
Smith, Robert P. and Kent, Stuart (2002) An Experiment in Model Driven
Architecture for e-Enterprise Systems. Technical report. Computing Laboratory,
University of Kent at Canterbury

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13823/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Technical Report 1-02

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13823/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

An Experiment In Model Driven Architecture

for e-Enterprise Systems

R. P. Smith and S. Kent

January 14, 2002

Abstract

OMG’s Model Driven Architecture [5] demonstrates how a system’s
specification model can be used within the process of creating support-
ing software implementations. This article documents the findings of an
experiment aimed at determining the extent to which this method of soft-
ware engineering can be used within the domain of e-Enterprise systems.

1

Contents

1 Introduction 4
1.1 Model Driven Architecture . 4
1.2 Application Domain . 4
1.3 Experiment Overview . 5
1.4 Goals . 6

2 Platform Independent Model 7
2.1 Modelling Language . 7
2.2 The Test System Model . 7
2.3 Modelling Pattern . 9

3 Platform Specific Model 12
3.1 Implementation Architectures . 12
3.2 The Test System Implementation 12

3.2.1 Contacting the Server . 13
3.2.2 JSP Organization . 13
3.2.3 Facilitating Dynamic Content 14
3.2.4 Initiating System Functions 14
3.2.5 Server Side Processing . 16

3.3 Implementation Template . 21
3.3.1 Skeleton Servlet . 21
3.3.2 Command Pattern . 24

4 Platform Independent to Platform Specific Mapping 26
4.1 Enterprise Java Bean Implementation 27
4.2 Command Implementation . 28

4.2.1 getAttributes(...) . 30
4.2.2 checkPreConditions(...) / checkPostConditions(...) 31
4.2.3 execute(...) . 36

4.3 JSP Allocation and Implementation 38
4.3.1 Page Set . 40
4.3.2 Form . 40
4.3.3 Links . 40
4.3.4 Content Attributes . 41

4.4 Page Access Control Implementation 42
4.5 Command Access Control Implementation 43

5 Conclusions 43

List of Figures

1 The Application Domain . 5
2 Domain Structure . 6
3 JavaAuction PIM . 8

2

4 PIM Pattern . 10
5 Logged In/Out PIM Pattern . 11
6 Test System Structure . 12
7 Browsing the Graphics Card Category 15
8 The Register User Action Holder Page 19
9 The Register User Action Holder Page (After Error) 20
10 Command Ordering . 39

3

1 Introduction

This paper reports the initial results from an experiment into the utilization of
OMG’s Model Driven Architecture (MDA) [5] as methodology for the imple-
mentation of e-enterprise systems.

1.1 Model Driven Architecture

The main tenet of MDA is to abstract away from particular implementation
technologies (platforms) by modelling systems in a platform independent way
and automating the process of developing implementations on particular plat-
forms from those models. It is intended that a Platform Independent Model
(PIM) is realized through the use of a modelling language such as UML [6]
and exists to document a technology independent architecture for a specific
computing process at a high level of abstraction. Since the PIM is platform
independent no specific implementation technology is specified. Mappings from
these PIMs to Platform Specific Models (PSMs) are documented where a spe-
cific PSM models the architecture required for software deployment within a
specific implementation technology.

The advantages of following the MDA approach fall into four main categories,
described by Jishnu Mukerji [4]: -

Firstly, MDA increases the scope for application portability through the
reuse of the system design. This reduces the cost of development and the com-
plexity of the application management processes.

The use of multiple PSM implementing a system specified within a shared
PIM ensures the realization of identical business functions over differing imple-
mentation technologies. This is known as cross platform interoperability.

Productivity also increases when using familiar concepts which can be aided
through the use of tools build upon a particular PIM to PSM relationship.
MDA creates the possibility for automated services aiding the development and
implementation of software systems given detailed PIM to PSM transformations.

Finally, MDA eases the re-targeting of existing application code to new tech-
nologies if a related PSM exists stemming from the original system PIM.

1.2 Application Domain

Figure 1 depicts an overview of the application domain targeted by the experi-
ment.

A two tier architecture exists. Those function which are accessible to the
system users are initiated through client machines remote from the server side
processing. Application software developed within this domain requires extra
functionality to overcome the complexities arising from a this two tier program-
ming architecture. For example, the diagram illustrates the system application
logic resident on both the client and server sides of the interaction, thereby
creating the possibility for a distributed implementation architecture. This re-
quires some shared knowledge between the distributed implementations to fa-

4

Data Store
Application Logic

Client Side Server Side

Interface

Application Logic

Figure 1: The Application Domain

cilitate the breakdown of application functionality and communication between
the two.

System security issues create further complexities when working within a
distributed programming model that differ from those attributed to traditional
isolated single user computing environment. For example, the most common
piece of extra functionality employed within existing e-enterprise systems is a
method of client identification since the server side system has the potential to
be invoked by many different clients at any one time. The identification process
is used to validate an incoming client’s right to perform the requested actions
with respect to the current state attributed to the calling client. This is of
highest importance in order to maintain secure, reliable and trusted services
within a networked environment.

It is important to note however that while the extra functionality is required
to support a distributed programming model, particular e-enterprise system
implementations have similarities within their implementation architectures as
a result. This fact can then be exploited within the development of support-
ing e-enterprise system PIMs since similar application structures and common
processes will apply.

1.3 Experiment Overview

The experiment is concerned with the specification and implementation of a
test application. The application chosen for development was that of an online
auction system requiring the following functionality: -

• The registration of new system users,

• The posting of lots for auction by registered users,

• Bidding on lot items by registered users.

• Viewing lots currently for auction.

This type of application was chosen because it encompasses many of the
features common to existing e-enterprise systems. For example, a user validation

5

process is required to ensure secure access to system functions specified as being
only available to registered system users, and data repository functionality is
needed to provide a persistent data store of information.

To conform to the MDA approach, the experiment was initiated through the
development of a test system PIM. It is important to note that while this model
is platform independent in the respect that no implementation technology con-
straints are specified within the model structure, it is domain specific because
it contains support for e-enterprise system services modelling server side repre-
sentations of remote client interactions. This PIM is described within section
2.

A PSM consisting of the architecture required for the implementing of the
test system using a specific set of technologies was created in parallel to the PIM.
By implementing the two models concurrently, the PIM architecture could be
used within the retaliation of the PSM to create two complementing models
with inherent similarities. These similarities could be exploited to facilitate the
extraction of PIM to PSM mappings. The PSM is described within section 3.

Section 4 documents the mapping from PIM to PSM, describing the stan-
dardizations that were required to be adopted in order to facilitate the realiza-
tion of generic transformations.

1.4 Goals

Figure 2 illustrates an overview of the experiment structure in which the top
and bottom entities represent the PIM and PSM respectively.

Java, C++, ...

Platform Independant

Platform Specific

e.g
PHP
EJB

ASP

Existing Implementation
Architectures : −

Together

Rose
Objecteering

USE

UML, OCL, ...

Transformational Mappings

Existing Modelling Tools :−

e.g

Figure 2: Domain Structure

6

The transformations appearing in the center of the diagram represents the
experiment objective. As well as creating workable models for the platform
specific and a platform independent e-enterprise system architecture, the ex-
periment is aimed at an investigation into the extent to which transformational
support between the two models can be realized through the utilization of ele-
ments held within the PIM. Therefore, the experiment results will consist of a
documented set of PIM to PSM transformations with indications to where extra
information is required to be present within the PIM specification to facilitate
their use. Dependant on the ability to automate the process, the transforma-
tional information could become the building block onto which implementations
of supporting MDA tool sets for e-enterprise system generation can be built.

Some existing research exists addressing the issues surrounding code gen-
eration from UML specifications by people such as Arief and Speirs [1] and
Valdeón, Morillo and Bonilla [3]. However, the translational systems proposed
within these documents currently work at a high level of abstraction, provid-
ing simulations of UML models. Within this document, we aim to present a
framework through which complete executable e-enterprise applications can be
created from a supporting PIM specification using the MDA.

2 Platform Independent Model

2.1 Modelling Language

The Platform Independent Model (PIM) has been developed using a subset of
the Unified Modelling Language (UML) [6]. This subset is the subset supported
by the USE tool [7].

