
Bowman, Howard, Gomez, Rodolfo and Su, Li (2004) How to stop time stopping
(preliminary version). Technical report. University of Kent, Canterbury,
Kent, CT2 7NF, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14161/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14161/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer Science at Kent

How to stop time stopping
(preliminary version)

Howard Bowman, Rodolfo Gómez and Li Su

Technical Report No. 9-04
May 2004

Copyright c© 2003 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

How to stop time stopping
(preliminary version)

Howard Bowman, Rodolfo Gomez∗, Li Su

Computing Laboratory, University of Kent, United Kingdom
{H.Bowman,rsg2,ls68}@kent.ac.uk

May 17, 2004

Abstract

Timed automata are a very successful notation for specifying and
verifying real-time systems. One problem of the approach though is
that timelocks can freely arise. These are counter-intuitive situations in
which a specifier’s description of a component automaton can inadver-
tently prevent time from passing beyond a certain point. This means,
in fact, that the entire system stops. We identify a number of different
types of timelocks and argue that each type should be treated differ-
ently. We distinguish between time-actionlocks and zeno-timelocks and
argue that a constructive approach should be applied to preventing the
former of these, while an analytical approach should be used to prevent
the latter. In accordance with this position, we present a revision of the
interpretation of parallel composition in timed automata in order to
prevent time-actionlocks. With respect to zeno-timelocks, we present
an analytical method to ensure absence of zeno-timelocks which builds
upon the notion of strong non-zenoness introduced by Tripakis. We
show how Tripakis’ results can be extended, broadening the class of
timed automata specifications which can be guaranteed to be free from
zeno-timelocks. Moreover, we present a tool that we have developed
which implements this syntactic verification on UPPAAL-like timed
automata specifications. Also, new syntactic properties, in the spirit
of strong non-zenoness, are presented which also ensure zeno-timelock
freedom. Finally, we illustrate the use of the tool on a real-life case
study, the CSMA/CD protocol.

∗Rodolfo Gomez is supported by the ORS Award Scheme.

1

1 Introduction

Timed automata are one of the most successful techniques for modelling and
verifying real-time systems. This is particularly evident from the success
of region graph based model checking techniques such as UPPAAL [10],
Kronos [7] and HyTech [8]. From amongst this set UPPAAL is perhaps the
most prominent, having been extensively applied in protocol verification
(visit www.uppaal.com for examples and documentation). In particular, it
is now a mature and usable verification method. Despite these successful
applications of timed automata model checking, there are some difficulties
with the approach. Perhaps the most important is that timelocks can freely
arise and furthermore, it can be very difficult to determine that a non-trivial
system is free from such timelocks.

Informally speaking a system can timelock if a state can be reached where
no possible subsequent run allows time to diverge, i.e. pass by an infinite
amount. It is important to note that timelocks can arise for a number of
reasons and that different classes of timelock need to be handled in different
ways. In particular, we can distinguish between the following two classes of
timelock.

Time-actionlocks are states in which neither time or action transitions
can be performed, which typically arise when there is a conflict between
the urgency and the synchronisation properties of the system, i.e. when
a location invariant ensures that a component automaton must perform a
half-action at a time at which no other component automaton is offering a
matching half-action. Thus, the synchronisation must happen (due to the
urgency constraint) at a point at which it is not enabled.

Zeno-timelocks are situations in which time is unable to pass beyond
a certain point, but actions continue to be performed. Thus, the system is
continuing to evolve but none of these evolutions will enable time to diverge.
The hallmark of such paradoxical runs is that an infinite number of actions
are performed in a finite period of time.

It is also important to realise that timelocks are quite different from
actionlocks, which are the analogue of deadlocks in untimed specifications.
Critically, actionlocks allow time to pass; the automaton may not be able to
perform any further “useful” computation, but it can still pass time, which
means that it does not prevent other component automata from passing
time. The fact that local actionlocks do not propagate globally is the reason
why actionlocks are much more palatable than timelocks. Global propaga-
tion in the timelock situation arises because global time passing is dependent
upon local time passing. As illustrated by the fact that a collection of timed

2

automata can only pass time by t time units if all component automata can
pass time by t time units. Thus, effectively, automata synchronise on the
passage of time.

In the early work on timed concurrency theory, which largely focussed
on timed process algebra, the problem of timelocks was noted and partially
resolved. As a result most timed process algebra only allow urgency to be
applied to internal actions. This is the so called as soon as possible (asap)
principle [11], which prevents the occurrence of timelocks due to synchroni-
sation mismatches. Unfortunately, this is not a suitable solution for timed
automata. This is because TA do not have a hiding operator. In timed
process algebra with asap the hiding operator, which turns observable into
internal actions, has an important role since (implicitly) it makes actions
urgent. The absence of hiding in TA means that it is not possible to (selec-
tively) take an observable action that results from synchronising half actions
and turn it into an (urgent) internal action.

However, the timelock problem is real and unless significant care is taken
the possible presence of timelocks is a major issue for the formal specifica-
tion and analysis of time critical systems. This problem was highlighted in
[5] where a number of timelock errors were discovered by hand in a timed
automata model of a lip-synchronisation protocol, however, machine verifi-
cation did not give any method to check for such situations. Furthermore, it
was shown in [4] that, when using timed automata, even the simple task of
defining a timeout in a communication protocol is hampered by the possible
presence of timelocks.

In previous papers we have considered the timelock problem, classified
different types of timelocks and highlighted solutions corresponding to the
needs of these different classes [6, 4, 5]. These results are also included in
this paper for completeness purposes. Also, although many different authors
have considered the issue of timelocks, they have each treated the problem
in different ways. For example, there is little terminological consistency
across the body of papers on this issue. In response, this paper also seeks
to provide a unified and consistent treatment of timelocks.

Our main interest here though is with zeno-timelocks; we present a an-
alytical method to ensure absence of zeno-timelocks which builds upon the
notion of strong non-zenoness introduced by Tripakis [14]. We show how
Tripakis’ results can be extended, broadening the class of timed automata
specifications which can be guaranteed to be free from zeno-timelocks. In
particular, the relationship between strong non-zenoness and synchronis-
ing components is analysed in more detail. Moreover, we present a tool
that we have developed which implements this syntactic verification on

3

UPPAAL-like timed automata specifications. Also, new syntactic proper-
ties, in the spirit of strong non-zenoness, are presented which also ensure
zeno-timelock freedom. This sufficient-only approach can only guarantee
that zeno-timelocks do not occur, but it presents two important advantages:
a) it works at a syntactic level, and thus it is more efficient than reachability
analysis, and b) it identifies all potential sources of zeno-timelocks directly
on the timed automata models. Therefore, even if the method fails to recog-
nise that a model is free from zeno-timelocks, it helps the user in narrowing
the analysis to specific parts of the model.

To the best of our knowledge, no other tool implements syntactic checks
for zeno-timelock freedom. For example, UPPAAL does not support any
form of zeno-timelock checking. Some other tools do better, e.g. Kronos
[15], but they suffer from other problems. For example, Kronos is not as
usable a tool as UPPAAL. UPPAAL presents a well-developed GUI, a rich
modelling language, a graphical simulator, and a fast verifier, among other
features. Kronos can verify the TCTL formula ∀2∃3=1true, whose satis-
faction represents a sufficient and necessary condition to ensure timelock
freedom, but its verification is based on reachability analysis. Thus, it could
be that for some specifications, checking timelock freedom in Kronos would
be the most expensive requirement to check and the need to check it could
prevent a complete verification.

We begin by defining timed automata and their syntax (see Section 2).
Then we present a summary of our classification of deadlocks (see Section 3).
In particular, we distinguish between time-actionlocks and zeno-timelocks
and argue that a constructive approach should be applied to preventing the
former of these, while an analytical approach should be used to prevent the
latter. Then in accordance with this position, we consider how the interpre-
tation of parallel composition in timed automata could be revised in order
to prevent time-actionlocks from happening, c.f. section 4. Following this we
highlight the theory behind our zeno-timelock checking approach (see Sec-
tion 5). Then the main body of the paper (Section 6) describes our tool and
presents a case study of zeno-timelock verification on the CSMA/CD pro-
tocol. Section 7 presents concluding remarks, and an appendix is provided
which includes proofs of the theorems presented in the paper.

