University of

"1l Kent Academic Repository

Berry, Michael and Kolling, Michael (2013) The design and implementation
of a notional machine for teaching introductory programming. In: WiPSE
'13. Proceedings of the 8th Workshop in Primary and Secondary Computing
Education. . pp. 25-28. ACM, New York ISBN 978-1-4503-2455-7.

Downloaded from
https://kar.kent.ac.uk/37645/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2532748.2532765

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/37645/
https://doi.org/10.1145/2532748.2532765
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The desigh and implementation of a notional machine for
teaching introductory programming

Michael Berry
School of Computing
University of Kent
Canterbury, Kent, UK
mjrb5@kent.ac.uk

ABSTRACT

Comprehension of programming and programs is known to
be a difficult task for many beginning students, with many
computing courses showing significant drop out and failure
rates. In this paper, we present a new notional machine
design and implementation to help with understanding of
programming and its dynamics for beginning learners. The
notional machine offers an abstraction of the physical ma-
chine designed for comprehension and learning purposes. We
introduce the notional machine and describe an implemen-
tation in Bluel.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms

Human Factors

Keywords

Program visualization, novice programming

1. INTRODUCTION

The teaching of introductory programming within com-
puter science is essential, and mastery of this skill necessary
for students to progress. To be successful in programming,
students have to be able to form a valid and consistent men-
tal model of the machine executing their instructions. Form-
ing such a model is not easy, and the computing education
community has no agreed model in widespread use. Of-
ten, ad-hoc models are formed by instructors or students,
but these are not guaranteed to be consistent or correct. A
shared, accepted and valid mental model — a notional ma-
chine — would benefit both instructors and students in their
attempts to teach and learn programming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WIiPSCE ’13, November 11-13, 2013, Aarhus, Denmark

Copyright 2013 ACM 978-1-4503-2455-7/11/13 ...$15.00.

Michael Kélling
School of Computing
University of Kent
Canterbury, Kent, UK
mik@kent.ac.uk

1.1 Notional Machines

The difficulties involved in learning to program are well
documented; Kim & Lerch provide a summary[5]. Many
students fail or drop out of introductory courses, Bennedsen
and Caspersen[1] report average failure rate of 33%. A pop-
ular hypothesis presented by Boulay[2] states that students
find the concepts of programming too hard to grasp, do not
understand the key properties of their program, and do not
know how to control them by writing code. Boulay took this
as a starting point and motivation to formalise the concept
of a notional machine; an abstraction designed to provide
a model to aid in understanding of a particular language
construct or program execution.

Some teachers, when presented with the idea of a notional
machine, are initially skeptical, holding the view that stu-
dents need to understand what “really happens”. It should
be noted that all models held by almost all programmers
are notional, in that they represent simplifications of the
real machine. Even discussions about assembly language
or machine code are almost necessarily abstractions, since
hardware optimisations of modern processors are so complex
that they cannot fully be taken into account when reasoning
about program execution.

Thus a meaningful discussion about notional machines
does not centre around the question whether or not to use
one, but around the most useful level of abstraction to aim
for. Whatever the preferred abstraction level, it is important
that the notional machine is able to explain all observable
behaviour of the real machine in the targeted application
domain, and reasoning about the notional machine must al-
low accurate predictions to be made about behaviour of the
real machine.

1.2 The status quo

At present, one of the most common techniques for teach-
ers to explain the dynamic elements of object orientation is
through the drawing of diagrams of objects and classes, of-
ten by hand on a whiteboard. No consistent, complete and
widely accepted shared notation exists across classrooms,
and it is left to the student to form a mental model based
on often ad-hoc diagrams the teacher may use. One contri-
bution of this work is to provide a shared model and nota-
tion that can be used by teachers and lecturers, in textbooks
and in discussions. Such a model is commonly expressed in
diagrammatic form, and the diagram notation is presented
in this paper. The second contribution is an implementa-
tion of this notional machine in a software system. This
software tool, implemented as an extension of the BlueJ en-

vironment[6], uses the notation to visualise the execution of
a Java program in real time.

In this paper, the diagrams produced by the software tool
will serve to also introduce the general diagrammatic nota-
tion.

