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Abstract. The Internet-of-Things (IoT) aims at integrating small de-
vices around humans. The threat from human insiders in “regular” or-
ganisations is real; in a fully-connected world of the IoT, organisations
face a substantially more severe security challenge due to unexpected ac-
cess possibilities and information flow. In this paper, we seek to illustrate
and classify insider threats in relation to the IoT (by ‘smart insiders’),
exhibiting attack vectors for their characterisation. To model the attacks
we apply a method of formal modelling of Insider Threats in the interac-
tive theorem prover Isabelle. On the classified IoT attack examples, we
show how this logical approach can be used to make the models more
precise and to analyse the previously identified Insider IoT attacks using
Isabelle attack trees.

1 Introduction

Insider threats are notoriously difficult to prevent since the usual method of
introducing a security perimeter and identifying actor’s capabilities are useless:
any actor possibly having privileges and access can turn into an attacker and
hit organisations where it hurts most. The Internet-of-Things (IoT) denotes the
combination of physical objects with a virtual representation in the Internet. It
consists not only of humans but a variety of “Things” as well. From a security and
privacy perspective, at this point the IoT could be perceived as a hopeless case
since all prevention aspects of security (confidentiality, integrity, and availability)
are inherently weak, and unwanted tracking and monitoring throws the doors
wide open to privacy attacks.

The combination of IoT and insider threat thus represents a highly risky area
in terms of security, privacy, and trust. This problem has been highlighted and
discussed in detail in some of our recent work on the ‘smart insider’ [16]. The
aim of this paper is to extend that work and propose a set of rigorous modelling
techniques in order to provide a better understanding of IoT-facilitated insider-
threat scenarios and related architectures; this would also cover related analysis
methods to verify security properties of a given model and its policies. The IoT
aims at integrating small devices around humans. A corresponding paradigm
corresponding to the IoT might be entitled “human centric computing”. Research
work on insider threat on the other side has revealed that the consideration of
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the human aspect is crucial to arrive at useful security models. Frameworks for
insider threats [15] take human aspects in consideration to provide models for a
characterisation of the tipping point when an insider turns into a threat. Logical
modeling and analysis techniques use such taxonomies and a three-step process
of social explanation [13] to provide machine supported verification techniques
of infrastructure models and their policies.

In this paper, we start by reflecting on existing research into insider threat
and then consider work on attack vector models for the IoT case [16] (Section 2).
We use a framework for modelling of Insider threats in logic with the interac-
tive proof assistant Isabelle [13] to formalize the IoT scenarios and express these
attack vectors enabling the machine supported proof of security properties (Sec-
tion 3). The formalisation of attack vectors provides a formal underpinning that
enables a stepwise refinement into given IoT insider scenarios. We demonstrate
this on a real IoT insider attack case. Finally, we conclude the paper and present
avenues for future work (Section 4).

2 Reflecting on the IoT Insider Threat Challenge

The threat that insiders pose to organisations is well-known and has been docu-
mented in industry, academic and the media. In a recent survey, globally 89% of
respondents felt that their organisation was now more at risk than before to an
insider attack [22]. The key challenge with insiders is that they have an elevated
level of access in order to do their jobs, but such access could easily be abused to
exploit or harm their employer. In literature, three main types of insider threat
are commonly acknowledged. These include insider fraud (i.e., abusing one’s
privileges in the company for personal gain), sabotage (i.e., destruction of prop-
erty) and Intellectual Property (IP) theft (i.e., stealing commercially sensitive
enterprise data) [3]. Insiders can also be considered from the context of their
attack, that is, whether it is intentional or accidental. There has been significant
research on the former topic in the past, but work on accidental insiders is slowly
gaining traction.

As the emphasis on the insider threat has grown, so too have the approaches
to prevent and detect it. There have been proposals outlining models and frame-
works for understanding and reasoning about insider threat [8,15]. Other research
has focused on prevention and prediction to allow more proactive responses to
the problem [6,7]. Moreover, many systems have been put forward specifically
to detect behaviour of threatening insiders [1,4]. Commonly, such systems aim
at areas such as monitoring activity on corporate networks (e.g., emails, file
accesses), analysing online activity data, and incorporating psychological infor-
mation.

