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Abstract. Commercial off-the-shelf (COTS) software composete built to
be used as black boxes that cannot be modified sppleific context in which
these COTS components are employed is not knowhreio developers. When
integrating such COTS components into systems, twhiave high
dependability requirements, there may be mismatdietsveen the failure
assumptions of these components and the rest sf/ftem. For resolving these
mismatches, system integrators must rely on teabsighat are external to the
COTS software components. In this paper, we comthieeconcepts of an
idealised architectural component and protectivappers to develop an
architectural solution that provides an effectind aystematic way for building
dependable software systems from COTS software cpenmps.

1 Introduction

A commercial off-the-shelf (COTS) software companén usually provided as a
black box to be reused "as it is". Most of theetithese components do not have a
rigorously written specification, hence there is quarantee that their description is
correct (very often, it is ambiguous and incompletdoreover, these components
may have faults, and the specific context in whichy will be used is not known
during their development. Once they are creategly tan evolve over time through
different versions. When an integrator builds atesysout of COTS components,
she/he can be forced to evolve the system wherseveew version of these COTS
components is released. These new versions carowees of new faults. When
integrating such components into a system, solstifor meeting its overall
dependability requirements should be envisaged he &rchitectural level,
independently of the particular COTS versions. €gutions should ensure that the
system delivers the service despite the presenfalbé in the COTS component and
how it interacts with other system components. his fpaper, we focus on COTS
software components that are integrated in a systerthe application level and
provide their services to other components andsiplys use services provided by



them. We assume that these application level spftwamponents are deployed in a
reliable runtime environment that may include otRTS software components at
the infrastructure level, such as operating systedistribution middleware and
component frameworks.

Research into describing software architecturel vespect to their dependability
properties has recently gained considerable abter{0,24,25]. In this paper, we
focus on the architectural description of fauletaint component-based systems that
provides an effective and systematic way for bodddependable software systems
from COTS software components. For that, we combliereconcepts of an idealised
architectural component [8], which is based onitlealised fault-tolerant component
[2], and protective wrappers [15], known to be tim®st general approach to
developing dependable software systems based onSCé&mponents. While in
previous work we have described the basis of tpgzed approach [9,10], in this
paper we elaborate on that work by discussing tjuiele for specifying and
implementing protective wrappers and by demonsigatiur ideas using a case study.

The rest of the paper is organised as followshénrtext section, we briefly discuss
background work on architectural mismatches, wnapp®tectors, and the C2
architectural style. Section 3 describes the achital representation of idealised
fault-tolerant COTS, in terms of the idealised @ehponent (iC2C), the idealised C2
COTS component (iCOTS), and the process of ardhiedault-tolerant systems
using iICOTS components. The case study demongratie feasibility of the
proposed approach is presented in section 4. Relaterk on how to build
dependable software systems based on COTS composetiiscussed in section 5.
Finally, section 6 presents some concluding remamkkdiscusses future work.

2 Background

When integrating COTS components into a softwastesy, the architect needs to
develop glue code [18] that links various composetugether and includes new
architectural elements, adaptors to resolve the different kinds of incompatibégi
that may exist. A protector is a special kind ofagtdr that deals with
incompatibilities in the failure assumptions.

2.1 Architectural Mismatchesand COTS Component Integration

Dealing with architectural mismatches [7] is onetb&é most difficult problems
system integrators face when developing systems f@OTS components. An
architectural mismatctoccurs when the assumptions that a component nadikes
another component or the rest of the system (RGShat match. That is, the
assumptions associated with the service providethdygomponent are different from
the assumptions associated with the services egtjbly the component for behaving
as specified [13]. When building systems from émgstcomponents, it is inevitable
that incompatibilities between the service delideby the component and the service
that the ROS expects from that component give tisesuch mismatches. These
mismatches are not exclusive to the functionalibettes of the component;



mismatches may also include dependability attributdated, for example, to the
component failure mode assumptions or its safeggiity levels.

We view all incompatibilities between a COTS comgunand the ROS as
architectural mismatches. This, for example, inekidnternal faults of a COTS
component that affect other system’s componentiésoenvironment, in which case
the failure assumptions of the component were wrong

2.2 COTS Component Protectors

Component wrapping is a well-known structuring téghe that has been used in
several areas. In this paper, we use the term perdpin a very broad sense,
incorporating the concepts of wrappers, mediatans| bridges [6]. Awrapperis a
specialised component inserted between a comparahtits environment to deal
with the flows of control and data going to andifom the wrapped component. The
need for wrapping arises when (i) it is impossible expensive to change the
components when reusing them as parts of a neernsysr (ii) it is easier to add new
features by incorporating them into wrappers. Wiragpps a structured and a cost-
effective solution to many problems in componergedl software development.
Wrappers can be employed for improving quality prtips of the components such
as adding caching and buffering, dealing with mistmes or simplifying the
component interface. With respect to dependabilitsappers are usually used for
ensuring properties such as security and transpeoerponent replication.

A systematic approach has been proposed for usotgagtive wrappers, known as
protectors that can improve the overall system dependalili]. This is achieved
by protecting both the system against erroneouavilr of a COTS component, and
the COTS component against erroneous behaviotlneafesst of the system (ROS). As
a protector has this dual role we call the interfaetween the COTS and the ROS the
protected interface The protectors are viewed as redundant softwiaaé detects
errors or suspicious activity on a protected istesf and executes appropriate
recovery.