2. RELATED WORK

Several educational software systems are in use in class-
rooms that offer presentations and animations of notional
machines. UUhistle[10] is a software tool that provides an-
imated, live visualisations of the execution of Python pro-
grams. The model employed operates at a fairly low level,
animating single statements to illustrate the functionality of
single constructs, such as assignment or parameter passing.
A related tool, Jeliot[8], operates at a similar conceptual
level to UUhistle. Also of interest is JGrasp[3]; an inte-
grated environment providing several separate visualisations
of parts of the system.

The use and effectiveness of these systems for learning is
still under debate. Although literature regarding algorithm
visualisation effectiveness is readily available, literature on
program visualisation is more scarce. For algorithm visuali-
sations, one meta-study[4] found a high correlation of effec-
tiveness in those studies that actively involved the students.
Similar results have not yet been shown for program visual-
isations. Where literature does exist, it is far from conclu-
sive, with different studies even on the same tool claiming
different results. In one study evaluating Jeliot’s effective-
ness, Moreno and Joy found that on average, the transfer of
knowledge from the tool to the student was not successful[7].
However, a different study (also using Jeliot) claims “a sig-
nificant percentage of students had achieved better results
when they were using a software visualisation tool”[9].

For our own work this means that demonstrating the ef-
fectiveness of the tool has yet to be demonstrated in future
work. No convincing prior work exists that allows reliable
conclusions to be drawn about the efficacy of such systems.

3. RESEARCH QUESTIONS

This work supports two distinct and separate use cases:
the comprehension of programming and the comprehension
of programs. The first is most relevant for beginning pro-
grammers: the goal here is to understand how a computing
system executes program code, the mechanics and details of
a programming language and the concepts of the underly-
ing paradigm. Typical questions that the system helps to
answer in this case are What does an assignment statement
do? or How does a method call work? For experts who have
mastered the language this aspect is no longer relevant.

The second use case is to understand and investigate a
given program. The goal is to become familiar with a given
software system, or to debug a program. Typical questions
in this case are Why does my program behave like this?
or How many objects are being created when I invoke this
method? This part of the functionality remains relevant
even for seasoned programmers.

These use cases lead us to the main aims of the model:

Aim 1 : To provide a shared notation for representing the
execution of an object-oriented program within the
proposed model.

Aim 2 : To provide a valid mental model for learning and
reasoning about object-oriented programming.

Aim 3 : To provide a basis for an implementation in soft-
ware that can be used to provide a visualisation of the
model alongside a running object-oriented program.

These aims further lead us to the two principle research
questions:

Research question 1 : Can a consistent, correct and com-
plete (in the context of the defined problem space)
model be developed which explains the observed be-
haviour of the execution of object oriented programs?

Research question 2 : Can this model be implemented in
animated form, in software, to provide a visualisation
for the execution of object oriented programs?

For the purpose of RQ1, we define consistent to mean that
valid reasoning within that model must correctly predict the
behaviour of the underlying system; we define complete to
mean that all observed behaviour within the problem space
should have a representation within the model. Thus, com-
pleteness is defined against a given problem space. Our tar-
geted problem space covers Java programs of a complexity
up to first year university programming problems. Thus, we
can explicitly exclude some constructs from our model, if we
postulate that they are outside our targeted problem space.

From these research questions, a hypothesis is formed for
the expected outcome of this work:

Hypothesis : The formation and use of the model is useful
for the learning of object-oriented programming and
the comprehension of the behaviour of given programs.

Our model works at the level of visualising objects, classes,
methods and the call chains between them. It also shows
state of objects, but does not work at the level of simple
statements.

4. NOTATION

Figure 1 shows the default diagram for a simple program.
Classes are represented as peach coloured rectangles and ob-
jects are shown using dark red rectangles with rounded cor-
ners. This notation has been maintained from the original
BluelJ representations. The arrows in this diagram represent
references — a single “ClockDisplay” object with references
to two separate “NumberDisplay” objects.

