
de C. Guerra, P.A., Rubira, Cecilia M. F., Romanovsky, Alexander and de
Lemos, Rogério (2004) A Dependable Architecture for COTS-Based Software
Systems using Protective Wrappers. In: de Lemos, Rogério and Gacek,
Cristina and Romanovsky, Alexander, eds. Architecting Dependable Systems
II. Lecture Notes in Computer Science . Springer, Berlin, Germany, pp.
144-166. ISBN 978-3-540-23168-4.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14158/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-540-25939-8_7

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14158/
https://doi.org/10.1007/978-3-540-25939-8_7
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Dependable Architecture for COTS-Based Software
Systems using Protective Wrappers

Paulo Asterio de C. Guerra1, Cecília Mary F. Rubira1,
Alexander Romanovsky2, Rogério de Lemos3

1Instituto de Computação Universidade Estadual de Campinas, Brazil
{asterio,cmrubira}@ic.unicamp.br

2School of Computing Science, University of Newcastle upon Tyne, UK
alexander.romanovsky@ncl.ac.uk

3Computing Laboratory, University of Kent at Canterbury, UK
r.delemos@ukc.ac.uk

Abstract. Commercial off-the-shelf (COTS) software components are built to
be used as black boxes that cannot be modified. The specific context in which
these COTS components are employed is not known to their developers. When
integrating such COTS components into systems, which have high
dependability requirements, there may be mismatches between the failure
assumptions of these components and the rest of the system. For resolving these
mismatches, system integrators must rely on techniques that are external to the
COTS software components. In this paper, we combine the concepts of an
idealised architectural component and protective wrappers to develop an
architectural solution that provides an effective and systematic way for building
dependable software systems from COTS software components.

1 Introduction

A commercial off-the-shelf (COTS) software component is usually provided as a
black box to be reused "as it is". Most of the time these components do not have a
rigorously written specification, hence there is no guarantee that their description is
correct (very often, it is ambiguous and incomplete). Moreover, these components
may have faults, and the specific context in which they will be used is not known
during their development. Once they are created, they can evolve over time through
different versions. When an integrator builds a system out of COTS components,
she/he can be forced to evolve the system whenever a new version of these COTS
components is released. These new versions can be sources of new faults. When
integrating such components into a system, solutions for meeting its overall
dependability requirements should be envisaged at the architectural level,
independently of the particular COTS versions. These solutions should ensure that the
system delivers the service despite the presence of faults in the COTS component and
how it interacts with other system components. In this paper, we focus on COTS
software components that are integrated in a system at the application level and
provide their services to other components and, possibly, use services provided by

them. We assume that these application level software components are deployed in a
reliable runtime environment that may include other COTS software components at
the infrastructure level, such as operating systems, distribution middleware and
component frameworks.

Research into describing software architectures with respect to their dependability
properties has recently gained considerable attention [20,24,25]. In this paper, we
focus on the architectural description of fault-tolerant component-based systems that
provides an effective and systematic way for building dependable software systems
from COTS software components. For that, we combine the concepts of an idealised
architectural component [8], which is based on the idealised fault-tolerant component
[2], and protective wrappers [15], known to be the most general approach to
developing dependable software systems based on COTS components. While in
previous work we have described the basis of the proposed approach [9,10], in this
paper we elaborate on that work by discussing guidelines for specifying and
implementing protective wrappers and by demonstrating our ideas using a case study.

The rest of the paper is organised as follows. In the next section, we briefly discuss
background work on architectural mismatches, wrapper protectors, and the C2
architectural style. Section 3 describes the architectural representation of idealised
fault-tolerant COTS, in terms of the idealised C2 component (iC2C), the idealised C2
COTS component (iCOTS), and the process of architecting fault-tolerant systems
using iCOTS components. The case study demonstrating the feasibility of the
proposed approach is presented in section 4. Related work on how to build
dependable software systems based on COTS components is discussed in section 5.
Finally, section 6 presents some concluding remarks and discusses future work.

2 Background

When integrating COTS components into a software system, the architect needs to
develop glue code [18] that links various components together and includes new
architectural elements, or adaptors, to resolve the different kinds of incompatibilities
that may exist. A protector is a special kind of adaptor that deals with
incompatibilities in the failure assumptions.

2.1 Architectural Mismatches and COTS Component Integration

Dealing with architectural mismatches [7] is one of the most difficult problems
system integrators face when developing systems from COTS components. An
architectural mismatch occurs when the assumptions that a component makes about
another component or the rest of the system (ROS) do not match. That is, the
assumptions associated with the service provided by the component are different from
the assumptions associated with the services required by the component for behaving
as specified [13]. When building systems from existing components, it is inevitable
that incompatibilities between the service delivered by the component and the service
that the ROS expects from that component give rise to such mismatches. These
mismatches are not exclusive to the functional attributes of the component;

mismatches may also include dependability attributes related, for example, to the
component failure mode assumptions or its safety integrity levels.

We view all incompatibilities between a COTS component and the ROS as
architectural mismatches. This, for example, includes internal faults of a COTS
component that affect other system’s components or its environment, in which case
the failure assumptions of the component were wrong.

2.2 COTS Component Protectors

Component wrapping is a well-known structuring technique that has been used in
several areas. In this paper, we use the term “wrapper” in a very broad sense,
incorporating the concepts of wrappers, mediators, and bridges [6]. A wrapper is a
specialised component inserted between a component and its environment to deal
with the flows of control and data going to and/or from the wrapped component. The
need for wrapping arises when (i) it is impossible or expensive to change the
components when reusing them as parts of a new system, or (ii) it is easier to add new
features by incorporating them into wrappers. Wrapping is a structured and a cost-
effective solution to many problems in component-based software development.
Wrappers can be employed for improving quality properties of the components such
as adding caching and buffering, dealing with mismatches or simplifying the
component interface. With respect to dependability, wrappers are usually used for
ensuring properties such as security and transparent component replication.

A systematic approach has been proposed for using protective wrappers, known as
protectors, that can improve the overall system dependability [15]. This is achieved
by protecting both the system against erroneous behaviour of a COTS component, and
the COTS component against erroneous behaviour of the rest of the system (ROS). As
a protector has this dual role we call the interface between the COTS and the ROS the
protected interface. The protectors are viewed as redundant software that detects
errors or suspicious activity on a protected interface and executes appropriate
recovery.

