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One of the most prominent experimental paradigms for investigating the 
deployment of attention over time is the Attentional Blink (AB). Although there 
is now a great deal known about it, computational modeling of the AB remains 
only lightly explored. This paper responds to this limitation by proposing a 
prototype neural network model of the blink. A central aspect of which is a 
realization of the concept of consolidation into working memory, which is at the 
heart of the majority of current explanations of the blink. 

1. Introduction 

The majority of visual attention research has focused on the spatial dimension. 
Despite this traditional focus, there has been an increasing amount of research 
directed at the temporal profile of attention. This research has considered how 
long attention is “occupied” by performing a particular task. One prominent 
paradigm used to investigate this issue is the Attentional Blink (AB) [8].  There 
are now many variants of the AB paradigm, but one that can claim to be 
canonical, and is also the one we will focus on, locates two letter targets (which 
we denote T1 and T2) within an RSVP (Rapid Serial Visual Presentation) 
stream of digit distractors [2]a. Items in the stream are presented at a rate of 
approximately 10 per second and the task is to identify the two targets in a 
report phase that follows the stream. The characteristic empirical finding is that 
report of the second target is poor if it appears within a certain time interval of 
the first, as typically demonstrated by a serial-position curve, such as that shown 
in figure 2a (basic blink condition). 

 
a One reason for focusing on this experimental formulation is that it does not include a 
task switch, which has been argued to confound the blink paradigm [2]. 
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Although there is now a great deal known about the AB, both in respect of 
empirical findings, e.g. [8,2] and proposed explanations, e.g. [10], 
computational modeling of the phenomenon remains only lightly explored. This 
paper responds to this limitation by proposing a prototype neural network model 
of the attentional blink. Our model is most naturally seen as a neural realization 
of Chun and Potter’s two-stage explanation of the blink [2].  A central aspect of 
our model will be how it realizes the concept of consolidation into working 
memory, which is at the heart of Chun and Potter’s and indeed the majority of 
current explanations of the blink. This model makes the further claim that the 
reason for closing the attentional gate is to allow accurate T1 binding, both in 
respect of binding together constituent features and binding to the correct 
temporal context. 

The paper will begin by presenting background details on the blink in 
section 2. Then section 3 describes the model, section 4 presents the results of 
running the model and, finally, section 5 gives some concluding remarks. 

2. Background on the Blink and Theoretical Justification for Model 

It would clearly be impossible to do justice to the spectrum of literature 
concerning the AB within the context of this paper. Thus, we will simply 
summarize the findings that most directly impinge upon our model. Firstly, the 
following are key characteristics of the AB serial position curve, see figure 2a 
(basic blink condition), 
1. the blink is a 100 to 500ms (approx) post T1 interval in which performance 

on T2 (conditional on correct T1 report) is significantly impaired; 
2. the blink generally has a sharper onset than offset; 
3. if T2 immediately follows T1 it is reported at baseline or near baseline 

levels (unless there is a substantial switch between T1 and T2 tasks); this is 
the lag 1 sparing phenomenon. 

Modern explanations of the AB have been heavily influenced by studies that 
suggest that the blink has a late locus in the processing stream. Initial evidence 
for which came from priming studies, where it was found that with word based 
RSVP streams, missed T2 items primed a third target [11]. Furthermore, and 
perhaps even more compelling, evidence for the late locus hypothesis came 
from electrophysiological work, which showed that missed T2 items elicited 
electrical potentials associated with early perceptual activity (N1 and P2 
waveforms) and with meaning (N400). However, working memory update 
waveforms (P3) were not present [13]. All of which suggests that the 
impairment to T2 processing occurs at the stage of consolidation into working 
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memory. That is, T2s that are not reported are, broadly speaking, processed as 
extensively at perceptual and semantic stages as T2s that are reported, however, 
consolidation of their perceptual and semantic traces into working memory is 
prevented. 

These observations beg the question of what is meant by consolidation into 
working memory. The theoretical perspective that we will pursue is that a 
central element of consolidation is binding. That is, in order for an item to be 
successfully encoded into working memory its distributed neural representation 
needs to be bound into a coherent whole. In fact, there are two facets of binding 
that we will emphasize: (1) binding together the component features of an item 
and (2) binding items into the correct temporal context. Theories of binding 
have classically focused on the first of these. However, the second is also 
critical since in its absence it would be impossible to recall the order in which 
items were encoded into working memory, e.g. for subjects to know that T1 
appeared before T2 in an AB stream. While correctly ordered recall is not a 
requisite for accuracy in most AB paradigms and experiments, Chun and Potter 
[2] recorded temporal order from subjects and found order to be conserved in 
the vast majority of reports at lags 2 and greater. Furthermore, we would argue 
that even in the absence of an explicit instruction to do so, there exists a default 
tendency to encode and recall the order of pairs of target items that are 
temporally dispersed.   