One significant difference in representation of objects in
this diagram and those in the previous versions of BlueJ
on the object bench is the naming scheme. On the object
bench, the objects were given unique identifiers (names).
This is a conceptual misrepresentation, conflating variables
(which have names) with objects (which have not). The
new notional machine notation avoids this misconception
by not naming the objects themselves; instead, names are
attached to references. These names are not initially shown,
but clicking on any object reveals its expanded view, showing
the state of all its fields and references.

4.1 Expanded object view

Figure 2 shows a similar program state with all objects
expanded. The references previously anchored to the middle

MurmberDisplay NumberDisplay

ClockDisplay

NumberDisplay

ClockDisplay

Figure 1: The clock display project.

of the “ClockDisplay” in the collapsed view are now anchored
to a particular field. Fields which contain references to other
objects are shown as reference arrows; primitive fields are
shown by displaying the corresponding literal directly in the
field.

4.2 Methods

Methods can be invoked interactively on any object in
the diagram by right-clicking an object and selecting the
method from the object’s pop-up menu. When an execution
is being performed, currently active methods are shown in
the diagram. Active methods are displayed as rectangles
with rounded corners at the bottom right of the object on
which they were called. Static methods are represented in
the same way, but attached to the class rather than the
object. Arguments, if any are passed, are displayed in the
parentheses consistent with the representation of fields on
objects.

4.3 Call Sequences

Most commonly, a call sequence is represented by a stack
diagram separate from object diagrams as, for example, in
the UUhistle and Jeliot systems. The overall state of the
system is then presented in separate views, and users must
expend some mental effort to amalgamate these different
representations while the program is executing.

Our notional machine notation avoids this separation and
dual representation by combining this information in a single
diagram. The call sequence is overlaid on the objects in the
main display.

Figure 2 shows an example of a call chain during exe-
cution. The “timetick()” method was interactively invoked
and then called the “updateDisplay()” method, which in
turn called “append(“01”)”. When drawing on a whiteboard,
these arrows can be overlaid over the object diagram and are
typically drawn and wiped out to illustrate the dynamic na-
ture of calls. In the software implementation of the notional
machine, this sequence is animated, with method boxes fad-
ing in and out as their execution begins and ends, and the
call chain arrow extending and contracting as the calls are
made. Users can control the speed of this animation. The
last called (currently active) method is displayed with a
highlight colour, allowing users to visually follow the locus
of execution as the call animation is executing.

Simple execution chains, such as the one presented here,
are easily and clearly represented in the diagram. For longer
and more complex chains of calls, a good layout algorithm

NumberDispla

24
ClockDisplay

NumberDisplay

60 |
1|
LtringBuilder

Figure 2: An object diagram with overlaid call se-
quence showing a chain of method invocations.

is important to maintain readability of the notation. Im-
proving the layout algorithms currently used is an area of
ongoing work in our system.

The visualisation of recursion is also an interesting use
case, since the arrow will point back to the current method
an arbitrary number of times. This is implemented by vi-
sualising the arrow looping back on itself, with a number
attached showing the count of recursive invocations along
this path.

4.4 Software Visualisation

So far the notation was relevant to both hand drawn and
programmatically generated diagrams. The following details
some controls present in the software visualisation of the
diagram.

4.4.1 Speed and stepping granularity

The speed slider (Figure 3) controls the pace at which
the visualisation unfolds, which therefore determines how
fast the program executes. If the slider is all the way to
the right then no pauses are added. With the slider at the
other extreme, on the far left, a pause of 2 seconds is added
between each step of the program. The interim levels have
pauses that scale linearly between these two values. A “step”
of the program in our context is a method call or a method
return (in traditional terms, a push or pop operation on the
stack) — single statement executions are not visualised.

4.4.2 Level of Detail

The notation allows for a range of detail to be included
or excluded, depending on intended focus of the user. The
detail slider controls this level in the generated diagram.
Supporting different levels of detail allows a range of use
cases to be supported in a practical, readable notation. In
the first weeks of learning, for example, a student may depict
the execution of a small program consisting only of a few
lines of code, and very few objects and method calls. She
may be interested in understanding how objects can interact
and how method calls operate.

<& Bluel: bigtest SRREE X

Project Edit Tools View Help

Student

oom @. 'w

School

Controls

I > Speed
Mew Class | Compile 0) o tink | Switch to class view
- e W o gl i

obj_9: Student

Figure 3: The heatmap view while the program is
executing. Note the differing colours on the objects
showing different levels of activity.