The development of protectors occurs during the assembly stage of the
development process of a COTS-based system, as part of the system integration
activities [15]. The approach consists of rigorous specification of the protector
functionality, in terms of error detection and associated recovery actions, and in their
integration into the software architecture. The protector error detection capabilities are
specified in the form of acceptable behaviour constraints (ABCs) that ensure the
normal behaviour of the protected interface. The protector recovery actions are
specified in the form of exception handlers associated with the erroneous conditions
that may arise in the protected interface. The protector specification is based on a set
of blueprints and safety specifications that are produced during the earlier stages of
the development process. A blueprint is a documented entity that specifies the overall
architecture and external behaviour of a piece of software [3]. Safety specifications
are derived from the system's safety requirements [5], which focus on reducing the
risk associated with hazards and on limiting damage when an accident occurs. The
general sources of information to be used in developing both ABCs and possible
actions to be undertaken in response to their violations are the following:

1. The behaviour specification of COTS components as specified by the COTS's
developers. This specification is materialized in the form of a COTS blueprint that
is provided to the system designers as part of the COTS documentation.

2. The behaviour specification of a COTS component as specified by the system
designers. This specification is materialized in the form of a component blueprint
that is produced by the system designers during the specification phase of the
system's development process. The component blueprint and the COTS blueprint
must satisfy certain mutual constraints for the system design to be correct, but they
will not be identical. E.g., the system designer's description requires the COTS
component to be able to react to a set of stimuli that is a subset of the set specified
by the COTS's developers.

3. The description of the actual behaviour that the system designer expects from a
COTS component (not necessarily approving it) based on previous experiences,
i.e., he/she may know that it often fails in response to certain legal stimuli. The
system designers describe this behaviour in an annotated COTS blueprint.

4. The behaviour specified for the ROS. This specification is materialized in a system
blueprint.

5. The behaviour specification of the undesirable behaviour, especially unacceptable,
of the component and the rest of the system, respectively, the component safety
specifications and the system safety specifications. The system designer produces
these during the specification stage of the development process.
The sources of information above allow the developer to formulate a number of

statements describing the correct behaviour of the system (consisting in this case of
the COTS component and of the ROS). The statements are expressed as a set of
assertions on the states of input and output parameters. In addition to that, they may
include assertions on the histories (sequences of calls) and assertions on the states of
the system components.

2.3 The C2 Architectural Style

The C2 architectural style is a component-based style that supports large grain reuse
and flexible system composition, emphasizing weak bindings between components
[26]. In this style, components of a system are completely unaware of each other, as
when one integrates various COTS components, which may have heterogeneous
styles and implementation languages. These components communicate only through
asynchronous messages mediated by connectors that are responsible for message
routing, broadcasting and filtering. Interface and architectural mismatches are dealt
with by means of wrappers that encapsulate each component.

In the C2 architectural style both components and connectors have a top interface
and a bottom interface. Systems are composed in a layered style, where the top
interface of a component may be connected to the bottom interface of a connector and
its bottom interface may be connected to the top interface of another connector. Each
side of a connector may be connected to any number of components or connectors.

There are two types of messages in C2: requests and notifications. Requests flow
up through the system layers and notifications flow down. In response to a request, a

component may emit a notification back to the components below, through its bottom
interface. Upon receiving a notification, a component may react with the implicit
invocation of one of its operations.

While in this section we have introduced a background on protectors and iC2C, in
the next section we propose an architectural solution for turning COTS components
into idealised fault-tolerant COTS components (iCOTS) by adding protective
wrappers to them. Although in previous work we introduced the iCOTS concept [9,
10], in this paper we provide a detailed description of the iCOTS concept, a
systematic description of the engineering steps to be used when applying the proposed
solution, and a description of a case study used to evaluate this solution.

3 Idealised Fault-Tolerant COTS Component

Modern large scale systems usually integrate COTS components which may act as
service providers and/or service users. Since, there is no control, or even full
knowledge, over the design, implementation and evolution of COTS components, the
evolutionary process of a COTS component should be considered as part of a
complex environment, physical and logical, that might directly affect the system
components. In order to build a dependable software system from untrustworthy
COTS components, the system should treat these components as a potential source of
faults. The overall software system should be able to support COTS components
while preventing the propagation of errors. In other words, the system should be able
to tolerate faults that may reside or occur inside the COTS components, while not
being able to directly inspect or modify their internal states or behaviour.

In this paper we present the concept of an idealised fault-tolerant COTS
component, which is an architectural solution that encapsulates a COTS component
adding fault tolerance capabilities to allow it to be integrated in a larger system. These
fault tolerant capabilities are related to the activities associated with error processing,
that is, error detection and error recovery. The idealised fault-tolerant COTS
component is a specialization of the idealised C2 Component (iC2C) [8] that is briefly
described in the following section.

3.1 The Idealised C2 Component (iC2C)

The idealised C2 component (iC2C) is equivalent, in terms of behaviour and structure,
to the idealised fault-tolerant component [2]; it was proposed to allow structuring of
software architectures compliant with the C2 architectural style [26]. The C2 style
was chosen for its orientation towards independent components that do not
communicate directly. This makes it easier for the system developers to isolate critical
components from the ROS.

Service requests and normal responses of an idealised fault-tolerant component are
mapped as requests and notifications in the C2 architectural style. Interface and
failure exceptions of an idealised fault-tolerant component are considered to be
subtypes of notifications. In order to minimize the impact of fault tolerance provisions
on the system complexity, we have decoupled the normal activity and abnormal

activity parts of the idealised component. This has lead us to developing an overall
structure for the iC2C that has two distinct components and three connectors, as
shown in Figure 1.

The iC2C NormalActivity component implements the normal behaviour, and is
responsible for error detection during normal operation and for signalling the interface
and internal exceptions. The iC2C AbnormalActivity component is responsible for
error recovery and for signalling the failure exceptions. For consistency, the signalling
of an internal exception by an idealised fault-tolerant component is viewed as a
subtype of notification, and, the “return to normal”, flowing in the opposite direction,
is viewed as a request. During error recovery, the AbnormalActivity component may
also emit requests and receive notifications, which are not shown in Figure 1.

iC2C_top connector

NormalActivity

Internal
Exceptions

Return to
Normal

AbnormalActivity

iC2C_bottom connector

Service
Requests

Normal
Responses

Interface
Exceptions

Failure
Exceptions

Component

Component

Service
Requests

Normal
Responses

Interface
Exceptions

Failure
Exceptions

iC2C_internal connector

Fig. 1. Idealised C2 Component (iC2C)

The iC2C connectors are specialized reusable C2 connectors, which have the
following roles:
1. The iC2C_bottom connector connects the iC2C with the lower components of a

C2 configuration and serializes the requests received. Once a request is accepted, it
queues new requests that are received until completion of the first request. When a
request is completed, a notification is sent back, which may be a normal response,
an interface exception or a failure exception.