Possibly one of the most significant challenges with insider threats is the va-
riety of ways in which they can attack their employers. For instance, sensitive
IP can be exfiltrated via printing, email, FTP, remote access, or pen drives. Sys-
tems can be sabotaged using several physical or electronic means (e.g., deletion,
malware) by insiders. Also, insiders could engage in various fraudulent activities
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at the expense of their employers. To add to this challenge, we are quickly pro-
gressing towards a society where every day objects (e.g., phones, watches, cars)
are connected in the Internet-of-Things.

While the IoT has been discussed for over a decade, only now are we starting
to witness substantial progress towards technology standardisation, along with a
variety of different connected products reaching businesses and homes. As these
technologies enter businesses and offices more, however, each enterprises’ attack
surface is significantly enlarged. For instance, cameras on smart-watches worn by
insiders can take discrete pictures of sensitive IP, thereby allowing exfiltration
of data with no digital trace on corporate systems [16]. This lack of digital
trace makes it extremely difficult for current systems to detect smart insiders,
given monitoring does not currently encompass such personal devices. Having
discussed the challenges faced by such insiders, next we briefly reflect on a few
key attack vectors to explore the problem in greater detail.

2.1 Attack Vectors of Insiders using IoT Devices

As mentioned above, insiders using the IoT represent a significant challenge for
enterprises. In our previous work, we have assessed this problem in detail, and
outlined several vectors through which insiders may attack their employers [16].
To structure that work, we drew on the VERIS 4A approach to define cyber
attacks [21]. This includes understanding the assets at risk in the attack, the
actors (or insiders) that launch the attack, the attributes (or impact) of the
attack on the asset, and the specific actions involved in the attack. Below, we
present two of the 8+8 attack vectors (AVs) from [16] in the broad context of the
VERIS approach; the first one perpetrated by a malicious insider (MI) and the
second by an unintentional insider (UI) threat. Picking one AV from each group,
we use them as a representative basis for analysis and discussion throughout the
remainder of this paper.

MI-AV4: Using the storage system on a smart device, the insider is able to
copy sensitive data (e.g., IP or files) from the organisation’s computers to the
device and remove it from the enterprise. Bluetooth or NFC may be preferred
for this attack as organisations now tend to monitor USB connections. This
attack is possible with any IoT device with a storage capability.

UI-AV7: As a result of improperly configured or inadequately protected insider
smart devices (e.g., a smart-watch and a paired smartphone), the commu-
nications channel between them is compromised by a malicious third-party.
This party then gathers enterprise data via the notifications, schedules, mes-
sages synchronised across devices. Further detail on such attacks on wear-
ables can be found in [20]. We note that this attack could be conducted
by another insider as well. This attack is possible with any device with a
notification and storage capability.



4

3 Formal Model of Insider IoT Threats in Isabelle

Motivation of attackers and the behavioural aspects exhibited during attacks is
often not considered, e.g., in detection systems for cyber security (as discussed
above). The challenge we approach here is to accommodate insiders’ behaviour
into formal models for IoT insider attacks using logical modelling and analysis
techniques.

3.1 Social Explanation for Insider Threats in Isabelle

Previous work [13] uses the process of sociological explanation based on Max
Weber’s Grundmodell and its logical interpretation to explain insider threats by
moving between societal level (macro) and individual actor level (micro). The
interpretation into a logic of explanation is formalized in Isabelle’s Higher Order
Logic thereby providing a tool to prove global security properties with machine
assistance [13]. Isabelle/HOL is an interactive proof assistant based on Higher
Order Logic (HOL). It enables specification of so-called object-logics for an ap-
plication. Examples reach from mathematical theory [10] to component based
software engineering [5]. Object-logics comprise new types, constants and defi-
nitions and reside in theory files, e.g., the file Insider.thy contains the object-
logic we define for social explanation of insider threats below. We construct our
theory as a conservative extension of HOL guaranteeing consistency, i.e., we do
not introduce new axioms that could lead to inconsistencies.

In this paper, we show how the 4A modelling approach (see Section 2.1) can
be accommodated by this insider threat theory and a suitable extension to attack
vectors. We first provide here only the elements of this Insider theory necessary as
a basis for attack trees and for modelling IoT applications. For a more complete
view, please refer to [13] and the related online Isabelle resources [9].