2.2 The Test System Model

The elements of UML used are illustrated within the test system model [10].
Consider figure 3, a diagrammatical representation of the PIM created for the
test system, named JavaAuction.

It is important to note that this PIM contains those elements specifically
required to support the auction system application, as well as those elements
required to support its implementation within a distributed environment. The
separation between these two elements is described in section 2.3.

Within this model, five classes of object are present. The Lot, Bid and
User classes represent the information required to remain persistent, thereby
constituting the application’s data repository. The System class is used as a
container, with associations to both the persistent data classes and a further
class named WebSession. A WebSession object in the system representation
for a client making contact with the server. It contains seven operations that
make up the system functionality from the clients perspective. This object can
be thought of as the gateway through which users remote to the server side
system interact with the server. OCL pre and post conditions are added to the

7

Figure 3: JavaAuction PIM

WebSession operation specifications, referencing the information held within
the model to dictate any conditions on the operation’s execution, specify any
constraints on the parameters that are passed, and describe the resultant model
state.

All clients are allocated a WebSession whether they are currently logged in
or out. A client retains the same WebSession for the duration of its interaction
with the server, which may involve many separate messages sent between the
two parties. This is the method used by the majority of web based applications.

For the test system application, some notion of client state is required, where
a client can be either logged in or logged out at any particular time. Therefore,
WebSession objects have the ability to be associated with a single User object
that stores information specific to an individual system user. Each client reg-
istered with the system will therefore have a User object resident within the
model containing their specific details, including information on how the client
identifies itself to the system when performing a login action. When a client is
logged in, the WebSession has two data repositories at its deposal, those items
related to the particular client’s User object, and the system as a whole. This
separation can be seen within the WebSession’s operation specification. For
Example, the registerUser operation within the WebSession class is specified
within the WebSession class as follows: -

8

registerUser(realName : String, address : String,

e mail : String, username : String,

password : String, repassword: String)

The operation has the following pre and post condition specified: -

pre PRE Has No Logged In User: not(self.loggedin.isDefined())

pre PRE Parameters Defined: realName.isDefined()

and address.isDefined() and email.isDefined()

and username.isDefined() and password.isDefined()

and repassword.isDefined()

pre PRE Password Fields Match: password = repassword

pre PRE Username Is Unique: (self.host.users.select(u |

u.username = username)-> size = 0

post POST New User In System: (self.host.users.select(u |

u.username = username and u.realName = realName

and u.email = email and u.password = password))->

size = 1

These expressions interrogate both information which is global to the model
as a whole, and the information related specifically to the client’s User ob-
ject this WebSession is the representation for. For example, global information
is obtained by traversing the model via the host System object: self.host.
... as in POST New User In System, and the local client information via the
WebSession’s related loggedIn User object: self.loggedIn. ... as in pre
PRE Has No Logged In User

A USE tool [7] model listing for the test system can be found at [9]

2.3 Modelling Pattern

The test system example illustrates the need for a particular pattern of mod-
elling at the PIM level to facilitate the mapping process to the PSM. By structur-
ing all PIMs in the same way, generic transformations can be developed between
elements resident within the PIMs and the implementation structures required
within the PSMs to support the specification. This pattern is illustrated within
figure 4.

Four classes of object are defined: -

System As seen in the test system PIM, all objects resident within the model
are required to be associated with the System object. This therefore acts as a
container for all the data stored. From the System’s perspective, all information

9

Figure 4: PIM Pattern

within the model appears as collections of persistent objects, grouped together
within their object classes.

WebSession As described before, the WebSession class exists as the server
side representation of a remote client interaction. An object of this class is
allocated to a client independent of any state that may be associated with it.
For example, in the test system PIM, both logged in and logged out clients
have a related WebSession object. It is the information and object references
attached to this object that determines client state.
System operations are specified within this class representing those functions
that can be performed by the system, initiated through a client interaction.
From the diagram, it can be seen that the WebSession class has access to the
System’s object collections by traversing their shared association to its related
host, and access to any other classes to which it is related by traversing their
shared associations directly.

A Class A represents those classes which are directly related to the WebSession
class. Individual client representations can be tailored through the use of at-
tached A object references.

B Other classes can exist within the model which are not associated directly
to the WebSession class. However, objects of this type can be related to other
classes within the model, some of which may have the ability to be related di-
rectly.

A specialization of this modelling pattern is where a two state client system
is required thereby allowing a client to be either logged in or logged out at

10

any one time. The WebSession class specification must include operations that
are used to support the client initiated transition of state. Consider figure 5,
illustrating how the general modelling pattern is adapted to support the new
pattern. As we have seen before, the test system uses this approach.

Figure 5: Logged In/Out PIM Pattern

Three operations must be included in the WebSession class specification:
login, logout and registerUser, where registerUser provides a method of
inputting client specific information into the server side data repository. The
specific parameters the registerUser operation takes are application depen-
dant but must include the data which will be interrogated by the login oper-
ation. For the registerUser operation within the test system model, it was
deemed relevant to include a real name, address and e-mail, as well as a unique
username and password for client identification.

A new class is named User is introduced that is used by the registerUser
operation to create client specific User objects. These objects contain individual
data stores relating to client details, populated by the parameters passed to the
registerUser operation. The User objects can also be referenced by any other
objects within the system that are specifically related to the client for which
the User object is the system side representation. For example, within the test
system, a Lot object holds a reference to the particular User object who’s client
was responsible for posting it.

The WebSession class now shares an association with the User class. When
a client logs in, its WebSession stores a reference to the clients related User
object. Therefore, from the WebSession’s perspective, information within the
system is organized into two different categories: That which is specific to the
particular calling client, through the interrogation of any related User object,
and that which is global system to the system as a whole, referenced through

11

the host System.
Note that this is a simplification of the actual mechanism required within

specific PSMs. For example, the WebSession class within the test system PSM
accesses the global data repository by contacting an EJB server with the appro-
priate JNDI lookup name for the resource it requires.

3 Platform Specific Model

3.1 Implementation Architectures

Existing application architectures can be used to provide support for the extra
functionality required from two tiered client / server application. This includes
a method of facilitating the client / server communication, the realization of
actual server side application logic and a method of providing a persistent data
repository.

All of the architectures used for the development of the test system were
Java based, chosen to maximize the potential target hardware platform base,
using a web server to facilitate network transport. These architectures include
JSP and Java Servlets, with an Enterprise Java Bean Server providing database
functionality.

3.2 The Test System Implementation

The specific use to which the existing application architectures are put can be
illustrated by considering the implementation of the test system [11]. Consider
figure 6, which depicts an overview of the test system architecture.

JSP Servlet
Main EJB Server

Command

Command

Command

Command

"Client" Side "Server" Side

Figure 6: Test System Structure

The system is split into two sections referred to as the Client and Server
sides. The output generated from a generic set of JSPs exists on the client side,
acting as a thin client providing access to the application logic resident on the

12

server. The server side system consists of a single Java Servlet which, on inspec-
tion of incoming client requests, delegates any action required. This is achieved
through the utilization of individual command class specializations containing
supporting functionality for the operations specified within the JavaAuction
PIM. An EJB server acts as the system’s data repository maintaining a persis-
tent data store utilized by both the command specializations and main servlet.
These elements will now be discussed in detail, with respect to their individual
functionality and allocated responsibilities.

3.2.1 Contacting the Server

Both access to system functionality and access to the different sections of the
website are controlled by the server side system. Therefore, when a client first
accesses the server using a web browser, the URL of the servlet is opened. In
this case:-

http://<SERVER NAME>/auction/servlet/JavaAuction

On receiving a request of this type, with no related attributes being passed,
the servlet forwards the calling client to the application front page. Complete
control is given to the server side application logic in order to give the client
side HTML code generated from the JSPs true thin client functionality. One
advantage of this approach is in the simplification of the transformation defini-
tions from the model to implementation, using a centralized target area for the
system’s application logic.

3.2.2 JSP Organization

The different sections of the website are generated on the client side by using
groups of generic JSPs. One group of pages appears per system operation spec-
ified within the PIM. The allocation and content of these groups is dependant
on the type of operation the group relates to. Two types of system operation
appear, each requiring different pages within the supporting JSP group. For
the test system, a group is referred to as the operation’s Page Set.