The development of protectors occurs during theerebly stage of the
development process of a COTS-based system, asopdhe system integration
activities [15]. The approach consists of rigoragecification of the protector
functionality, in terms of error detection and asated recovery actions, and in their
integration into the software architecture. Thetgetor error detection capabilities are
specified in the form oficceptable behaviour constrain{f®BCs) that ensure the
normal behaviour of the protected interface. Thetgmtor recovery actions are
specified in the form of exception handlers assediavith the erroneous conditions
that may arise in the protected interface. Theegtot specification is based on a set
of blueprints and safety specificationthat are produced during the earlier stages of
the development process. A blueprint is a docurdeaiity that specifies the overall
architecture and external behaviour of a pieceofifvare [3]. Safety specifications
are derived from the system's safety requiremesitsvwfhich focus on reducing the
risk associated with hazards and on limiting damaben an accident occurs. The
general sources of information to be used in deuetp both ABCs and possible
actions to be undertaken in response to theirtiarla are the following:



1. The behaviour specification of COTS componergsspecified by the COTS's
developers. This specification is materializedhia form of aCOTS blueprinthat
is provided to the system designers as part o€tB&S documentation.

2. The behaviour specification of a COTS comporestspecified by the system
designers. This specification is materialized ia form of acomponent blueprint
that is produced by the system designers duringspeeification phase of the
system's development process. The component bitiegond the COTS blueprint
must satisfy certain mutual constraints for theéesysdesign to be correct, but they
will not be identical. E.g., the system designeescription requires the COTS
component to be able to react to a set of stinhali is a subset of the set specified
by the COTS's developers.

3. The description of the actual behaviour that shgtem designer expects from a
COTS component (not necessarily approving it) bamedorevious experiences,
i.e., he/she may know that it often fails in resgmonio certain legal stimuli. The
system designers describe this behaviour iaramtated COTS blueprint

4. The behaviour specified for the ROS. This speatibn is materialized in system
blueprint

5. The behaviour specification of the undesiraldkabiour, especially unacceptable,
of the component and the rest of the system, résplt the component safety
specificationsand thesystemsafety specificationsThe system designer produces
these during the specification stage of the devedop process.

The sources of information above allow the develdpeformulate a number of
statements describing the correct behaviour ofsffstem (consisting in this case of
the COTS component and of the ROS). The statemastexpressed as a set of
assertions on the states of input and output paessadn addition to that, they may
include assertions on the histories (sequencealis) @and assertions on the states of
the system components.

2.3 TheC2 Architectura Style

The C2 architectural style is a component-basde iyt supports large grain reuse
and flexible system composition, emphasizing wegildibhgs between components
[26]. In this style, components of a system aregetaly unaware of each other, as
when one integrates various COTS components, whialy have heterogeneous
styles and implementation languages. These compomemmunicate only through

asynchronous messages mediated by connectors mhatesponsible for message
routing, broadcasting and filtering. Interface ardhitectural mismatches are dealt
with by means of wrappers that encapsulate eacpauent.

In the C2 architectural style both components amthectors have @p interface
and abottom interface Systems are composed in a layered style, wheretdph
interface of a component may be connected to ttterhdnterface of a connector and
its bottom interface may be connected to the togrface of another connector. Each
side of a connector may be connected to any nuafl@Emponents or connectors.

There are two types of messages in C2: requesta@tifitations.Requestdlow
up through the system layers amotificationsflow down. In response to a request, a



component may emit a notification back to the canepas below, through its bottom
interface. Upon receiving a notification, a companenay react with themplicit
invocationof one of its operations.

While in this section we have introduced a backgdoan protectors and iC2C, in
the next section we propose an architectural swiufior turning COTS components
into idealised fault-tolerant COTS components (iGPThy adding protective
wrappers to them. Although in previous work we adticed the iCOTS concept [9,
10], in this paper we provide a detailed descnptiaf the iCOTS concept, a
systematic description of the engineering stefxetased when applying the proposed
solution, and a description of a case study useddtuate this solution.

3 ldealised Fault-Tolerant COTS Component

Modern large scale systems usually integrate CQdr8ponents which may act as
service providers and/or service users. Since,ethigrno control, or even full
knowledge, over the design, implementation andutimi of COTS components, the
evolutionary process of a COTS component shouldcdmesidered as part of a
complex environment, physical and logical, that hniglirectly affect the system
components. In order to build a dependable softvegttem from untrustworthy
COTS components, the system should treat thesear@nts as a potential source of
faults. The overall software system should be dblesupport COTS components
while preventing the propagation of errors. In otherds, the system should be able
to tolerate faults that may reside or occur ingigde COTS components, while not
being able to directly inspect or modify their imtal states or behaviour.

In this paper we present the concept of idealised fault-tolerant COTS
componentwhich is an architectural solution that encapgssglaa COTS component
adding fault tolerance capabilities to allow ith® integrated in a larger system. These
fault tolerant capabilities are related to theditis associated with error processing,
that is, error detection and error recovery. Thealided fault-tolerant COTS
component is a specialization of the idealised ©&h@bnent (iC2C) [8] that is briefly
described in the following section.

3.1 Theldealised C2 Component (iC2C)

The idealised C2 component (iC2C) is equivalenteims of behaviour and structure,
to the idealised fault-tolerant component [2]; &smproposed to allow structuring of
software architectures compliant with the C2 amddtitral style [26]. The C2 style
was chosen for its orientation towards independeoinponents that do not
communicate directly. This makes it easier forsitem developers to isolate critical
components from the ROS.

