
de Lemos, Rogério (2004) Self-* and Predictability: are these conflicting
System Capabilities? In: International Workshop on Self- Properties in
Complex Information Systems (SELF-STAR 2004), May/June, 2004, Bertinoro,
Italy.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14169/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14169/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Self-* and Predictability:
are these conflicting system capabilities?

Rogério de Lemos

Computing Laboratory
University of Kent at Canterbury, UK

r.delemos@kent.ac.uk

Abstract

 In principle, it would have been desirable for any
system to have self-* capabilities when faced with
changes that might occur either in the system or its
environment. However, these capabilities are
difficult to incorporate in certain classes of systems,
mainly those in which uncertainties in their
behaviours are not desirable. In this position paper,
we discuss how the expected degree of autonomy of
a system is related to the way in which a system can
be described. The discussion is presented in the
context of predictability and the assurances
associated with the accuracy of that predictability.
The subject of this paper are those systems known
to be critical in the services they deliver, and which
cannot incorporate high degree of uncertainty.

1. Introduction

As computer based systems become more complex,
design solutions that promote their operational
autonomy have become the holy grail of system
architects and designers. Moreover, system
autonomy should not be restricted to the actual
services delivered by the system, but it should also
be associated with the infrastructure that enables
the system to deliver its services with a certain
degree of quality. In other words, although
autonomy is not something that is observed at the
system interface, it should nevertheless enable the
system to provide its services as specified.

Self-* capabilities are the means by which a
system attains its autonomy, and these capabilities
have an impact upon the system’s fundamental
properties, which are functionality, usability,
performance, cost, and dependability. In this paper,
properties and capabilities are considered to be two
different concepts, the former is a system attribute
that can be directly measured and quantified, while
the latter are the means that enable one or more of
the system properties. Although some aspects of

self-* capabilities might allow the system to
provide different kinds of services, the view taken
in this paper is that system capabilities are
essentially enablers for improving the system non-
functional properties. In addition to self-*
capabilities, the system might have other
capabilities whose purpose is also to enhance the
quality of services provided by the system, and
reduce the cost for providing them.

This paper explores the relationship between
self-* capabilities and predictability, which is a
fundamental aspect in the design, operation and
evaluation of a certain class of systems. The
objective of this exercise is to identify, from the
perspective of predictability, what type of systems
should the self-* capabilities be associated with,
and what techniques could be used to attain such
capabilities. This would allow establishing the
theoretical and practical limits that can be
associated with the different approaches that are
employed in the development of systems.

Systems in general can be described either in
terms of process or data [8][11]. While the former
characterises the system as acted upon, the latter
characterises the system as sensed [11]. A major
difference between these two forms of description
is the amount of information required for modelling
a system. The process description of a system
usually involves less information than its
counterpart. Moreover, it might be the case that due
to its very nature, the data description of systems
becomes unbounded, which is not the case in the
process description of systems.

These two forms of system representation will
be used as a basis for investigating the provision of
self-* capabilities in different classes of systems.
Depending on the system, expectations on the
degree of autonomy of a system might be curtailed
depending on the assumptions made and the
properties of that system. In the next section, we
present how self-* capabilities can be incorporated
into systems that are essentially represented as
process and data, and finally, we present some
concluding remarks.

2. Process and Data Representation of Systems

The complexity of systems and the way they are
integrated will require new approaches for their
development, operation and maintenance.
Conventional deterministic approaches may not be
sufficient for enabling the provision of a wide range
of services that are expected from these systems.
Several new approaches have recently emerged
from different areas, such as, biologically inspired
computing, software engineering and agent
technology, just to mention a few. In this paper, we
restrict ourselves to the first two areas. Issues
related to agent technology and dependability were
recently discussed on two panels [4][7].

The provision of self-* capabilities by software
engineering solutions essentially relies on the
representation of systems as processes, in which
solutions are normally based on the feedback
control loop principle. Meta-parameters of system
behaviour and structure, and its environment, are
monitored for eventual changes so that the system
can be adjusted for delivering required services in a
stable way. The degree of self-* capabilities that
can be achieved by employing these solutions is
limited because of the need for having predictive
behaviours, otherwise reaction to changes would
not be deterministic. Predictability is achieved by
removing operational uncertainties from the system
otherwise these could disrupt the normal operation
of the system. In other words, it is fundamental that
during the development of these systems the
complete state specification is identified, or else the
occurrence of unexpected states can lead to system
failures. Considering such restrictions, can a
process oriented system be able to show self-*
capabilities? They might be able, but the degree of
autonomy is restricted, and it might be the case that
these capabilities need to be established during
design time.

On the other hand, the provision of self-*
capabilities by biologically inspired solutions
essentially relies on the representation of systems as
data. Since these solutions are based on a sample of
the whole data associated with a system, complete
system models are difficult to obtain, which
explains why uncertainties are an inherent aspect of
these models. Incorporating learning capabilities
into a system might eliminate this deficiency,
however these are likely to introduce another
degree of uncertainty. Emergent behaviours might
be useful in dealing with unexpected circumstances,
but the system reaction to these might become
unpredictable.

