sales infor-178

mation but with the number of total sales. Majeske (2007) proposes an NHPP179

model with a parametric component— time to first failure, for analysing au-180

tomobile warranty data. He considers three subsystems for luxury cars with181

intensity rates of Weibull-Uniform, power law and linear hazard functions.182

From the above literature, one can find that the over-dispersion in the warranty183

claims data can arise mainly due to the following two reasons. The first is the184

heterogeneity of products, or in other words, the differences in the intrinsic185

reliability of individual products. And the second is the heterogeneity of users186

as products used by different users can have different usage intensity and187

operating environments.188

Although the phenomenon of the over-dispersion in warranty claims data has189
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been addressed previously, its dynamic nature seems to have received little at-190

tention. In the present paper, we consider stochastic processes derived from the191

non-homogeneous Poisson process that can deal with dynamic over-dispersion.192

3 Modelling warranty data193

Consider a discrete-time Poisson process denoted as {Nt, t = 1, 2, ...} with194

N0 = 0. Let Mt = Nt − Nt−1 (t = 1, 2, ...) represent the increments of the195

process at consecutive time periods of unit one, a month in this case. For a196

non-homogenous Poisson process, each Mt follows a Poisson distribution with197

mean µt, Mt ∼ Poi(µt).198

The over-dispersion exhibited in the data can be handled by assuming µt for199

each t to be a random variable. The resulting marginal expected value and200

the variance of Mt are given by:201

E(Mt) = E(µt) and Var(Mt) = E(µt) + Var(µt) (1)202

The variance of Mt is larger than its mean as long as Var(µt) > 0. When203

Var(µt) = 0 for all t, we have a conventional non-homogeneous Poisson process.204

3.1 The non-homogeneous Poisson process205

One of the most popular stochastic processes in reliability analysis is the non-206

homogeneous Poisson process (NHPP). It is often used to model the lifetime207

of products that are subject to minimal repair. A minimal repair assumes208

that the hazard rate of a failed item is restored to what it was just before the209

failure.210

The increments of the NHPP are independent from each other. Let the inten-211

sity function of the NHPP be µt = S
∫ t
t−1 h(x)dx, where S is the total number212

of products shipped out. The probability of observing n claims in any given213

month is given by:214

P (Mt = n) =
µnt e

−µt

n!
. (2)215

The mean of the NHPP is variable with time as opposed to a constant mean216

of the homogenous Poisson process. The expected value and the variance of217

Mt are equal, E(Mt) = Var(Mt) = µt, that is, the variance to mean ratio is 1218

for any given t.219

8



3.2 The mixed non-homogeneous Poisson process220

The mixed non-homogeneous Poisson processes (MNHPP) are often used to221

model the heterogeneity of the intrinsic reliability of the products and the222

heterogeneity of users.223

The increments of the mixed Poisson process are not independent. Let the224

intensity function of the MNHPP be µt = αS
∫ t
t−1 h(x)dx, where α ∼ Ga(a, b)225

with E(α) = a/b and Var(α) = a/b2. The choice of the gamma distribution226

is justified by its flexibility and the resulting mathematical tractability. Then,227

the probability of observing n claims in any given month is given by (see228

Appendix A for derivation):229

P (Mt = n) =
Γ(a+

∑t−1
i=1 di + n)

n!Γ(a+
∑t−1
i=1 di)

×
(b+ S

∫ t−1
0 h(x)dx)a+

∑t−1

i=1
di(S

∫ t
t−1 h(x)dx)n

(b+ S
∫ t−1
0 h(x)dx+ S

∫ t
t−1 h(x)dx)a+n+

∑t−1

i=1
di

(3)

The expected value of Mt is given by230

E(Mt) =
a+

∑t−1
i=1 di

b+ S
∫ t−1

0 h(x)dx
S

t∫
t−1

h(x)dx, (4)231

which can be derived based on µt = αS
∫ t
t−1 h(x)dx as given above and the232

law of total expectation. And the variance is given by233

Var(Mt) =
a+

∑t−1
i=1 di

b+ S
∫ t−1

0 h(x)dx
S

t∫
t−1

h(x)dx

+
a+

∑t−1
i=1 di

(b+ S
∫ t−1

0 h(x)dx)2
(S

t∫
t−1

h(x)dx)2, (5)

which can be derived using Eq. (4) and the law of total variance.234

We can therefore obtain the variance to mean ratio, which is given by235

Var(Mt)