In the Isabelle/HOL theory for Insiders, we express policies over actions
get, move, eval, and put representing the Actions category from the 4As (see
Section 2.1). We abstract here from concrete data – actions have no parameters:

datatype action = get | move | eval | put

The next of the 4As is the Actor which is represented by an abstract type
and a function that creates elements of that type from identities:

typedecl actor

type_synonym identity = string

consts Actor :: string ⇒ actor

Policies describe prerequisites for actions to be granted to actors given by pairs
of predicates (conditions) and sets of (enabled) actions:

type_synonym policy = ((actor ⇒ bool) × action set)

We integrate policies with a graph into the infrastructure providing an organ-
isational model where policies reside at locations and actors are adorned with
additional predicates to specify their ‘credentials’:
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datatype infrastructure = Infrastructure

"node graph" "location ⇒ policy set" "actor ⇒ bool"

These local policies serve to provide a specification of the ‘normal’ behaviour of
actors but are also the starting point for possible attacks on the organisation’s
Assets. The assets are defined by the goals of the attacks, i.e., the roots of the
attack trees (see below). The enables predicate specifies that an actor a can
perform an action a’∈ e at location l in the infrastructure I if a’s credentials
(stored in the tuple space tspace I a) imply the location policy’s (stored in
delta I l) condition p for a:

enables I l a a’ ≡ ∃ (p,e) ∈ delta I l. a’ ∈ e ∧ (tspace I a −→ p(a))

3.2 Attack Trees in Isabelle

We now extend the theory Insider by Attack trees by defining the base attacks
and how they constitute an attack sequence. This corresponds to combining
Actions into an “insider-attack vector” (see Section 2.1). We represent these in
Isabelle/HOL as a data type and a list over this datatype:

datatype baseattack = None | Goto "location"

| Perform "action" | Credential "location"

type_synonym attackseq = "baseattack list"

The following definition attree, defines the nodes of an attack tree. The sim-
plest case is when a node in an attack tree is an Asset, i.e., a base attack as
defined above. Attacks can also be combined as the “and” of other attacks. The
third element of type attree is a baseattack (usually a Perform action) that
represents this attack, while the first element is an attack sequence and the sec-
ond element is constituted by the fourth of the 4As, the Attribute. As described
in Section 2.1, an attribute describes the impact of the attack on the asset in
a variety of ways. We therefore allow a great degree of freedom in our logical
model by modeling this attribute as an element of type “string”:

datatype attree = BaseAttack "baseattack" ("N (_)") |

AndAttack "attackseq" "string" "baseattack" ("_ ⊕( )
∧ _")

As the corresponding projection functions for attree we define get attseq and
get attack returning the entire attack sequence or the final base attack, respec-
tively.

The following inductive predicate UI AV7 intro represents the attack vector
UI-AV7 (see Section 2.1) by an inductive definition. It formalizes how the at-
tacker intercepts the traffic between the smart devices by moving into close range
and getting thus the data. Logically, this is justified if an actor a can get data
at location l in the extended infrastructure add credential I a s in which he
possesses the credential s – as is expressed by the second enables proviso:

J enables I l a move; enables (add_credential I a s) l a get K
=⇒ UI_AV7 I s

(get_attackseq ([Goto l, Perform get] ⊕move−intercept
∧ Credential l))

(Credential l)
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An attack tree is constituted from the above defined nodes of type attree but
children nodes must be refinements of their parents. Refinement means that
some portion of the attack sequence has been extended according to rules like
the above get then move. Similar rules can be defined for all of the attack vectors
for malicious insiders MI AVi and for unintentional insiders UI AVi [16]. Higher
Order Logic allows us to define a set over the inductive predicates that we defined
as attack vectors above. We can then assemble all attack vectors in the following
set (we omit all but the two we illustrate here for brevity):

definition attack_vectors::