2 Timed Automata Notation

Basic Sets. CA is a set of completed (or internal) actions. HA= { a?, a! | a ∈
CA } is a set of half (or uncompleted) actions. These give a simple CCS style

4

[9] point-to-point communication similar, for example, to the synchronisa-
tion primitives found in UPPAAL [10]. Thus, two actions, a? and a! can
synchronise and generate a completed action a. A = HA∪CA is the set of all
actions. R+ denotes the positive reals without zero and R+0 = R+ ∪ {0}. C
is the set of all clock variables, which take values in R+0. CC is a set of clock
constraints of the form x ∼ n, x− y ∼ n or φ1 ∧ φ2, where n ∈ N, x, y ∈ C,
φ1, φ2 ∈ CC and ∼ ∈ {<,>,=,≤,≥}. Also if C ⊆ C we write CCC for the
set of clock constraints generated from clocks in C. V = C → R+0 is the
space of possible clock valuations and VC = C → R+0 is the space of clock
valuations for clocks in C. L is the set of all possible automata locations.

Timed Automata. An arbitrary element of A, the set of all timed au-
tomata, has the form (L, l0, T, I, C), where the elements are as follows.
L ⊆ L is a finite set of locations; l0 ∈ L is a designated start location.
C is the set of clocks of the timed automaton. T ⊆ L×A×CCC ×P(C)×L
is a transition relation (where P(S) denotes the powerset of S). A typical
element of T would be, (l1, a, g, r, l2), where l1, l2 ∈ L are automaton loca-
tions; a ∈ A labels the transition; g ∈ CCC is a guard; and r ∈ P(C) is a
reset set. (l1, a, g, r, l2) ∈ T is typically written, l1

a,g,r−−−−→ l2, stating that the
automaton can evolve from location l1 to l2 if the (clock) guard g holds and
in the process action a will be performed and all the clocks in r will be set
to zero. I : L → CCC is a function which associates an invariant with
every location. Informally, the automaton can remain on a given location
only as long as the invariant is true. Thus, invariants are used to model
urgency: (enabled) outgoing transitions must be taken immediately when
the corresponding location invariant is false. We will be precise about the
interpretation of invariants when we discuss the semantics of TAs shortly,
however, it is important to understand the difference between the role of
guards and invariants. In this respect we can distinguish between may and
must timing. Guards express may behaviour, i.e. they state that a transition
is possible or in other words may be taken. However, guards cannot “force”
transitions to be taken. In contrast, invariants define must behaviour. This
must aspect corresponds to urgency , since an alternative expression is that
when an invariant expires, outgoing transitions must be taken straightaway.
We also define the following elements (where A ∈ TA refers to a single
automaton, and A[1], . . . , A[n] ∈ TA refers to a network of automata):

• A structural loop in A is a sequence of locations and edges in A,
l0

a1,g1,r1−−−−−→ l1
a2,g2,r2−−−−−→ . . .

an,gn,rn−−−−−→ ln, s.t. l0 = ln.

• Loops(A) is the set of all structural loops in A.

5

• An edge e = (a, g, r) is the edge-labelling of l1
a,g,r−−−→ l2 ∈ T .

• Edges(A), Edges(lp) denote, respectively, the set of edges in A and in
loop lp.

• Loc(lp) is the set of locations in loop lp.

• A half loop is a loop which contains at least one edge labelled with a
half action, i.e. lp ∈ Loops(A) s.t. ∃ (a, g, r) ∈ Edges(lp). a ∈ HA. A
complete loop is a loop which is not a half loop.

• Two synchronising loops lp1, lp2, denoted sync(lp1, lp2), are half loops
in different component automata with matching half actions, i.e.
∃A[i], A[j] (i 6= j), lp1 ∈ Loops(Ai), lp2 ∈ Loops(A2), e1 ∈ Edges(lp1), e2 ∈
Edges(lp2). e1 = (a?, g1, r1) ∧ e2 = (a!, g2, r2).

• A composite edge is any e = (a, g1 ∧ g2, r1 ∪ r2) = e1||e2, where e1 =
(a?, g1, r1) and e2 = (a!, g2, r2).

• A composite loop, denoted comp(lp), is s.t. ∃A[i], A[j], ei ∈ Edges(A[i]), ej ∈
Edges(A[j]). ei||ej ∈ Edges(lp).

• Given two loops lp1, lp2 we say that lp1 is included in lp2, denoted lp1 ⊆
lp2, if Loc(lp1) ⊆ Loc(lp2) and ∀e ∈ Edges(lp1).(e ∈ Edges(lp2) ∨
∃A[i], ei ∈ Edges(A[i]). e||ei ∈ Edges(lp2))

• HL is the set of all pairs of synchronising loops in A[1], . . . , A[n], i.e.
HL = {(lpi, lpj) | ∃A[i], A[j], (i 6= j). lpi ∈ Loops(A[i]) ∧ lpj ∈
Loops(A[j]) ∧ sync(lpi, lpj)} .

• CL is the set of all complete loops in A[1], . . . , A[n], i.e. CL = {lp | ∃A[i]. lp ∈
Loops(A[i]) ∧ ∀(a, g, r) ∈ Edges(lp). a ∈ CA}.

Semantics. Timed automata are semantically interpreted over transition
systems which are triples, (S, s0,⇒), where S ⊆ L × V is a set of states;
s0 ∈ S is a start state; and ⇒⊆ S × Lab × S is a transition relation, where
Lab = A ∪ R+. Thus, transitions can be of one of two types: discrete
transitions, e.g. (s1, a, s2), where a ∈ A and time transitions, e.g. (s1, d , s2),
where d ∈ R+ and the passage of d time units is denoted. Transitions are
written: s1

a=⇒ s2 respectively s1
d=⇒ s2.

For a clock valuation v ∈ VC and a delay d, v + d is the clock valuation
such that (v + d)(c) = v(c) + d for all c ∈ C. For a reset set r, we use r(v)

6

to denote the clock valuation v′ such that v′(c) = 0 whenever c ∈ r and
v′(c) = v(c) otherwise. v0 is the clock valuation that assigns all clocks to
the value zero.

The semantics of a timed automaton A = (L, l0, T, I, C) is a transition
system, (S, s0,⇒), where S = { s′ ∈ L × VC | ∃s ∈ S, y ∈ Lab . s

y
=⇒ s′ } ∪

{ [l0, v0] } is the set of reachable states, s0 = [l0, v0] and ⇒ is defined by two
inference rules (I(l0)(v0) is required to hold):

l a,g,r−−−−→ l′ g(v) I(l′)(r(v))
[l, v] a=⇒ [l′, r(v)]

∀d′ ≤ d . I(l)(v + d′)

[l, v] d=⇒ [l, v + d]

The first rule gives an interpretation to invariants such that locations can-
not be entered if the corresponding invariant is false. This interpretation,
usually known as the strong-invariant interpretation, is the one adopted
by UPPAAL and also assumed by our non-urgency properties presented in
Section 5.

Parallel Composition. We assume our system is described as a network
of timed automata. These are modelled by a vector of automata1 denoted,
|A = |〈A[1], ..., A[n]〉 where A[i] is a timed automaton. In addition, we let
u, u′, etc, range over the set U of vectors of locations, which are written,
〈u[1], ..., u[n]〉. We use a substitution notation as follows:
〈u[1], ..., u[j], ..., u[n]〉[u[j]′/u[j]] = 〈u[1], ..., u[j − 1], u[j]′, u[j + 1], ..., u[n]〉
and we write [u[j]′/u[j]] as [j′/j] and u[i′1/i1]...[i′m/im] as u[i′1/i1, ..., i

′
m/im].

If ∀i(1 ≤ i ≤ n) . A[i] = (Li, li,0, Ti, Ii, Ci) then the product automaton,
which characterises the behaviour of |〈A[1], ..., A[n]〉 is given by, (L, l0, T, I, C)
where L = { |u | u ∈ L1 × ... × Ln }, l0 = |〈l1,0, ..., ln,0〉, T is as defined by
the following two inference rules, I(|〈u[1], ..., u[n]〉) = I1(u[1]) ∧ ...∧ In(u[n])
and C = C1 ∪ ... ∪ Cn.

u[i] x?,gi,ri−−−−−→u[i]′ u[j] x!,gj ,rj−−−−−→u[j]′

|u x,gi ∧ gj ,ri∪rj−−−−−−−−−→|u[i′/i, j′/j]
u[i] x,g,r−−−−→u[i]′ x ∈ CA
|u x,g,r−−−−→|u[i′/i]

where 1 ≤ i 6= j ≤ |u|. Note, we write x ≤ k 6= r ≤ y in place of x ≤ k ≤
y ∧ x ≤ r ≤ y ∧ k 6= r.