The following sections describe each operation type with the corresponding
contents of the Page Set required to support it: -

Action / Response An Action / Response operation is one which takes
a set of parameters and updates the server side data repository to return an
outcome of either success or failure. The JSP pages required to support an
operation of this type are an Action Holder, the page that contains the op-
eration initiator HTML form element, and the Response Page, indicating the
operation’s success. Therefore, an Action / Response Page Set consists of
these two pages.

13

Request / Reply A Request / Reply operation takes a set of parameters
and returns a formatted reply page made up of matching data extracted from
the server side data repository. For this operation type, the JSP pages required
are a Request Holder, again containing the operation initiator HTML form and
a header and footer JSP file to be included in the generated reply. Therefore, a
Request Holder Page Set consists of these three pages.

3.2.3 Facilitating Dynamic Content

Generic JSP Page Sets are used instead of the servlet generating entire web
pages on the fly in order to cut down the amount of processing the server side
system is required to perform. While dynamic content can be achieved by
the servlet generating the entire client side interface, this could become com-
plicated and time consuming. The generic pages can still provide dynamic
content by utilizing a feature of the JSP technology that allows attributes
to be set within the outgoing JSP request, tailoring the target page to the
clients requirements. For example, the following JSP code is resident within the
browseresultsheader.jsp file within the test system implementation: -

Browsing

<%= (String)request.getAttribute("category") %>

The attribute, category, is set by the application logic before the page is
invoked, thereby tailoring this generic page to the particular clients’ require-
ments who made the original request. For example, if the requested category
was named Graphics Card the Browse operation’s reply page would appear as
in figure 7, (page breakdown shown for clarity)

This is used for all instances where small items of dynamic data are required.
For situations where larger amounts of data is required to be displayed, such as
in the reply from a Request / Reply operation as shown in the main body of
the example in figure 7, the servlet generates the information directly.

3.2.4 Initiating System Functions

As described above, the main servlet deals with access to both the application
operations specified within the system PIM and access to the different section
of the site. Therefore, the server side system can perform two types of function:
page linking and application command initiation. Within the test system, all
application operations are initiated through a client submitting a form resident
on a JSP page. This action sends a group of attributes to the server side sys-
tem, one per form input field. A hidden function attribute, named command,
is included in order to specify the exact nature of the request. For example,

14

Figure 7: Browsing the Graphics Card Category

the following HTML code is used to initiate the RegisterUser operation, (JSP
attributes and formatting omitted for clarity): -

<FORM action="/auction/servlet/JavaAuction" method=POST>

<input type=hidden name=command value=registeruser>

Name:</TD><TD><input type=text size=20 name=realname>

Address:</TD><TD><input type=text size=20 name=address>

e-mail:</TD><TD><input type=text size=20 name=e mail>

Username:</TD><TD><input type=text size=20 name=username>

Password:</TD><TD><input type=password size=20 name=password>

Retype Password: <input type=password size=20 name=repassword>

<input type=submit value="Register">

</FORM>

For page linking, direct attribute passing is used in place of a form. This is
because only one attribute needs to be sent. Typically, a page linking function
is realized with the use of a <A> HTML tag. For example, the following HTML
code initiates a link function on the server, with the client asking to be trans-
ported to the RegisterUser section of the site, : -

Register User Section

15

It is important to note that no JSP is allowed to link directly to another
page. All page linking requests must be made through the server side system
via the utilization of a link, shown above.

The aim of the JSP allocation and implementation method was to create
a framework in which a JSP developer could be presented with a document
dictating the structure and contents of all the JSP pages required to generate
the client side interface, less any aesthetic properties such as page layout or
graphics. From this document, all the JSPs required could be created directly.
It would therefore be the responsibility of the PIM to PSM mappings to generate
the contents of this document in order to facilitate the creation of the client side
GUI. This is possible because all application logic is resident on the server.

3.2.5 Server Side Processing

Moving to the server side, the main servlet has its functionality split into three
sections named Session Management, Page Access Control and Command Access
Control. The access control mechanisms currently supported within the PSM
simply check whether the incoming request has been initiated by a client in
the correct state. This state is that which is specified by the OCL condition
related to login status attached to the corresponding operation within the PIM.
For applications where many privilege levels are required, more complex access
control checks would be needed but these could still be implemented within the
same overall structure as described within the reagent sections below.

Session Management Since all application logic is resident on the server, a
method of identifying which client is accessing the server is required in order to
control access to the different sections of the website and application commands.
This is important because both page and command access can be specified
within the PIM to be dependant on a client’s login status and so the correct
identification of the calling client is required.

The method used by the test system is the setting of a JSP session attribute
within the clients request, in the same way used for facilitating dynamic content,
described before. The attribute is set to a value unique to the clients server side
WebSession, described below. This enables the specific server side WebSession
object to be found as and when the related client contacts the system thereby
identifying the calling client through the interrogation of this attribute.

When a client calls the server, the Session Management method is invoked.
This method deals with the client identification process, involving the lookup of
the calling clients related WebSession object, if one exists, or creating one if it is
the first time the client has made contact since opening his web browser. After
creation, the JSP session attribute relating to WebSession id is set in the calling
clients request in order to ensure the same WebSession object is retrieved on
its return.

This method also interrogates any function attribute attributed with the
incoming communication to establish whether a link or command function is
required. If the calling client it requesting a link function, the Page Access

16

Control method is called. Similarly, if a command function is requested, the
Command Access Control method is called.

Page Access Control The Page Access Control method contains a struc-
ture that interrogates an attribute named link passed within the clients incom-
ing request. Therefore, there is an entry within this structure for each section
of site. One section appears per system operation, where the contents of each
section contains link matches for the particular operation Page Set. For ex-
ample, the following code appears within the test system for the RegisterUser
operation: -

// Register User

// Action Holder

if(link.equals("registeruser")){
if(websession.getUser() == null){

RequestDispatcher rd =

sc.getRequestDispatcher("/registeruser.jsp");

rd.forward(request, response);

else{
RequestDispatcher rd =

sc.getRequestDispatcher("/errorLoggedIn.html");

rd.forward(request, response);

}
}
// Response Page

else if(link.equals("userregistered")){
if(websession.getUser() == null){

RequestDispatcher rd =

sc.getRequestDispatcher("/userregistered.jsp");

rd.forward(request, response);

else{
RequestDispatcher rd =

sc.getRequestDispatcher("/errorLoggedIn.html");

rd.forward(request, response);

}
}

Notice the interrogation of the clients related WebSession object, required
to establish the incoming client’s right to access this section of the site. Entries
appear for both the Action Holder page and the Response Page indicating
the operations success, (failure is discussed bellow)

Command Access Control With a similar structure architecture to the
Page Access Control implementation, the Command Access Control method
is called by a client wishing to execute a system operation, as specified within

17

the system PIM. This is achieved by passing an attribute named command to the
servlet set to the particular operation required. This attribute is compared with
a string representation of each system operation. Again, the client’s associated
WebSession is interrogated to establish the right to perform the action.

For example, the structure governing access to the RegisterUser operation
is implemented as follows: -

// Register User

if(command.equals("registeruser")){
if(websession.getUser() == null){

RegisterUserCommand register =

RegisterUserCommand(

websession, request, response, this);

}
else{

ServletContext sc = getServletContext();

RequestDispatcher rd =

sc.getRequestDispatcher("/errorLoggedIn.html");

rd.forward(request, response);

}
}

System operations are implemented by using individual command objects, in
this case, RegisterUserCommand. On receiving a command operation from a
client in the correct logged in state, an object of the correct command type
is created. This object contains all the functionality required to perform the
operation and runs when the class constructor is called, i.e. as it is created. Each
command performs its functionality split into four groups: Extract the required
attributes from the incoming request; perform any precondition checks; perform
the action application logic; perform any post condition checks. This pattern
will be discussed in the template described in section 3.3.