([infrastructure, string, attackseq, baseattack] ⇒ bool)set

where attack_vectors ≡ {MI_AV4, UI_AV7}

We formalize the constructor relation for the refinement of attack trees by the
following inductive predicate refines to syntactically represented as the infix
operator v. The rules trans and refl make the refinement a preorder; the
rule refineI shows how attack vectors from the previously defined set can be
integrated into the refinement process. If we replace the attack a by a sequence
l of an attack vector from our predefined set of attack vectors P, we refine the
attack sequence A into A’ (the auxiliary function sublist rep replaces symbol
a in list l by a list, here get attseq A):

inductive

refines_to :: "[attree, infrastructure, attree] ⇒ bool" ("_ v( ) _")

where

refineI: J P ∈ attack_vectors; P I s l a;

sublist_rep l a (get_attseq A) = (get_attseq A’);

get_attack A = get_attack A’ K =⇒ A vI A’ |

trans: J A vI A’; A’ vI A’’ K =⇒ A vI A’’ |

refl : A vI A

The refinement of attack sequences allows the expansion of top level abstract
attacks into longer sequences. Ultimately, we need to have a notion of when
a sufficiently refined sequence of attacks is valid. This notion is provided by
the final inductive predicate is and attack tree. It integrates the base cases
where base attacks can be directly logically derived from corresponding enables
properties; it states that an attack sequence is valid if all its constituent attacks
are so and it allows to transfer validity to shorter attacks if a refinement exists:

inductive

is_and_attack_tree :: [infrastructure, actor, attree] ⇒ bool ("_, _ ` _")

where

att_act: enables I l a a’ =⇒ I , a ` N(Perform(a’)) |

att_goto: enables I l a (move) =⇒ I, a ` N(Goto l) |

att_cred: enables I l a (get) =⇒ I, a ` N(Credential l) |

att_list: J ∀ a ∈ (set(as)). I, a’ ` N(a) K =⇒ I, a’ ` as ⊕s
∧ a’’ |

att_ref: J A vI A’; I, a ` A’ K =⇒ I, a ` A

The Isabelle/HOL theory library provides many list functions. We use these to
define the “or” of attack trees by folding the above validity over a list of attacks:
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I, a `G⊕∨ al ≡ fold (λ x y. (I, a ` x) ∨ y) al False

To validate this formalisation of the attack trees, we now show how a scenario at-
tack can be derived, based on an extended example from our previous work [16].

3.3 Example – Employee Blackmail

The insider in this case is an employee in the IT department of a manufacturing
company. He has received a formal warning from the CEO because there had
been reports that the employee had abused colleagues. This warning has been
contrived by the CEO himself who had an extramarital liaison with one of the
employees with whom the insider had been flirting with. Following that, the
IT employee heard rumours that he might be dismissed, which constituted the
precipitating event that made him an insider: he planned his revenge.

From a report by an online security blog, the Bitdefender Research Team [2],
the insider knew that it was possible to eavesdrop on and intercept communica-
tions between a smart-watch and a smartphone. The vulnerability was described
in some detail on the blog. So, when the CEO purchased a smart-watch paired
with his smartphone, the insider then exploited the vulnerability using addi-
tional methods found on hacking forums. He could move freely in the offices and
could thus get into close range to collect data communicated between the CEO’s
smartphone and smart-watch. Although the communicated data has been en-
crypted before being transmitted via the Bluetooth protocol, the encryption used
a 6-digit PIN code as a key in addition to data obfuscation (adding redundant
“padding” to the clear text). Using publicly available decryption algorithms, the
insider was thus able to get the key information.

Once the encryption was broken, the Insider could use this credential to
collect data on incoming phone calls, SMS and emails, and personal and work
related calendar. Finally, the insider blackmailed the CEO with the stolen infor-
mation that also implied the CEO’s liaison with a colleague: he threatened to
show it to his wife and children unless he would receive a large severance package
and good references. The 4As for this case are as follows:

– Assets: Sensitive company and personal information;
– Actors: Malicious insider;
– Attributes: Unauthorised data access then used for blackmail and fraud; and
– Actions: Attack Vector UI-AV7 (where an insider is the perpetrator).

This case highlights a key weakness in IoT devices, i.e., the limited security
features with these devices and a clever attack building on personal knowledge
helped by current reports and malicious Web forums.