1Although our notation is slightly different, our networks can be related, say, to the
process networks used in UPPAAL.

7

3 Classification of Deadlocks

In a very broad sense, deadlocks are states where the system is unable to
progress further. We would expect the system to be able to run forever hence
deadlocks can be seen as error situations. In untimed systems, deadlocks are
states where the system will never be able to perform an action. However,
in timed automata, the range of transitions has been broadened to time
passing and discrete transitions (actions). Consequently, in this setting the
ways of violating the requirements of progress can vary. So deadlocks in
timed automata can be of different types. We will highlight these different
types and in addition, as an assessment of the state of the art we will also
consider the means that UPPAAL provides for checking for such locks.

Before giving the formal definitions of various types of deadlocks, we
briefly review the terminology we will use, this is largely inherited from
[6, 14]. Given s = [l, v], we will write s+ d instead of [l, v + d]. Also, we will
write s

x=⇒ to denote ∃ s′. s
x=⇒ s′. A run of A ∈ TA starting from state s0 is

a finite or infinite sequence: ρ = s0
d0==⇒ s0 +d0

a1==⇒ s1 . . . sn−1
dn−1====⇒ sn−1 +

dn−1
an==⇒ sn

dn==⇒ . . ., where ∀ 0 ≤ i ≤ n. si ∈ S, ai ∈ A; ∀ 0 ≤ i ≤
n − 1. di ∈ R+0; dn ∈ R+0 ∪ {∞} (sn

∞==⇒ denotes ∀ t ∈ R+0. sn
t=⇒).

Notice that infinite runs contain an infinite number of discrete transitions
(i.e. actions). Let Tr(A) denote the set of all runs of A, and define the func-
tion delay(ρ), ρ ∈ Tr(A) as the sum of all delays di in ρ. If delay(ρ) = ∞
we say that the ρ is a divergent run.

Generally speaking, actionlocks are states where no discrete transition
can be performed, while timelocks are states where time cannot pass beyond
a certain point. Formally, given A ∈ TA, a state s = [l, v] is an actionlock
if ∀ d ∈ R+0. [l, v + d] ∈ S ⇒ @ a ∈ A. [l, v + d] a=⇒ . Thus, however long the
system idles in location l no action can be performed. However, a state s
is a timelock if there is no divergent run ρ ∈ Tr(A) starting at s. A timed
automaton A is actionlock-free (timelock-free) if none of its reachable states
is an actionlock (timelock). Actionlocks and timelocks can be further refined
as pure-actionlocks, time-actionlocks or zeno-timelocks (or pure timelocks),
which are explained next.

Pure-actionlock. Pure-actionlocks are states of a system where it cannot
perform any discrete transitions, but can still pass time arbitrarily. Given
A ∈ TA, a state s = [l, v] is a pure-actionlock if ∀ d ∈ R+0. [l, v + d] ∈
S ∧ @ a ∈ A. [l, v +d] a=⇒ . Fig. 1a shows an example of a timed automaton
with a pure actionlock: no action is enabled once the automaton reaches
location S0, however time is not prevented from passing.

8

Time-actionlock. Time-actionlocks are states where neither discrete nor
time transitions can be performed. Given A ∈ TA, a state s is a time-
actionlock if @ a ∈ A, d ∈ R+. s

a=⇒∨s
d=⇒ . An example of a time-actionlock

is shown in Fig. 1b. The upper automaton must perform an action a! before
more than 5 time units have passed, while the bottom one can only perform
an a? after 5 units have passed. The system, then, enters in a time-actionlock
immediately after 5 time units have elapsed.

Zeno-timelock. In such a state, systems can still perform transitions
(which can be either discrete or time transitions) but time cannot pass be-
yond a certain point. This models a situation where the system performs
an infinite number of transitions in a finite period of time. Given A ∈ TA,
a zeno run is an infinite run ρ ∈ Tr(A) s.t. delay(ρ) 6= ∞. A state s is a
zeno-timelock if a) there is at least one infinite run starting at s, b) all infi-
nite runs starting at s are zeno, and c) there is no run ρ′ ∈ Tr(A) starting
at s s.t. delay(ρ′) = ∞ 2. Fig. 1c shows a zeno-timelock, where transition
a must be performed an infinite number of times before more than 5 time
units have passed.

S0

P0

S1

P1

a!

x>5 a?

x<=5

a) b) c)

S0
x<=10

S1

a

S0
x<=5

a

b

c

Figure 1: Classification of deadlocks

Discussion. One reason for presenting our classification is that we be-
lieve that different types of deadlocks bring different types of problems and,
hence, should be treated differently. Firstly, although pure-actionlocks may
be undesirable within the context of a particular specification, they are not
of themselves counter-intuitive situations. It is wholely reasonable that a
component or a system might reach a state from which it cannot perform
any actions, as long as such an actionlock does not stop time. Thus, al-
though analytical tools which detect pure-actionlocks certainly have value,
we do not believe there is any fundamental reason why actionlocks should
be prevented (by construction) at the level of the specification notation. In
contrast, we are strongly of the opinion that time-actionlocks are counter-

2According to our definition of run, ρ′ is not necessarily infinite.

9

intuitive. In particular, and as previously discussed, a local “error” in one
component has a global effect on the entire system, even if the remainder
of the system has no actions in common with the timelocked component.
Because of these particularly counter-intuitive aspects, we believe that time-
actionlocks should be prevented by construction, i.e. the timed automata
model should be reinterpreted in such a way that time-actionlocks just can-
not arise. Bowman [6] presents such a method for Timed Automata with
Deadlines [2]. Finally, to come to zeno-timelocks. Our position here is that
analytical methods should be provided to check on a specification by specifi-
cation basis whether zeno-timelocks occur. Our reasons for advocating this
approach are largely pragmatic, since it is not clear how the timed automata
model could be changed in order to constructively prevent such situations.
In particular, any mechanism that ensured at the level of the semantics that
a minimum time (say ε) was passed on every cycle, would impose rigid con-
straints on the specifiers ability to describe systems abstractly3. Section 5
considers just such an analytical method for detecting zeno-timelocks.

4 Time-actionlocks

The Nature of Synchronisation. As previously discussed, perhaps the
most counter-intuitive aspect of the timelock story is the manner in which
timelocks can arise from mismatched synchronisations, such as the compo-
sition in Fig. 1c. If we consider how this problem arises we can see that it
is caused by the particular interpretation of urgent interaction employed in
timed automata.

It is without doubt true that facilities to express urgency are required.
In particular, if urgency is not supported, certain important forms of timing
behaviour cannot be expressed, e.g. timeouts. However, it is our perspective
that while urgency is needed, currently it is given an excessively strong
formulation. We illustrate the issue with the following example.

Example 1 Consider the specification of the Dying Dining Philosophers
problem. The scenario is basically the same as the Dining Philosophers
except here we have extra constraints which state that philosophers die if
they do not eat within certain time periods. For example, if at a particu-
lar state, Aristotle must eat within 10 time units to avoid death, in timed
automata his situation could be represented as state l0 of timed automa-
ton Aris in Fig. 2a. In addition, if say the fork he requires is being used

3Note that early versions of timed CSP did employ exactly such an approach.

10

by another philosopher, the environment might not be able to satisfy this
requirement. For example, the relevant global behaviour of the rest of the
system might correspond to the behaviour of the automaton Rest in state
m0 (see Fig. 2a again). In the present timed automata formulation the com-
position |<Aris,Rest> will timelock when t reaches 10. But, this seems
counter-intuitive. Aristotle knows he must pick-up his fork by a certain
time otherwise drastic consequences will result for him (this is why he “reg-
isters” his pick request as urgent). However, if he locally fails to have
his requirement satisfied, he cannot globally prevent the rest of the world
from progressing, rather a local deadlock should result. As a consequence
Aristotle might be dead, but as we all know, “the world will go on!”