2. The iC2C_internal connector controls message flow inside the iC2C, selecting the
destination of each message received based on its originator, the message type and
the operational state of the iC2C;

3. The iC2C_top connector connects the iC2C with the upper components of a C2
configuration.
The overall structure defined for the idealised C2 component is fully compliant

with the component rules of the C2 architectural style. This allows an iC2C to be
integrated into any C2 configuration and to interact with components of a larger
system. When this interaction establishes a chain of iC2C components, the external
exceptions raised by a component can be handled by a lower level component (in the
C2 sense of “upper” and “lower”) allowing hierarchical structuring.

3.2 Guidelines for Turning COTS into iC2C

In this section we show how the development of protectors can be included in the
development process of a COTS-based software system. Typically, a COTS-based
development process can be divided into six stages [4]: requirements, specification,
provisioning, assembly (or integration), test and deployment. The requirements stage
aims to identify the system’s requirements. During the specification stage the system
is decomposed in a set of components with specific responsibilities that interact to
fulfil the system requirements. These components are instantiated during the
provisioning stage. During this stage the system integrator decides if a component can
be instantiated by an existing ‘off-the-shelf’ component, herein called a COTS
instance, or if it will require an implementation effort, in which case it is called an in-
house instance. During the assembly stage the system designer integrates COTS and
in-house instances to build the whole system. This integration effort includes the
development of glue code necessary to connect the various components, which
include the specification and implementation of protectors. During the test stage the
integrated system is tested and corrections may be made to ascertain that it fulfils its
requirements and conforms to its specification. During the deployment stage the final
system is installed in the user's environment.

The presented guidelines are applied to the provisioning and assembly stages of the
development process. We assume that the following artefacts, as described in Section
2.2, have already been produced: (i) a system blueprint describing the initial software
architecture and the system's safety specifications; and (ii) a set of component’s
blueprints specifying the components' interfaces and their safety specifications.

3.2.1 Steps for the Provisioning Stage
Step 1. Develop a basic test plan for the component. This test plan should be based

on the expected operational profile [11] of the component in the system being
developed.

Step 2. List candidate COTS components. One should obtain a list of candidate
COTS software components that could be used to instantiate the provided
interfaces specified in the component's blueprint.
For each candidate COTS component, execute steps 3 to 6, as below.

Step 3. Consolidate COTS blueprint. One should obtain from the COTS vendor (or
developer) the following information, which are consolidated in the COTS
blueprint.

a) The specification of the COTS provided interfaces, which is commonly
referred to as the COTS API (Application Programming Interface).

b) The specification of the COTS required interfaces, which is commonly
referred as the COTS System Requirements.

c) Information about known design faults in the COTS, which is usually found in
sections called ‘Known Bugs and Problems’.

d) Any information that may give a “grey-box” view of the COTS, with selected
details visible only [14]. Usually, this information may be found in technical
articles and white papers from the COTS developers.

Step 4. Test the COTS. One should test the COTS instance applying the basic test
plan previously developed. The results obtained from these tests should be
documented with information about:

a) The subset of the COTS interfaces (provided and required) activated during
the tests.

b) The input domains covered by the tests.
c) The erroneous conditions detected and the observed COTS behaviour under

those conditions.
d) Discrepancies between the behaviour specified in the COTS blueprint and its

actual observed behaviour.
Step 5. Enhance test coverage. One should revise the test plan and repeat the testing

procedure until adequate test coverage is attained. Test coverage influences
reliability, as higher test coverage is more likely to remove a greater number of
software faults, leading to a lower failure rate and higher reliability [19]. The
final tests should detect all known design faults in the COTS that can be activated
under the component’s expected operational profile. The test plan should also
include test cases based on the “grey-box” view of the COTS.

Step 6. Produce the annotated COTS blueprint. The annotated COTS blueprint
consolidates the information obtained about the COTS actual behaviour. This
annotated COTS blueprint is based on the COTS blueprint, the system’s safety
specifications and the results of the final tests and should include:

a) Detailed specifications of the actual behaviour of the interfaces that were
activated during the tests, under both normal and erroneous inputs.

b) Specification of potentially dangerous conditions associated with the interfaces
that were not activated during the tests.

c) Additional information that may be available from previous use of the same
COTS instance.

Step 7. Select COTS instance. If there are two or more candidate COTS instances
being considered, select the one that fits best in the system. This selection is
based on the information contained in the system blueprint and the various
annotated COTS blueprints. For this selection, it may be necessary to develop
alternate versions of the system blueprint adapted to limitations and requirements
specific to each COTS instance. The result of this step is a revised system’s
blueprint with the version of the software architecture that includes the selected
COTS instance wrapped by a protector (to be developed during the assembly
stage).

Step 8. Decide COTS integration. At this point, it should be decided between the
system integration using the selected COTS instance or, alternatively, using a
new component to be developed in-house.

3.2.2 Steps for the Assembly Stage
Step 9. Classify erroneous conditions. One should define a set of generalised

erroneous conditions that may arise in the protected interface. The erroneous (or
dangerous) conditions specified in the annotated COTS blueprint (Step 6) are
analyzed in view of the system’s safety specification and classified according to
how and in what extent they may affect the system’s dependability requirements.
For each resulting class it is defined a generalised exceptional condition.

Step 10. Specify acceptable behaviour constraints (ABCs) associated to the erroneous
conditions. This specification is based on the information contained in the
annotated COTS blueprint. The ABCs may include assertions on:
a) The domain of parameters and results of the requests that flow between the

COTS instance and the ROS.
b) The history of messages exchanged through the interface.
c) Portions of the internal state of system’s components that can be inspected

by calling side-effect-free functions.
Step 11. Specify the desired system’s exceptional behaviour. This exceptional

behaviour defines the error recovery goals, which may depend on the type and
severity of the errors detected. The main source of this specification is the
system’s safety specifications

Step 12. Allocate error recovery responsibilities. The system’s exceptional behaviour
specified in the preceding step is decomposed in a set of recovery actions
assigned to specific components in the software architecture. Some of these
responsibilities will be allocated to the protector associated to the selected COTS
instance (Step 7). These recovery actions are also specified during this step.

Step 13. Refine the software architecture. This refinement decomposes the
components involved with error processing (Step 11) into new architectural
elements that will be responsible for error processing.