3.4 Application of Insider Theory and Attack Trees to Example

For the application to the office scenario, we only model two identities, Boss
and Employee representing an employee and his boss. We define the set of office
actors as a local definition in the locale scenarioOffice. We show here in a
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first instance the full Isabelle/HOL syntax but in all subsequent definitions we
omit the fixes and defines keywords and also drop the types for clarity of the
exposition. The double quotes ’’s’’ create a string in Isabelle/HOL;

fixes office_actors :: identity set

defines office_actors_def: office_actors ≡ {’’Boss’’}

The graph representing the infrastructure of the office case study contains only
the minimal structure: (1) employee’s office, (2) boss’s office, (3) smartphone:

office_locations ≡ {Location 1, Location 2, Location 3}

The global policy is ‘no one except office actors can get anything from the boss’s
office’:

global_policy I a ≡ a /∈ office actors −→
¬(enables I (Location 2) (Actor a) get)

Next, we have to provide the definition of the infrastructure. We first define the
graph representing the organisation’s locations and the positions of its actors.
Locations are wrapped up with the datatype constructor NL and actors using
the corresponding constructor NA to enable joining them in the datatype node

and thus creating the following node graph as a set of pairs between locations
or actors:

ex_graph ≡ Graph {(NA (’’Boss’’), NL (Location 2)),

(NL (Location 2), NL(Location 1)),

(NL (Location 2), NL(Location 3)),

(NA (’’Employee’’), NL (Location 1))}

Policies are attached to locations in the organisation’s graph using a function
that maps each location to the set of the policies valid in this location. The
policies are again pairs. The first element of these pairs are credentials which
are defined as predicates over actors, i.e., boolean valued functions describing,
for example, whether an actor inhabits a role, or, whether an actor possesses
something, like an identity or a key. The second elements are sets of actions that
are authorised in this location for actors authenticated by the credentials:

local_policies ≡
(λ x. if x = Location 1 then

{(λ x. (ID x ’’Boss’’)∨(ID x ’’Employee’’),{get,put}),(λ x.True,{move})}

else (if x = Location 2 then

{((λ x. has (x, ’’PIN’’)), {get,put}), (λ x. True, {move})}

else (if x = Location 3 then

{((λ x. True, {get,put,move}))}

else {})))

The final component of any infrastructure is the credentials contained in a
tspace. We define the assignment of the credentials to the actors similarly as a
predicate over actors that is true for actors that have the credentials:

ex_creds ≡ (λ if x = Actor ’’Boss’’ then has (x,’’PIN’’) else False)
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Finally, we can put the graph, the local policies, and the credential assignment
into an infrastructure:

Office_scenario ≡ Infrastructure ex_graph local_policies ex_creds

Note, that all the above definitions have been implemented as local definitions
using the locale keywords fixes and defines [14]. Thus they are accessible
whenever the locales scenarioOffice is invoked but are not axioms that could
endanger consistency. We now also make use of the possibility of locales to
define local assumptions. This is very suitable in this context since we want to
emphasize that the following formulas are not general facts or axiomatic rules but
are assumptions we make in order to explore the validity of the infrastructure’s
global policy. The first assumption provides that the precipitating event has
occurred which leads to the second assumption that provides that Employee can
act as an insider:

assumes Employee_precipitating_event: tipping_point(astate ’’Employee’’)

assumes Insider_Employee : Insider ’’Employee’’ {’’Boss’’}

The above definitions and assumptions provide the model for the Employee
blackmail Insider attack. We can now state theorems about the security of
the model and interactively prove them in our Isabelle/HOL framework. We
first prove a sanity check on the model by validating the infrastructure for the
“normal” case. For the boss as an office actor, everything is fine: the global
policy does hold. The following is an Isabelle/HOL theorem ex inv that can
be proved automatically followed by the proof script of its interactive proof.
The proof is achieved by locally unfolding the definitions of the scenario, e.g.,
Office scenario def and applying the simplifier:

lemma ex inv: global_policy Office_scenario (’’Boss’’)

by (simp add: Office scenario def global policy def office actors def)

However, since the Employee is at tipping point, he will ignore the global policy.
This insider threat can now be formalised as an invalidation of the global com-
pany policy for ’’Employee’’ in the following “attack” theorem named ex inv2:

theorem ex_inv1: ¬ global_policy Office_scenario ’’Employee’’

The proof of this theorem consists of a few simple steps largely supported by
automated tactics. Thus Employee can get access to the data and blackmail the
boss. The attack is proved above as an Isabelle/HOL theorem. Applying logical
analysis, we thus exhibit that under the given assumptions the organisation’s
model is vulnerable to an insider. This overall procedure corresponds to the
approach of invalidation of a global policy based on local policies for a given
application scenario [11].