Conceptually what is happening is that Aristotle is enforcing that his
pick action must be taken even if it is not possible, i.e. it is not enabled.
However, we would argue that urgency can only be forced if an action is
possible. In other words, it should only be possible to make an action urgent
if it is enabled, i.e.

must requires may or, in other terms, you can only force what is
possible.

One way in which such an interpretation of urgency has previously been
obtained is through only allowing urgency to be applied to internal actions.
This is the approach employed in timed process algebra. However, as dis-
cussed in the introduction, the absence of a hiding operator in TAs prevents
this being a suitable solution in the timed automata setting. Thus, now we
consider an alternative framework for TA specification - Timed Automata
with Deadlines (TADs) which was initially devised by Bornot and Sifakis
[2, 3] and with which we can obtain the synchronisation interpretation we
desire. In fact, we only need a very small part of this theory. In particular,
priorities and escape transitions are not required.

TADs Basics. For a full introduction to TADs, we refer the interested
reader to [2, 3]; here we highlight just the principles we need. Firstly, rather
than placing invariants on states, deadlines are associated with transitions.
Transitions are annotated with 4-tuples (a, g, d, r) where a is the transition
label; g is the guard; d is the deadline; and r is the reset set. a, g and r
are familiar from timed automata and the deadline is new. Conceptually,
deadlines state when transitions must be taken and taken immediately. Since
we have deadlines on transitions there is no need for invariants on states.

11

It is also assumed that the constraint, d ⇒ g holds, which ensures that if a
transition is forced to happen it is also able to happen.

We briefly review the definition of timed automata with deadlines. An
arbitrary element of TAD, the set of timed automata with deadlines, has
the form: (L, l0,→, C) where, L is a finite set of locations; l0 is the start
location; C is the set of clocks and

• →⊆ L×A×CCC×CCC×P(C)×L is a transition relation. A typical
element of which is, (l1, a, g , d , r , l2), where l1, l2 ∈ L are automata
locations; a ∈ A labels the transition; g ∈ CCC is a guard; d ∈ CCC

is a deadline; and r ∈ P(C) is a reset set. (l1, a, g , d , r , l2) ∈→ is
typically written, l1

a,g,d ,r−−−−−→ l2.

As was the case with TAs, TADs are semantically interpreted as transi-
tion systems. The following two inference rules are used for this,

(S1) l a,g,d,r−−−−−→ l′ g(v)
[l, v] a=⇒ [l′, r(v)]

(S2)
∀l′ . l a,g,d,r−−−−−→ l′ =⇒ ∀t′ < t .¬d(v + t′)
[l, v] t=⇒ [l, v + t]

Rules S1 and S2 have been defined with a weak-invariant interpretation.
A definition corresponding to strong invariants could also be given, but
“conceptually” it does not sit so cleanly with deadlines. Now we define the
semantic map [[]]TAD from TADs to transition systems as follows: [[(L, l0,→
, C)]]TAD = (S, s0,⇒) where,

• S = { s′ ∈ L×VC | ∃s ∈ S, y ∈ Lab . s
y

=⇒ s′ } ∪ { [l0, v0] }; s0 = [l0, v0];
and

• ⇒ is the subset of (L×V)×Lab× (L×V) that satisfies (S1) and (S2).

In previous work we have considered a number of different TADs parallel
composition rules, e.g. in [6] we presented a TADs parallel composition that
ensures freedom from all actionlocks. However, here we are only interested
in freedom from time-actionlocks and that is provided for by Sparse TADs.

Sparse TADs. The following parallel composition (denoted ||s) rules are
used:

u[i] a?,gi,di,ri−−−−−−−→u[i]′ u[j] a!,gj ,dj ,rj−−−−−−−→u[j]′

||su a,g′,d′,ri∪rj−−−−−−−−→||su[i′/i, j′/j]

u[i] a,g,d,r−−−−−→u[i]′ x ∈ CA

||su a,g,d,r−−−−−→||su[i′/i]

12

where 1 ≤ i 6= j ≤ |u|,g′ = gi ∧ gj and d′ = g′ ∧ (di ∨ dj)4.
This definition has the same spirit as the normal UPPAAL rules of par-

allel composition [1]. The difference being that here we have deadlines which
we constrain during composition to preserve the property d ⇒ g. Preserving
d ⇒ g in this way ensures that time-actionlocks cannot arise.

(t<=10)
pick?,
t<=10

l0

l1

Aris
m0

m1

pick!,
t>=15

Rest
l0

l1

Aris m0

m1

pick!,
t>=15

Rest

pick?,
t<=10,
t==10

pick,
false,
false

l0 m0

l1 m1

a) b)

Figure 2: Dying Dining Philosophers Situation in TA (a) and TADs (b)

Furthermore as a consequence of these characteristics of sparse TADs
we have revised the interpretation of synchronisation in the manner we just
proposed. For example, if we consider again the Dying Dining Philosophers
illustration, the obvious TADs formulation of the automata of Fig. 2a are
Aris and Rest shown in Fig. 2b. Now sparse TADs composition of the two
automata yields the behaviour shown on the right of figure Fig. 2b, which
is action locked. This is the outcome that we were seeking. Since the pick
synchronisation is not enabled, urgency cannot be enforced. This is reflected
in both the guard and deadline in figure Fig. 2b being false.

Thus, by using such a model, time-action-locks are prevented by con-
struction, which was our objective. Finally, it is also worth noting that
the same effect could be obtained with TAs, i.e. without moving to TADs.
However, the property that would need to be preserved would be somewhat
more complex than the d ⇒ g constraint that we use here. In addition, the
definition of the invariants that arise from building the TA product would
also be clumsy.

5 Zeno-timelocks: theory

We now present an analytical method to ensure absence of zeno-timelocks
which builds upon the notion of strong non-zenoness introduced by Tri-
pakis [14]. We show how Tripakis’ results can be extended to guarantee
zeno-timelock freedom for systems which may not be strongly non-zeno. In

4Notice that here we allow disjunction in a clock constraint, but this relaxation is only
applied to deadlines and is thus specifically a TADs requirement

13

particular, the relationship between strong non-zenoness and synchronising
components is analysed in more detail. Also, new syntactic properties, in the
spirit of strong non-zenoness, are presented which also ensure zeno-timelock
freedom.

The strong non-zenoness property, which we recall below, represents
a sufficient but not necessary condition to ensure zeno-timelock freedom;
systems which are strongly non-zeno are guaranteed to be free from zeno-
timelocks, but there exists some systems which are free from zeno-timelocks
but are not strongly non-zeno.

Strong non-zenoness Given A ∈ TA, a structural loop in A is a sequence
of locations and edges in A, l0

a1,g1,r1−−−−−→ l1
a2,g2,r2−−−−−→ . . .

an,gn,rn−−−−−→ ln, s.t. l0 = ln.
A is strongly non-zeno if for every such loop there exists a clock c ∈ C, ε ∈ R+

and 0 ≤ i, j ≤ n s.t. (1) c ∈ ri and (2) c is bounded from below in step j,
i.e. gj ⇒ c > ε. Every loop which satisfies these properties is also called
strongly non-zeno.

Strong non-zenoness guarantees absence of zeno-timelocks, and it is pre-
served by parallel composition. Lemma 1 below formalises these results
[14].

Lemma 1 If A ∈ TA is strongly non-zeno then Tr(A) does not contain zeno-
timelocks. Moreover, if A[1], . . . , A[n] ∈ TA are strongly non-zeno then |A
is also strongly non-zeno.

