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Abstract 

 In principle, it would have been desirable for any 
system to have self-* capabilities when faced with 
changes that might occur either in the system or its 
environment. However, these capabilities are 
difficult to incorporate in certain classes of systems, 
mainly those in which uncertainties in their 
behaviours are not desirable. In this position paper, 
we discuss how the expected degree of autonomy of 
a system is related to the way in which a system can 
be described. The discussion is presented in the 
context of predictability and the assurances 
associated with the accuracy of that predictability. 
The subject of this paper are those systems known 
to be critical in the services they deliver, and which 
cannot incorporate high degree of uncertainty. 

1. Introduction 

As computer based systems become more complex, 
design solutions that promote their operational 
autonomy have become the holy grail of system 
architects and designers. Moreover, system 
autonomy should not be restricted to the actual 
services delivered by the system, but it should also 
be associated with the infrastructure that enables 
the system to deliver its services with a certain 
degree of quality. In other words, although 
autonomy is not something that is observed at the 
system interface, it should nevertheless enable the 
system to provide its services as specified. 

Self-* capabilities are the means by which a 
system attains its autonomy, and these capabilities 
have an impact upon the system’s fundamental 
properties, which are functionality, usability, 
performance, cost, and dependability. In this paper, 
properties and capabilities are considered to be two 
different concepts, the former is a system attribute 
that can be directly measured and quantified, while 
the latter are the means that enable one or more of 
the system properties. Although some aspects of 

self-* capabilities might allow the system to 
provide different kinds of services, the view taken 
in this paper is that system capabilities are 
essentially enablers for improving the system non-
functional properties. In addition to self-* 
capabilities, the system might have other 
capabilities whose purpose is also to enhance the 
quality of services provided by the system, and 
reduce the cost for providing them. 

This paper explores the relationship between 
self-* capabilities and predictability, which is a 
fundamental aspect in the design, operation and 
evaluation of a certain class of systems. The 
objective of this exercise is to identify, from the 
perspective of predictability, what type of systems 
should the self-* capabilities be associated with, 
and what techniques could be used to attain such 
capabilities. This would allow establishing the 
theoretical and practical limits that can be 
associated with the different approaches that are 
employed in the development of systems.  

Systems in general can be described either in 
terms of process or data [8][11]. While the former 
characterises the system as acted upon, the latter 
characterises the system as sensed [11]. A major 
difference between these two forms of description 
is the amount of information required for modelling 
a system. The process description of a system 
usually involves less information than its 
counterpart. Moreover, it might be the case that due 
to its very nature, the data description of systems 
becomes unbounded, which is not the case in the 
process description of systems.  

These two forms of system representation will 
be used as a basis for investigating the provision of 
self-* capabilities in different classes of systems. 
Depending on the system, expectations on the 
degree of autonomy of a system might be curtailed 
depending on the assumptions made and the 
properties of that system. In the next section, we 
present how self-* capabilities can be incorporated 
into systems that are essentially represented as 
process and data, and finally, we present some 
concluding remarks.  



2. Process and Data Representation of Systems  

The complexity of systems and the way they are 
integrated will require new approaches for their 
development, operation and maintenance. 
Conventional deterministic approaches may not be 
sufficient for enabling the provision of a wide range 
of services that are expected from these systems. 
Several new approaches have recently emerged 
from different areas, such as, biologically inspired 
computing, software engineering and agent 
technology, just to mention a few. In this paper, we 
restrict ourselves to the first two areas. Issues 
related to agent technology and dependability were 
recently discussed on two panels [4][7]. 

The provision of self-* capabilities by software 
engineering solutions essentially relies on the 
representation of systems as processes, in which 
solutions are normally based on the feedback 
control loop principle. Meta-parameters of system 
behaviour and structure, and its environment, are 
monitored for eventual changes so that the system 
can be adjusted for delivering required services in a 
stable way. The degree of self-* capabilities that 
can be achieved by employing these solutions is 
limited because of the need for having predictive 
behaviours, otherwise reaction to changes would 
not be deterministic. Predictability is achieved by 
removing operational uncertainties from the system 
otherwise these could disrupt the normal operation 
of the system. In other words, it is fundamental that 
during the development of these systems the 
complete state specification is identified, or else the 
occurrence of unexpected states can lead to system 
failures. Considering such restrictions, can a 
process oriented system be able to show self-* 
capabilities? They might be able, but the degree of 
autonomy is restricted, and it might be the case that 
these capabilities need to be established during 
design time. 