Step 14. Implement error detectors. The specified ABCs (Step 10) are implemented
as the executable assertions encapsulated in two error detectors that act as
message filters. The first error detector intercepts and monitors the service
requests that flow from the ROS to the COTS and the corresponding results that
flow back to the ROS. The second error detector intercepts and monitors the
service requests that flow from the COTS to the ROS and the corresponding
results that flow back to the COTS. The error detector intercepts these messages
and verifies their associated assertions before delivering the message. When an
ABC violation is detected the error detector raises an exception of a specific type
associated with this ABC. The exception raised contains the pending message
that, in this case, is not delivered to its recipient. Messages that do not cause an
ABC violation are delivered to their recipients without change.

Step 15. Implement error handlers. The specified recovery actions (Step 12) are
implemented in error handlers associated with the various exception types. These
error handlers can be attached to the respective components of the architecture.

This placement depends on the scope of the recovery action, which may vary
from a single component instance to the whole system.

Step 16. Integrate the protectors. During this step, the COTS instances are integrated
with their associated error detectors (Step 14) and errors handlers (Step 15) as
specified by the refined software architecture (Step 13). The result of this step is a
set of COTS instances in the form of iC2C.

Step 17. Integrate the system. During this step, the COTS instances are integrated
with the in-house instances to produce the final system.

The integration of COTS instances in the form of iC2C into a C2 architectural
configuration will be the topic of the next section. Such architectural configuration
will contain iC2Cs for structuring in-house instances, and idealised C2 COTS
component (iCOTS) for structuring COTS instances and their respective protective
wrappers.

3.3 Idealised C2 COTS (iCOTS) Overall Architecture

A protective wrapper for a COTS software component is a special type of application-
specific fault-tolerance capability. To be effective, the design of fault-tolerance
capabilities must be concerned with architectural issues, such as process distribution
and communication mode, that impact the overall system dependability. Although the
C2 architectural style is specially suited for integrating COTS components into a
larger system, its rules on topology and communication are not adequate for
incorporating fault tolerance mechanisms into C2 software architectures, especially
the mechanisms used for error detection and fault containment [8]. The idealised C2
fault-tolerant component (iC2C) architectural solution (section 3.1) overcomes these
problems leveraging the C2 architectural style to allow such COTS software
components to be integrated in dependable systems.

The idealised C2 COTS component (iCOTS) is a specialization of the iC2C that
employs protective wrappers for encapsulating a COTS component. In our approach,
the COTS component is connected to two specialized connectors acting as error
detectors (Figure 2) to compose the NormalActivity component of the iCOTS. These
detectors are responsible for verifying that the messages that flow to/from the COTS
being wrapped do not violate the acceptable behaviour constraints specified for that
system.

The lower_detector inspects incoming requests and outgoing responses (C2
notifications) from/to the COTS clients while the upper_detector inspects outgoing
requests and incoming responses to/from other components providing services to the
COTS. In the context of the overall diagram, the iC2C_bottom connector connects
the iCOTS with the lower components of a C2 configuration, and serializes the
requests received. The iC2C_internal connector controls message flow inside the
iCOTS. The iC2C_top connector connects the iCOTS with the upper components of
a C2 configuration.

COTSNormalActivity

AbnormalActivity

upper_detector

lower_detector

iC2C_top

iC2C_internal

iC2C_bottom

Fig. 2. Idealised C2 COTS (iCOTS) Overall Structure

When a constraint violation is detected, the detector sends an exception
notification, which will be handled by the AbnormalActivity component, following
the rules defined for the iC2C. Any of these detectors may be decomposed in a set of
special purpose error detectors that, in their turn, are wrapped by a pair of connectors.
For example, Figure 3 shows an upper_detector decomposed into a number of error
detectors. The detector_bottom coordinates error detection, and the detector_top
connects the whole detector either to the COTS or to the iC2C top_connector.

Error
Detector

Error
Detector

(1) (n)

detector_bottom

detector_top

. . .

Fig. 3. Decomposition of a Detector

The AbnormalActivity component is responsible for both error diagnosis and error
recovery. Depending on the complexity of these tasks, it may be convenient to
decompose it into more specialized components for error diagnosis and a set of error
handlers, as shown in Figure 4. In this design, the ErrorDiagnosis component is able
to react directly to exceptions raised by the NormalActivity component and send
notifications to activate the ErrorHandlers or, alternatively, to stand as a service
provider of requests sent by the ErrorHandlers.

Error
Handler

Error
Handler

AbnormalActivity

(1) (2)

NormalActivity

Error
Diagnosis

ic2c_top

ic2c_internal

ic2c_bottom

. . .

Fig. 4 . Decomposition of the AbnormalActivity

4 Case Study

In this section, we present a case study that demonstrates the applicability of the
iCOTS architectural solution when dealing with mismatches in the failure
assumptions of COTS software components.

4.1 Problem Statement

Anderson et. al. [1] present the results of a case study in protective wrapper
development [15], in which a Simulink model of a steam boiler system is used
together with an off-the-shelf PID (Proportional, Integral and Derivative) controller.
The protective wrappers are developed to allow detection and recovery from typical
errors caused by unavailability of signals, violations of limitations, and oscillations.

The boiler system comprises the following components: the physical boiler, the
control system and the rest of the system (ROS). In turn, the control system consists
of PID controllers, which are the COTS components, and the ROS consisting of:
1. Sensors - these are “smart” sensors that monitor variables providing input to the

PID controllers: the drum level, the steam flow, the steam pressure, the gas
concentrations and the coal feeder rate.

2. Actuators - these devices control a heating burner that can be ON/OFF, and adjust
inlet/outlet valves in response to outputs from the PID controllers: the feed water
flow, the coal feeder rate and the air flow.

3. Boiler Controller - this device allows to enter the configuration set-points for the
system: the steam load and the coal quality, which must be set up in advance by the
operators.
The Simulink model represents the control system as three PID controllers dealing

with the feed water flow, the coal feeder rate and the air flow. These three controllers

output three variables: feed water flow (F_wf), coal feeder rate (C_fr) and air flow
(Air_f), respectively; these three variables, together with two configuration set-points
(coal quality and steam load) constitute the parameters which determine the behaviour
of the boiler system. There are also several internal variables generated by the smart
sensors. Some of these, together with the configuration set-points, provide the inputs
to the PID controllers, in particular: bus pressure set-point (P_ref), O2 set-point
(O2_ref), drum level (D_l), steam flow (S_f), steam pressure/drum (P_d), steam
pressure/bus (P_b), O2 concentration at economizer (O2eco), CO concentration at
economizer (Coeco), and NOx concentration at economizer (Noxeco).