Lemma 1 suggests a static verification method; a system is free from
zeno-timelocks if all its components are strongly non-zeno or in other words,
if every loop in every component is strongly non-zeno. This result is justified
by the structure of the product automaton, where every loop in the product
is the result of two synchronising loops or a complete loop in the component
automata. Since a) every loop in a component is strongly non-zeno, b) strong
non-zenoness depends only on the existence of a clock which is bounded from
below in a given guard in the loop, and also reset at some point in the loop,
and c) these conditions are preserved in the edges of resulting loops in the
product automaton, then every loop in the product automaton is strongly
non-zeno (a detailed proof is given in [13]). But notice that a strongly
non-zeno loop in a component is, in fact, “preserved” in every loop in the
product which results from the synchronisation of this loop with any other
loop in a different component, whether this is also strongly non-zeno or
not. Therefore, synchronisation between a strongly non-zeno loop and any
other loop must also be considered “safe”. This may have a considerable

14

impact from the user’s side: a system will no longer be considered unsafe
just because there is a loop in one of its components which is not strongly
non-zeno (this happens if we analyse the system according to Lemma 1).
Instead, we can pair all synchronising loops in the collection of components,
and for each pair, ask just for one loop to be strongly non-zeno. It is also
required that all loops which do not contain half-actions are strongly non-
zeno, because these loops are preserved in the product automaton, but the
benefits of this approach are still evident. We have found, then, that the
requirements imposed by Lemma 1 to ensure absence of zeno-timelocks can
be “weakened” to consider just a subset of all structural loops appearing
in the component automata. This result is formalised by Lemma 2 below,
where, as defined in Section 2, HL is the set of all pairs of synchronising
loops and CL the set of all complete loops in the component automata (proof
of this lemma can be found in the appendix).

Lemma 2 If (at least) one loop in every pair of HL is strongly non-zeno
and all loops in CL are strongly non-zeno then the product automaton |A is
also strongly non-zeno and thus free from zeno-timelocks.

We now present two other properties, location non-urgency and reset
non-urgency which also work at the level of the timed automata syntax, and
represent sufficient-only conditions. However, they can guarantee that a sys-
tem is free from zeno-timelocks even when it may not be strongly non-zeno;
in this way the scope of syntactic detection of zeno-timelock free systems is
further broadened. The intuition is the same as that which underlies strong
non-zenoness: we have to show for any state s that if there exist some in-
finite runs starting at s, then at least one of them must diverge (therefore
s is not a zeno-timelock). Now by definition, infinite runs must necessarily
traverse some loop an infinite number of times (otherwise the run could not
contain an infinite number of discrete transitions). Therefore, we just need
to ensure that time can pass by at least ε ∈ R+ time units on every iteration
of any loop (where ε is considered a constant value). Because these condi-
tions focus on invariants, they cover some kinds of safe loops which are not
strongly non-zeno. In the following definitions, we use Clocks(I(l)) ⊆ C to
denote the set of clocks appearing in the invariant expression I(l) (where l
is a location).

Location non-urgency A ∈ TA is called location non-urgent if in every
structural loop there is a location where either the invariant is True or every
clock appearing in the invariant has no upper bound. For example, True and
x > 1 (where x ∈ C) can be two such invariants. Formally, let l0

a1,g1,r1−−−−−→

15

l1
a2,g2,r2−−−−−→ . . .

an,gn,rn−−−−−→ ln, s.t. l0 = ln be a structural loop in A. A is called
location non-urgent if for every such structural loop there exists 0 ≤ i ≤ n
s.t. ∃ d ∈ R+. ∀ c ∈ Clocks(I(li)), v ∈ VC . (v(c) > d ⇒ I(li)(v)) (notice that
this formula vacuously holds for True invariants, since Clocks(True) = ∅).
These loops are also called location non-urgent.

Reset non-urgency A ∈ TA is called reset non-urgent if in every struc-
tural loop there is a location where at least one clock in the invariant
has a non-zero lower bound, and this clock is reset in the loop. For-
mally, let l0

a1,g1,r1−−−−−→ l1
a2,g2,r2−−−−−→ . . .

an,gn,rn−−−−−→ ln s.t. l0 = ln, be a struc-
tural loop in A. A is called reset non-urgent if for every such structural
loop there exists 0 ≤ i ≤ n s.t. ∃ d ∈ R+, c ∈ Clocks(I(li)), v ∈ VC . (v(c) =
d ∧ I(li)(v) ∧ (∀ v′ ∈ VC . v′(c) < d ⇒ ¬I(li)(v′)) ∧ ∃ j(0 ≤ j ≤ n). c ∈ rj).
These loops are also called reset non-urgent.

The following lemma states the relation between location non-urgency, reset
non-urgency and zeno-timelock freedom (proof is given in the appendix).

Lemma 3 If A ∈ TA is either location non-urgent or reset non-urgent, then
it is also free from zeno-timelocks.

Location non-urgency is not compositional, i.e. the product of location
non-urgent automata is not guaranteed to be free from zeno-timelocks; but
we believe this property would be of use when applied to the product au-
tomaton. Its benefits are even more evident when we consider that its appli-
cation to the product automaton may be less “expensive” than a semantic-
based check [14]. On the other hand reset non-urgency is compositional,
but it has not been applicable to the specifications we have been working
with. Nevertheless, it remains an interesting alternative given the fact that
(at least in principle) invariants with lower-bounds (e.g. 1 < x ≤ 2) might
occur when modelling real-time constraints.

6 Zeno-timelocks: Practice

This section presents a brief description of our zeno-timelock checker, and
illustrates its application on a concrete example: the widely used Ethernet
protocol CSMA/CD (Carrier Sense Multiple Access with Collision Detec-
tion). We will show how a seemingly reasonable timed automata specifica-
tion of the CSMA/CD (which is inspired by a previous Kronos specification

16

of the same problem [15]) suffers from timelocks. In particular, the exam-
ple will show how a zeno-timelock occurs which also, and perhaps more
dangerously, hides the occurrence of a time-actionlock.

It is important to mention that one can verify that a given UPPAAL
specification is free from actionlocks by checking satisfiability of A[]not
deadlock (deadlock is a UPPAAL predefined formula). However, this check
cannot distinguish between pure-actionlocks and time-actionlocks. Detec-
tion of timelocks, and in particular of zeno-timelocks, is hard in UPPAAL.
Zeno-timelocks can only be detected with the help of a test automaton.
Fig. 3a shows a test automaton in UPPAAL; this is included in the original
system as a new autonomous component, it does not synchronise with any
other component, and t is a clock local to the automaton. The original
system would be free from timelocks if a state where t==1 can be reached
from every state where t==0, i.e. if the system can always pass time by
1 unit (clocks in UPPAAL can be compared only with integer constants).
The formula (t==0)-->(t==1) can be written in UPPAAL to verify that
the system is free from timelocks. However, this approach provides a suf-
ficient but not necessary condition: if the formula is satisfied the system
is guaranteed to be timelock-free, but the formula may be unsatisfiable in
some timelock-free systems. The formula (t==0)-->(t==1) is actually im-
plementing A[]((t==0)=>A<>(t==1)), which is satisfiable only if for every
(t==0)-state, a (t==1)-state is reachable in every possible run starting at
the (t==0)-state. But this condition is too strong; a system with a zeno
run but that is free from timelocks will falsify A[]((t==0)=>A<>(t==1))
as the zeno run is a path where a (t==1)-state is unreachable. Fig. 3b
shows such a system. In fact, a system is timelock-free if there exists
at least one run starting at every (t==0)-state where a (t==1)-state is
reachable. It turns out that this condition can be expressed by the for-
mula A[]((t==0)=>E<>(t==1)), but unfortunately such a formula cannot
be written in UPPAAL. Also, reachability analysis may suffer from state-
explosion, and should a zeno-timelock occur in the system, the trace which
witnesses the failure of (t==0)-->(t==1) may not be meaningful enough to
discover the cause of the timelock.

We claim that in many situations our tool will more conveniently assist
the user to find zeno-timelocks. Like the test automaton, our tool imple-
ments a strategy which is sufficient to detect that a system is free from
zeno-timelocks, but does not necessarily imply that a system contains zeno-
timelocks. Unlike the test-automaton strategy, however, the analysis here is
syntactic (and therefore it may be considerably less demanding than reach-
ability), and it also identifies potential causes of zeno-timelocks directly on

17

t<=1 t==1
t:=0

t<=1 t==1
t:=0

true

a) b)

Figure 3: Test automaton (a) and a timelock-free system (b)

the automata structure. This section will then show how our tool comple-
ments UPPAAL in the verification of the protocol.