Service requests and normal responses of an idédhslt-tolerant component are
mapped as requests and notifications in the C2itacthral style. Interface and
failure exceptions of an idealised fault-tolerammponent are considered to be
subtypes of notifications. In order to minimize thgact of fault tolerance provisions
on the system complexity, we have decoupled thenalomactivity and abnormal



activity parts of the idealised component. This el us to developing an overall
structure for the iC2C that has two distinct congmas and three connectors, as
shown in Figure 1.

The iC2C NormalActivity component implements the normal behaviour, and is
responsible for error detection during normal openaand for signalling the interface
and internal exceptions. The iC2&bnormalActivity component is responsible for
error recovery and for signalling the failure extgaps. For consistency, the signalling
of an internal exception by an idealised fault#fe component is viewed as a
subtype of notification, and, the “return to norindlbwing in the opposite direction,
is viewed as a request. During error recovery,AbeormalActivity component may
also emit requests and receive notifications, whighnot shown in Figure 1.

Service  Normal Interface Failure
Requests Responses Exceptions  Exceptions

v v

[ iC2C_top connector |

T v

NormalActivity
Component
Internal
Exceptions
\/ \/
iC2C_internal connector
Return to
Normal \/
AbnormalActivity
Component

iC2C_bottom connector |

T v v v

Service  Normal Interface Failure
Requests Responses Exceptions Exceptions

Fig. 1. Idealised C2 Component (iC2C)

The iC2C connectors are specialized reusable Caeotors, which have the
following roles:

1. TheiC2C_bottom connector connects the iC2C with the lower comptnhef a
C2 configuration and serializes the requests redei@nce a request is accepted, it
gqueues new requests that are received until coimplef the first request. When a
request is completed, a notification is sent badkich may be a normal response,
an interface exception or a failure exception.

2. TheiC2C_internal connector controls message flow inside the iC2@&cting the
destination of each message received based ongtsator, the message type and
the operational state of the iC2C;



3. TheiC2C_top connector connects the iC2C with the upper compsnef a C2
configuration.

The overall structure defined for the idealised &@2nponent is fully compliant
with the component rules of the C2 architecturglestThis allows an iC2C to be
integrated into any C2 configuration and to interaith components of a larger
system. When this interaction establishes a chi€2C components, the external
exceptions raised by a component can be handledidyer level component (in the
C2 sense of “upper” and “lower”) allowing hierarcl structuring.

3.2 Guiddinesfor Turning COTSintoiC2C

In this section we show how the development ofqutars can be included in the
development process of a COTS-based software syStgpically, a COTS-based
development process can be divided into six stfgjegequirements, specification,
provisioning, assembly (or integration), test aeglldyment. The requirements stage
aims to identify the system’s requirements. Duting specification stage the system
is decomposed in a set of components with spedfponsibilities that interact to
fulfil the system requirements. These components iastantiated during the
provisioning stage. During this stage the systetegirator decides if a component can
be instantiated by an existing ‘off-the-shelf campnt, herein called £€0TS
instance,or if it will require an implementation effort, iwhich case it is called an-
house instanceDuring the assembly stage the system designegrates COTS and
in-house instances to build the whole system. Thiisgration effort includes the
development of glue code necessary to connect #n®ug components, which
include the specification and implementation oftgctors. During the test stage the
integrated system is tested and corrections maydze to ascertain that it fulfils its
requirements and conforms to its specification.imyjthe deployment stage the final
system is installed in the user's environment.

The presented guidelines are applied to the pmvisg and assembly stages of the
development process. We assume that the followitedaats, as described in Section
2.2, have already been produced: (i) a system bhteagescribing the initial software
architecture and the system's safety specificgtiamsl (i) a set of component’s
blueprints specifying the components' interfacabtheir safety specifications.

321 Stepsfor the Provisoning Stage

Step 1. Develop a basic test plan for the comporiéis test plan should be based
on the expected operational profile [11] of the ponent in the system being
developed.

Step 2. List candidate COTS componef@se should obtain a list of candidate
COTS software components that could be used tartiate the provided
interfaces specified in the component's blueprint.

For each candidate COTS component, execute stieps,3s below.

Step 3. Consolidate COTS blueprifine should obtain from the COTS vendor (or
developer) the following information, which are solidated in the COTS
blueprint.



a) The specification of the COTS provided interfacevhich is commonly
referred to as the COTS API (Application Prograngriinterface).

b) The specification of the COTS required interfacgvhich is commonly
referred as the COTS System Requirements.

¢) Information about known design faults in the GQWhich is usually found in
sections called ‘Known Bugs and Problems’.

d) Any information that may give a “grey-box” viewé the COTS, with selected
details visible only [14]. Usually, this informatianay be found in technical
articles and white papers from the COTS developers.

Step 4. Test the COTOne should test the COTS instance applying thie bast
plan previously developed. The results obtainednfrinese tests should be
documented with information about:

a) The subset of the COTS interfaces (provided raqdired) activated during
the tests.

b) The input domains covered by the tests.

c) The erroneous conditions detected and the aie®OTS behaviour under
those conditions.

d) Discrepancies between the behaviour specifiethénCOTS blueprint and its
actual observed behaviour.

Step 5. Enhance test covera@me should revise the test plan and repeat thiedes
procedure until adequate test coverage is attaifledt coverage influences
reliability, as higher test coverage is more likebyremove a greater number of
software faults, leading to a lower failure ratel drigher reliability [19]. The
final tests should detect all known design fauitthe COTS that can be activated
under the component’s expected operational profitee test plan should also
include test cases based on the “grey-box” viethefCOTS.