 This binding perspective offers one reason why the gate needs to be closed 
at the expense of T2 accuracy. Specifically, our working hypothesis is that T2 
consolidation is suppressed in order to prevent interference with T1 binding. 
Thus, the blink is a mechanism to ensure coherent binding of T1s. According to 
this explanation, lag 1 sparing is a breakdown of the system; arising because the 
mechanism that ensures coherent T1 binding (by closing the gate on T2) is slow 
relative to the Stimulus Onset Asynchrony (SOA) used in the AB paradigm. A 
consequence of which is that binding errors should be observable at lag 1 
because coherent binding of T1 is impaired by the T2, which enters into the 
binding process before the gate is closed. There is some support for this theory, 
since in many studies T1 performance is particularly poor at lag 1, as revealed, 
for example, by analysis of target report percentages in table 1 of [2]. However, 
it could be that this lag 1 binding breakdown shows up most significantly as T1 
– T2 swaps, in which featural binding of both targets is (broadly) successful, but 
an erroneous temporal context binding has arisen, which makes it difficult for 
retrieval mechanisms to correctly identify the temporal order of T1 and T2 at 
lag-1. Chun and Potter [2] (see figure 8 on page 119) demonstrate exactly this 
sort of error as do preliminary experiments conducted within in our lab. One 
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reason for constructing the model that we present here is to investigate whether 
this coherent binding interpretation is consistent with the available AB data. 

A final empirical finding that will greatly influence us is the observation 
that placing a blank after either of the targets (i.e. at the T1+1 or T2+1 
positions) greatly attenuates and even in some cases eradicates the blink [8,2]. 
This suggests that targets are backward masked by the immediately following 
items [9]. That is, since they appear in the same spatial location, the iconic 
traces of stream items compete at a preattentive stage, with the trace elicited by 
a target being curtailed by the arrival of the immediately following item. 

Our neural network model has also been strongly influenced by the two-
stage explanation of the blink proposed by Chun and Potter [2]. In their first 
stage all stimuli are processed to a preliminary level at which features and 
perhaps even meaning are extracted. However, this level is subject to rapid 
forgetting and is not sufficient for report. It is only through stage 2 that stimuli 
are consolidated to a level required for a response. In contrast to stage 1, this 
second stage is capacity limited and thus, creates a bottleneck at which T2’s 
decay while T1 is being processed 

3. The Model 

Our neural network model is depicted schematically in figure 1. The main layers 
are an input layer at which items are presented; a masking layer at which 
preattentive visual traces of items compete; a category layer at which task 
relevant items are foregrounded; and finally, a working memory mechanism, 
through which items are encoded and retrieved. We discuss each of these in 
turn.  Except for the two Working Memory layers, all layers of the model use 
representations that are localist in nature. Thus, these layers contain one neuron 
for each type of item that can appear in the RSVP stream. Future extensions of 
the model will provide for distributed representations, but for our purposes here, 
simple localist representations are sufficient for testing our hypotheses. 

Masking Layer. RSVP items are presented in sequence at the input layer, 
which feeds activation forward to the masking layer, where feedback inhibition 
forces these activity traces to compete. It is through this mechanism that 
backward (and in fact, forward) masking effects are realized. For example, in 
the absence of any further input, a strongly active neuron in the layer will 
slowly decay back to zero. However, the trace of an active neuron would be 
rapidly curtailed if a second item arrived at the layer during this decay period.   

 Category Layer. The masking layer feeds activation forward to the 
category layer.  A task demand unit selectively foregrounds neurons that code 
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target items (e.g. letters) and suppresses those that code background items (e.g. 
digits). Items in this layer do not compete, but their initial activation reflects the 
activity of stimulus traces in the masking layer. In particular, items that are 
masked will yield weak traces at the category layer and those that are unmasked 
will yield strong traces. 

 

Masking layer
Task 
Demand 

Category layer

WM Gate

WM Trace

Item Sustaining 
Layer 

Input Layer

Excitatory
Inhibitory

 
Figure 1. The Full Model.  Note that the Hebbian binding links from the WM Gates to 
the Category layer are not included, as they play no role in the functional dynamics, 
serving only to indicate when successful binding has occurred. 

 
Working Memory. As previously stated the theory that we are exploring 

explains the blink in terms of binding targets into Working Memory (WM). 
These ideas are implemented through interaction between the WM and the 
localist representations in the category layer. The category layer and working 
memory layers interact through three mechanisms.  First, each category neuron 
directly excites all of the WM gates.  Second, direct, hebbian binding links are 
established between specific WM gates and category layer neurons.  Finally, at 
least one WM gate neuron has to be available to activate the item sustaining 
layer, which allows the system to encode, and later recall, weak (masked) items.  