6.1 A zeno-timelock checker

The tool receives a timed automata specification (as an XML file) as input
and returns a list of loops which can potentially cause zeno-timelocks. The
tool is intended to be integrated with UPPAAL; the user can take advantage
of UPPAAL’s graphical interface and its rich modelling language to specify
the system. This specification is stored by UPPAAL as an XML file which
can be input to the zeno-timelock checker. Basically, a cycle-detection algo-
rithm is performed on this specification to discover all structural loops. A
second stage determines which loops are strongly non-zeno. Then, loops are
matched according to their half-actions; this stage returns a list of matching
pairs and a second list of loops which do not contain half-actions. Finally,
Lemma 2 is applied to both lists to return unsafe pairs/single loops: a pair
is unsafe if neither loop is strongly non-zeno, similarly a non-synchronising
loop is unsafe if it is not strongly non-zeno.

6.2 The CSMA/CD protocol

The CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
protocol is widely used on Ethernet networks, where the protocol controls
the transmission of data between stations sharing a common medium. The
following description is mainly taken from [12].

A station wishing to transmit a frame first listens to the medium to
determine if another transmission is in progress. If the medium is idle, the
station begins to transmit. Otherwise the station continues to listen until
the medium is idle, then it begins to transmit immediately. It may happen
that two or more stations begin to transmit at about the same time. If
this happens, there will be a collision and the data from both transmissions
will be garbled and not received successfully. If such a collision is detected
during transmission, the station transmits a brief jamming signal (to ensure

18

that all stations know that there has been a collision) and then it ceases
transmission. After transmitting the jamming signal, the station waits a
random amount of time and then attempts to retransmit the frame.

Collisions can only occur when more than one station begins transmit-
ting within a short time (the period of the propagation delay). If a station
attempts to transmit a frame and there are no collisions during the time
it takes for the leading edge of the packet to propagate to the farthest sta-
tion, then there will be no collision for this frame because all other stations
are now aware of the transmission (i.e. the medium will be found busy).
Secondly, the time needed to detect a collision is no greater than twice the
propagation delay.

Fig. 4(a-c) show part of a possible CSMA/CD specification in UPPAAL.
Only two stations have been considered in this specification, Station1
(Fig. 4a) and Station2 (similar to Fig. 4a modulo renaming). The main
role of Station1 is to model the transmission of frames and retransmission
in case collision has been detected. Medium (Fig. 4c) will model the state of
the medium, i.e. whether collisions have been detected and the broadcast of
the jamming signal should any collision occur. Both Station1 and Medium
have temporal constraints derived from either the end-to-end propagation
delay (26 µs.) or the frame-transmission time (782 µs.)5. We have also in-
cluded the automaton UpperLayer1 (Fig. 4b) to model a client layer which
uses the protocol service in the station (UpperLayer2 is similar). It simply
provides frames to the protocol layer, acknowledges ongoing transmission
and successful termination.

Automaton Station1 starts in state Idle, waiting for UpperLayer1 to
send a new frame (send1?). If this happens Station1 moves to Send, which
is an urgent state: the station may find that either the medium is idle, and so
the transmission of the new frame can start immediately (begin1!), or that
the medium is busy and so the station has to wait (busy1!). Urgent states
must be left immediately after they are entered; immediate interleaving of
actions is permitted but outgoing transitions will be taken with no delay.
State Transmitting denotes that a transmission has started. Transmission
of a complete frame takes 782 µs, which is modelled both by the invariant
x1<=782 and the guard x1==782 on transition end1!. Immediately after
ending a transmission, a signal fin1! is sent to the upper layer to indicate
that transmission is completed. While transmission is taking place a signal
trans1! might be sent to the upper layer to indicate this fact. A collision
with another station may occur in Transmitting, in which case the jamming

5Constants respect the IEEE 802.3 standard (Ethernet CSMA/CD)

19

Idle

Send U Retry

U
Transmitting
x1<=782

fin1!

send1? cd1?
x1<26begin1!

x1:=0

busy1!

end1!
x1==782

begin1!
x1:=0

Idle Transmitting

send1!

fin1?

begin1? y:=0

begin2? y:=0

end1? y:=0

end2? y:=0

Active

Idle

Collision
y<=26

Next2
y<=26

Next1
y<=26

cd1!

cd1!

cd2!

cd2! begin2?
y<26
y:=0

begin1?
y<26
y:=0

busy2? y>=26

busy1? y>=26trans1!

trans1?

Transmitting
x1<=782

trans1!

Transmitting

trans1?

Retry

Transmitting
x1<=782

cd1?
x1<26begin1!

x1:=0

begin1? y:=0

begin2? y:=0

end1? y:=0

end2? y:=0

ActiveIdle

Collision
y<=26

Next2
y<=26

Next1
y<=26

cd1!

cd1!

cd2!

cd2! begin2?
y<26
y:=0

begin1?
y<26
y:=0

Retry

||

||

||

begin2!
x2:=0

cd1?
x2<26

Transmitting
x2<=782

Station1

UpperLayer1

Medium

Station1

UpperLayer1

Station1

Station2

Medium

a)

b) c)

d) e)

Figure 4: CSMA/CD in UPPAAL (a,b,c) and unsafe loops (d,e)

signal cd1? will be detected. The related guard x1<26 denotes that no
collision can occur after 26 µs. have passed since a station begun sending a
frame. State Retry denotes that a collision indeed occurred and that the
station is waiting to attempt a retransmission (begin1!). The station will
remain in Retry if a retransmission attempt finds a busy medium; transition
begin1? is not enabled in such a situation (x1>=26).

The Medium starts in Idle, waiting for stations to begin their transmis-
sions (begin1?/begin2?); then it moves to Active and clock y is reset. State
Active denotes that a station is currently using the medium. In Active,
y denotes the time elapsed since the station begun its transmission. Tran-
sitions busy1?/busy2? denote that stations can already acknowledge that
the medium is in use and thus, that no new transmission is yet possible.
The guard y>=26 in these transitions denote that, in the worst case, a sec-
ond station cannot acknowledge that the medium is busy before 26 µs. (the
propagation delay) have passed since the first station begun its transmission.

20

State Collision denotes that a collision has happened, and that the jam-
ming signal is about to reach the stations. The Medium moves from Active
to Collision through begin1?/begin2? happening at y<26, i.e. a second
station has started transmitting a frame before it could acknowledge that
the medium was already in use. In Collision, y denotes the time elapsed
since a collision occurred; notice that y is reset when the second transmission
begins while Medium is in Active (to simplify matters, we have assumed that
a collision occurs as soon as this second transmission begins). The group of
transitions cd1!-Next2-cd2! and cd2!-Next1-cd1! model the jamming
signal reaching Station1 and Station2, in any order. Moreover, the invari-
ants y<26 in Collision, Next1/Next2 indicate that the jamming signal will
reach the stations not later than 26 µs. after the collision.

6.3 Verification

We will see how the inclusion of automaton UpperLayer1 (UpperLayer2)
disguises a time-actionlock which is already present in the protocol spec-
ification, making it undetectable to UPPAAL. In fact, this hidden time-
actionlock results in a zeno-timelock which our tool will help to identify.

We begun our verification by checking actionlock-freedom; UPPAAL
finds that A[]not deadlock is satisfiable in our CSMA/CD specification.
We then use our zeno-checker which discovers that a number of synchronising
pairs of loops are unsafe and could thus potentially cause zeno-timelocks.
These unsafe loops correspond to the interaction between Station1 and
UpperLayer1 (Fig. 4d), respectively between Station2 and UpperLayer2
(not shown), and between Station1, Station2 and Medium (Fig. 4e).

Fig. 4e shows a number of loops which could potentially cause zeno-
timelocks. We describe these loops below; we use <s1,m,s2> to denote a
state in the product automaton where s1, m and s2 are respectively states in
Station1, Medium and Station2. R, I, T, A, C, N1 and N2 respectively denote
states Retry, Idle, Transmitting, Active, Collision, Next1 and Next2.
Complete actions begin1, begin2, cd1 and cd2 result from synchronisation
between the corresponding half-actions.

