
de C. Guerra, P.A., Rubira, Cecilia M. F., Romanovsky, Alexander and de 
Lemos, Rogério (2004) A Dependable Architecture for COTS-Based Software 
Systems using Protective Wrappers.  In: de Lemos, Rogério and Gacek, 
Cristina and Romanovsky, Alexander, eds. Architecting Dependable Systems 
II. Lecture Notes in Computer Science . Springer, Berlin, Germany, pp. 
144-166. ISBN 978-3-540-23168-4. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14158/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1007/978-3-540-25939-8_7

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/14158/
https://doi.org/10.1007/978-3-540-25939-8_7
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


A Dependable Architecture for COTS-Based Software 
Systems using Protective Wrappers 

Paulo Asterio de C. Guerra1, Cecília Mary F. Rubira1,  
Alexander Romanovsky2, Rogério de Lemos3 

1Instituto de Computação Universidade Estadual de Campinas, Brazil 
{asterio,cmrubira}@ic.unicamp.br 

2School of Computing Science, University of Newcastle upon Tyne, UK 
alexander.romanovsky@ncl.ac.uk 

3Computing Laboratory, University of Kent at Canterbury, UK 
r.delemos@ukc.ac.uk 

Abstract. Commercial off-the-shelf (COTS) software components are built to 
be used as black boxes that cannot be modified. The specific context in which 
these COTS components are employed is not known to their developers. When 
integrating such COTS components into systems, which have high 
dependability requirements, there may be mismatches between the failure 
assumptions of these components and the rest of the system. For resolving these 
mismatches, system integrators must rely on techniques that are external to the 
COTS software components. In this paper, we combine the concepts of an 
idealised architectural component and protective wrappers to develop an 
architectural solution that provides an effective and systematic way for building 
dependable software systems from COTS software components. 

1 Introduction 

A commercial off-the-shelf (COTS) software component is usually provided as a 
black box to be reused "as it is".  Most of the time these components do not have a 
rigorously written specification, hence there is no guarantee that their description is 
correct (very often, it is ambiguous and incomplete). Moreover, these components 
may have faults, and the specific context in which they will be used is not known 
during their development. Once they are created, they can evolve over time through 
different versions. When an integrator builds a system out of COTS components, 
she/he can be forced to evolve the system whenever a new version of these COTS 
components is released. These new versions can be sources of new faults. When 
integrating such components into a system, solutions for meeting its overall 
dependability requirements should be envisaged at the architectural level, 
independently of the particular COTS versions. These solutions should ensure that the 
system delivers the service despite the presence of faults in the COTS component and 
how it interacts with other system components. In this paper, we focus on COTS 
software components that are integrated in a system at the application level and 
provide their services to other components and, possibly, use services provided by 



them. We assume that these application level software components are deployed in a 
reliable runtime environment that may include other COTS software components at 
the infrastructure level, such as operating systems, distribution middleware and 
component frameworks. 

Research into describing software architectures with respect to their dependability 
properties has recently gained considerable attention [20,24,25]. In this paper, we 
focus on the architectural description of fault-tolerant component-based systems that 
provides an effective and systematic way for building dependable software systems 
from COTS software components. For that, we combine the concepts of an idealised 
architectural component [8], which is based on the idealised fault-tolerant component 
[2], and protective wrappers [15], known to be the most general approach to 
developing dependable software systems based on COTS components. While in 
previous work we have described the basis of the proposed approach  [9,10], in this 
paper we elaborate on that work by discussing guidelines for specifying and 
implementing protective wrappers and by demonstrating our ideas using a case study. 

The rest of the paper is organised as follows. In the next section, we briefly discuss 
background work on architectural mismatches, wrapper protectors, and the C2 
architectural style. Section 3 describes the architectural representation of idealised 
fault-tolerant COTS, in terms of the idealised C2 component (iC2C), the idealised C2 
COTS component (iCOTS), and the process of architecting fault-tolerant systems 
using iCOTS components. The case study demonstrating the feasibility of the 
proposed approach is presented in section 4. Related work on how to build 
dependable software systems based on COTS components is discussed in section 5. 
Finally, section 6 presents some concluding remarks and discusses future work. 

2 Background 

When integrating COTS components into a software system, the architect needs to 
develop glue code [18] that links various components together and includes new 
architectural elements, or adaptors, to resolve the different kinds of incompatibilities 
that may exist. A protector is a special kind of adaptor that deals with 
incompatibilities in the failure assumptions. 

2.1 Architectural Mismatches and COTS Component Integration  

Dealing with architectural mismatches [7] is one of the most difficult problems 
system integrators face when developing systems from COTS components. An 
architectural mismatch occurs when the assumptions that a component makes about 
another component or the rest of the system (ROS) do not match. That is, the 
assumptions associated with the service provided by the component are different from 
the assumptions associated with the services required by the component for behaving 
as specified [13]. When building systems from existing components, it is inevitable 
that incompatibilities between the service delivered by the component and the service 
that the ROS expects from that component give rise to such mismatches. These 
mismatches are not exclusive to the functional attributes of the component; 



mismatches may also include dependability attributes related, for example, to the 
component failure mode assumptions or its safety integrity levels.  