For both system operation types, failure is dealt with in the same way.
This involved the client being returned to the original command initiator page,
after first setting a JSP attribute in the page request used to indicate the na-
ture of the error that had occurred. This attribute is used to format the page
with an appropriate error message. For example, the page which initiates the
RegisterUser operation has the following extract of code within the HTML
form element: -

18

<!-- Username Field -->

<%if((String)(request.getAttribute("paramusernameblank"))

== "true"){%>
<TR><TD>

You must type a username</TD></TR>

<%}
if((String)(request.getAttribute("usernameexists"))

== "true"){%>
<TR><TD>

Username already in use</TD></TR>

<%}%>
<TR><TD align=right>Username:</TD>

<TD><input type=text size=20 name=username></TD></TR>

This page appears originally as in figure 8.

Figure 8: The Register User Action Holder Page

If the username field was left blank, the RegisterUserCommand would set an
attribute named paramusernameblank to true before returning the client back
to the original command initiator JSP. The page would then appear as shown
in figure 9.

Data repository functions are provided within the test system implementa-
tion through the use of an Enterprise Java Bean (EJB) server. EJB’s provide
a method of creating a persistent virtual database within a Java environment.
They come in two types, Session beans and Entity beans.

Entity beans are Java objects that remain persistent within the system,
surviving crashes and system shutdowns. All objects of the same Entity bean

19

Figure 9: The Register User Action Holder Page (After Error)

class make up an entire virtual database table. An individual Entity bean
object is a single row within that table, an attribute of which being a field
within that row.

Session beans contain business logic that interact with the Entity bean
classes, but since the use of separate command object specializations already
separates the system functionality from the data storage, the test system im-
plementation only uses Entity beans.

The EJB server deals with the complexities of providing transactional sup-
port functionality leaving the developer to simply implement the specific classes
of information that are required to be stored in the form on Entity beans im-
plementations.

Within the test system, the User, Lot and Bid classes are all realized within
Entity EJB implementations. The WebSession class is also implemented as an
entity bean, simply because the EJB server provides a simple mechanism for
storing WebSession objects between client interactions. This does not mean
that sessions are recoverable after system shutdown since JSP attributes are
themselves reset when the web server restarts. A clients request will therefore
no longer store the id of it’s server side WebSession representation. Other
mechanisms for storing WebSessions can be used in place of the EJB server,
such as declaring a static collection of WebSessions in the main servlet which
is shared by all instances created on the server.

Both the main servlet and command implementations access the EJB server
directly. It is important to note that the associations resident within the
JavaAuction PIM between the System container and the rest of the system
as a whole is realized within the implementation through the use of this EJB
server. Therefore, no specific System class is required.

20

A full program listing of the test system implementation can be found at [9].

3.3 Implementation Template

The use of generic transformations mapping from a PIM conforming to a stan-
dardized modelling pattern creates the need for a corresponding standardized
implementation template [12]. PSMs are created by populating the standard
template using information contained within the PIM. This template can be
drawn from the test system implementation, becoming a skeleton implementa-
tion containing the functionality required to support programming within a two
tier application environment, and a set of rules governing the organization and
structure of the implementation code.

The contents of the template is as follows: -

• A skeleton Java Servlet with rules governing the implementation of the
access control structures

• A standard command implementation pattern

The following sections describe the content of each of these elements

3.3.1 Skeleton Servlet

Within the test system’s PSM, described in the previous section, a single Java
Servlet deals with requests from calling remote client machines. This servlet
has implementation split into three sections used for Session Management,
Page Access Control and Command Access Control. These sections are im-
plemented as individual methods within the Servlet implementation class.

Since this experiment is interested in those applications where a client’s
logged in status is an issue, the session management method within the skeleton
servlet can become part of the generic Implementation Template.

The contents of the Page Access Control and Command Access Control
structures are split into sections for each system operation specified by the PIM.

Within the Page Access Control structure, the specific implementation of
these sections is dependant on both the clients right to perform the action in its
current logged in state and the functions type, being either Action / Response
or Request / Reply, as described before. This categorization by type is re-
quired in order to accommodate the different command Page Set’s associated
with each of them. Therefore, Action / Response commands are accommo-
dated with a Page Access Control section similar to the following Java code,
where the checks made on the WebSession’s related User object governing login
status are changed dependant on the particular system operation: -

21

// An Action / Response System Operation

// Action Holder

if(link.equals("myFunctionHolder")){
// If the client is logged in...

if(websession.getUser() != null){
RequestDispatcher rd =

sc.getRequestDispatcher("/myFunctionHolderPage.jsp");

rd.forward(request, response);

// If he is not...

else{
RequestDispatcher rd =

sc.getRequestDispatcher("/myErrorPage.html");

rd.forward(request, response);

}
}
// Response Page

else if(link.equals("myFunctionResonse")){
// If the client is logged in...

if(websession.getUser() != null){
RequestDispatcher rd =

sc.getRequestDispatcher("/myFunctionResponse.jsp");

rd.forward(request, response);

// If he is not...

else{
RequestDispatcher rd =

sc.getRequestDispatcher("/myErrorPage.html");

rd.forward(request, response);

}
}

Request / Reply commands will therefore require the following section im-
plementation to support their three page Page Set: -

22

// A Request / Reply System Operation

// Request Holder

if(link.equals("myFunctionHolder")){
// If the client is logged in...

if(websession.getUser() == null){
RequestDispatcher rd =

sc.getRequestDispatcher("/myFunctionHolderPage.jsp");

rd.forward(request, response);

// If he is not...

else{
RequestDispatcher rd =

sc.getRequestDispatcher("/myErrorPage.html");

rd.forward(request, response);

}
}
// Reply Header

else if(link.equals("myFunctionReplyHeader")){
// If the client is logged in...

if(websession.getUser() == null){
RequestDispatcher rd =

sc.getRequestDispatcher("/myFunctionReplyHeader.jsp");

rd.forward(request, response);

// If he is not...

else{
RequestDispatcher rd =

sc.getRequestDispatcher("/myErrorPage.html");

rd.forward(request, response);

}
}
// Reply Footer

else if(link.equals("myFunctionReplyFooter")){
// If the client is logged in...

if(websession.getUser() == null){
RequestDispatcher rd =

sc.getRequestDispatcher("/myFunctionReplyFooter.jsp");

rd.forward(request, response);

// If he is not...

else{
RequestDispatcher rd =

sc.getRequestDispatcher("/myErrorPage.html");

rd.forward(request, response);

}
}

Within the Command Access Control structure architecture, each section
entry follows the same basic pattern because all commands are initiated in the

23

same way whether they are Action / Response or Request / Reply. How-
ever, the implementation of each entry is still dependant on state that clients
are allowed to be in in order to perform the related system command. For ex-
ample, the following section entry would be required for a command which is
only available clients currently logged in: -

// Action Holder

else if(command.equals("myCommand")){
// If the client is logged in...

if(websession.getUser() != null){
MyCommand myCommand =

new MyCommand(websession, request, response, this);

}
// If he is not...

else{
RequestDispatcher rd =

sc.getRequestDispatcher("/myErrorPage.html");

rd.forward(request, response);

}
}

It becomes evident that implementing these sections as lists of if statements
generates the need for large amounts of supporting code for each system opera-
tion. For example, a single Request / Reply operation requires a Page Access
Control section amounting to over thirty lines without taking into account any
code comments. Experiments into breaking these structures down into smaller
more manageable object oriented solutions were found to complicate both the
implementation of the servlet and the identification of mappings from the PIM.
However, the use of this standard template does enforce a strict pattern to the
structure of the implementation and so an automated code generation process
may be the best route to create the PSM utilizing the mappings documented
within section 4.

3.3.2 Command Pattern

The test system implementation has each system operation implemented within
a separate command class. To enforce a standardized implementation approach
for all command classes, the implementation template provides a Command super
class which each system command class must extend.

Consider the following extract from the Command super class constructor: -

24

public Command(WebSession websession,

String failPage,

HttpServletRequest request,

HttpServletResponse response,

HttpServlet caller){

try{
// Get Page Attribute(s)

getAttributes(websession, request, response);

// Check Pre Condition(s)

checkPreConditions(websession, request, response);

// Execute Command

execute(websession, request, response);

// Check Post Condition(s)

checkPostConditions(websession, request, response);

}
catch(PreConditionException preE){

// Forward to Fail Page

forwardTo(failPage, request, response, caller);

catch(PostConditionException postE)

catch(Exception anyotherE){
anyotherE.printStackTrace(System.out);

}
}

The four methods called within this extract are all declared abstract. To
create a particular system command specialization simply involves the imple-
mentation of these four methods within the extending class.