Step 6. Produce the annotated COTS bluepririte annotated COTS blueprint
consolidates the information obtained about the E@iEtual behaviour. This
annotated COTS blueprint is based on the COTS bhigphe system’s safety
specifications and the results of the final tesis should include:

a) Detailed specifications of the actual behaviofirthe interfaces that were
activated during the tests, under both normal araheous inputs.

b) Specification of potentially dangerous conditi@ssociated with the interfaces
that were not activated during the tests.

c) Additional information that may be available rfrqrevious use of the same
COTS instance.

Step 7. Select COTS instantfethere are two or more candidate COTS instances
being considered, select the one that fits beghé system. This selection is
based on the information contained in the systeoegsint and the various
annotated COTS blueprints. For this selection, aty e necessary to develop
alternate versions of the system blueprint adapidinitations and requirements
specific to each COTS instance. The result of #tep is a revised system’'s
blueprint with the version of the software architee that includes the selected
COTS instance wrapped by a protector (to be degdlauring the assembly
stage).



Step 8. Decide COTS integratioAt this point, it should be decided between the
system integration using the selected COTS instamcealternatively, using a
new component to be developed in-house.

322 Sepsfor the Assembly Stage

Step 9. Classify erroneous conditior®ne should define a set of generalised
erroneous conditions that may arise in the protestterface. The erroneous (or
dangerous) conditions specified in the annotated £®lueprint (Step 6) are
analyzed in view of the system’s safety specif@atand classified according to
how and in what extent they may affect the systeiejgendability requirements.
For each resulting class it is defined a genermléseeptional condition.

Step 10. Specify acceptable behaviour constrakiBCE) associated to the erroneous
conditions. This specification is based on the information taored in the
annotated COTS blueprint. The ABCs may includersiggs on:

a) The domain of parameters and results of theestquthat flow between the
COTS instance and the ROS.

b) The history of messages exchanged through tegane.

c) Portions of the internal state of system’'s cangmbs that can be inspected
by calling side-effect-free functions.

Step 11. Specify the desired system’s exceptioehlaviour. This exceptional
behaviour defines the error recovery goals, whicy mepend on the type and
severity of the errors detected. The main sourcehidf specification is the
system'’s safety specifications

Step 12. Allocate error recovery responsibilitigéhe system’s exceptional behaviour
specified in the preceding step is decomposed isetaof recovery actions
assigned to specific components in the softwardéitacture. Some of these
responsibilities will be allocated to the protecéssociated to the selected COTS
instance (Step 7). These recovery actions aresplstified during this step.

Step 13. Refine the software architecturgéhis refinement decomposes the
components involved with error processing (Step ittd new architectural
elements that will be responsible for error process

Step 14. Implement error detectoiihe specified ABCs (Step 10) are implemented
as the executable assertions encapsulated in tmw detectors that act as
message filters. The first error detector intergephd monitors the service
requests that flow from the ROS to the COTS andctineesponding results that
flow back to the ROS. The second error detectcerdepts and monitors the
service requests that flow from the COTS to the RDE8 the corresponding
results that flow back to the COTS. The error deteintercepts these messages
and verifies their associated assertions beforatiglg the message. When an
ABC violation is detected the error detector raiseexception of a specific type
associated with this ABC. The exception raised aost the pending message
that, in this case, is not delivered to its recipidlessages that do not cause an
ABC violation are delivered to their recipients mout change.

Step 15. Implement error handlerShe specified recovery actions (Step 12) are
implemented in error handlers associated with #réous exception types. These
error handlers can be attached to the respectivpatents of the architecture.



This placement depends on the scope of the recaaign, which may vary
from a single component instance to the whole syste

Step 16. Integrate the protectoBBuring this step, the COTS instances are intedrate
with their associated error detectors (Step 14) emdrs handlers (Step 15) as
specified by the refined software architecture §t8). The result of this step is a
set of COTS instances in the form of iC2C.

Step 17. Integrate the syste@uring this step, the COTS instances are intedrate
with the in-house instances to produce the finstesy.

The integration of COTS instances in the form 02@Cinto a C2 architectural
configuration will be the topic of the next sectidduch architectural configuration
will contain iC2Cs for structuring in-house instaec and idealised C2 COTS
component (iCOTS) for structuring COTS instanced #reir respective protective
wrappers.

3.3 ldealised C2 COTS (iCOTS) Overall Architecture

A protective wrapper for a COTS software comporierg special type of application-
specific fault-tolerance capability. To be effeetivthe design of fault-tolerance
capabilities must be concerned with architectusaliés, such as process distribution
and communication mode, that impact the overaliesyslependability. Although the
C2 architectural style is specially suited for gring COTS components into a
larger system, its rules on topology and commuiticatare not adequate for
incorporating fault tolerance mechanisms into Cwswe architectures, especially
the mechanisms used for error detection and famtainment [8]. The idealised C2
fault-tolerant component (iC2C) architectural smlnt(section 3.1) overcomes these
problems leveraging the C2 architectural style tmwa such COTS software
components to be integrated in dependable systems.

The idealised C2 COTS component (iCOTS) is a sfieaien of the iC2C that
employs protective wrappers for encapsulating a £@dmponent. In our approach,
the COTS component is connected to two specialaathectors acting as error
detectors (Figure 2) to compose thermalActivity component of the iCOTS. These
detectors are responsible for verifying that thessages that flow to/from the COTS
being wrapped do not violate the acceptable bebawonstraints specified for that
system.