E(Mt)
= 1 +

S
∫ t
t−1 h(x)dx

b+ S
∫ t−1
0 h(x)dx

. (6)236

It is clear that the variance to mean ratio is larger than 1 for b > 0 and237
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∫ t
t−1 h(x)dx > 0 for all t. Furthermore, this ratio is dynamic in time, and238

depends on h(t).239

3.3 The Cox process240

The warranty claims of electronic products might be affected by external fac-241

tors besides the intrinsic reliability of the products. For example, Wu (2011)242

finds that warranty claims are often related to the human behaviour such as243

product failures that are not reported as warranty claims (FBNR — failed244

but nor reported) and claims that might not be due to by product failure245

(RBNF — reported but not failed). Also, rapid technological developments246

in the electronics industry can lead to early obsolescence. Thus, in the later247

stages of the product life, product failures may not be reported. The over-248

dispersion can also be due to the heterogeneity of products and users. Since249

the usage intensity patterns can vary over time, it is reasonable to assume250

that the variance resulting from such heterogeneity be variable with time.251

The increments of the Cox process are independent from each other. Let µt =252

αtS
∫ t
t−1 h(x)dx, where αt ∼ Ga(at, bt) with E(α) = at/bt and Var(α) = at/b

2
t ,253

then the probability of observing n claims in interval (t− 1, t] is given by:254

P (Mt = n) =
Γ(at + n)

n!Γ(at)

batt (S
∫ t
t−1 h(x)dx)n

(bt + S
∫ t
t−1 h(x)dx)at+n

(7)255

The expected value of Mt is given by256

E(Mt) =
at
bt
S

t∫
t−1

h(x)dx, (8)257

and the variance is given by258

Var(Mt) =
at
bt
S

t∫
t−1

h(x)dx+
at
b2
t

(S

t∫
t−1

h(x)dx)2. (9)259

The variance to mean ratio is given by260

Var(Mt)

E(Mt)
= 1 +

S
∫ t
t−1 h(x)dx

bt
. (10)261

It is clear that this ratio is dynamic and depends on both bt and h(x).262
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4 Prediction and prediction intervals263

At a given time T , the aim of a warranty forecasting project is to forecast the264

number of warranty claims in the next K months. Let DK denote the random265

variable which represents the number of warranty claims in the time interval266

(T, T +K]. Predictions can be obtained based on the expected values of DK ,267

E(DK). The prediction intervals can be estimated by inverting the cdf (cumu-268

lative distribution function) of DK , FDK (x), at given set of cumulative prob-269

abilities. For example, 90% prediction intervals can span from the lower limit270

given by LDK = F−1
DK

(0.05) and the upper limit given by UDK = F−1
DK

(0.95).271

The distribution of DK is estimated based on the available data. Therefore,272

the uncertainty of DK should also reflect the uncertainty of the parameter273

estimates. However, when the available data is large enough, we can assume274

that the uncertainty of the parameter estimates is negligible. In this paper,275

we assume that the uncertainty of the parameter estimates is negligible and276

that the estimated parameters are the ”true” parameters.277

In the case of NHPP, DK is distributed according to a Poisson distribution278

with mean S
∫ T+K
T h(x)dx. Therefore, the expected value of DK is E(DK) =279

S
∫ T+K
T h(x)dx. The 90% prediction interval can be determined by obtaining280

5th and 95th percentiles of the Poisson distribution.281

In the case of mixed NHPP, DK is distributed according to a negative bino-282

mial distribution, which can be thought of as a gamma mixture of Poisson283

distributions. Its expected value is given by284

E(DK) =
a+

∑T
i=t di

b+ S
∫ T

0 h(x)dx
S

T+K∫
T

h(x)dx. (11)285

Prediction intervals can be estimated by obtaining the appropriate percentiles286

of the cdf, and its corresponding pdf (probability density function) is given by287

Eq. (17). This can be done by evaluating the cdf using Monte Carlo simulation.288

That is, FDK (NT+K − NT = n) =
∑n
x=0

∫∞
0 P (x|µ)gµ(µ)dµ can be evaluated289

by generating random numbers from gµ(·), where P (x|µ) is the distribution290

function of the Poisson distribution, and gµ(µ) is the pdf of the gamma dis-291

tribution.292

In the case of the Cox process, the distribution of DK is the convolution of293

several random variables. Its expected value is the sum of expected values of294
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the compounding variables and given by:295