The super class also provides helper functions dealing with EJB lookup and
text formatting to aid the developers code implementation. These are: -

forward(...) Used to forward the calling client onto another web page

include(...) Used to include a page within a generated response

getHomeInterface(...) Returns a reference to the EJB related to a specified
JNDI path.

outputText(...) Outputs a given String text parameter to a given PrintWriter
object, converting all line breaks into explicit
 HTML tags.

25

Pre and Post condition failure is dealt with through the raising of pre defined
exceptions, PreConditionException and PostConditionException. When an
exception is thrown, the corresponding handler catches the exception and for-
wards the client onto the commands failure page. As described before, the
failure page within the test system command implementations is the original
JSP command initiator. The command’s checkPreConditions(...) method
therefore sets any JSP attributes required to format the page, indicating the
error to the client as seen before, before throwing the exception.

A full implementation template code listing can be found at [9]

4 Platform Independent to Platform Specific Mapping

In order to enable the generation of implementation code from a higher level
UML design specification, a documented set of identifiable mappings are re-
quired between the information that occurs within the model and the corre-
sponding data within the generated system.

Below is a table that lists the elements that appear within the test system’s
PIM and the mapping used to create the corresponding PSM element.

PIM Mapping PSM

Class Names Enterprise Java Bean EJB classes
Class Attributes Implementation
Class Associations

WebSession Class Operations Command Implementation Command classes
WebSession Operation
Pre Conditions

WebSession Operation
Post Conditions

WebSession Operations JSP Allocation JSPs
WebSession Operation and Implementation
Pre Conditions

WebSession Operation Page Access Control Servlet class Page

Pre Conditions Implementation Access Control method

WebSession Operation Command Access Control Servlet class Command

Pre Conditions Implementation Access Control method

The following sections take each mapping in turn and investigates how the
information held within the PIM can be exploited within the structure of the
implementation template, described in the previous section, to facilitate the
generation of system code that implements the specified functionality.

26

4.1 Enterprise Java Bean Implementation

All object classes appearing within the system’s PIM become EJB classes within
the PSM with the exception of the System class. For example, five different
classes of object appear in the test system PIM: -

• System

• WebSession

• User

• Lot

• Bid

The WebSession, User, Lot and Bid classes are implemented as individual
EJB classes.

The PIM System class is not realized as a specific EJB implementation but
becomes the EJB server that is accessed by the servlet and command imple-
mentations. The System class within the PIM is used to enable the separation
of local to global information repositories to be formalized within the structure
of the WebSession operation’s OCL expressions. As discussed before, this is
a simplification which can map down to the actual system implementation in
many ways and in this case appears in the form of an EJB server.

The attributes that each implemented EJB class contains maps directly from
the attributes held within the corresponding class in the PIM specification, and
any associations the class has with other classes within the model.

For example, consider the following extract from the test system PIM relat-
ing to the Lot class: -

class Lot

attributes

category : String

description : String

reserve : Integer

timePosted : Integer

auctionDuration : Integer

end

There is also one association specification emanating from the Lot class.
This association has the User as the target with cardinality 1 and given the role
name seller.

The corresponding EJB bean class implementation and supporting home
and remote interfaces can be seen to relate directly from this data held within
the PIM. Consider the following extract from the Lot EJB implementation: -

27

...

public String category;

public String heading;

public String description;

public Integer reserve;

public Long timePosted;

public Integer auctionDuration;

public User seller;

public Integer id;

...

The attributes appearing in the PIM class specification correspond exactly
to those appearing in the supporting code. The seller attribute maps from
information held within the Lot / User association using the target role name
and class type.

It is important to note that the cardinality of the association is also impor-
tant if it is not simply 1. In that case, the attribute appearing within the EJB
implementation would be required to be a collection type such as an array or
Vector. In a real world situation, however, handling persistent collections raises
many questions surrounding efficiency and so a more complicated approach im-
plementing functions such as caching and pre-fetches may be more appropriate
in certain situations. This document is aimed at investigating the existence of
PIM to PSM mapping and not their optimization.

However, one noticeable difference exists in the form of an extra attribute
named id. This is because all entity bean classes require one of their attributes
to be declared the beans primary key. Therefore, the value the chosen attribute
contains must be unique for all entity bean instances of the same class. Using
only information contained within the PIM model, it is impossible to ascertain
which class attributes will contain unique data. Therefore, the pattern adopted
within the test system PSM was to use an extra integer id attribute within each
EJB class acting as the beans primary key.

Using this approach, the PIM contains all the information required to allow
automatic generation of the EJB implementations.

4.2 Command Implementation

There is a direct mapping between the operations appearing within the WebSession
class specified in the PIM, and the actual command specialization that are im-
plemented within the system.

Consider this extract from the WebSession class specification in the test
system PIM: -

28

class WebSession

...

operations

login(username : String, password : String)

logout()

registerUser(realName : String, address : String,

e mail : String, username : String,

password : String, repassword : String)

postItem(category : String, heading : String,

description : String, reserve : Integer,

days : Integer)

browse(category : String)

view(aLot : Lot)

bid(aLot : Lot, bid : Real)

end

Seven operations are specified: -

• login

• logout

• registerUser

• postItem

• browse

• postItem

• viewCommand

• bid

These appear within the test system implementation as separate commands,
namely: -

• LoginCommand

• LogoutCommand

• RegisterUserCommand

• PostItemCommand

• BrowseCommand

• PostItemCommand

• ViewCommand

29

• BidCommand

Therefore, for each operation within the specification model, a command
appears in the implementation class with the same operation name.

It is important to note that these commands only cover the real-time sys-
tem functionality required in order to implemented the auction system. These
functions are those which can be initiated by a client interaction. The real-
time functionality can be thought of as those functions that are initiated by
the client. Periodic functions, those performed by the server, are not currently
specified within the PIM and are therefore not implemented.

As discussed in section 3.3.2, all command specializations are required to
extend a super class named Command, implementing its abstract methods. By
enforcing this inheritance, it ensures that all commands are constructed in the
same way, and provides specific areas within the implementation where the
developer is required to insert the command specific code. This also provides
a means of identifying standardized mappings between the PIM and the areas
within the code where information derived from this model must appear.

There are four abstract methods: -

• getAttributes(...)

• checkPreConditions(...)

• execute(...)

• checkPostConditions(...)

The sections below discuss the content of each of these methods with respect
to the influence the PIM elements have on their implementation.

4.2.1 getAttributes(...)

The functionality performed by the getAttributes(...) method is to extract
the parameters required by the command from the incoming clients request.
There is a consistent and identifiable mapping between the system’s PIM and
the contents of this method. By looking at the relevant operations within the
PIM, it can be seen that the parameters that the methods are required to ex-
tract are taken directly from the specification. For example, consider the bid
and browse operations from the WebSession class specification: -

class WebSession

...

operations

...

bid(aLot : Lot, bid : Real)

browse(category : String)

...

end

30

Notice the parameters required by each operation. Now consider the contents
of the getAttributes(...) methods from each of the command specializations
with the test system PSM, which implement the operation functionality: -

BidCommand

public void getAttributes(WebSession websession,

HttpServletRequest request,

HttpServletResponse response)

throws Exception{
// Get parameters from request

lotId = (String)request.getParameter("lotId");

bid = (String)request.getParameter("bid");

}

BrowseCommand

public void getAttributes(WebSession websession,

HttpServletRequest request,

HttpServletResponse response)

throws Exception{
// Get parameters from request

category = (String)request.getParameter("category");

}

The browse and bid operation’s parameter names map directly into the
parameters that the corresponding commands will extract with the exception of
the object reference parameter, aLot, within the bid specification. In the PSM,
EJB objects are found through the lookup of their primary key attribute and
therefore, within the PIM to PSM mapping, the explicit use of object references
is converted into the passing of primary key values.

It is also important to note that the parameter types do not always match be-
cause all attributes extracted from the clients request are of type String whereas
some parameters within the model are of type Integer. This has implications
for the precondition mappings, which will be described below.

4.2.2 checkPreConditions(...) / checkPostConditions(...)