The lower_detector inspects incoming requests and outgoing respo(Ses
notifications) from/to the COTS clients while tbpper_detector inspects outgoing
requests and incoming responses to/from other aoempe providing services to the
COTS. In the context of the overall diagram, t82C_bottom connector connects
the iCOTS with the lower components of a C2 comfitjon, and serializes the
requests received. Th€2C_internal connector controls message flow inside the
iCOTS. TheiC2C_top connector connects the iCOTS with the upper coremisnof
a C2 configuration.
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Fig. 2. Idealised C2 COTS (iCOTS) Overall Structure

When a constraint violation is detected, the deteciends an exception
notification, which will be handled by th&bnormalActivity component, following
the rules defined for the iC2C. Any of these detexctnay be decomposed in a set of
special purpose error detectors that, in their,tara wrapped by a pair of connectors.
For example, Figure 3 shows apper_detector decomposed into a number of error
detectors. Thealetector_bottom coordinates error detection, and tetector_top
connects the whole detector either to the COT® the iC2Ctop_connector.

\ detector_top \
\ \ \
Error Error
Detector - Detectorn
1 En

[ [ [
\ detector_bottom |

Fig. 3. Decomposition of a Detector

The AbnormalActivity component is responsible for both error diagnasis error
recovery. Depending on the complexity of these $ask may be convenient to
decompose it into more specialized componentsrar eliagnosis and a set of error
handlers, as shown in Figure 4. In this desigaFEtinorDiagnosis component is able
to react directly to exceptions raised by thermalActivity component and send
notifications to activate th&rrorHandlers or, alternatively, to stand as a service
provider of requests sent by tBerorHandlers.
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4 Case Study

In this section, we present a case study that detmrades the applicability of the
iCOTS architectural solution when dealing with migames in the failure
assumptions of COTS software components.

4.1 Problem Statement

Anderson et. al. [1] present the results of a cstsely in protective wrapper

development [15], in which a Simulink model of a&an boiler system is used

together with an off-the-shelf PID (Proportionaitdgral and Derivative) controller.

The protective wrappers are developed to allowatiete and recovery from typical

errors caused by unavailability of signals, viaas of limitations, and oscillations.
The boiler system comprises the following compaosetite physical boiler, the

control system and the rest of the system (ROS{urim, the control system consists
of PID controllers, which are the COTS componeats] the ROS consisting of:

1. Sensors - these are “smart” sensors that mowvétdgables providing input to the
PID controllers: the drum level, the steam flowge thteam pressure, the gas
concentrations and the coal feeder rate.

2. Actuators - these devices control a heatingdutimat can be ON/OFF, and adjust
inlet/outlet valves in response to outputs from BB controllers: the feed water
flow, the coal feeder rate and the air flow.

3. Boiler Controller - this device allows to entbe configuration set-points for the
system: the steam load and the coal quality, wirigkt be set up in advance by the
operators.

The Simulink model represents the control systerthgse PID controllers dealing
with the feed water flow, the coal feeder rate #vedair flow. These three controllers



output three variables: feed water flow_(vf), coal feeder rate(_fr) and air flow
(Air_f), respectively; these three variables, togethén wio configuration set-points
(coal quality and steam load) constitute the pararsevhich determine the behaviour
of the boiler system. There are also several iatevariables generated by the smart
sensors. Some of these, together with the configmraet-points, provide the inputs
to the PID controllers, in particular: bus presssst-point P_ref), O, set-point
(02_ref), drum level D_I), steam flow $_f), steam pressure/drur® (d), steam
pressure/busP(_b), O, concentration at economize®Zeco), CO concentration at
economizer Coeco), and NOXx concentration at economizdoeco).

4.2 TheProvisoning Stage

In this case study, we assume that the provisiosiage has been completed with the
selection of a COTS PID Controller instance, astioeed in Step 7 (Select COTS
instance) of Section 3.2.1 (Steps for the ProviegrStage). Anderson et. al. [1]
summarise the available information describing tt@rect COTS component
behaviour to be used in developing the protectivappers. This document play the
role of the annotated COTS blueprint mentioned tep3 (Produce the annotated
COTS blueprint). Figure 5 shows the initial softevarchitecture that is part of the
system blueprint (Section 3.2). This architectuvehich is based on the C2
architectural style, is organized in four layeisttfe BoilerController component; (ii)
the WaterFlowController and CoalFeederController; (iii) the AirFlowController,
which has as input th€oalFeederRate from the CoalFeederController; and (iv)
the sensors and actuators required by the systabie TL specifies the operations
provided by some key components that appear irnr€&igu
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Fig. 5. C2 Configuration for the Boiler System



Table 1. List of Operations

Operation Provider Component
readDrumLevel() : D_| Drum Level Sensor
readSteamFlow() : S _f Steam Flow Sensor
readBusPressure() : P_b Steam Pressure Bus Sensor
readO2Concentration() : O2eco O, Concentration Sensor
setFeedWaterFlow(F_wf) Feed Water Flow Actuator
setCoalFeedRate(C_fr) Cool Feeder Rate Actuator

Air Flow Controller
setAirFlow(Air_f) Air Flow Actuator
setConfiguration(P_ref, O2_ref) Coal Feeder Controller

Air Flow Controller

4.3 The Assembly Stage

The following paragraphs illustrate the assembbget starting from Step 9 of

Section 3.2.2 (Steps for the Assembly Stage).