Later examples will include programs with dozens or hun-
dreds of objects and the execution of thousands of lines of
code. In this case, attention may be on the number of ob-
jects being created and their overall interactions, but denot-
ing every single parameter value as it is being passed is no
longer of interest. Our software implementation therefore
allows control over the display by offering seven different
levels of detail. In the full detail view, objects are shown in
their expanded state when created, displaying the value of
their fields. Methods are shown as they are invoked, with a
call chain arrow animated to show method invocation and
method return. When parameters are passed, this is ani-
mated; the value is shown moving from the calling method,
along the call chain, to the parameter slot in the invoked
method.

This level of detail is gradually reduced across these levels
until the heatmap view is reached (section 4.4.3).

4.4.3 Heatmap

The heatmap view provides the least level of detail of ex-
ecution and is optimised for large programs which may cre-
ate many hundreds or thousands of objects. Three main
changes can be seen when switching to heatmap view (Fig-
ure 3): The objects are shown in a more compact notation
using just enough space to display their type, they fade to
a very dark purple colour, and a colour key is displayed in
the top right of the screen.

In this view, as the execution unfolds, the objects “warm
up” as more methods are invoked, first turning a lighter pur-
ple, then red, then yellow. All objects cool down gradually
while not being active, so that the notation always high-
lights the objects performing most of the recent activity.
This notation allows to easily perceive object creation and
destruction, as well as hotspots of activity.

5. FUTURE WORK

At present the implementation is in a usable state for re-
search purposes; further refinement is needed before it can

be released to students and teachers. It is thus not yet pub-
lished, but freely available on request. Work in the near
future will concentrate on two main areas: First, the imple-
mentation of a better layout algorithm, and second, testing
usability with first year students.

6. SUMMARY

Notional machines exist to provide way for learners to
better understand how a particular program is executing,
and thus provide students with a valid way to model the
execution of a program. This paper describes a model and
notation for a notional machine and the implementation of
a dynamic program visualiser using this notation.

7. ACKNOWLEDGEMENTS

We wish to thank Michael Caspersen for many discus-
sions about notional machines and their potential uses in
programming education. His thoughts and ideas were in-
strumental in shaping this project.

8. REFERENCES

[1] Jens Bennedsen and Michael E. Caspersen. Failure
rates in introductory programming. SIGCSE Bull.,
39(2):32-36, June 2007.

[2] Du Boulay. Some difficulties of learning to program.
Journal of Educational Computing Research, 2:57-73,
1986.

[3] T. Dean Hendrix and James H. Cross II. JGRASP: an
integrated development environment with
visualizations for teaching java in CS1, CS2, and
beyond. J. Comput. Sci. Coll., 23(2):170-172,
December 2007.

[4] Christopher Hundhausen, Sarah A. Douglas, and
John T Stasko. A meta-study of algorithm
visualization effectiveness. Journal of Visual
Languages & Computing, 13(3):259-290, June 2002.

[5] Jinwoo Kim and F. Javier Lerch. Why is programming
(sometimes) so difficult? programming as scientific
discovery in multiple problem spaces. Information
Systems Research, 8(1):25 =50, March 1997.

[6] Michael Kélling, Bruce Quig, Andrew Patterson, and
John Rosenberg. The BlueJ system and its pedagogy.
Computer Science Education, 13:249-268, December
2003.

[7] Andrés Moreno and Mike S. Joy. Jeliot 3 in a
demanding educational setting. Electronic Notes in
Theoretical Computer Science, 178(0):51-59, July
2007.

[8] Andrés Moreno, Niko Myller, Erkki Sutinen, and
Mordechai Ben-Ari. Visualizing programs with jeliot
3. page 373. ACM Press, 2004.

[9] Sanja Maravic Cisar, Dragica Radosav, Robert Pinter,
and Petar Cisar. Effectiveness of program
visualization in learning java: a case study with jeliot
3. International Journal of Computers
Commumnications € Control, 6, 2011.

[10] Juha Sorva and Teemu Sirkid. UUhistle. pages 49-54.
ACM Press, 2010.