1. <R,I,R>, begin1, <T,A,R>, begin2, <T,C,T>, cd1, <R,N2,T>, cd2, <R,I,R>

2. <R,I,R>, begin2, <R,A,T>, begin1, <T,C,T>, cd1, <R,N2,T>, cd2, <R,I,R>

3. <R,I,R>, begin1, <T,A,R>, begin2, <T,C,T>, cd2, <T,N1,R>, cd1, <R,I,R>

4. <R,I,R>, begin2, <R,A,T>, begin1, <T,C,T>, cd2, <T,N1,R>, cd2, <R,I,R>

21

These loops correspond to situations in which stations continue to retransmit
their frames too soon, therefore colliding again after every attempt. They
are considered unsafe because there are no structural conditions ensuring
that time will pass in every iteration; i.e. they are not strongly non-zeno
(notice in Fig. 4e that clocks are reset but there are no guards with non-zero
lower-bounds). In other words, these loops allow zeno runs corresponding to
retransmissions following collisions with no delay. However the composite
state <R,I,R>, whose invariant is True (because invariants in Retry and
Idle are True), is included in every loop. Therefore every loop satisfies
the location non-urgency property presented in Section 5, and thus they do
not cause zeno-timelocks (see Lemma 3). Intuitively, there will always exist
some infinite execution of every loop which can pass time in state <R,I,R>.

Now we will focus our attention on the unsafe loop in Station1 (Fig. 4d);
a zeno-timelock would occur in state Transmitting (Fig. 4a) if trans1! is
the only enabled transition at x1==782. If this is the case then the invariant
in Transmitting will make this transition urgent, and so it will be infinitely
taken without time passing at all. Should such a zeno-timelock occur in this
specification, an actionlock should occur in a specification where transition
trans1! is removed. As a rationale for this conclusion one has to consider
that for a zeno-timelock to involve trans1!, this has to be the only transition
enabled by Station1 at x1==782. Therefore UPPAAL should be able to
detect a “hidden” actionlock if trans1! is removed from the specification.
This does indeed turn out to be the case, specifically if trans1! is removed,
UPPAAL detects an actionlock in the resulting system. This is caused by
an error in the guard of transition cd1? in Station1, x1<26 (note: [15]
highlighted the same error). This guard expresses the fact that if there is a
collision, this cannot occur after 26 µs. have passed since Station1 started
transmitting a frame. But 26 µs. happens to be too small an upper bound
for collision detection, as the following scenario illustrates. This scenario
is set with Station1 starting the transmission, a similar scenario can be
described for Station2.

1. Station1 starts transmitting a frame, therefore Station1 moves to
state Transmitting and Medium moves to Active.

2. Station2 starts transmitting a frame just before 26 µs have passed
since Station1 started transmitting. This means that Station2, be-
cause of the propagation delay, has not yet been able to detect that the
medium is in use. In terms of the protocol specification, notice that in

22

Medium, transition begin2! can be taken in state Active as long as
y<26. At this point, Station1 remains in Transmitting, Station2
has changed to Transmitting and Medium has changed to Collision.
Also, it is important to see that the value of clock x1 is just about to
become 26, and that both x2 and y have been reset.

3. Based on the previous observations, and given the invariant y<26
in state Collision, notice that it is possible for x1 to progress to
26<x1<52. But then the transition cd1! in Collision will not be
able to synchronise with cd1? in Station1, as the latter is constrained
to x1<26. Should this happen, transition cd2! can still be taken to
Next1, but here again cd1! cannot be taken. It is evident, then, that
no action will be enabled in the system while Medium remains in Next1.
Furthermore, the invariant y<26 in Next1 will also prevent time from
diverging, raising a time-actionlock when the value of y reaches 26.

This time-actionlock shows that the guard x1<26 in transition cd1? in
Station1 (and respectively in Station2) should be modified to account for
a bigger delay, i.e. it should be x1<52. This is saying that after a transmission
has started the jamming signal could be detected up to 52 µs. later, that
is, twice the propagation delay (see [12] for a detailed explanation). Also,
notice that the timelock in this specification resulted in a zeno-timelock in
the original specification (i.e. before trans1! was removed). When Medium
is in state Collision and y=26, and Station1 and Station2 are in state
Transmitting, transition trans1! (trans2!) will be infinitely taken while
time is prevented from passing (since synchronisation is always possible with
UpperLayer1/UpperLayer2).

Now, if we correct the specification with the proper delay (x1<52 in
cd1?), we can verify that it is free from actionlocks (and thus from time-
actionlocks) using UPPAAL’s A[]not deadlock formula. Since now the
time-actionlock in question no longer arises, the loop trans1! in the orig-
inal specification (Fig. 4a) will not cause a zeno-timelock. Time will not
be prevented from passing in Next1/Next2 (Fig. 4c), so the system is al-
lowed to evolve normally and after a collision the stations will move from
Transmitting to Retry, i.e. trans1! in Transmitting will no longer be
enabled.

To clarify then we have taken a specification of the CSMA/CD and at-
tempted to show it is free from zeno-timelocks. We have applied the only
check available in UPPAAL that can throw light on zeno-timelock freedom:

23

checking A[]not deadlock. This formula was found to be true, i.e. the
system was safe (from an UPPAAL perspective). However we then applied
our zeno-timelock checker, which identified a number of potentially unsafe
loops (in the sense that they could possibly yield zeno-timelocks). Further-
more, one of these was indeed found to cause a zeno-timelock (note, since
an action is always offered, A[]not deadlock cannot detect such a zeno-
timelock). We thus removed the offending loop from the system and found
that the zeno-timelock was indeed “covering” a time-actionlock, which could
of course, be detected by UPPAAL once the zeno-loop was removed. The
system was corrected to remove this time-actionlock and by so doing we jus-
tified that the original offending loop was no longer causing a zeno-timelock.

7 Conclusions

We have identified different types of timelocks which may arise in Timed
Automata, and provided formal definitions for each one of them. One of
the main contributions of this paper is a new procedure to check whether
a system is free from zeno-timelocks. We have refined the syntactic check
based on strong non-zenoness, suggested in [14], by carefully analysing the
relationship between strong non-zenoness and synchronisation. This allows
for the recognition of a wider class of safe (i.e. zeno-timelock free) systems.
We have also presented a tool which we have developed which implements
this check on timed automata, and in particular UPPAAL specifications.
Moreover, this tool can be used to complement the verification capabilities
offered by UPPAAL.

We have illustrated the use of our tool on a real-life case-study, the
CSMA/CD protocol. We have specified this protocol in UPPAAL and in-
troduced both communication with an upper layer and an incorrect bound
for one of the automaton transitions. This was intended to show how hard
the detection of some modelling errors can be. The flaw in our specification
resulted in a zeno-timelock, which UPPAAL cannot properly detect. The
detection of timelocks with the help of a test automaton depends upon a
reachability formula which expresses sufficient but not necessary conditions,
and reachability analysis may be computationally expensive. Our tool also
helped to identify the zeno-timelock in our case-study, showing which struc-
tural loops were potentially unsafe (extending ideas devised by Tripakis).
The tool is also based upon sufficient but not necessary conditions, however
the analysis is syntactic and therefore less demanding than reachability, and
it can directly point to sources of zeno-timelocks. Therefore, even if some

24

zeno-timelock free systems are not guaranteed to be so by the sufficient-only
conditions, the method presented in this paper is still useful for narrowing
the analysis to specific parts of the model. We are currently trying to de-
velop sufficient and necessary conditions for the detection of zeno-timelocks
at the level of the product automaton. Also, we are considering new ways
of exploiting the relationship between strong non-zenoness and synchroni-
sation which may further extend the verification scope of our sufficient-only
method.

References

[1] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, and Paul Petters-
son amd Wang Yi. Uppaal - a tool suite for automatic verification
of real-time system. In Proceedings of the 4th DIMACS Workshop on
Verification and Control of Hybrid Systems, 1995.

[2] S. Bornot and J. Sifakis. On the composition of hybrid systems. In
Hybrid Systems: Computation and Control, LNCS 1386, pages 49–63,
1998.

[3] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed sys-
tems. In Compositionality, COMPOS’97, LNCS 1536, 1997.

[4] H. Bowman. Modelling timeouts without timelocks. In ARTS’99, For-
mal Methods for Real-Time and Probabilistic Systems, 5th International
AMAST Workshop, LNCS 1601, pages 335–353. Springer-Verlag, 1999.

[5] H. Bowman, G. Faconti, J-P. Katoen, D. Latella, and M. Massink. Au-
tomatic verification of a lip synchronisation algorithm using UPPAAL.
Formal Aspects of Computing, 10(5-6):550–575, August 1998.