Step 9. Define a set of generalised erroneous tiondi that may arise in the
protected interfaceThree types of such erroneous conditions are deres: (i)
unavailability of inputs/outputs to/from the PID ntwmllers; (ii) violation of
specifications of monitored variables; and (iiitidlations in monitored variables.

Step 10. Specify acceptable behaviour constraidtB8CE) associated to the
erroneous conditionsThese ABCs are summarized in the second column of
Table 2 (ABC to be checked).

Step 11. Specify the desired system’s exceptioebhviour. Depending on the
severity of the errors and on the specific charesties of the system, two types
of recovery are used in the case study: raisinglamm and safe stop.

Step 12. Allocate error recovery responsibilitieghe AirFlowController,
WaterFlowController and CoalFeederController components are responsible
for error detection (ABCs violations). ThBoilerController component is
responsible for error recovery, which may be eitioesound an alarm or to shut
down the system, depending on the exception type.

Step 13. Refine the software architectuiine proposed solution applies the concepts
of iCOTS and iC2C for structuring four componentie AirFlowController,
WaterFlowController andCoalFeederController components are structured as
iCOTS components that encapsulate a COTS instaéneeCOTS PID controller)
wrapped by a protector. ThBoilerController component is structured as an
iC2C, to be provided as an in-house instance. Wextlescribe how we can build
an iCOTSAiIrFlowController encapsulating a COTS PID controller wrapped by
a protector. This solution equally applies to tWaterFlowController and
CoalFeederController components.



Table2. Error Detection Specifications

Message Type ABC to be checked Exceptional Notification

L ower Detector

0<=02_ref <=0.1 InvalidConfigurationSetpoint
RequestetConfiguration | corresponding notification must RePIDTimeout
(P_ref, 02_ref) | received within a specified time

interval
0<=C fr<=1 InvalidCoalFeederRate
RequestetCoalFeeder | check_oscillate(Air_f) CoalFeederRateOscillating

(C_f)

corresponding notification must bePIDTimeout
received within a specified time

interval
Upper Detector
0 <=Air f<=0.1 InvalidAirFlowRate
RequessetAirFlow(Air_f) | check_oscillate(Air_f) AirFlowRateOscillating

corresponding notification must heAirFlowActuatorTimeout
received within a specified time
interval

Notification from| 0 <=02eco <=1 InvalidO2Concentration
readO2Concentration()

Table 3. Summary of Exceptional Notifications

Exception Notification Generic Exception Type
PIDTimeout NoResponse
AirFlowActuatorTimeout (unavailability of inputs/ outputs to/from tDController)
InvalidConfigurationSetpoint*
InvalidCoalFeederRate* OutOfRange
InvalidO2Concentration (violation of specifications of monitored variables
InvalidAirFlowRate
CoalFeederRateOscillating Oscillation
AirFlowRateOscillating (oscillations in monitored variables)

* Interface exceptions.
Figure 6 shows the internal structure of the iCddiSthe AirFlowController,
based on the patterns shown in Figures 2 and 3. Sdiution equally applies to the

WaterFlowController andCoalFeederController components.
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Fig. 6. Decomposition of th&irFlowController

The COTS PID controller is wrapped by a pair obedetectorsupper_detector
and lower_detector) and inserted into an iC2C as KormalActivity component.
Both detectors us©scillatorChecker, which is responsible for checking whether
oscillating variables revert to a stable state feefomaximum number of oscillations.
Table 2 specifies, for each detector: the messgpestto be inspected, their
corresponding assertions that guarantee the abtefiehaviour constraints (Section
2.2), and the type of the exception notificatiomttlshould be generated when a
constraint is violated. Table 3 summarises thesepion types, grouped by their
generalised types. Two of these exception typesnaeeface exceptions that are sent
directly to the next lower level in the architeetuconfiguration. The other exception
types are internal exceptions, to be handled byAR€ErrorHandler. Thus, the
AFCErrorHandler propagates internal exceptions as failure exceptid the generic
type of the corresponding internal exception, ushemapping shown in Table 3. A
PIDTimeout exception, for example, will generat®&laResponse failure exception.
TheBoilerController component is responsible for:

1. Configuring the boiler system, sendingetConfiguration requests when
appropriate.

2. Handling interface exceptions of typevalidConfigurationSetpoint, which may
be raised in response ofetConfiguration request.

3. Handling failure exceptions of typ¢oResponse, OutOfRange or Oscillation,
which may be raised by the three controllergvVaterFlowController,
CoalFeederController, AirFlowController).

The BoilerController component was structured as an iC2C to cope \sitht-f
tolerance responsibilities, which are capturedtéms (2) and (3) above, in addition
to its main functional responsibility, which is tagped by item (1) above.

Figure 7 shows the resulting fault-tolerant aratiitee for this system, which is
derived from the overall architectural configuratior the boiler system (Figure 5).
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Fig. 7. Resulting Configuration for the Boiler System

Each of its three controllers is structured aslided C2 COTS (iCOTS) and the
BoilerController as an idealised C2 component (iC2C). It is assuimgitthe sensors
and actuators, as well as the connectors, do ilot-fgure 8 illustrates the flow of



messages between the various components involved @RIDTimeout exception

occurs, after thaoilerController fails to configure théAirFlowController, which

contains the COT®ID3Controller. When theAirFlowController bottom connector

(afcld_bottom) detects that théirFlowController is not responding, it raises an

exception toAFCErrorHandler. Since AFCErrorHandler cannot cope with this

exception type, it raises another exception toBl¥ErrorHandler that shuts down
the whole system.