We view all incompatibilities between a COTS component and the ROS as 
architectural mismatches. This, for example, includes internal faults of a COTS 
component that affect other system’s components or its environment, in which case 
the failure assumptions of the component were wrong. 

2.2 COTS Component Protectors 

Component wrapping is a well-known structuring technique that has been used in 
several areas. In this paper, we use the term “wrapper” in a very broad sense, 
incorporating the concepts of wrappers, mediators, and bridges [6]. A wrapper is a 
specialised component inserted between a component and its environment to deal 
with the flows of control and data going to and/or from the wrapped component. The 
need for wrapping arises when (i) it is impossible or expensive to change the 
components when reusing them as parts of a new system, or (ii) it is easier to add new 
features by incorporating them into wrappers. Wrapping is a structured and a cost-
effective solution to many problems in component-based software development. 
Wrappers can be employed for improving quality properties of the components such 
as adding caching and buffering, dealing with mismatches or simplifying the 
component interface. With respect to dependability, wrappers are usually used for 
ensuring properties such as security and transparent component replication.  

A systematic approach has been proposed for using protective wrappers, known as 
protectors, that can improve the overall system dependability [15]. This is achieved 
by protecting both the system against erroneous behaviour of a COTS component, and 
the COTS component against erroneous behaviour of the rest of the system (ROS). As 
a protector has this dual role we call the interface between the COTS and the ROS the 
protected interface. The protectors are viewed as redundant software that detects 
errors or suspicious activity on a protected interface and executes appropriate 
recovery. 

The development of protectors occurs during the assembly stage of the 
development process of a COTS-based system, as part of the system integration 
activities [15]. The approach consists of rigorous specification of the protector 
functionality, in terms of error detection and associated recovery actions, and in their 
integration into the software architecture. The protector error detection capabilities are 
specified in the form of acceptable behaviour constraints (ABCs) that ensure the 
normal behaviour of the protected interface. The protector recovery actions are 
specified in the form of exception handlers associated with the erroneous conditions 
that may arise in the protected interface. The protector specification is based on a set 
of blueprints and safety specifications that are produced during the earlier stages of 
the development process. A blueprint is a documented entity that specifies the overall 
architecture and external behaviour of a piece of software [3]. Safety specifications 
are derived from the system's safety requirements [5], which focus on reducing the 
risk associated with hazards and on limiting damage when an accident occurs. The 
general sources of information to be used in developing both ABCs and possible 
actions to be undertaken in response to their violations are the following: 



1. The behaviour specification of COTS components as specified by the COTS's 
developers. This specification is materialized in the form of a COTS blueprint that 
is provided to the system designers as part of the COTS documentation.  

2. The behaviour specification of a COTS component as specified by the system 
designers. This specification is materialized in the form of a component blueprint 
that is produced by the system designers during the specification phase of the 
system's development process. The component blueprint and the COTS blueprint 
must satisfy certain mutual constraints for the system design to be correct, but they 
will not be identical. E.g., the system designer's description requires the COTS 
component to be able to react to a set of stimuli that is a subset of the set specified 
by the COTS's developers. 

3. The description of the actual behaviour that the system designer expects from a 
COTS component (not necessarily approving it) based on previous experiences, 
i.e., he/she may know that it often fails in response to certain legal stimuli. The 
system designers describe this behaviour in an annotated COTS blueprint. 

4. The behaviour specified for the ROS. This specification is materialized in a system 
blueprint. 

5. The behaviour specification of the undesirable behaviour, especially unacceptable, 
of the component and the rest of the system, respectively, the component safety 
specifications and the system safety specifications. The system designer produces 
these during the specification stage of the development process. 
The sources of information above allow the developer to formulate a number of 

statements describing the correct behaviour of the system (consisting in this case of 
the COTS component and of the ROS). The statements are expressed as a set of 
assertions on the states of input and output parameters. In addition to that, they may 
include assertions on the histories (sequences of calls) and assertions on the states of 
the system components. 

 

2.3 The C2 Architectural Style 

The C2 architectural style is a component-based style that supports large grain reuse 
and flexible system composition, emphasizing weak bindings between components 
[26]. In this style, components of a system are completely unaware of each other, as 
when one integrates various COTS components, which may have heterogeneous 
styles and implementation languages. These components communicate only through 
asynchronous messages mediated by connectors that are responsible for message 
routing, broadcasting and filtering. Interface and architectural mismatches are dealt 
with by means of wrappers that encapsulate each component.  

In the C2 architectural style both components and connectors have a top interface 
and a bottom interface. Systems are composed in a layered style, where the top 
interface of a component may be connected to the bottom interface of a connector and 
its bottom interface may be connected to the top interface of another connector. Each 
side of a connector may be connected to any number of components or connectors. 

There are two types of messages in C2: requests and notifications. Requests flow 
up through the system layers and notifications flow down. In response to a request, a 



component may emit a notification back to the components below, through its bottom 
interface. Upon receiving a notification, a component may react with the implicit 
invocation of one of its operations. 

