University of

"1l Kent Academic Repository

Howe, Jacob M. and King, Andy (2002) Correctness of Set-Sharing with
Linearity. University of Kent, School of Computing, Canterbury, 5 pp.

Downloaded from
https://kar.kent.ac.uk/13819/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Report 3-02

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13819/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer Science at Kent

Correctness of Set-Sharing with Linearity

Jacob M. Howe and Andy King

Technical Report No: 3-02
Date: March 2002

Copyright (©) 2002 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent CT2 7NF, UK.

Abstract

Zaffanella presents an intriguing abstract unification algorithm for tracing set-sharing with
linearity and freeness as part of this doctoral thesis. This note provides a short correctness proof
for the main novel aspect of this algorithm.

1 Introduction

One challenge in abstract interpretation is the development of analyses that are both useful (precise
and tractable) and verifiable (possess convincing correctness arguments). Zaffanella [7] presents an
abstract unification algorithm for tracing set-sharing with linearity and freeness in the presence
of rational trees that is usually accurate and efficient. Correctness is established in the presence
of rational trees [7, pp. 137-149, 155-179]. However, as pointed out in [7], arguments built on
alternating paths [1, 4] can be simpler and Zaffenella states “It would be interesting to know whether
or not the alternating paths concept (or a small variation of it) could be exploited to obtain simpler
correctness proofs for analyses based on the set-sharing domain” [7]. Indeed, Howe and King [3]
present a closely related, though less precise abstract unification algorithm for tracking set-sharing
with linearity and freeness, whose correctness proof for rational-trees is based on alternating path
results. The proof is particularly succinct [3, pp. 8-9] since it exploits a linearity lemma [4] that is
slight revision of a classic linearity lemma [1] inspired by alternating path ideas [6]. Superficially
it would appear that the proof of [3] cannot be extended to the algorithm of [7], but this note
argues the contrary. In fact the correctness argument of [3] can be extended to [7] by (multiple
applications of) a linearity lemma. The value of this observation is partly in the brevity of the
resulting proof (a strong case for simple proofs is made in [2]), partly in that it increases confidence
in the algorithm of [7] (correctness is now established two ways), and partly in that it shows that
linearity lemmas devised for pair-sharing are useful for arguing the correctness of set-sharing.

2 Preliminaries

2.1 Terms, substitutions and equations

Let T'(F, V') denote the set of (possibly infinite) terms over an alphabet of symbols F' and a (denu-
merable) universe of variables V where F NV = (). Let var(t) denote the set of variables occurring
in the term ¢ and |S| denote the cardinality of the set S.

A substitution is a (total) map 6 : V' — T'(F, V') such that dom(6) = {u € V' | 8(u) # u} is finite.
Let rng(0) = U{var(6(u)) | v € dom(0)} and let Sub denote the set of substitutions. Let 6(¢) denote
the term obtained by simultaneously replacing each occurrence of a variable x € dom(#) in t with
f(z). An equation e is a pair (s = t) where s,t € T'(F, V). A finite set of equations is denoted E
and Eqn denotes the set of finite sets of equations. Also define §(E) = {0(s) =0(¢t) | (s=1t) € E}.
The map egn : Sub — Eqgn is defined egn(f) = {x = 0(x) | * € dom(#)}. Composition 8 o) of
two substitutions is defined so that (6 o ¢)(u) = 6(y(u)) for all w € V. Composition induces the
(more general than) relation < defined by 6 < 4 iff there exists § € Sub such that ¢ =Jof. A
substitution 6 is idempotent iff # o § = 0, or equivalently, iff dom(8) Nrng(6) = 0 [5].

2.2 Most general unifiers

The set of unifiers of E is defined by: unify(E) = {6 € Sub | V(s =t) € E.O(s) = 0(t)}. The set of
most general unifiers (mgus) and the set of idempotent mgus (imgus) are defined: mgu(E) = {6 €
unify(E) | VY € unify(E).0 < ¢} and imgu(E) = {6 € mgu(E) | dom(0) Nrng(d) = 0}. Note
that imgu(E) # 0 iff mgu(E) # 0 [5]. The following lemma details how an mgu of an instance of
an equation under a substitution, relates to the mgu of the equation and the substitution.