4.2 The Provisioning Stage

In this case study, we assume that the provisioning stage has been completed with the
selection of a COTS PID Controller instance, as mentioned in Step 7 (Select COTS
instance) of Section 3.2.1 (Steps for the Provisioning Stage). Anderson et. al. [1]
summarise the available information describing the correct COTS component
behaviour to be used in developing the protective wrappers. This document play the
role of the annotated COTS blueprint mentioned in Step 6 (Produce the annotated
COTS blueprint). Figure 5 shows the initial software architecture that is part of the
system blueprint (Section 3.2). This architecture, which is based on the C2
architectural style, is organized in four layers: (i) the BoilerController component; (ii)
the WaterFlowController and CoalFeederController; (iii) the AirFlowController,
which has as input the CoalFeederRate from the CoalFeederController; and (iv)
the sensors and actuators required by the system. Table 1 specifies the operations
provided by some key components that appear in Figure 5.

Drum Level Steam Flow

Feed WaterFlow

Sensor Sensor

Actuator

Water Flow

Steam Pressure
Bus Sensor

Coal Feeder Rate
Actuator

Coal Feeder

Air Flow

Air Flow
Actuator

Boiler

O2 Concentration
Sensor

Controller

Controller

Controller

conn1

conn2

Layer 1

Layer 2

Layer 3

Layer 4

Controller

conn3

Fig. 5. C2 Configuration for the Boiler System

Table 1. List of Operations

Operation Provider Component

readDrumLevel() : D_l Drum Level Sensor
readSteamFlow() : S_f Steam Flow Sensor
readBusPressure() : P_b Steam Pressure Bus Sensor
readO2Concentration() : O2eco O2 Concentration Sensor
setFeedWaterFlow(F_wf) Feed Water Flow Actuator
setCoalFeedRate(C_fr) Cool Feeder Rate Actuator

Air Flow Controller
setAirFlow(Air_f) Air Flow Actuator
setConfiguration(P_ref, O2_ref) Coal Feeder Controller

Air Flow Controller

4.3 The Assembly Stage

The following paragraphs illustrate the assembly stage, starting from Step 9 of
Section 3.2.2 (Steps for the Assembly Stage).
Step 9. Define a set of generalised erroneous conditions that may arise in the

protected interface. Three types of such erroneous conditions are considered: (i)
unavailability of inputs/outputs to/from the PID controllers; (ii) violation of
specifications of monitored variables; and (iii) oscillations in monitored variables.

Step 10. Specify acceptable behaviour constraints (ABCs) associated to the
erroneous conditions. These ABCs are summarized in the second column of
Table 2 (ABC to be checked).

Step 11. Specify the desired system’s exceptional behaviour. Depending on the
severity of the errors and on the specific characteristics of the system, two types
of recovery are used in the case study: raising an alarm and safe stop.

Step 12. Allocate error recovery responsibilities. The AirFlowController,
WaterFlowController and CoalFeederController components are responsible
for error detection (ABCs violations). The BoilerController component is
responsible for error recovery, which may be either to sound an alarm or to shut
down the system, depending on the exception type.

Step 13. Refine the software architecture. The proposed solution applies the concepts
of iCOTS and iC2C for structuring four components. The AirFlowController,
WaterFlowController and CoalFeederController components are structured as
iCOTS components that encapsulate a COTS instance (the COTS PID controller)
wrapped by a protector. The BoilerController component is structured as an
iC2C, to be provided as an in-house instance. Next we describe how we can build
an iCOTS AirFlowController encapsulating a COTS PID controller wrapped by
a protector. This solution equally applies to the WaterFlowController and
CoalFeederController components.

Table 2. Error Detection Specifications

Message Type ABC to be checked Exceptional Notification

Lower Detector

 0 <= O2_ref <= 0.1 InvalidConfigurationSetpoint
Request setConfiguration

(P_ref, O2_ref)
corresponding notification must be
received within a specified time
interval

PIDTimeout

 0 <= C_fr <= 1 InvalidCoalFeederRate
Request setCoalFeeder

(C_fr)
check_oscillate(Air_f) CoalFeederRateOscillating

 corresponding notification must be
received within a specified time
interval

PIDTimeout

Upper Detector

 0 <= Air_f <= 0.1 InvalidAirFlowRate
Request setAirFlow(Air_f) check_oscillate(Air_f) AirFlowRateOscillating

 corresponding notification must be
received within a specified time
interval

AirFlowActuatorTimeout

Notification from
readO2Concentration()

0 <= O2eco <=1 InvalidO2Concentration

Table 3. Summary of Exceptional Notifications

Exception Notification Generic Exception Type

PIDTimeout NoResponse

AirFlowActuatorTimeout (unavailability of inputs/ outputs to/from the PIDController)
InvalidConfigurationSetpoint*
InvalidCoalFeederRate* OutOfRange

InvalidO2Concentration (violation of specifications of monitored variables)
InvalidAirFlowRate
CoalFeederRateOscillating Oscillation

AirFlowRateOscillating (oscillations in monitored variables)
* Interface exceptions.

Figure 6 shows the internal structure of the iCOTS for the AirFlowController,
based on the patterns shown in Figures 2 and 3. This solution equally applies to the
WaterFlowController and CoalFeederController components.

PID3 Controller
(COTS)

AFC

upper_detector

lower_detector

afc_top

afc_internal

afc_bottom

Air_f Osc.
Checker

C_fr Osc.
Checker

afcld_bottom

afcld_top

afcud_bottom

afcud_top

Error Handler

Fig. 6. Decomposition of the AirFlowController

The COTS PID controller is wrapped by a pair of error detectors (upper_detector
and lower_detector) and inserted into an iC2C as its NormalActivity component.
Both detectors use OscillatorChecker, which is responsible for checking whether
oscillating variables revert to a stable state before a maximum number of oscillations.
Table 2 specifies, for each detector: the message types to be inspected, their
corresponding assertions that guarantee the acceptable behaviour constraints (Section
2.2), and the type of the exception notification that should be generated when a
constraint is violated. Table 3 summarises these exception types, grouped by their
generalised types. Two of these exception types are interface exceptions that are sent
directly to the next lower level in the architectural configuration. The other exception
types are internal exceptions, to be handled by the AFCErrorHandler. Thus, the
AFCErrorHandler propagates internal exceptions as failure exceptions of the generic
type of the corresponding internal exception, using the mapping shown in Table 3. A
PIDTimeout exception, for example, will generate a NoResponse failure exception.
The BoilerController component is responsible for:
1. Configuring the boiler system, sending setConfiguration requests when

appropriate.
2. Handling interface exceptions of type InvalidConfigurationSetpoint, which may

be raised in response of a setConfiguration request.
3. Handling failure exceptions of type NoResponse, OutOfRange or Oscillation,

which may be raised by the three controllers (WaterFlowController,
CoalFeederController, AirFlowController).
The BoilerController component was structured as an iC2C to cope with fault-

tolerance responsibilities, which are captured by items (2) and (3) above, in addition
to its main functional responsibility, which is captured by item (1) above.