Step 14. Implement error detectoBuring this and the following steps it was used an
objected-oriented framework that provides a genienementation for the key
abstractions of the iC2C and iCOTS structuring ept& Using this framework,
the iCOTS lower and upper detectors are implemergedsubclasses of,
respectivelyLowerDetectorAbst andUpperDetectorAbst. Figure 9 shows the
main parts of theAfcLowerDetector class that implements the lower error
detector associated with tiérFlowController component. In this code sample,
the setConfiguration() andsetCoalFeedRate() methods intercept the requests
sent to theAirFlowController and check their associated ABCs, based on the
specification shown in Table 2. When an assert®widlated an exception is
raised by means of thraiseException() method, which is implemented by the
abstract classes. Accepted requests are deliverttb@AirFlowController that is
connected to thewrappedNormal interface.

Step 15. Implement error handletdsing the framework aforementioneted, the error
handlers are implented as subclasseSboformalActivityAbst. Figure 10 shows
the AFCErrorHandler class that implements the error handler assochattd
the AirFlowController. In this code sample, thendle() method is called when
a failure exception is raised by one of the erretectors that wrap the
AirFlowController. The exceptions raised are re-signalled with a ngemeric
exception type according to the specifications showTable 3.

Step 16. Integrate the protectoiie following code snippet creates a comporént
that encapsulates thrFlowController and its associated error detectors and
error handler, according to the ICOTS structurifiis new component is an
iC2C instance composed by the basicFlowController wrapped by the two
error detectors, acting as the iC2C normal actigitynponent, and the error
handler acting as the iC2C abnormal activity conspon

Icomponent afc=new iC2C( new AfcWrappedNormal

( new AirFlowController 0,
new AfcLowerDetector(

new AfcUpperDetector( )),
new AFCErrorHandler() ) ;
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Step 17. Integrate the systerfihe integration of the various components and
connectors that are composed into the system isdcmdthemain() method of a
StartUp class, based on the configuration shown in Figuléié code snippet
bellow illustrates this method body with: (i) thestantiation of componemtc as
an iC2C composed by tHgoilerController component and its associated error
handler; (ii) the instantiation of connectoonnl; and (iii) the connection
between the top interface of componbotand the bottom interface of connector
connl.

IComponent bc=new iC2C

(new BoilerController(), new BCErrorHandler( );
IConnector c1=new Connl();
bc.connectTop(cl);

The resulting system was tested in a simulatedremvient that allowed us to
inject different faults in the system. The finab®m passed all tests successfully. The
system behaved as specified even in the presentault$, aborting the erroneous
operations and either stopping the system or autiyan alarm.

A limitation of the case study is that it is basgda simulation of a boiler system,
which does not allow an objective performance aislyDuring execution time, the
main overhead associated to a protector occurs veheervice requested passes
through a protected interface. This overhead i@it®mnal to the number and
complexity of the assertions encapsulated in th&teptors. Assuming that this
complexity should be much lower than the complegityhe services provided by the
COTS, we may infer that the performance impacthef protective wrappers will be
low. An ongoing experimental work in the DOTBroject is confirming this. The
protector associated with the air flow controlleomprising its two error detectors
with the eight ABCs and the associated error handéguired about a hundred lines
of code. This additional code is added to the gystethree new classes, which does
not require any changes in the class that implesrignat baséirFlowController. An
ongoing work is applying the proposed approach mea world system and to more
complex COTS software components.

1 Diversity with Off-The-Shelf Components Projecttpty/www.csr.ncl.ac.uk/dots/



public class AfcLowerDetector extends LowerDetector Abst
implements IConnector, |AirFlowController {
private lAirFlowController wrappedNormal;
private OscillatorChecker oscillatorChecker;
public void setConfiguration
(double P_ref, double O2_ref) {
if (O2_ref<0 || O2_ref>0.1)
raiseException
(new InvalidConfigurationSetpoint(O2_ref));
try {wrappedNormal.setConfiguration(P_ref, O2_r ef);
} catch (TimeoutException €) {
raiseException
(new PIDTimeout("setConfiguration()"));
} catch (AbortException €) { aborted(); }

public void setCoalFeedRate(double C_fr) {
if (C_fr<0 || C_fr>1)
raiseException(new InvalidCoalFeederRate(C_fr );
if (oscillatorChecker.check_oscillate(C_fr))
raiseException
(?ew CoalFeederRateOscillating(C_fr));
try
wrappedNormal.setCoalFeedRate(C_fr);
} catch (TimeoutException €) {
raiseException
(new PIDTimeout("setCoalFeedRate()"));
} catch (AbortException e) { aborted(); }

}

Fig. 9. Implementation of théirFlowController’s lower detector.

public class AFCErrorHandler
extends AbnormalActivityAbst implements IComponen t{
public void handle(Exception exception) {
try { throw exception; }
catch (PIDTimeout e) {
throw new NoResponse(e);
} catch (AirFlowActuatorTimeout e) {
throw new NoResponse(e);
} catch (InvalidO2Concentration e) {
throw new OutOfRange(e);
} catch (InvalidAirFlowRate e) {
throw new OutOfRange(e);
} catch (CoalFeederRateOscillating e) {
throw new Oscillation(e);
} catch (AirFlowRateOsclllating e) {
throw new Oscillation(e);
} catch (Exception e) {
throw new FailureException(e); }

Fig. 10. Implementation of théirFlowController's error handler.