On the other hand, the provision of self-* 
capabilities by biologically inspired solutions 
essentially relies on the representation of systems as 
data. Since these solutions are based on a sample of 
the whole data associated with a system, complete 
system models are difficult to obtain, which 
explains why uncertainties are an inherent aspect of 
these models. Incorporating learning capabilities 
into a system might eliminate this deficiency, 
however these are likely to introduce another 
degree of uncertainty. Emergent behaviours might 
be useful in dealing with unexpected circumstances, 
but the system reaction to these might become 
unpredictable.  

It has been claimed that data oriented 
approaches might be appropriate for new emerging 
applications, but in what capacity is not yet clear. 
One issue however is clear, if predictability has to 
be an essential capability in the development and 
operation of a system, then a data oriented approach 

might not be an appropriate solution. This is 
particularly significant in those classes of systems 
in which performance and dependability constraints 
are critical. However, data oriented approaches 
could nevertheless be employed in such systems if 
sufficient protections are incorporated into their 
designs. Again such conservative solution would 
restrict one of the major benefits of data oriented 
approaches, which is that of emergent behaviours. 
An alternative approach, yet not fully explored, 
would be to build massively redundant systems, in 
which the failure of some the components would 
not affect the expected outcome of the whole 
system. However, for such solution to be 
successful, diverse data oriented approaches should 
be composed in order to increase their combined 
effectiveness, or coverage. However, a major 
weakness in such configuration would be the 
quality of the training data. If the data is not good, 
it does not matter how many approaches are 
employed if all of them suffer the same 
deficiencies.  

Still considering the idea of exploring data 
oriented approaches in the context of systems 
containing trillions of components, issues like the 
identification of the source of change is important 
for establishing the appropriate mechanisms to deal 
with the change. For example, changes that occur 
internally to a component and that eventually affect 
the behaviour of that component, how these should 
be handle in the wider system? If the rest of the 
system was able to accommodate the unknown 
behaviours, what should be the threshold to which 
the system should react either for eliminating a 
whole group of abnormal components, or 
incorporating these components as normal? The 
reverse also raises very interesting questions. If the 
environment of a system changes, how these 
changes are reflected upon the components of that 
system: either the components are eliminated from 
the system, or the components have to be modified 
for coping with the changes. All these decisions 
affect the predictability of the overall system 
behaviour if clear strategies are not implemented. 
However, as already mentioned, it might be the 
case that the combined usage of diverse strategies 
might be the only way of bringing out the best of 
the system, which eventually might lead to 
unpredictabilities.  

In the following, we present two approaches 
that serve as an example of process and data 
oriented systems, respectively. 

2.1. Architectural Approaches 

Architectural representations of systems have 
shown to be effective in assisting the understanding 
of broader system concerns by abstracting away 
from details of the system. To leverage the 
dependability properties of systems, solutions are 



needed at the architectural level that are able to 
guide the structuring of undependable components 
into a fault tolerant architecture. Fault tolerance, 
one of the means to dependability, is related to the 
self-repair and self-healing capabilities [1].  

Architectural flexibility for supporting run time 
change can be achieved by using specialised co-
operative connectors to change the pattern of 
collaboration between components: components are 
rigid entities, and how they interact provide the 
basis for adaptability [3][5]. Each collaboration is 
identified in terms of pre- and post-conditions, and 
invariants. Depending on the required change, a 
different collaboration is selected that makes the 
system to change its behaviour. All the 
collaborations are defined during design time 
together with their respective trigger conditions. 
Uncertainty between the alternative collaborations 
does not exist because choice has to be 
deterministic, and uncertainties associated with a 
particular collaboration is restricted because 
behavioural invariants have to be maintained. 