Figure 7 shows the resulting fault-tolerant architecture for this system, which is
derived from the overall architectural configuration for the boiler system (Figure 5).

Drum Level Steam Flow

Feed WaterFlow

Sensor Sensor

Actuator

Steam Pressure
Bus Sensor

Coal Feeder Rate
Actuator

Air Flow
Actuator

O2 Concentration
Sensor

conn1

conn2

conn3

Layer 1

Layer 2

Layer 3

Layer 4

PID3 Controller

(COTS)

afc_top

afc_internal

afc_bottom

C_fr Osc.
Checker

Error Handler
AFC

afcld_bottom

afcld_top

PID2 Controller
(COTS)

cfr_top

cfr_internal

cfr_bottom

C_fr Osc.
Checker

Error Handler
CFR

PID1 Controller
(COTS)

wfc_top

wfc_internal

wfc_bottom

F_wf Osc.
Checker

Error Handler
WFC

Boiler Controller
Normal Activity

bc_top

bc_internal

bc_bottom

Error Handler
BC

Checker

afcud_bottom

afcud_top

Air_f Osc.

wfc_ldetector

wfcud_top

wfcud_bottom

cfr_ldetector

crfud_top

cfrud_bottom

Fig. 7. Resulting Configuration for the Boiler System

Each of its three controllers is structured as idealised C2 COTS (iCOTS) and the
BoilerController as an idealised C2 component (iC2C). It is assumed that the sensors
and actuators, as well as the connectors, do not fail. Figure 8 illustrates the flow of

messages between the various components involved when a PIDTimeout exception
occurs, after the BoilerController fails to configure the AirFlowController, which
contains the COTS PID3Controller. When the AirFlowController bottom connector
(afcld_bottom) detects that the AirFlowController is not responding, it raises an
exception to AFCErrorHandler. Since AFCErrorHandler cannot cope with this
exception type, it raises another exception to the BCErrorHandler that shuts down
the whole system.
Step 14. Implement error detectors. During this and the following steps it was used an

objected-oriented framework that provides a generic implementation for the key
abstractions of the iC2C and iCOTS structuring concepts. Using this framework,
the iCOTS lower and upper detectors are implemented as subclasses of,
respectively, LowerDetectorAbst and UpperDetectorAbst. Figure 9 shows the
main parts of the AfcLowerDetector class that implements the lower error
detector associated with the AirFlowController component. In this code sample,
the setConfiguration() and setCoalFeedRate() methods intercept the requests
sent to the AirFlowController and check their associated ABCs, based on the
specification shown in Table 2. When an assertion is violated an exception is
raised by means of the raiseException() method, which is implemented by the
abstract classes. Accepted requests are delivered to the AirFlowController that is
connected to the wrappedNormal interface.

Step 15. Implement error handlers. Using the framework aforementioneted, the error
handlers are implented as subclasses of AbnormalActivityAbst. Figure 10 shows
the AFCErrorHandler class that implements the error handler associated with
the AirFlowController. In this code sample, the handle() method is called when
a failure exception is raised by one of the error detectors that wrap the
AirFlowController. The exceptions raised are re-signalled with a more generic
exception type according to the specifications shown in Table 3.

Step 16. Integrate the protectors. The following code snippet creates a component afc
that encapsulates the AirFlowController and its associated error detectors and
error handler, according to the iCOTS structuring. This new component is an
iC2C instance composed by the basic AirFlowController wrapped by the two
error detectors, acting as the iC2C normal activity component, and the error
handler acting as the iC2C abnormal activity component.

Icomponent afc=new iC2C(new AfcWrappedNormal
 (new AirFlowController (),
 new AfcLowerDetector(),
 new AfcUpperDetector()),
 new AFCErrorHandler()) ;

setConfiguration()

:PID3 Controller
(COTS)Error Handler

:AFC:Boiler Controller
Normal Activity Error Handler

:BC
:afcld_bottom

setConfiguration()

timeStep()

FailureException
("PIDTimeout")

FailureException
("NoResponse")

shutDown()

timeStep()

timeStep()

(stopped)

Fig. 8. UML Sequence Diagram for a PIDTimeout Exception

Step 17. Integrate the system. The integration of the various components and
connectors that are composed into the system is coded in the main() method of a
StartUp class, based on the configuration shown in Figure7. The code snippet
bellow illustrates this method body with: (i) the instantiation of component bc as
an iC2C composed by the BoilerController component and its associated error
handler; (ii) the instantiation of connector conn1; and (iii) the connection
between the top interface of component bc and the bottom interface of connector
conn1.

IComponent bc=new iC2C
 (new BoilerController(), new BCErrorHandler());
IConnector c1=new Conn1();
bc.connectTop(c1);

The resulting system was tested in a simulated environment that allowed us to
inject different faults in the system. The final system passed all tests successfully. The
system behaved as specified even in the presence of faults, aborting the erroneous
operations and either stopping the system or activating an alarm.

A limitation of the case study is that it is based on a simulation of a boiler system,
which does not allow an objective performance analysis. During execution time, the
main overhead associated to a protector occurs when a service requested passes
through a protected interface. This overhead is proportional to the number and
complexity of the assertions encapsulated in the protectors. Assuming that this
complexity should be much lower than the complexity of the services provided by the
COTS, we may infer that the performance impact of the protective wrappers will be
low. An ongoing experimental work in the DOTS1 project is confirming this. The
protector associated with the air flow controller, comprising its two error detectors
with the eight ABCs and the associated error handler, required about a hundred lines
of code. This additional code is added to the system in three new classes, which does
not require any changes in the class that implements the base AirFlowController. An
ongoing work is applying the proposed approach in a real world system and to more
complex COTS software components.