[6] Howard Bowman. Time and action lock freedom properties for timed
automata. In S. Kang M. Kim, B. Chin and D. Lee, editors, FORTE
2001, Formal Techniques for Networked and Distributed Systems, pages
119–134, Cheju Island, Korea, 2001. Kluwer Academic Publishers.

[7] C.Daws, A.Olivero, S.Tripakis, and S.Yovine. The tool KRONOS. In
Hybrid Systems III, Verification and Control, LNCS 1066. Springer-
Verlag, 1996.

[8] Th. A. Henzinger and Pei-Hsin. HyTech: The Cornell HYbrid TECH-
nology tool. In Proceedings of TACAS, Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems, 1995.

25

[9] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[10] P. Pettersson and K. G. Larsen. UPPAAL2K: Small Tutorial. Bulletin
of the European Association for Theoretical Computer Science, 70:40–
44, 2000.

[11] T. Regan. Multimedia in temporal LOTOS: A lip synchronisation al-
gorithm. In PSTV XIII, 13th Protocol Spec., Testing & Verification.
North-Holland, 1993.

[12] W. Stallings. Data & Computer Communications. Prentice Hall, 6th.
edition, 2000.

[13] S. Tripakis. The analysis of timed systems in practice. PhD thesis,
Universite Joseph Fourier, Grenoble, France, December 1998.

[14] S. Tripakis. Verifying progress in timed systems. In ARTS’99, For-
mal Methods for Real-Time and Probabilistic Systems, 5th International
AMAST Workshop, LNCS 1601. Springer-Verlag, 1999.

[15] S. Yovine. Kronos: A verification tool for real-time systems. Springer
International Journal of Software Tools for Technology Transfer, 1997.

26

A Proofs

Lemma 3: If A ∈ TA is either location non-urgent or reset non-urgent, then
it is also free from zeno-timelocks.

Proof:

1. Consider A ∈ TA as either location non-urgent or reset non-urgent
(hyp.).

2. Consider a given state s, and ρ an infinite run starting at s (hyp.).

3. ρ must visit a given loop lp in A an infinite number of times (by def.
of infinite run).

4. If A is location non-urgent there must be a location l in the loop lp
where either I(l) = True or all clocks in the invariant are unbounded
(by def. of location non-urgency).

5. Any execution of A which reaches l can wait indefinitely in l (by 4).
Note that because we are assuming strong invariants, invariant expres-
sions such as I(l) = x > c (where x ∈ Clocks(I(l)) and c ∈ R+0) do
not force any execution to leave location l immediately. Moreover, l is
only reachable if at least c time units have passed since the last time
x was reset.

6. The location l is reachable in ρ, i.e. ρ = s
∗=⇒ [l, v] ∗=⇒ , where v ∈ VC

(by 3).

7. There exists a time-unbounded run ρ′ starting at s, i.e. ρ′ = s
∗=⇒ [l, v] ∞==⇒ .

Therefore, if A is location non-urgent then s cannot be a zeno-timelock
(by 5, 6 and def. of zeno-timelock).

8. If A is reset non-urgent there must be a location l in the loop lp
where at least a clock in the invariant has a non-zero lower-bound, say
d ∈ R+, and it is reset in a given transition i of lp (by def. of reset
non-urgency).

9. Any execution of A which takes transition i and then reaches location
l must have elapsed at least d time units between these two events (by
8 and assuming strong invariants).

10. ρ takes transition i and visits location l an infinite number of times
(by 3 and 8).

i

11. ρ accumulates an infinite number of d time units, so delay(ρ) = ∞.
Therefore, if A is reset non-urgent then s cannot bet a zeno-timelock
(by 9, 10 and def. of zeno-timelock).

12. A is free from zeno-timelocks (by 7 and 11).
2

Lemma 4 Every composite loop contains at least two synchronising loops.
Formally, ∀lp ∈ Loops(|A). comp(lp) ⇒
∃lpi ∈ Loops(A[i]), lpj ∈ Loops(A[j]). sync(lpi, lpj) ∧ lpi ⊆ lp ∧ lpj ⊆ lp

Proof: Automata theory gives us the necessary clues,

1. Given l1, l2 as two locations in |A, any path l1
∗→ l2 in |A must include

a path l1[i]
∗→ l2[i] from every A[i].

2. Moreover, if there is a composite edge e = ei||ej in l
∗→ l′, ei must be

an edge in l1[i]
∗→ l2[i] and ej an edge in l1[j]

∗→ l2[j].

Therefore, since every loop is by definition a path, the Lemma easily fol-
lows. 2

Lemma 5 Clock reset and “lower-boundeness” are preserved in composite
edges. Formally, let e1 = (a1, g1, r1), e2 = (a2, g2, r2), e3 = (a3, g3, r3)
denote three edges, c ∈ C a given clock and ε ∈ R+ a given constant. If
e3 = e1||e2 then

1. c ∈ r1 ∪ r2 ⇒ c ∈ r3

2. (g1 ⇒ c > ε) ∨ (g2 ⇒ c > ε) ⇒ (g3 ⇒ c > ε)

Proof: Follows from the definition of edge composition. 2

Lemma 6 Loop inclusion preserves strong non-zenoness. Formally, let lp1, lp2

be two loops s.t. lp1 ⊆ lp2. If lp1 is strongly non-zeno then lp2 is also strongly
non-zeno.

Proof:

1. lp1 ⊆ lp2 (hyp.).

2. lp1 is strongly non-zeno (hyp.).

ii

3. ∃ei, ej ∈ Edges(lp1), c ∈ C, ε ∈ R+, a, a′ ∈ A. ei = (a, gi, ri) ∧ ej =
(b, gj , rj) ∧ c ∈ ri ∧ gj ⇒ c > ε (by 2 and def. of strong non-zenoness).

4. ei ∈ Edges(lp2) ∨ ∃A[k], ek ∈ Edges(A[k]), e ∈ Edges(lp2). e = ek||ei

(by 1, 3 and def. of edge composition).

5. ej ∈ Edges(lp2) ∨ ∃A[k], ek ∈ Edges(A[k]), e ∈ Edges(lp2). e = ek||ej

(by 1, 3 and def. of edge composition).

6. ∃ei, ej ∈ Edges(lp2), c ∈ C, ε ∈ R+, a, a′ ∈ A. ei = (a, gi, ri) ∧ ej =
(a′, gj , rj) ∧ c ∈ ri ∧ gj ⇒ c > ε (by 3, 4 and Lemma 5)

7. lp2 is strongly non-zeno (by 6 and def. of strong non-zenoness).
2

Lemma 7 If at least one loop in every element of HL is strongly non-zeno,
then all composite loops in |A are strongly non-zeno.

Proof:

1. lp ∈ Loops(|A), comp(lp) (hyp.).

2. ∃A[i] 6= A[j], lpi ∈ Loops(A[i]), lpj ∈ Loops(A[j]). sync(lpi, lpj) ∧
lpi ⊆ lp ∧ lpj ⊆ lp (by Lemma 4).

3. (lpi, lpj) ∈ HL (by 2 and def. of HL).

4. Suppose lpi strongly non-zeno (hyp.).

5. lp is strongly non-zeno (by 2 and Lemma 6).
2

Lemma 2: If (at least) one loop in every pair of HL is strongly non-zeno
and all loops in CL are strongly non-zeno then the product automaton |A
is also strongly non-zeno and thus free from zeno-timelocks.

Proof:

1. Consider any loop lp ∈ Loops(|A).

2. lp is s.t. either comp(lp) or there exists a complete loop lpi ∈ CL s.t.
lpi ⊆ lp (by automata theory).

3. We know that at least one loop in every element of HL is strongly
non-zeno, and that all loops in CL are strongly non-zeno (hyp.).

iii

4. If comp(lp) then lp is strongly non-zeno (by hyp. and Lemma 7).

5. If lpi ⊆ lp, lpi ∈ CL then lp is strongly non-zeno since lpi is strongly
non-zeno (by hyp. and Lemma 6).

6. Therefore all loops in |A are strongly non-zeno, and so |A is free from
zeno-timelocks (by Lemma 1).

2

iv