It has been claimed that data oriented
approaches might be appropriate for new emerging
applications, but in what capacity is not yet clear.
One issue however is clear, if predictability has to
be an essential capability in the development and
operation of a system, then a data oriented approach

might not be an appropriate solution. This is
particularly significant in those classes of systems
in which performance and dependability constraints
are critical. However, data oriented approaches
could nevertheless be employed in such systems if
sufficient protections are incorporated into their
designs. Again such conservative solution would
restrict one of the major benefits of data oriented
approaches, which is that of emergent behaviours.
An alternative approach, yet not fully explored,
would be to build massively redundant systems, in
which the failure of some the components would
not affect the expected outcome of the whole
system. However, for such solution to be
successful, diverse data oriented approaches should
be composed in order to increase their combined
effectiveness, or coverage. However, a major
weakness in such configuration would be the
quality of the training data. If the data is not good,
it does not matter how many approaches are
employed if all of them suffer the same
deficiencies.

Still considering the idea of exploring data
oriented approaches in the context of systems
containing trillions of components, issues like the
identification of the source of change is important
for establishing the appropriate mechanisms to deal
with the change. For example, changes that occur
internally to a component and that eventually affect
the behaviour of that component, how these should
be handle in the wider system? If the rest of the
system was able to accommodate the unknown
behaviours, what should be the threshold to which
the system should react either for eliminating a
whole group of abnormal components, or
incorporating these components as normal? The
reverse also raises very interesting questions. If the
environment of a system changes, how these
changes are reflected upon the components of that
system: either the components are eliminated from
the system, or the components have to be modified
for coping with the changes. All these decisions
affect the predictability of the overall system
behaviour if clear strategies are not implemented.
However, as already mentioned, it might be the
case that the combined usage of diverse strategies
might be the only way of bringing out the best of
the system, which eventually might lead to
unpredictabilities.

In the following, we present two approaches
that serve as an example of process and data
oriented systems, respectively.

2.1. Architectural Approaches

Architectural representations of systems have
shown to be effective in assisting the understanding
of broader system concerns by abstracting away
from details of the system. To leverage the
dependability properties of systems, solutions are

needed at the architectural level that are able to
guide the structuring of undependable components
into a fault tolerant architecture. Fault tolerance,
one of the means to dependability, is related to the
self-repair and self-healing capabilities [1].

Architectural flexibility for supporting run time
change can be achieved by using specialised co-
operative connectors to change the pattern of
collaboration between components: components are
rigid entities, and how they interact provide the
basis for adaptability [3][5]. Each collaboration is
identified in terms of pre- and post-conditions, and
invariants. Depending on the required change, a
different collaboration is selected that makes the
system to change its behaviour. All the
collaborations are defined during design time
together with their respective trigger conditions.
Uncertainty between the alternative collaborations
does not exist because choice has to be
deterministic, and uncertainties associated with a
particular collaboration is restricted because
behavioural invariants have to be maintained.

In a different work, in order to deal with
undesirable, though expected circumstances, an
idealised architectural component was defined with
structure and behaviour equivalent to that of the
idealised fault-tolerant component concept [8]. This
approach was later extended to deal with
commercial off-the-shelf (COTS) software
components [9]. The basic mechanism to deal with
the expected circumstances employed in these
approaches was exception handling. The system
architect must know from the outset what
exceptions might occur, the causes associated with
these exceptions, and there is the need to match
these exceptions with their respective handlers. The
predictability in these systems is obtained by
clearly identifying what is expected, and avoiding
the system to become brittle towards the
unexpected. How a system reacts towards expected
circumstances should be know beforehand and
should be incorporated in the design of the system.

Alternative techniques could be employed if
undesirable circumstances, i.e. faults, could be
grouped in terms of classes. Instead of the need for
identifying specific handlers for each type of
undesirable circumstance, as mentioned above,
general solutions based on replication, diversity,
and consensus could be devised. However, although
these systems would be robust towards certain
classes of faults, they are not considered
sufficiently robust towards any class. In all these
approaches, there is almost no degree of autonomy
for the sake of obtaining predictable behaviour,
which was an essential requirement of the
applications involved.

2.2. Artificial Immune Systems

Artificial immune systems are adaptive systems
inspired by theoretical immunology and observed
immune functions, principles and models, which
are applied to complex problems [2]. A number of
works have attempted to build artificial immune
systems for fault tolerance, virus detection, and
computer security. In particular, the creation of
immunised fault tolerant embedded systems has
been proposed [13], which explores negative
selection, an immune inspired algorithm, for the
generation of error detectors [1]. More recently, this
work has been extended to incorporate the
capability of generating adaptable error detectors
during run time, thus providing the means for the
system to adapt itself to previously unexpected and
undesirable circumstances. The incorporation of
this capability has come to a price: the accuracy in
detecting erroneous states has decreased when
compared with that of an equivalent well craft
engineered system; other studies have drawn the
same conclusions [11].