1 Diversity with Off-The-Shelf Components Project, http://www.csr.ncl.ac.uk/dots/

public class AfcLowerDetector extends LowerDetector Abst
 implements IConnector, IAirFlowController {
 private IAirFlowController wrappedNormal;
 private OscillatorChecker oscillatorChecker;
 public void setConfiguration
 (double P_ref, double O2_ref) {
 if (O2_ref<0 || O2_ref>0.1)
 raiseException
 (new InvalidConfigurationSetpoint(O2_ref));
 try {wrappedNormal.setConfiguration(P_ref, O2_r ef);
 } catch (TimeoutException e) {
 raiseException
 (new PIDTimeout("setConfiguration()"));
 } catch (AbortException e) { aborted(); }
 }
 public void setCoalFeedRate(double C_fr) {
 if (C_fr<0 || C_fr>1)
 raiseException(new InvalidCoalFeederRate(C_fr));
 if (oscillatorChecker.check_oscillate(C_fr))
 raiseException
 (new CoalFeederRateOscillating(C_fr));
 try {
 wrappedNormal.setCoalFeedRate(C_fr);
 } catch (TimeoutException e) {
 raiseException
 (new PIDTimeout("setCoalFeedRate()"));
 } catch (AbortException e) { aborted(); }
 } …

Fig. 9. Implementation of the AirFlowController’s lower detector.

public class AFCErrorHandler
 extends AbnormalActivityAbst implements IComponen t {
 public void handle(Exception exception) {
 try { throw exception; }
 catch (PIDTimeout e) {
 throw new NoResponse(e);
 } catch (AirFlowActuatorTimeout e) {
 throw new NoResponse(e);
 } catch (InvalidO2Concentration e) {
 throw new OutOfRange(e);
 } catch (InvalidAirFlowRate e) {
 throw new OutOfRange(e);
 } catch (CoalFeederRateOscillating e) {
 throw new Oscillation(e);
 } catch (AirFlowRateOscillating e) {
 throw new Oscillation(e);
 } catch (Exception e) {
 throw new FailureException(e); }
 }

Fig. 10. Implementation of the AirFlowController’s error handler.

5 Related Work

This section compares our approach with several relevant existing proposals. The
main comparison criteria are the types of the components (application-level or
middleware/OS level), fault tolerance (error detection and recovery) provided, type of
the redundancy, the information used for developing error detection and recovery,
phases of the life cycle (at which they are applied).

Ballista [12] works with POSIX systems coming from several providers. The
approach works under a strong assumption that the normal specification of the
component is available, from which error detectors can be specified. In addition to
this, the results of fault injection are used for the specification of error detectors. A
layer between the applications and the operating system (OS), intercepting all OS
calls as well as the outgoing results, implements this error detection. The recovery
provided by this approach is very basic (blocking the erroneous calls) and is not
application-specific.

A very interesting approach to developing protective wrappers for a COTS
microkernel is discussed in [23]. The idea is to specify the correct behaviour of a
microkernel and to make the protective wrapper check all functional calls (similar to
Ballista, this approach cannot be applied for application-level COTS components that
lack a complete and correct specification of the component’s behaviour). Reflective
features are employed for accessing the internal state of the microkernel to improve
the error detection capability. In addition, the results of fault injection are used in the
design of wrappers for catching those calls that have been found to cause errors of the
particular microkernel implementation. A recent work [16] shows how recovery
wrappers can be developed within this framework to allow for recovery after transient
hardware faults, which is mainly based on redoing the recent operation.

Unfortunately these two approaches do not offer any assistance in developing fault
tolerant system architectures. The Simplex framework (the best summary of this work
performed in mid 90’s can be found in [21]) proposes an architectural solution to
dealing with the faults of the application-level COTS components. The idea is to
employ two versions of the same component: one of them is the COTS component
itself and another one is a specially-developed unit implementing some basic
functions. The second unit is assumed to be bug free as it implements very simple
algorithms. The authors call this analytical redundancy. The two units together form a
safety unit in which only externally observable events of the COTS component are
dealt with. The system architect is to implement a set of consistency constraints on the
inputs to the COTS component and the outputs from it, as well as on the states of the
device under control. This approach is oriented towards developing fault tolerant
architectures of control systems. The disadvantage of this approach is that it is not
recursive as it treats the whole control software as one unit and provides fault
tolerance at only this level.

Rakic et. al. [17] offer a software connector-based approach to increasing the
dependability of systems with components that evolve over time. The idea is to
employ the new and the (several if available) old versions of a component to improve
the overall system dependability. The authors put forward the idea of using a
specialised multi-version connector allowing the system architect to specify the
component authority for different operations: a version designated as authoritative

will be considered nominally correct with respect to a given operation. The connector
will propagate only the results from an authoritative version to the ROS and at the
same time, log the results of all the multi-versioned components' invocations and
compares them to the results produced by the authoritative version. This solution is
mainly suitable for systems in which COTS components are to be upgraded (under the
assumption that the interface of the old and new components remain unchanged) so
there are several versions of a component in place.

6 Conclusions and Future Work

When building dependable systems from existing components, guarantees cannot be
given on the system behaviour, if at least guarantees are not provided on the
behaviour of its individual components. Since such guarantees are difficult to be
obtained for individual COTS components, architectural means have to be devised for
the provision of the necessary guarantees at the system level. The paper proposes an
architectural solution to transform COTS components into idealised fault-tolerant
COTS components by adding protective wrappers to them. We demonstrate the
feasibility of the proposed approach using the steam boiler system case study, where
its controllers are built reusing unreliable COTS components. Although we recognize
that the proposed approach can result in incorporating repetitive checks into the
integrated system, this is an unavoidable outcome considering the lack of guarantees
provided by COTS components. For example, it might be the case that a COTS
component has internal assertions checking the validity of an input parameter that is
also checked by its protector, or other protectors associated with other COTS
components. However, there are situations in which the system integrator can take
care of this by coordinating development of fault tolerance means associated with
individual components.

The protective wrappers are integrated in the architectural configuration as a set of
new architectural elements that are dependent of a runtime environment, which is
assumed to be reliable. The proposed approach also does not consider direct
interactions between the COTS software component and human users. This implies
that the proposed approach may not be effective for protecting COTS software
components that either: (i) provide infrastructure services, such as operating systems,
distribution middleware and component frameworks; or (ii) interacts intensively with
human users, such as word processors.

The effectiveness of the proposed approach depends on the system designer’s
ability to anticipate the COTS behaviour when integrating it into a specific system,
e.g. using the COTS usage profile. An approach for anticipating undesirable
behaviour and, thus, increasing the protector’s coverage factor for error detection is to
perform integration tests of the COTS within the system being developed, prior to the
specification of the protectors. These testing activities are the harder aspect in the
development of the protectors, and they cannot be avoided. Our future work includes
evaluating tools for automating these tests, which could be integrated in the
protector’s development process.

Although a single architectural style was used in the case study, software
components in the C2 architectural style can be nevertheless integrated into
configurations of other architectural styles of the independent components family
[22], such as client/server and broker styles. This allows the idealised fault tolerant
COTS (iCOTS) concept to be applied as a general solution in composing dependable
systems from unreliable COTS components.