However to systematically derive the actual attack for the Employee black-
mail we next apply the attack vector analysis presented in Section 3.2. First, we
prove the following move intercept lem property:
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lemma move_intercept_lem: UI_IV7 Office_scenario ’’PIN’’

(get_attseq ([Goto (Location 2), Perform get] ⊕move intercept
∧ Perform get))

(Credential (Location 2))

After reducing with the defining rule UI AV7 intro (see Section 3.2), the proof
requires solving two “enables” subgoals; the final one uses the add credential

for Employee. This lemma immediately implies the following refines property:

([Credential (Location 2)] ⊕move−intercept
∧ Perform get)

vOffice−scenario

([Goto (Location 2), Perform get)] ⊕move−intercept
∧ Perform get)

At this point we have constructed an attack tree as depicted in Figure 1. As

Perform get

Credential(Location 2)

Goto(Location 2) Perform get

Fig. 1. Attack tree refines high level attack into base attacks.

a final step of verification, we show that the refined attack at the leaves of the
tree is valid, i.e., each step in it is a possible base attack in the scenario (see
Section 3.2):

lemma final_attack: Office_scenario, Actor ’’Employee’’ `
([Goto (Location 2), Perform get] ⊕move−intercept

∧ Perform get)

The last lemma together with the refinement gives us finally that the top level
abstract attack is a valid attack:

theorem office_attack: Office_scenario, Actor ’’Employee’’ `
([Credential (Location 2)] ⊕move−intercept

∧ Perform get)

4 Discussion and Conclusion

In this paper we have presented an approach to characterising malicious and un-
intentional insider threats on the IoT by attack vectors. We added precision to
a tentative taxonomy [16] by using a logic based Insider threat model [13] in Is-
abelle. We illustrated its use on the IoT Insider case of an employee blackmailing
his boss with communication data intercepted from a smart-watch/smartphone
with weak security. An extension of the Isabelle framework for insider threats to
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attack trees enabled the logic representation of the malicious and unintentional
attack vectors. We summarized all attack vectors in a set. A notion of refinement
of attack trees allows to apply the attack vectors in this set as possible refine-
ment steps to a high level attack. The refinement serves for analysing attacks:
if a high level attack can be sufficiently refined, a notion of validity of attack
permits to finalise the attack analysis by proving an Isabelle theorem. The ex-
tended Isabelle framework has been introduced and illustrated on the Employee
blackmail case study.

It must be clearly stated, that the attack tree generation is not a fully auto-
mated process. Isabelle is an interactive proof assistant. That is, the attack and
the refinement have to be input by the user and the refinement and validity the-
orems have to be proved in an interactive process. However, the malicious and
unintentional attack vectors provide a set of possible high level attacks that can
be used as starting points for an attack tree refinement in the Isabelle Insider
framework. This process supports systematic tool based analysis of infrastruc-
tures for Insider threats revealing weaknesses in policies and exemplifying the
attack vectors. Furthermore, the demonstrated application to an IoT insider case
shows that the proof obligations of refinement and validity can be achieved by
a short series of applications of automated proof tactics that are integrated into
Isabelle (for illustration see the online resources [9]).

A pioneering effort to assess insider attacks was the CMU-CERT Insider
Threat project [3]. Attack trees as specified in [18] define the attacker’s main
goal as the root of a tree; this goal is then disjunctively or conjunctively refined
into sub-goals until the reached subgoals represent basic actions that correspond
to atomic components. Disjunctive refinements show up alternative pathways
to achieving a goal, whereas conjunctive refinements visualize the attack steps
leading to a goal. Automated generation of attack graphs mostly considers com-
puter networks only [17,19]. These techniques usually start by specifying atomic
attacks. By contrast, our approach is based on [12]: the attack consists in invali-
dating a policy, and the model just provides the infrastructure and methods for
deriving the attack tree.

The presented work illustrates that the logic based approach including the
human factor into insider threat modelling and analysis [13] extends also to the
security critical domain of IoT Insiders. Further experimentation with the pro-
vided framework in planned projects will focus on integrating with quantitative
analysis.
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