Lemma 2.1 (Lemma 4.3 from [4]) If 6 is idempotent and § € mgu(f(E)) then 6 o § € mgu(E U
eqn(9)).

2.3 Linearity

Variable multiplicity is defined in order to formalise linearity. The significance of linearity is that
unification of linear terms enables sharing to be described by more precise sharing abstractions
(even in the presence of rational trees).

Definition 2.1 The variable multiplicity map x : T'(F,V) — {0,1,2} is defined: x(¢t) = 0 if
var(t) = 0, x(t) = 2 if there exists a variable that occurs multiply in ¢, otherwise x(t) = 1.

If x(t) = 0 then ¢ is ground, if x(¢) = 1 then ¢ is linear and if x(¢) = 2 then ¢ is non-linear. The
next lemma details the forms of sharing barred by the unification of linear terms.

Lemma 2.2 (Linearity lemma from [4]) If § € mgu({s =t}), z # y and var(f(z)) Nvar(0(y)) # 0
then either:

z € var(s) and y € var(t) or x,y €var(t) and x(s)=2 or
z € var(t) and y € var(s) or z,y € var(s) and x(t)=2

2.4 Linearity and sharing abstractions
Let X denote a finite subset of V. The sharing and linearity domains are defined over X as follows:
Definition 2.2 Liny = p(X) and Shx ={S C p(X) |0 € S}.

These domains are ordered by C and connect to the concrete domain of sets of equations by
Galois connections induced by the following concretisation maps.

Definition 2.3 ([3]) The concretisation maps vk : Liny — p(Eqn) and v5" : Shx — p(Eqn)
are defined by:

y¥(L) = {E € Egn| 30 € imgu(E).Vx € L.x(8(z)) < 1}
Y3 (S) = {E € Eqn|36 € imgu(E).a3"(0) C S}

where a3 (0) = {occ(8,u) N X|u € V} and occ(6,y) = {u € Vl|y € var(6(u))}.

Note that 'y)L(i" and fy}g(h are well-defined though formulated in terms of an arbitrary imgu [3].
Couching the definition in terms of an arbitrary imgu (rather than a specific imgu [4]) simplifies
the correctness proofs. Note also that an equation may possibly characterise a rational tree.

Finally, the following auxiliary operations will be used to express the algorithm and state its
correctness. Let S,S; € Shx. The relevance map is defined rel(t,S) = {G € Slvar(t) NG # 0};
closure is defined S* =N{S" | S C 8’ AVG1,G2 € §'.G1 U G2 € S'}; and pair-wise union is defined
S1 WSy = {Gl U Ga | Gy e S1NGy € SQ} An abstract multiplicity map x : T(F,X) x Shx X
Linx — {1,2} is also assumed, defined so that if E € y3*(S) N v%¥"(L) and 6 € imgu(E) then
X(6(8)) < X(t,5, L) [3).

3 Correctness result

Theorem 3.1 Suppose E € v5*(S)N~y&"(L), var(s)Uvar(t) C X and x(s, S, L) = x(t, S, L) = 1.
Then E U {s =t} € y3(S') where

S"=(8\ (SsUSy)) U (Ss U (SsWS5)) W (S U (Se W Syy))
Ss =rel(s, S), Sy =rel(t,S) and Sg = S5 N S;.

Proof 3.1 Put E' = {s =t}. Let 6 € imgu(E) and ¢ € imgu(EUE"). Observe that unify(0(E')) 2
unify(0(E") U egn(0)) = unify(E' Ueqn(8)) = unify(E U E') # (. Thus let 6 € imgu(6(E")).

By lemma 2.1, § 0 8 € mgu(E' U egn(f)) = mgu(E' U E). Since § € imgu(0(E')), it follows that

rng(8) C (var(E') \ dom(0)) U rng(f). Since dom(0) Nrng(8) = 0, dom(6) N rng(d) = 0, hence

500 € imgu(EU E'). To show a3(606) C S, let y € V and consider occ(d o 8,y) N X.