Acknowledgments

Paulo Asterio de C. Guerra is partially supported by CAPES/Brazil. Cecília Mary F.
Rubira and Paulo Asterio de C. Guerra are supported by the FINEP/Brazil “Advanced
Information Systems” Project (PRONEX-SAI-7697102200). Cecília Mary F. Rubira
is also supported by CNPq/Brazil under grant no. 351592/97-0. Alexander
Romanovsky is supported by EPSRC/UK DOTS and IST/FW6 RODIN Projects.

Special thanks go to Professor Brian Randell for many useful insights and
suggestions.

References

1. T. Anderson, M. Feng, S. Riddle, A. Romanovsky. Protective Wrapper Development: A
Case Study. In Proc. 2nd Int. Conference on COTS-based Software Systems (ICCBSS
2003). Ottawa, Canada. Feb., 2003 M.H. Erdogmus, T. Weng (eds.). Lecture Notes in
Computer Science Volume 2580 pp. 1-14 Springer-Verlag 2003,

2. T. Anderson, P. A. Lee. Fault Tolerance: Principles and Practice. Prentice-Hall, 1981.
3. S. Van Baelen, D. Urting, W. Van Belle, V. Jonckers, T. Holvoet, Y. Berbers, K. De

Vlaminck. Toward a unified terminology for component-based development. WCOP
Workshop, ECOOP 2000. Cannes, France. Available at: http://www.dess-
itea.org/publications/ECOOP2000-WCOP-KULeuven.pdf

4. J. Chessman, J. Daniels. UML Components: A Simple Process for Specifying Component-
Based Software. Addison-Wesley. 2001.

5. R. De Lemos, A. Saeed, T. Anderson. Analyzing Safety Requirements for Process-Control
Systems. IEEE Software, Vol. 12, No. 3, May 1995, pp. 42--53.

6. R. DeLine. "A Catalog of Techniques for Resolving Packaging Mismatch". Proc. 5th
Symposium on Software Reusability (SSR'99). Los Angeles, CA. May 1999. pp. 44-53.

7. D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch: Why reuse is so hard. IEEE
Software, 12(6):17--26, November 1995.

8. P. A.C. Guerra, C. M. F. Rubira, R. de Lemos. An Idealized Fault-Tolerant Architectural
Component, in Architecting Dependable Systems. Springer-Verlag, Lecture Notes in
Computer Science (LNCS). May, 2003. pp. 21-41.

9. P. A.C. Guerra, C. M. F. Rubira, A. Romanovsky, R. de Lemos. Integrating COTS
Software Components Into Dependable Software Architectures. In. Proc. 6th IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing.
Hokkaido, Japan, 2003, pp. 139-142.

10. P. A.C. Guerra, C. M. F. Rubira, A. Romanovsky, R. de Lemos. A Fault-Tolerant
Software Architecture for COTS-based Software Systems. In. Proc. 9th European
Software Engineering Conference held jointly with 10th ACM SIGSOFT International

Symposium on Foundations of Software Engineering. Helsinki, Finland, 2003, pp. 375-
378.

11. D. Hamlet, D. Mason, D. Woit. Theory of System Reliability Based on Components. In
Proc. 2000 International Workshop on Component-Based Software Engineering.
CMU/SEI. 2000.

12. P. Koopman, J. De Vale. Comparing the Robustness of POSIX Operating Systems. In
Proc. Fault Tolerant Computing Symposium (FTCS-29), Wisconsin, USA, 1999, 30-37.

13. P. Oberndorf, K. Wallnau, A. M. Zaremski. “Product Lines: Reusing Architectural Assets
within an Organisation. Software Architecture in Practice. Eds. L. Bass, P. Clements, R.
Kazman. Addison-Wesley. 1998. pp. 331-344.

14. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. In IEEE
Transactions on Software Engineering, 28,11. 2002. pp. 1056-1076.

15. P. Popov, S. Riddle, A. Romanovsky, L. Strigini. On Systematic Design of Protectors for
Employing OTS Items. In Proc. 27th Euromicro Conference. Warsaw, Poland, 4-6
September, IEEE CS, 2001. pp.22-29.

16. M. Rodriguez, J.-C. Fabre, J. Arlat. Wrapping Real-Time Systems from temporal Logic
Specification. In Proc. European Dependable Computing Conference (EDCC-4), 2002,
Toulouse (France)

17. M. Rakic, N. Medvidovic. Increasing the Confidence in Off-The-Shelf Components: A
Software Connector-Based Approach. Proc. 2001 Symposium on Software Reusability
(SSR'01). ACM/SIGSOFT Software Engineering Notes, 26,3. 2001. pp. 11-18.

18. J.-G. Schneider, O. Nierstrasz. Components, Scripts and Glue. In: L. Barroca, J. Hall, P.
Hall (Eds.) Software Architecture Advances and Applications. Springer-Verlag. 2000. pp.
13-25.

19. S. Sedigh-Ali, A. Ghafoor, R. A. Paul. Metrics and Models for Cost and Quality of
Component-Based Software. In. Proc. 6th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing. Hokkaido, Japan, 2003.

20. D. Sotirovski. Towards Fault-Tolerant Software Architectures. In R. Kazman, P. Kruchten,
C. Verhoef, H. Van Vliet, editors, Working IEEE/IFIP Conference on Software
Architecture, pages 7--13, Los Alamitos, CA, 2001.

21. L. Sha. Using Simplicity to Control Complexity. IEEE Software. July/August, 2001.
pp.20-28

22. M. Shaw, P. C. Clements. A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems. In. Proc. 21st International Computer Software
and Applications Conference. 1997. pp. 6-13.

23. F. Salles, M. Rodriguez, J.-C. Fabre, J. Arlat. Metakernels and Fault Containment
Wrappers. In Proc. Fault Tolerant Computing Symposium (FTCS-29), Wisconsin, USA,
1999, 22-29.

24. T. Saridakis, V. Issarny. Developing Dependable Systems using Software Architecture.
Proc. 1st Working IFIP Conference on Software Architecture, pages 83--104, February
1999.

25. V. Stavridou, R. A. Riemenschneider. Provably Dependable Software Architectures. Proc.
Third ACM SIGPLAN International Software Architecture Workshop, pages 133--136.
ACM, 1998.

26. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins, K. A.
Nies, P. Oreizy, D. L. Dubrow. A Component- and Message-based Architectural Style for
GUI Software. IEEE Transactions on Software Engineering, 22(6):390--406, June 1996.