E(DK) = S
T+K∑
t=T

at
bt

t∫
t−1

h(x)dx. (12)296

That is, E(DK) =
∑T+K
i=T E(Mt). Since, E(Mt) is a gamma random variable for297

all t, E(DK) is the sum of independent gamma random variables. The ana-298

lytical form of the pdf of the sum of independent gamma random variables is299

given in (Sim, 1992). As the case with the mixed Poisson process, the quantiles300

of the FDK (·) can be found using Monte Carlo simulation.301

5 Case studies302

We consider five products from the same manufacturer. These products are303

electronics products with lifetime warranties. Upon a failure, the product is304

repaired (as a minimal repair), and then returned to the customer. The war-305

ranty claims have been aggregated on a monthly basis. We use data of the306

first 24 months for model-fitting. This choice is common, especially in the307

electronics industry, where companies are interested in being able to predict308

warranty claims after the first 2 years since the product launch. For comparing309

the prediction accuracy, we use data of the next 12 months.310

We compare the forecasting performance of the following models:311

• Non-homogeneous Poisson process (NHPP).312

• Mixed non-homogeneous Poisson process (MPP) with E(α) = 1.313

• Cox process (CP) with E(αt) = 1 for all t, and Var(αt) = 1/ct, where314

ct = at = bt. For the models considered here we assume that ct = γt. The315

main reason for this is that we expect the variance of αt to decrease with316

time, which leads to decreasing over-dispersion over time, as observed in the317

warranty claim dataset we have.318

For products considered in this study, the claim rate increases in the first319

several months and then starts to drop off. As a result we have a unimodal320

curve for the claim rates. Such a curve can be modelled by several different321

functions including some probability density functions. However, after some322

tests on curve fitting, we have selected the model that has the hazard rate323

function of the inverse-Weibull distribution. This function is flexible and can324

readily be interpreted in the context of product failures.325

For all of the above models, the h(x) is chosen to be the hazard rate function326
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Fig. 4. Claim rates of the five electronics products

of the inverse Weibull distribution and given by:327

h(t) = γβγt−(γ+1)e−(β
t

)γ (1− e−(β
t

)γ )−1. (13)328

The claim rates for the products considered in this paper are shown in Figure329

4. Thus, the NHPP model has two parameters, whereas the MPP and CP330

models have three parameters, respectively.331

The log-likelihood functions for the above models are the logarithm of the332

corresponding likelihood functions given by L =
∏T
t=1 P (Mt = dt).333

The model performance is assessed with both the log-likelihood value and the334

commonly used Akaike information criterion (AIC). The prediction accuracy335

is measured in terms of normalised rooted mean squared error (NRMSE).336

NRMSE =

√√√√(D∗K − E(DK))2

D∗2K
, (14)337

where D∗K is the observed number of claims in interval (T, T +K].338
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5.1 Results of model fitting339

Table 3 shows the estimated log-likelihood and the AIC for all of the five340

products modelled with NHPP, the mixed Poisson process (MPP) and the341

Cox process (CP). It can be seen that for the first three products the CP fits342

the data best as it has the smallest AIC. For the last two products, MPP has343

the smallest AIC. As it can be expected, NHPP does not fit the data so well344

as the models that take into account the dynamic over-dispersion.345

Table 3
Log-likelihood and Akaike information criterion (AIC) estimated using non-
homogeneous Poisson process (NHPP), mixed non-homogeneous Poisson process
(MPP), and Cox process (CP). AIC∗ indicates the smallest AIC.

Product
NHPP MPP CP

lnL AIC lnL AIC lnL AIC

1 143671.20 -287338.40 143721.04 -287436.07 143870.97 -287735.95*

2 10874.60 -21745.19 10891.93 -21777.85 10893.66 -21781.32*

3 64655.71 -129307.42 64928.56 -129851.12 64949.58 -129893.17*

4 2754.49 -5504.98 2773.45 -5540.91* 2772.57 -5539.14

5 27471.77 -54939.55 27671.23 -55336.46* 27665.66 -55325.31

5.2 Results of prediction346

Table 4 shows the measures of the prediction accuracy using NRMSE for347

K = 12. It can be seen from the table that on average the CP model has348

the lowest NRMSE. Both the MPP and CP models perform better than the349

NHPP model for all products.350

Table 4
Normalised rooted mean squared error (NRMSE).

Product NHPP MPP CP

1 0.210 0.370 0.149

2 0.609 0.302 0.461

3 0.284 0.092 0.066

4 0.336 0.069 0.188

5 0.265 0.158 0.006

Average 0.341 0.198 0.174
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6 Discussion351