A pair of neurons, consisting of a WM gate and a WM trace together serve 
as a token [7]. Tokens are used to indicate that a target was identified, what that 
item was, and in what order it was perceived relative to other targets in the 
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stream. Thus, a WM token is an encoding that combines what and when, 
effectively creating an “instance” of a “type”. The WM gate neurons control 
access to their respective WM trace neurons, allowing or preventing  category 
layer items from activating that trace. Strong winner-take-all dynamics within 
the gate neuron layer ensure that only one trace neuron is accessible at a time. 
Each trace neuron is individually self-excitatory and can self-sustain for the 
duration of a trial once activated. Working memory consolidation is 
implemented in terms of building binding links between WM gates and category 
layer neurons. Thus, an item is viewed as having been consolidated into 
working memory if a link is successfully built from a WM gate to the neuron 
coding that item at the category layer. Conceptually, these links should be 
viewed as pointers from a given WM token to the featural / categorical neural 
circuits that code the type of the item being consolidated, which enable later top-
down retrieval of that item. Binding links are built via a rapid hebbian process 
between WM gates and category layer neuronsb. These links are unidirectional 
and play no part in the functional dynamics of the model during the presentation 
of the input.   

In addition to WM neurons serving as pointers in order to enable later 
retrieval, they also code temporal order. This is obtained by, firstly, using a 
winner-take-all mechanism amongst WM gates to ensure that only one gate 
neuron is active at any instant; this neuron denotes the current temporal context. 
Furthermore, each WM trace neuron sends an inhibitory projection to its 
corresponding gate neuron. This ensures that when a WM trace neuron has been 
activated, it closes its own WM gate for the remainder of the trial. The closing 
of one such gate initiates winner-take-all competition amongst the remaining 
WM gate neurons until a new gate is made available for future binding. 

Thus, gates are made available in sequence in an order determined by the 
bias inputs applied to them.  In “normal” processing, i.e. when the time gap 
between pairs of (to be consolidated) targets is long, each WM gate obtains a 
link to a single category layer item, denoting that a different temporal context 
has been allocated to each recognized target. However, when target items arrive 
at the category layer in close temporal proximity (as arises at short lags in AB 
streams), the handover between WM gates can be too slow to keep up. 
Consequently, binding errors can occur, which arise in the model when a single 
WM gate obtains links to multiple category layer items. In addition, T2s can be 
missed altogether because their category layer activation falls in the window 

 
b This use of Hebbian learning might be viewed as controversial, however, it is not 
essential to our model and could be replaced by an activation-based gating mechanism. 
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between one WM gate (which has encoded T1) being suppressed and the next 
one becoming available. 

Item Sustaining Layer. The final mechanism that we need to explain is the 
item sustaining layer. As previously discussed, masking plays an important role 
in obtaining the blink. This is reflected in our model since binding links can 
only be constructed between strongly active WM gates and strongly active 
category neurons (this is built into our Hebbian learning rule). Thus, in the 
absence of further stimulation, binding fails for category layer traces of masked 
targets. 

Conceptually, we believe that the brain provides a mechanism to “grab 
hold” of such weak, but task relevant, stimuli and sustain them for a sufficiently 
long period that they can be bound into working memory. The item sustaining 
layer implements such a mechanism by providing a recurrent excitatory circuit 
to prolong the duration of traces in the category layer neuron in order that they 
can be encoded (similar techniques can be found elsewhere, e.g. [4]). For this 
excitatory circuit between a given category neuron and its dedicated sustaining 
neuron to be active, concurrent input from both the category layer and a WM 
gate must be present.  Since each WM gate connects to all of the sustaining 
neurons, any one active gate will enable all of the sustaining neurons.  As the 
network completes the process of encoding the T1, the system undergoes a 
switch from one active WM token to the next. During this handoff process, all 
of the WM gates are inactive and consequently all of the sustaining neurons 
follow suit. It is during this handoff from one token to the next that the system is 
no longer able to encode masked items because of the inactivity of the item 
sustaining layer. It is imperative that the item sustaining layer is temporarily 
shut down in this way or the first item of any sequence would be encoded to all 
of the available WM tokens. The subject would recall multiple instances of an 
item that was presented only once. This scenario is strongly contra indicated by 
data on the repetition blindness effect [7]. 

The length of time required by this system to encode an item is determined 
by the strength of that item.  Strong (unmasked) items are rapidly encoded by 
strongly activating WM gates, which causes binding links to be built quickly.  
Conversely, weak items bind more slowly and require prolonged assistance 
from the item sustaining neurons.   