The content of a commands’ checkPreConditions(...) and checkPostConditions(...)
methods is the most obvious sections of within the implementation code where
direct mapping from the underlying model occurs. However, is important to
establish exactly how the individual OCL statements map into the Java im-

31

plementation structure architecture. Consider the checkPreConditions(...)
method taken from the test system’s PostItemCommand: -

public void checkPreConditions(WebSession websession,

HttpServletRequest request,

HttpServletResponse response

throws PreConditionException {
// PRE Parameters Defined

if(heading.equals("")){
request.setAttribute("paramheadingblank", "true");

throw new PreConditionException(

websession, "PostItem", "heading field blank");

}

else if(description.equals("")){
request.setAttribute("paramdescriptionblank", "true");

throw new PreConditionException(

websession, "PostItem", "description field blank");

}

else if(reserve.equals("")){
request.setAttribute("paramreserveblank", "true");

throw new PreConditionException(

websession, "PostItem", "reserve field blank");

}

// PRE Valid Reserve

try{
Integer price = new Integer(reserve);

}
catch(NumberFormatException e){

request.setAttribute("invalidreserveformat", "true");

throw new PreConditionException(

websession, "PostItem", "reserve field invalid");

}
}

The test system PIM contains the following list of preconditions for the cor-
responding postItem operation: -

32

pre PRE Has Logged In User: self.loggedin.isDefined()

pre PRE Parameters Defined: catagory.isDefined() and

heading.isDefined() and

description.isDefined() and

reserve.isDefined() and

days.isDefined()

These preconditions map directly into the contents of the checkPreConditions(...)
method with two exceptions: -

Firstly, preconditions specifying the login status of calling clients do not map
into the contents of the checkPreConditions(...) method. This is because
this has already been taken into consideration in the construction of the Page
and Command Access Control structures. Clients with the incorrect login state
for particular commands would therefore not be able to execute those commands
on the server.

Secondly, as mentioned before, the PIM contains operations with parame-
ters of type Integer. Parameters extracted from an incoming clients request,
however, are always of type String. Therefore, it is important to establish
at runtime whether these parameters extracted from the request actually con-
tain valid representations of the corresponding parameter types within the
original operation specification. Extra preconditions need to be added to the
checkPreConditions(...) method in order check any parameter casting that
may be required.

For example, within the Post Item command’s checkPreConditions(...)
method above, there is an added PRE Valid Reserve precondition. This is re-
quired because the reserve attribute within the operation specification is of
type Integer, whereas the parameter extracted from the request is of type String.
Therefore, whenever a parameter appears in an operations specification with a
type that is not a String, an extra PRE Valid <param> precondition will appear
within the corresponding command’s checkPreConditions(...) method to
test the validity of the actual parameters retrieved from the client’s request.

Now consider the checkPostConditions method from the PostItemCommand:
-

33

public void checkPostConditions(WebSession websession,

HttpServletRequest request,

HttpServletResponse response)

throws PostConditionException {
// POST Single Lot In System

// ...check it exists

Lot theLot = null;

try{
LotHome home = (LotHome) getHomeInterface(

"auction/Lot", LotHome.class);

theLot = home.findByPrimaryKey(newPK);

}
catch(Exception e){ System.out.println(e); }
if(theLot == null){

throw new PostConditionException(

websession, "PostItem",

"A single new lot is not in the system");

}
// ...check attributes are correctly set

// ...establish what the should be

User theSeller = null;

try{
theSeller = websession.getUser();

}
catch(Exception e){ System.out.println(e); }
String theCategory = category;

String theHeading = heading;

String theDescription = description;

int theReserve = Integer.parseInt(reserve);

int theAuctionDuration = Integer.parseInt(days);

// ...get what they actually are

User setSeller = null;

String setCategory = null;

String setHeading = null;

String setDescription = null;

setReserve = 0;

setAuctionDuration = 0;

try{
setSeller = theLot.getSeller();

setCategory = theLot.getCategory();

setHeading = theLot.getHeading();

setDescription = theLot.getDescription();

setReserve = (theLot.getReserve()).intValue();

setAuctionDuration =

(theLot.getAuctionDuration()).intValue();

}
catch(Exception e){ System.out.println(e); }

34

// ...test all the attributes are what they should be

if(!setSeller.equals(theSeller) ||

setCategory != theCategory ||

setHeading != theHeading ||

setDescription != theDescription ||

setReserve != theReserve ||

setAuctionDuration != theAuctionDuration){
throw new PostConditionException(websession,

"PostItem", "Lot attributes incorrect");

}
}

The test system specification contains the following post condition for the
postItem operation: -

post POST Single Lot In System:

(host.lots.select(l | l.catagory = catagory and

l.heading = heading and

l.description = description and

l.auctionDuration = days and

l.reserve = reserve and

l.seller = self.loggedin))->size = 1

This post condition maps directly into the content of the checkPostConditions(...)
method implementation. However, it is evident that a single post condition
specification within the PIM does not necessarily map to a single possible
PostConditionException within the implementation. This is due to the fact
that a post condition may encapsulate many aspects of a systems state, either
of which may be untrue in order to cause the post condition to fail. For exam-
ple, POST Single Lot In System requires the actual Lot to be present within
the system as well as all its attributes to be set correctly. Therefore, there are
two possible PostConditionExceptions implemented. This will allow the de-
veloper to pin point more precisely the error within the code that is causing the
problem.

While the PIM dictates the content of the pre and post conditions that must
appear for each system operation, no standardized OCL to Java conversion
process has been specified within the transformation to the PSM. The extent to
which the PIM constraints can be converted into actual implementation code is
dependant on existing OCL to Java tool support. It is important to note that
further investigation into the mechanisms required for the integration of such
tools into the mapping process is still required if automated tool support for the
transformations described in this document is to be implemented.

35

4.2.3 execute(...)

The execute(...) method contains the functionality of the command that
is being constructed. Without the inclusion of an action language within the
system PIM, the developer is required to implement the content of this method
directly. However, there is a identifiable pattern between the type of operation
being implemented and the structure of the execute(...) implementation.
These structures are discussed in the relevant sections below: -

Action / Response As described in section 3.2.2, an Action / Response
command performs its function and, if successful, forwards the client onto its
Response page.

Immediately before the forward operation takes place, attributes can be set
within the outgoing request to the Response page in order to tailor it appear-
ance.

To demonstrate how this process is realized within the command implemen-
tation, consider the following extract from the PostItemCommand: -

public void execute(WebSession websession,

HttpServletRequest request,

HttpServletResponse response)

throws Exception{

// Perform Command

// ...lookup user from websession

User user = websession.getUser();

// ...get lot home interface

LotHome home = (LotHome) getHomeInterface(

"auction/Lot", LotHome.class);

...

// Set page attributes and forward

request.setAttribute("heading", heading);

request.setAttribute("reserve", reserve);

forwardTo("/servlet/JavaAuction?link=itemposted",

request, response, caller);

}

Firstly, the command functionality is implemented using the parameters
extracted by the getAttributes(...) method. This has been edited from the
extract for clarity.

Secondly, attributes are then set within the outgoing request. In this case
with the names heading and reserve, set to the relevant information. The
client is then forwarded onto the commands Response page. This page can then
extracts this information and formats it for display to the client, as described

36

before.
Note, the forwardPage(...) method that is used is implemented within

the Command super class.
This two step structure is typical for all Action / Response operation’s

execute(...) implementations.

Request / Reply Request / Reply execute(...) methods differ from
their Auction / Response counterparts because they are required to gener-
ate formatted information that will become part of the reply sent to the calling
client. To demonstrate the structure of a Request / Reply execute method,
consider the following extract from the BrowseCommand: -

public void execute(WebSession websession,

HttpServletRequest request,

HttpServletResponse response)

throws Exception{

// Include header

request.setAttribute("category", category);

includePage("/servlet/JavaAuction?link=browseresultsheader",

request, response, caller);

// Generate dynamic content

PrintWriter out = response.getWriter();

out.println("");

...

// Include footer

includePage("/servlet/JavaAuction?link=browseresultsfooter",

request, response, caller);

}

Firstly, a header file is included to provide a means of maintaining consis-
tency within the presentation of website as a whole. As before, there is the
option of setting attributes within the outgoing request in order to customize
information within this header.