1. Suppose y € rng(d o). Proceed as in [3] to show occ(d o 8,y) N X € S\ (SsUS;) C 5.

2. Suppose y € rng(d o 0) \ var(6(E")). Proceed as in [3] to again show occ(d o ,y) N X €
S\ (SsUSy) CS.

3. Suppose y € rng(dof)Nuvar(6(E")). Since occ(d,y) C var(6(s)) Uvar(6(t)), occ(dob,y)NX =
U{oce(8,u) N X | u € oce(d,y)} = (URs) U (URy), where Ry = {occ(8,v)NX |v e var(G(s)) ﬁ
occ(6,y)} and Ry = {occ(f,w)NX | w € var(@(t)) Nocc(d,y)}. Because 6 € imgu(E) a
E € y31(S), then {occ(8,u)NX |u € V} = a3t(0) C S, hence Ry, R; C S. Since var(s) C X
Ry C S, and since var(t) € X, Ry C S;. If Ry = 0, then y & var(d o 0(s)) = var(d o 6(t)),
hence R; = () and occ(d 0 0,y) N X = 0 € S’". Likewise occ(d o0, y)NX =0 € S" if Ry = ().
Thus suppose Rs; # () and R; # 0. Since x(s,S,L) = 1 and x(¢,5,L) = 1, it follows that
x(0(s)) = 1 and x(6(t)) = 1. Suppose |R; \ Rs| > 1. Thus there exists u # v such that
u,v € var(0(t)) \ var(6(s)) and var(d(u)) Nvar(d(v)) # 0. This contradicts lemma 2.2 (when
instantiated with 6(s) and (¢) rather than s and t), hence |R;\ Rs| < 1. Likewise |Rs\ R;| < 1.

(a) Suppose |R;\ Rs| =0 and |R; \ R:| =0. Then Rs = R; so that occ(do8,y) N X € S}, C
Ss WSk WS

(b) Suppose |R; \ Rs| = 0 and |Rs \ R:] = 1. Then there exists G5 € R; such that R =
{Gs} U R;. Hence occ(do00,y)NX € Ss W S% C S, 0S5 WS,

(c) Suppose |R;\ Rs| =1 and |Rs \ R = 0. Analogous to previous case.

(d) Suppose |R;\ Rs| =1 and |Rs \ Ry| = 1. If R;N Ry = () then occ(d 0B, y)NX € S WS,
whereas if R; N Ry # () then occ(d 0 0,y) N X € Ss W S% WS,

Finally observe (Ss & .S;) U (Ss W S5 W S;) = (S5 U (Ss W.S%)) W (S U (S W SE)).

Acknowledgements

We thank Enea Zaffanella for his thought provoking doctoral defence and Harald Sgndergaard for
rekindling our interest in linearity.

References

[1] M. Codish, D. Dams, and E. Yardeni. Derivation and Safety of an Abstract Unification Algo-
rithm for Groundness and Aliasing Analysis. In International Conference on Logic Program-
ming, pages 79-93. MIT Press, 1991.

[2] R. A. De Millo, R. J. Lipton, and A. J. Perlis. Social processes and proofs of theorems and
programs. Communications of the ACM, 22(5):271-280, 1979.

[3] J. M. Howe and A. King. Three Optimisations for Sharing. Theory and Practice of Logic
Programming, January 2003. http://arXiv.org/abs/cs.PL/0203022.

[4] A. King. Pair-Sharing over Rational Trees. Journal of Logic Programming, 46(1-2):139-155,
2000. http://www.cs.ukc.ac.uk/pubs/2000/1052.

[6] J-L. Lassez, M. Maher, and K. Marriott. Unification Revisited. In Foundations of Deductive
Databases and Logic Programming, pages 587—625. Morgan Kaufmann, 1988.

[6] H. Sgndergaard. An application of the abstract interpretation of logic programs: occur-check
reduction. In European Symposium on Programming, volume 213 of Lecture Notes in Computer
Science, pages 327-338. Springer-Verlag, 1986.

[7] E. Zaffanella. Correctness, Precision and Efficiency in the Sharing Analysis of Real Logic
Languages. PhD thesis, University of Leeds, 2001. http://www.cs.unipr.it/ ~zaffanella.