This is the heart of how the model blinks, yet exhibits lag 1 sparing.  A T2 
presented immediately after a T1 has a chance of building a binding link with 
the same WM gate neuron.  While this is technically an error, we propose that 
the system is able to disambiguate this double-encoding during retrieval in a 
process not explicitly modeled here.  We further propose that it is because two 
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items are bound to the same token that it is difficult to correctly recall the order 
of these items.  This has been shown by experimental work of Chun and Potter 
[2] who demonstrate a selective impairment in the recall of temporal order at lag 
1. 

If the SOA between a masked (and therefore weak) T1 and T2 is between 
200 and 400 ms, the WM door will close prior to creation of the binding link to 
the T2 and the category trace will fade and be lost during the switch from one 
WM gate to the next.  In this way the door is closed on T2 while T1 is being 
bound into WM and the length of time it takes T1 to be bound regulates the 
length of the blink. Unmasked (and therefore strong) T1’s are able to establish 
binding links with the appropriate WM neuron more rapidly. Thus, the blink is 
shorter and shallower when T1s are unmasked rather than masked.  

A MATLAB implementation of this model is available at 
www.cs.kent.ac.uk/people/staff/bw5/ncpwblinkmodel/. 

4. Results 

The crucial performance measure of the Attentional Blink paradigm is the 
successful encoding of T2 for trials in which T1 was encoded (T2|T1). In this 
model, encoding of a target was scored as successful if the binding links from 
any WM gate to that target were above a designated threshold. Thus, we have 
not at this stage considered how the number of T1 – T2 swaps varies with lag, 
although this information could easily be extracted from our model. The 
elements of the conventional AB paradigm that will be modeled explicitly in 
this paper include the deficit at lags 2-5, the relative sparing of performance at 
lag 1, and the attenuation of the blink curve by blank(s) following T1 and T2.   

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Serial Position

T2
|T

1

T2 Unmasked

Basic Blink
Condition

T1+1 Blank

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Serial Position

T2
|T

1

Figure 2. (a) Human data (on left) and (b) model data (on right) . 
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The data being modeled will be extracted from [2] and [6]. Both of these 

papers used paradigms that are generally equivalent to the one used here. SOA 
was 100ms and targets were digits in a letter stream. T1 and T2 tasks were 
identical. This data is available from the aforementioned papers for the three 
conditions studied: basic blink condition [2], T1+1 blank [2] and T2 as the final 
element of the stream [6]. Figure 2a presents these three conditions for the 
experimental data while Figure 2b presents data for the same three conditions in 
the model. It should be clear from these results that, at least in qualitative terms, 
our model successfully reproduces these three experimental conditions. 

The elevated performance for lag 2 in the T1 +1 Blank condition is due to a 
lack of forward masking for the T2 item, which increases its strength, 
compounding the attenuated blink caused by the stronger T1 trace. The 
experimental data from Chun and Potter [2] indicates the same sort of effect at 
lag 2, although to a lesser degree.  In our model, any manipulations that increase 
the strength of T1 and T2 items attenuates the blink.  Therefore this forward 
masking effect, inherent in the design of the masking layer, allows our model to 
make the prediction that the attentional blink will be attenuated by blanks at 
positions T1-1 and T2-1.  

5. Conclusions 

We have presented a prototype neural network model of the AB, which has 
enabled us to explore how key AB data can be reproduced by a WM 
consolidation model. According to this theory, in order to protect T1 from 
binding errors, a door is closed on the consolidation of T2 targets if their 
category layer trace falls within the window of T1 binding. This is the blink 
window. However, the door is not closed instantaneously. A result of which is 
that lag 1 T2s can be consolidated. However, this process can erroneously bind 
T1 and T2 to the same WM token. This error allows T1 and T2 to be retrieved at 
lag 1, but without their correct temporal order. In addition, the model 
reproduces AB masking effects. Specifically, the blink is attenuated if either the 
T1+1 or the T2+1 items are left blank. In the former case this arises because 
strong T1s are rapidly consolidated into working memory and thus, a fresh WM 
token is released before T2 has decayed, while in the latter case the blink is 
attenuated because stronger T2s can out-live the blink window. 

It is beyond the scope of this paper to give a detailed comparison of our 
model to existing theories of working memory and prefrontal function. 
However, it is safe to say that our model has similarities to a number of such 



 

 

10

theories, e.g. in respect of foregrounding task relevant items, c.f. [3,1]; 
allocation of general purpose WM resources (our WM gate and trace neurons), 
c.f. Duncan’s adaptive coding theory [5]; sustaining activation by setting up 
reverberating circuits, c.f. Dehaene et al’s global workspace resource [4]; and 
active maintenance which occurs in our WM trace neurons, c.f. [12]. 
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