The application of data oriented approaches to
error detection, that could be either the consequence
of faults or intrusions, clearly illustrates the
limitations associated with these approaches. Since
faults and intrusions are considered rare events, the
question to be asked is how the system is able to
learn from rare events. If some correlation could be
established between rare events, then the process of
identifying new undesirable events could be based
on the extrapolation of what is already known.
However, this assumption cannot be generalised,
since it is difficult to establish the correlation
between undesirable events. An alternative
approach could be that of learning new undesirable
events from what is already known about the non-
erroneous behaviours of the system. This is a
daunting challenge if we consider that the state
space of normal behaviours might be much larger if
compared with that of abnormal behaviour. Either
the normal behavioural state can be encoded in such
way that facilitates the search process, or such an
approach becomes prohibitive in terms of efficiency
and storage.

Another problem that is inherent in data
oriented approaches is the data itself. In addition for
the need to the data to be representative of the
actual system, there is also the need to have a deep
understanding what the data represents. If either of
these issues are not observed the predictability of
the system is affected.

3. Conclusions

Although in this paper, the issues concerning self-*
capabilities of systems were presented in terms of
the dichotomy on how systems are represented, i.e.

process versus data, we have not overlook the
possibility of systems relying on both
representations for achieving different degrees of
autonomy depending on the services to be
delivered. The idea of developing systems that rely
on both process and data representations, which
explores the complementary benefits of these, is not
new. Such hybrid systems have mostly been
confined to stand alone closed systems, however
the challenge ahead is whether the same idea can be
applied to more complex systems that are open and
collaborative in their nature, and which are
expected to show self-* capabilities and be
predictive at the same time.

References

[1] M. Ayara, J. Timmis, R. de Lemos, L. N. de
Castro, R. Duncan. “Negative Selection: How
to Generate Detectors”. Proceedings of the 1st
International Conference on Artificial Immune
Systems. Canterbury, UK. September 2002. pp.
89-98.

[2] L. N. de Castro, J. Timmis. Artificial Immune
Systems: A New Computational Intelligence
Approach. Springer-Verlag. 2002.

[3] R. de Lemos. “A Co-operative Object-Oriented
Architecture for Adaptive Systems”. Proc. of
the 7th IEEE International Conference and
Workshop on the Engineering of Computer-
Based Systems (ECBS’00). Edinburgh,
Scotland. April 2000. pp. 120-128.

[4] R. de Lemos. “Novel Approaches in
Dependable Computing”. Proceedings of the
4th European Dependable Computing
Conference (EDCC-4). Lecture Notes in
Computer Science 2485. P. Thevenod-Fosse
and A. Bondavalli (Eds.). Springer-Verlag.
Toulouse, France. October 2002. pp. 79-80.

[5] R. de Lemos, J. L. Fiadeiro. “An Architectural
Support for Self-adaptive Software for Treating
Faults”. Proceedings of the 1st ACM SIGSOFT
Workshop on Self-Healing Systems (WOSS'02).
A. Wolf, D. Garlan, J. Kramer (Eds.).

Charleston, SC, USA. November 2002. pp. 39-
42.

[6] R. de Lemos, C. Gacek, and A. Romanovsky
(Eds.). Proc. of the ICSE 2003 Workshop on
Software Architectures for Dependable
Systems. Portland, OR. April 2003.
http://www.cs.ukc.ac.uk/events/conf/2003/wad
s/ (October 2003).

[7] A. Garcia, J. Sardinha, C. Lucena, J. Castro, J.
Leite, R. Milidiú, A. Romanovsky, M. Griss,
R. de Lemos, A. Perini. “Software Engineering
for Large-Scale Multi-Agent Systems –
SELMAS 2003: Workshop Report”. ACM
Software Engineering Notes 28(5). November
2003.

[8] P. A. de C. Guerra, C. Rubira, and R. de
Lemos. A Fault-Tolerant Software Architecture
for Component-Based Systems. Architecting
Dependable Systems. Lecture Notes in
Computer Science 2677. Springer. Berlin,
Germany. 2003. pp. 129-149.

[9] P. A. de C. Guerra, C. Rubira, A. Romanovsky,
and R. de Lemos. Integrating COTS Software
Components into Dependable Software
Architectures. Proc. of the 6th IEEE Int.
Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’03). Hokaido,
Japan. May 2003.

[10] A. G. J. MacFarlane. “Information, Knowledge
and Control”. Essays on Control: Perspective
in the Theory and its Applications. Eds. H. L.
Trentelman, J. C. Willians. Birkhäuser. 1993.

[11] R. A. Maxiom, K. M. C. Tan. “Anomaly
Detection in Embedded Systems”. IEEE
Transactions on Computers 51(2). February
2002. pp. 108-120.

[12] H. A. Simon. The Sciences of the Artificial.
Second Edition. MIT Press. Cambridge, MA,
USA. 1981.

[13] J. Timmis, R. de Lemos, M. Ayara, R. Duncan.
“Towards Immune Inspired Fault Tolerance in
Embedded Systems”. Proceedings of 9th
International Conference on Neural
Information Processing. IEEE Computer
Society. November 2002. pp. 1459-1463.