Secondly, the method implements the command functionality using the pa-
rameters retrieved by the getAttributes(...) method to extract information
from the system data repository. This information is output directly as part of
the generated reply.

Finally, a footer file is included, again for consistency.
Note that the includePage(...) method is also implemented within the

Command super class.

37

This three step structure is used within all Request / Reply operation
execute(...) methods.

4.3 JSP Allocation and Implementation

Section 3.2.2 discussed how the client side interface is realized through the use
of JSPs providing thin client functionality. These JSPs are divided into groups
named Page Sets, each supporting a different system operation as specified in
the PIM. The content of these groups is dependant on the operation type, of
which two have been identified. This section investigates the extent to which
the PIM can be used as a resource for the allocation and content of the JSPs,
and the mechanism through which they are created.

As seen before, a JSP Page Set consists of a group of JSP pages, each
performing a different role. An Action / Response Page Set is made up of
two pages named Action Holder and Response whereas a Reply / Request
Page Set consists of a Request Holder, Header and Footer. It is important
to note that it is the Holder pages that contain a HTML Form element used to
initiate the relevant system operation to which their Page Set is related.

The allocation of the JSP Page Sets is directly related to the system speci-
fication as one Page Set will appear within the PSM per PIM operation. How-
ever, extra information is required in order to establish the Page Set contents.

Firstly, the PIM in its current form has no distinction between the two types
of operation that have been observed. Therefore, using only the system PIM
as a resource, there is no way of determining wether an operation specification
is of type Action / Response or Request / Reply and therefore no way of
facilitating its mapping to a supporting Page Set implementation within the
PSM.

Secondly, during the implementation of the test system, is was found that
some operation Holder pages do not require an actual implementation within
their operation Page Set in the event that a reply generated by the execu-
tion of a Request / Reply operation contains its initiating HTML form ele-
ment. For example, figure 7 showed the generated reply from the test system’s
BrowseCommand. This reply contains a form used to initiate the ViewCommand
and therefore the view operation Page Set does not require its Request Holder
to be present. This is because this operation is always preceded by the browse
operation and is never executed directly. Using only the system PIM as a re-
source in its present form, it is impossible to ascertain the intended ordering
of operation execution and therefore be able to establish the instances where
explicit Page Set Holder pages are required. For the test system implementa-
tion, the extra information required was provided through the use of a simple
diagram constructed to illustrate the different paths a client can take through
the application’s command structure. This diagram can be seen in figure 10.
The round entities represent specific JSPs and are given their roles within the
implementation architecture specified using an operation and Page Set identi-
fer. The arrows that emanate from these pages specify the system operation for
which the page is the client side initiator.

38

Main

Main_LoggedIn

login logout

<<HOLDER>>
registerUser

<<RESPONSE>>
registerUser

registerUser

<<HOLDER>>
postItem

<<RESPONSE>>
postItem

postItem

<<HOLDER>>
browse

<<REPLY>>
browse

<<REPLY>>
view

<<RESPONSE>>
bid

browse

view

bid

Figure 10: Command Ordering

Using the BrowseCommand example from above, it can be seen from the
diagram that the page acting as the BrowseCommand’s reply page has the view
operation arrow emanating from it, thereby specifying the BrowseCommand’s
reply as the holder for the ViewCommand. This reply page is therefore required
to contain the HTML form element used to initiate the ViewCommand and no
implementation of a separate ViewCommand holder needs to appear within its
Page Set.

From the diagram it can be seen that the bid operation also needs no specific
Page Set holder for the same reason. In this case, the ViewCommand’s reply
becomes its initiator.

Section 3.2 discussed the aim of the JSP allocation and implementation
method in which a JSP developer could be presented with a document dictat-
ing the structure and contents of the JSP pages required to create the client side
interface. From the test system PIM it is possible to extract most of the JSP
structure and presentation elements required to create a bare minimum imple-
mentation of client side user interface. This contains the information required
to structure the JSPs with the relevant link and command initiator functions
on the correct pages. Using the test system PIM, a document named the ”JSP
Technical Overview” [8] was created that contained this information split into
sections for each JSP page where each of these sections contain information in
four classes: -

• Page Set

• Form

• Links

• Content Attributes

39

The content of each of these sections will now be investigated with respect
to the information they provide to the JSP developer and the elements within
the PIM that populate them.

4.3.1 Page Set

The name of the JSP page this section refers to is contained with the Page Set
class, along with the name of the Page Set it is contained within.

The specific pages requiring implementation can be obtained by using a
method similar to the command ordering diagram described in the previous
section.

4.3.2 Form

If the page is used as a commands initiator, the form section will dictate the
names of the input fields that should appear within the initiating HTML form
element. This will also include the name of the hidden command attribute used
by the servlet to establish the type of command being requested.

This information is taken directly from the PIM WebSession operation spec-
ifications.

4.3.3 Links

Since all page linking is governed by the server side system, some method of
specifying which sections of the website a client is allowed to request traversal
to is required. The links class dictates which sections the client is allowed to
request from this JSP page, and therefore tells the JSP developer which values
are allowed to be passed to the servlet within a link function.

This information can only be taken directly from the PIM if a standardized
way of specifying client state requirements is adopted by the WebSession oper-
ation specifications. This is because these operations each have JSP Page Set’s
that will be allocated the state requirements of their related system operation
and in order to establish which pages a client is able to link to, the state re-
quirements for the target page must be established to ensure a match with the
state the client is currently in.

Within the test system implementation the standardization is implemented
through the use of two pre conditions named PRE Has Logged In User and
PRE Has No Logged In User. An operation is attributed one of these precondi-
tions so that the login state requirements of a calling client can be established
easily. Two main pages can then be utilized, one for logged in clients and one
for logged out, each containing links to their respective operation holder pages.
The ”logged in” main page acts as the logout operation holder with the ”logged
out” main page act as the login holder, thereby facilitating the transition be-
tween client states. Operation reply or response pages are only allowed to link
back to their related main page thereby providing a simple framework that can
be easily extracted from the system PIM.

40

4.3.4 Content Attributes

The setting and retrieval of JSP attributes within page requests is used to facil-
itate both error notification through dynamic page formatting and the tailoring
of the generic page structure through the use of dynamic fields. A method of
dictating the names and use of these fields to the developer must be available.
This information class is used for this purpose.

The Content Attributes section should therefore include the names of all
the page formatting attributes that could possibly be set. These can be, in
part, derived from the PIM providing one attribute per WebSession operation
precondition.

For example, to provide some consistency, some standards were adopted
during the creation of the test system PSM.

Firstly, all operations contain a precondition, PRE Parameters Defined,
which requires all the operation’s parameters to be instantiated. The attribute
that would be set within the outgoing JSP request in the event of the precon-
dition failing followed the following pattern: -

paramxblank

Where x was the parameter name concerned. The JSP page extracting this
attribute would therefore format the page to include an error message informing
the user of the error that he has made.

Secondly, as described in section 4.2.2, operations containing parameters
of types other that strings would require extra PRE Valid <param> precondi-
tions within their corresponding command implementations. If this precondi-
tion failed, an attribute that follows the pattern shown below would be set: -

invalidxformat

Where x is the parameter name concerned.
The content of a pages Content Attributes section relating to any dy-

namic fields could be partly generated from the underlying model since Page
Set response pages would most probably always want to include some command
specific information confirming the success of a function. However, the exact
type and amount of information that is displayed is a matter of aesthetic design
and would most probably require some developer intervention.

The ”JSP Technical Overview” document for the test system can be found
at [9]

41

4.4 Page Access Control Implementation

Section 3.2.5 described the architecture of the Page Access Control method
used within the main servlet and its role within the implementation architecture.
However, it is important to note the specific elements within the PIM which
dictate the contents of this method.

As described before, one section appears within the Page Access Control
structure per Page Set. Each section then contains an entry for each JSP it
contains, where section 4.3 described the relationship between the PIM and JSP
breakdown. This breakdown has implications for the Page Access Control im-
plementation since no page entry within the Page Access Control structure
need appear for a command page holder that has no specific Page Set imple-
mentation.

Access to the pages contained within Page Sets is governed by any client
state precondition attributed to the related system operation specification in the
WebSession class. Within the implementation, this is achieved through a check
made on the calling clients related WebSession object to test for an associated
User. Whether finding a logged in client causes success or failure is dependant
on the WebSession precondition within the PIM.