Warranty claims data can often be affected by factors that are not related352

to the intrinsic reliability of the products. This can be due to customer be-353

haviours towards warranty claims, levels of expertise of technicians that deal354

with warranty claims, or market and environmental conditions. Also, product355

reliability itself can vary across production batches if small changes are incor-356

porated into product design. All of these factors coming together can result in357

over-dispersion in warranty claims data. In this paper, we have considered the358

warranty claim forecasting problem for warranty data of electronics products359

that exhibit over-dispersion. These warranty claim data have shown that the360

over-dispersion is dynamic and changes over time. Some products can clearly361

exhibit a trend in the over-dispersion, which can be detected by estimating the362

variance to mean ratio over different time periods. We have presented models363

that tackle the dynamic over-dispersion. These models, in general, fit the data364

better than the conventional non-homogeneous Poisson process models and365

can result in better prediction results.366

The Cox process models offer a certain degree of flexibility in modelling the367

dynamic over-dispersion as both the shape and the scale parameters (at and368

bt) of the mixing distribution are time dependant. More research needs to be369

done to investigate different formulations of these parameters and αt.370

It is also possible to let the over-dispersion itself be a random variable, for371

example, by assuming the variance of α or αt be a random variable. This,372

however, requires more computational effort as the probability distributions373

involved become intractable.374

7 Conclusions and future work375

We can draw the following conclusions from this study.376

• Over-dispersion in warranty data can often have a dynamic nature with a377

possible trend.378

• The over-dispersed data can be modelled with both mixed Poisson processes379

and Cox processes. The Cox processes offer more flexibility and allow to set380

a certain functional structure on the dynamic over-dispersion.381

• The case study shows that models specifically tailored for dealing with over-382

dispersion fit the data better and have better prediction accuracy than the383

models based on NHPP.384
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In our future studies we will consider the forecasting performance of Pois-385

son processes against non-parametric methods such as neural networks and386

support vector regression.387

As a further avenue of investigation for formulating the warranty forecasting388

problem as univariate time series resulting from a count distribution that dis-389

plays conditional heteroscedasticity (i.e. the dynamic over-dispersion pattern)390

in the residual pattern. There has been some work in this respect. For example,391

Cameron and Trivedi (1998) provide a treatment of INARMA(integer-valued392

autoregressive moving average) processes that can be extended to include a393

GARCH (autoregressive conditional heteroscedasticity) error structure. To ac-394

count for the ‘vintages’ provided by the production batches they extend this395

framework to multivariate series. Zhu (2011) adapts the integer-valued time-396

scale model to account for over-dispersion and volatility. We would like to397

investigate these modelling techniques in our future work.398
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Appendix A472

Consider a Poisson process with µ(t) = αH(t), where α ∼ Ga(a, b) such that473

E(α) = a/b and H(t)(= S
∫ t
t−1 h(x)dx) is the expected number of events in the474

interval [0, t]. The probability of observing n number of events in the interval475

[0, t] is given by:476

P (N(t) = n) =

∞∫
0

(αH(t))ne−αH(t)

n!

ba

Γ(a)
αa−1e−bαdα

=
Γ(n+ a)

n!Γ(a)

baH(t)n

(b+H(t))a+n
(15)

Using the Bayes’ theorem we can derive the probability of observing n events477

in (t, t+ ∆t] given N(t) = N . g(α|N(t) = N) is proportional to:478

g(α|N(t) = N)∝ (αH(t))Ne−αH(t)

N !

ba

Γ(a)
αa−1e−bα

=
H(t)Nba

N !Γ(a)
αa+N−1e−α(b+H(t))

∝ (b+H(t))(a+N)

Γ(a+N)
α(a+N−1)e−(b+H(t))α (16)

which is a gamma distribution, Ga(a + N, b + H(t)), with E = (a + N)/(b +479

H(t)).480

Thus, the probability of observing n claims in (t, t+ ∆t] is given by481

P (N (t+ ∆t)−N(t) = n|N(t) = N)

=

∞∫
0

(α(H(t+ ∆t)−H(t)))ne−α(H(t+∆t)−H(t))

n!
g(α|N(t) = N)
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=
Γ(a+N + n)

n!Γ(a+N)

(b+H(t))a+N(H(t+ ∆t)−H(t))n

(b+H(t+ ∆t))a+N+n
(17)

Since the available data are recorded on a monthly basis, we have ∆t = 1. Let482

Mt = N(t)−N(t− 1), for t = 1, 2..., and h(x) be the intensity function. The483

expected number of events in interval [0, t] is given by S
∫ t

0 h(x)dx, thus:484

P (Mt = n) =
Γ(a+

∑t−1
i=1 di + n)

n!Γ(a+
∑t−1
i=1 di)

×

×
(b+ S

∫ t−1
0 h(x)dx)a+

∑t−1

i=1
dt(S

∫ t
t−1 h(x)dx)n

(b+ S
∫ t−1

0 h(x)dx+ S
∫ t
t−1 h(x)dx)a+

∑t−1

i=1
di+n

(18)
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