In a different work, in order to deal with 
undesirable, though expected circumstances, an 
idealised architectural component was defined with 
structure and behaviour equivalent to that of the 
idealised fault-tolerant component concept [8]. This 
approach was later extended to deal with 
commercial off-the-shelf (COTS) software 
components [9]. The basic mechanism to deal with 
the expected circumstances employed in these 
approaches was exception handling. The system 
architect must know from the outset what 
exceptions might occur, the causes associated with 
these exceptions, and there is the need to match 
these exceptions with their respective handlers. The 
predictability in these systems is obtained by 
clearly identifying what is expected, and avoiding 
the system to become brittle towards the 
unexpected. How a system reacts towards expected 
circumstances should be know beforehand and 
should be incorporated in the design of the system. 

Alternative techniques could be employed if 
undesirable circumstances, i.e. faults, could be 
grouped in terms of classes. Instead of the need for 
identifying specific handlers for each type of 
undesirable circumstance, as mentioned above, 
general solutions based on replication, diversity, 
and consensus could be devised. However, although 
these systems would be robust towards certain 
classes of faults, they are not considered 
sufficiently robust towards any class. In all these 
approaches, there is almost no degree of autonomy 
for the sake of obtaining predictable behaviour, 
which was an essential requirement of the 
applications involved. 

2.2. Artificial Immune Systems 

Artificial immune systems are adaptive systems 
inspired by theoretical immunology and observed 
immune functions, principles and models, which 
are applied to complex problems [2]. A number of 
works have attempted to build artificial immune 
systems for fault tolerance, virus detection, and 
computer security.  In particular, the creation of 
immunised fault tolerant embedded systems has 
been proposed [13], which explores negative 
selection, an immune inspired algorithm, for the 
generation of error detectors [1]. More recently, this 
work has been extended to incorporate the 
capability of generating adaptable error detectors 
during run time, thus providing the means for the 
system to adapt itself to previously unexpected and 
undesirable circumstances. The incorporation of 
this capability has come to a price: the accuracy in 
detecting erroneous states has decreased when 
compared with that of an equivalent well craft 
engineered system; other studies have drawn the 
same conclusions [11]. 

The application of data oriented approaches to 
error detection, that could be either the consequence 
of faults or intrusions, clearly illustrates the 
limitations associated with these approaches. Since 
faults and intrusions are considered rare events, the 
question to be asked is how the system is able to 
learn from rare events. If some correlation could be 
established between rare events, then the process of 
identifying new undesirable events could be based 
on the extrapolation of what is already known. 
However, this assumption cannot be generalised, 
since it is difficult to establish the correlation 
between undesirable events. An alternative 
approach could be that of learning new undesirable 
events from what is already known about the non-
erroneous behaviours of the system. This is a 
daunting challenge if we consider that the state 
space of normal behaviours might be much larger if 
compared with that of abnormal behaviour. Either 
the normal behavioural state can be encoded in such 
way that facilitates the search process, or such an 
approach becomes prohibitive in terms of efficiency 
and storage.  

Another problem that is inherent in data 
oriented approaches is the data itself. In addition for 
the need to the data to be representative of the 
actual system, there is also the need to have a deep 
understanding what the data represents. If either of 
these issues are not observed the predictability of 
the system is affected. 

3. Conclusions 

Although in this paper, the issues concerning self-* 
capabilities of systems were presented in terms of 
the dichotomy on how systems are represented, i.e.  



process versus data, we have not overlook the 
possibility of systems relying on both 
representations for achieving different degrees of 
autonomy depending on the services to be 
delivered. The idea of developing systems that rely 
on both process and data representations, which 
explores the complementary benefits of these, is not 
new. Such hybrid systems have mostly been 
confined to stand alone closed systems, however 
the challenge ahead is whether the same idea can be 
applied to more complex systems that are open and 
collaborative in their nature, and which are 
expected to show self-* capabilities and be 
predictive at the same time. 
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