To illustrate how a PIM WebSession operation specification influences the
implementation of a supporting Page Access Control Implementation, con-
sider the following extract from the main servlet for the BidCommand.

// BID

// Action Holder

// ...generated

// Response Page

else if(link.equals("bidcreated")){
if(websession.getUser() == null){

RequestDispatcher rd =

sc.getRequestDispatcher("/error.html");

rd.forward(request, response);

}
else{

RequestDispatcher rd =

sc.getRequestDispatcher("/bidcreated.jsp");

rd.forward(request, response);

}
}

The implementation is influenced in two ways: -
Firstly, the command ordering diagram in figure 10 specifies that the bid

operation is always required to be preceded by view. The ViewCommand reply
therefore becomes the BidCommand initiator and so no specific command holder

42

page needs to appear for the bid operation. This explains its absence from the
extract above.

Secondly, the bid operation specification within the PIM has a precondition
specifying only logged in client access and therefore the check on the clients
association WebSession object is set to fail if the client is currently logged out.

4.5 Command Access Control Implementation

The structure of the Command Access Control method within the main servlet
was discussed in section 3.2.5 where its role within the implementation architec-
ture was explained. This method is implemented in the same way as the Page
Access Control method with the exception that only client state requirements
apply.

Consider the following extract from the test system PSM for the BidCommand:
-

// BID

// Action Holder

// ...generated

// Response Page

else if(else if(command.equals("bid")){
if(websession.getUser() != null){

BidCommand view =

new BidCommand(websession, request, response, this);

}
else{

RequestDispatcher rd =

sc.getRequestDispatcher("/error.html");

rd.forward(request, response);

}
}

Since the bid operation specification specifies only logged in client access,
the check on the WebSession object is set to fail if the client is currently logged
out, in the same way as before.

5 Conclusions

The PIM to PSM mappings described within section 4 demonstrate the clear
relationship which exists between the test system specification and supporting
implementation. However, this was only possible through the utilization of a
specific modelling pattern and corresponding implementation template.

The modelling pattern although technology independent has been designed

43

to be domain specific to provide support for primarily e-business systems and
their specific requirements. This is achieved through the use of WebSession
objects representing remote client requests providing server side representations
for incoming client interactions. These WebSessions can provide extra informa-
tion relating to their allocated client through the use of associations to other
data stored on the server. The server side data store is modelled as set of per-
sistent data objects contained within the container class named System. In the
context of this pattern, a WebSession object has access to that data which is
global to the system as a whole, as well as a separate repository of client specific
information. The use of this PIM address the complexities of designing for mul-
tiple implementation platforms which, as Desmond DSouza states in [2], have
no clear overarching architecture. A PIM, however, can be utilized as a basis
for the development of implementation technology specific PSMs.

During the mapping process, however, some deficiencies within the PIM in
its current form become apparent: -

When implementing the access control structures and JSP allocation, it can
be seen that a state machine approach to modelling client status would be a
useful inclusion at the at the PIM level. If a client’s state referees to both the
webpages page that the client is currently viewing as well as any server side state
that may be attributed, such as login status, a more sophistication notion of
access control could be realized. Therefore, more work into this field is required.

Within the PIM, operations are divided into one of two types: those that
update the server side information repository, and those which extract infor-
mation from it. However, real world systems can contain operations that are
made up of both these functions. For example, if the login function of an online
massaging service displayed the clients inbox messages if successful, two oper-
ations have been performed in one action. Investigation into support for these
compound operations is therefore required so that the PIM is to not enforce any
structural constraints on a system’s topology.

A standardized implementation template was developed in order to facilitate
the identification of generic mappings from the PIM. These generic mapping act
to populate specific areas within the template utilizing information contained
within the corresponding PIM elements. A thin client JSP architecture was uti-
lized in order to centralize this target area on the server side, thereby simplifying
the mappings and the system’s implementation architecture as a whole.

The implementation of the test system which led to the creation of the
standard template highlighted some deficiencies within the PSM: -

As described within section 3.2.5, the access control mechanisms employed
within the test system are very simplistic in only ensuring that the calling client
making the incoming request is in the correct login state. Therefore, the access
control only checks the client’s server side state. It’s client side state, the
webpage that the client is currently viewing, is not checked. This would involve
the client’s WebSession tracking the client’s path through the website structure.
Mechanisms for implementing this extra layer of access control therefore requires
further investigation.

44

From an efficiency point of view, it has been noted that this centralized
target area can waste network capacity since all precondition checks take place
on the server. Some simplistic preconditions, such as confirming all input fields
contain data, could be implemented on the client side using javascript.

Comparing the test system PIM to its corresponding PSM yielded the identi-
fication of transformational mappings that cover the generation of the majority
of the implementation required to support the system specification. However,
further work is required at the PIM level if the generation of the implemen-
tation was to become a truly automated process. The PIM requires a richer
notation set providing the extra information required by some of the PIM to
PSM mappings that were identified as missing from the PIM in its current form.

The problems that require further investigation are: -

• Client state modelings is required within the PIM in order to overcome
the command ordering problem discussed in section 4.3 and the access
control methods in section 4.2.3.

• To provide the automated generation of actual operation functionality
within the command execute(...) methods, an action language is re-
quired within the PIM that allows high level platform independent imple-
mentations of operations to be specified.

• The extent to which the pre and post conditions can be realized within
the implementation is dependant on the effective use of existing OCL to
Java generators. Investigation into the mechanisms required to integrate
these tools into the mapping process is therefore required.

Further work is also required at the PSM level since the current PSM tem-
plate and supporting mappings only provide support for a single set of imple-
mentation technologies, namely Java Servlets, JSPs and EJBs. Further investi-
gation could establish what changes would be required to support mapping to
other technologies or indeed to facilitate legacy system integration.

Finally, in order to test the validity of the mappings as generic transforma-
tion processes, the implementation of supporting tools is required. These tools
will provide a framework where the development of a system’s PIM becomes the
information repository out of which supporting implementations can generated
through the implementation of automated PIM to PSM transformations. The
specific tooling strategies and user interaction mechanisms employed by these
tool will require investigation.

45

References

[1] L.B. Arief and N.A. Speirs. A UML Tool for an Automatic Generation of
Simulation Programs. In ACM Proceedings of 2nd International Workshop
on Software Performance (WOSP 2000), 2000.

[2] Desmond DSouza. OMG’s MDA, An Architecture for Modeling.
http://www.omg.org/mda/mda files/mdaDDSouza.pdf, 2001.

[3] F. Galan Morillo J. M. Canete Valdeon and M. Toro Bonilla. Filling the
gap between specification and implementation of software ystems by an
executable code generator of UML/OCL models. In Proceedings of IC-
SSEA’99, 1999.

[4] Jishnu Mukerji. OMG MDA and HP.
http://www.omg.org/mda/mda files/MDA Briefing HP Jishnu Mukerji
v01-1.pdf, March 2001.

[5] OMG. Model Driven Architectue (MDA). Technical Report ormsc/2001-
07-01, July 2001.

[6] OMG. Unified Modeling Language, v1.4. Technical Report formal/01-09-
67, July 2001.

[7] Mark Richters. The USE Tool. http://www.db.informatik.uni-
bremen.de/projects/USE/.

[8] R. P. Smith. JavaAuction JSP Technical Overview Document.
http://www.cs.ukc.ac.uk/people/rpg/rps4/emda/appendix/JSPTechnicalOverview.xls.

[9] R. P. Smith. Supporting website. http://www.cs.ukc.ac.uk/people/rpg/rps4/emda.

[10] R. P. Smith and S. Kent. JavaAuction Platform Independant Model.
http://www.cs.ukc.ac.uk/people/rpg/rps4/emda/PIM/JavaAuction PIM.use.

[11] R. P. Smith and S. Kent. JavaAuction Platform Specific Implementation.
http://www.cs.ukc.ac.uk/people/rpg/rps4/emda/PSI/JavaAuction PSI src.zip.

[12] R. P. Smith and S. Kent. JavaAuc-
tion Platform Specific Implementation Template.
http://www.cs.ukc.ac.uk/people/rpg/rps4/emda/PSI/JavaAuction PSITemplate src.zip.

46