5 Related Work

This section compares our approach with severavaet existing proposals. The
main comparison criteria are the types of the comepts (application-level or
middleware/OS level), fault tolerance (error detectiand recovery) provided, type of
the redundancy, the information used for developngr detection and recovery,
phases of the life cycle (at which they are applied

Ballista [12] works with POSIX systems coming frageveral providers. The
approach works under a strong assumption that tirenat specification of the
component is available, from which error detecttaa be specified. In addition to
this, the results of fault injection are used foe specification of error detectors. A
layer between the applications and the operatirsgesy (OS), intercepting all OS
calls as well as the outgoing results, implemehis érror detection. The recovery
provided by this approach is very basic (blockihg trroneous calls) and is not
application-specific.

A very interesting approach to developing protectiwrappers for a COTS
microkernel is discussed in [23]. The idea is tecdy the correct behaviour of a
microkernel and to make the protective wrapper kladicfunctional calls (similar to
Ballista, this approach cannot be applied for apfibn-level COTS components that
lack a complete and correct specification of themymanent’s behaviour). Reflective
features are employed for accessing the intereéd sif the microkernel to improve
the error detection capability. In addition, theules of fault injection are used in the
design of wrappers for catching those calls thaeheeen found to cause errors of the
particular microkernel implementation. A recent kdi6] shows how recovery
wrappers can be developed within this frameworéllmv for recovery after transient
hardware faults, which is mainly based on reddiregrecent operation.

Unfortunately these two approaches do not offerassjstance in developing fault
tolerant system architectures. The Simplex framkwtbre best summary of this work
performed in mid 90’s can be found in [21]) promosen architectural solution to
dealing with the faults of the application-level T® components. The idea is to
employ two versions of the same component: onéherfntis the COTS component
itself and another one is a specially-developedt umplementing some basic
functions. The second unit is assumed to be bug dseit implements very simple
algorithms. The authors call this analytical redamzy. The two units together form a
safety unit in which only externally observable regeof the COTS component are
dealt with. The system architect is to implemesetof consistency constraints on the
inputs to the COTS component and the outputs fitpesiwell as on the states of the
device under control. This approach is orientedatos developing fault tolerant
architectures of control systems. The disadvantdighis approach is that it is not
recursive as it treats the whole control softwaseoae unit and provides fault
tolerance at only this level.

Rakic et. al. [17] offer a software connector-basggbroach to increasing the
dependability of systems with components that evalver time. The idea is to
employ the new and the (several if available) @dsions of a component to improve
the overall system dependability. The authors mrtvdrd the idea of using a
specialised multi-version connector allowing thesteyn architect to specify the
component authority for different operations: asi@m designated as authoritative



will be considered nominally correct with respeztatgiven operation. The connector
will propagate only the results from an authon@tiversion to the ROS and at the
same time, log the results of all the multi-versidncomponents' invocations and
compares them to the results produced by the atdtiee version. This solution is
mainly suitable for systems in which COTS compogeme to be upgraded (under the
assumption that the interface of the old and nempoments remain unchanged) so
there are several versions of a component in place.

6 Conclusonsand FutureWork

When building dependable systems from existing @rmapts, guarantees cannot be
given on the system behaviour, if at least guaesntare not provided on the
behaviour of its individual components. Since sgelarantees are difficult to be
obtained for individual COTS components, architegdtineans have to be devised for
the provision of the necessary guarantees at ttersylevel. The paper proposes an
architectural solution to transform COTS components idealised fault-tolerant
COTS components by adding protective wrappers tanthWe demonstrate the
feasibility of the proposed approach using therstbailer system case study, where
its controllers are built reusing unreliable COT@nponents. Although we recognize
that the proposed approach can result in incorpgratepetitive checks into the
integrated system, this is an unavoidable outcoomsidering the lack of guarantees
provided by COTS components. For example, it mightthe case that a COTS
component has internal assertions checking theitaldf an input parameter that is
also checked by its protector, or other protectassociated with other COTS
components. However, there are situations in wiiieh system integrator can take
care of this by coordinating development of faulletance means associated with
individual components.

The protective wrappers are integrated in the sechiral configuration as a set of
new architectural elements that are dependent minime environment, which is
assumed to be reliable. The proposed approach @bes not consider direct
interactions between the COTS software componedthamman users. This implies
that the proposed approach may not be effectivepfotecting COTS software
components that either: (i) provide infrastructsegvices, such as operating systems,
distribution middleware and component frameworks(iip interacts intensively with
human users, such as word processors.

The effectiveness of the proposed approach dependthe system designer's
ability to anticipate the COTS behaviour when indigg it into a specific system,
e.g. using the COTS usage profile. An approach doticipating undesirable
behaviour and, thus, increasing the protector'xame factor for error detection is to
perform integration tests of the COTS within thetegn being developed, prior to the
specification of the protectors. These testingviids are the harder aspect in the
development of the protectors, and they cannotvbiled. Our future work includes
evaluating tools for automating these tests, whatuld be integrated in the
protector’s development process.



Although a single architectural style was used lwe ttase study, software
components in the C2 architectural style can beenesless integrated into
configurations of other architectural styles of tinelependent components family
[22], such as client/server and broker styles. Hfigws the idealised fault tolerant
COTS (iCOTS) concept to be applied as a generatisolin composing dependable
systems from unreliable COTS components.
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