While in this section we have introduced a background on protectors and iC2C, in 
the next section we propose an architectural solution for turning COTS components 
into idealised fault-tolerant COTS components (iCOTS) by adding protective 
wrappers to them. Although in previous work we introduced the iCOTS concept [9, 
10], in this paper we provide a detailed description of the iCOTS concept, a 
systematic description of the engineering steps to be used when applying the proposed 
solution, and a description of a case study used to evaluate this solution. 

3 Idealised Fault-Tolerant COTS Component 

Modern large scale systems usually integrate COTS components which may act as 
service providers and/or service users. Since, there is no control, or even full 
knowledge, over the design, implementation and evolution of COTS components, the 
evolutionary process of a COTS component should be considered as part of a 
complex environment, physical and logical, that might directly affect the system 
components. In order to build a dependable software system from untrustworthy 
COTS components, the system should treat these components as a potential source of 
faults. The overall software system should be able to support COTS components 
while preventing the propagation of errors. In other words, the system should be able 
to tolerate faults that may reside or occur inside the COTS components, while not 
being able to directly inspect or modify their internal states or behaviour. 

In this paper we present the concept of an idealised fault-tolerant COTS 
component, which is an architectural solution that encapsulates a COTS component 
adding fault tolerance capabilities to allow it to be integrated in a larger system. These 
fault tolerant capabilities are related to the activities associated with error processing, 
that is, error detection and error recovery. The idealised fault-tolerant COTS 
component is a specialization of the idealised C2 Component (iC2C) [8] that is briefly 
described in the following section. 

3.1 The Idealised C2 Component (iC2C) 

The idealised C2 component (iC2C) is equivalent, in terms of behaviour and structure, 
to the idealised fault-tolerant component [2]; it was proposed to allow structuring of 
software architectures compliant with the C2 architectural style [26]. The C2 style 
was chosen for its orientation towards independent components that do not 
communicate directly. This makes it easier for the system developers to isolate critical 
components from the ROS.  

Service requests and normal responses of an idealised fault-tolerant component are 
mapped as requests and notifications in the C2 architectural style. Interface and 
failure exceptions of an idealised fault-tolerant component are considered to be 
subtypes of notifications. In order to minimize the impact of fault tolerance provisions 
on the system complexity, we have decoupled the normal activity and abnormal 



activity parts of the idealised component. This has lead us to developing an overall 
structure for the iC2C that has two distinct components and three connectors, as 
shown in Figure 1.  

The iC2C NormalActivity component implements the normal behaviour, and is 
responsible for error detection during normal operation and for signalling the interface 
and internal exceptions. The iC2C AbnormalActivity component is responsible for 
error recovery and for signalling the failure exceptions. For consistency, the signalling 
of an internal exception by an idealised fault-tolerant component is viewed as a 
subtype of notification, and, the “return to normal”, flowing in the opposite direction, 
is viewed as a request. During error recovery, the AbnormalActivity component may 
also emit requests and receive notifications, which are not shown in Figure 1. 
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Fig. 1. Idealised C2 Component (iC2C) 

The iC2C connectors are specialized reusable C2 connectors, which have the 
following roles:  
1. The iC2C_bottom connector connects the iC2C with the lower components of a 

C2 configuration and serializes the requests received. Once a request is accepted, it 
queues new requests that are received until completion of the first request. When a 
request is completed, a notification is sent back, which may be a normal response, 
an interface exception or a failure exception. 

2. The iC2C_internal connector controls message flow inside the iC2C, selecting the 
destination of each message received based on its originator, the message type and 
the operational state of the iC2C;  



3. The iC2C_top connector connects the iC2C with the upper components of a C2 
configuration. 
The overall structure defined for the idealised C2 component is fully compliant 

with the component rules of the C2 architectural style. This allows an iC2C to be 
integrated into any C2 configuration and to interact with components of a larger 
system. When this interaction establishes a chain of iC2C components, the external 
exceptions raised by a component can be handled by a lower level component (in the 
C2 sense of “upper” and “lower”) allowing hierarchical structuring. 

3.2 Guidelines for Turning COTS into iC2C 

In this section we show how the development of protectors can be included in the 
development process of a COTS-based software system. Typically, a COTS-based 
development process can be divided into six stages [4]: requirements, specification, 
provisioning, assembly (or integration), test and deployment. The requirements stage 
aims to identify the system’s requirements. During the specification stage the system 
is decomposed in a set of components with specific responsibilities that interact to 
fulfil the system requirements. These components are instantiated during the 
provisioning stage. During this stage the system integrator decides if a component can 
be instantiated by an existing ‘off-the-shelf’ component, herein called a COTS 
instance, or if it will require an implementation effort, in which case it is called an in-
house instance. During the assembly stage the system designer integrates COTS and 
in-house instances to build the whole system. This integration effort includes the 
development of glue code necessary to connect the various components, which 
include the specification and implementation of protectors. During the test stage the 
integrated system is tested and corrections may be made to ascertain that it fulfils its 
requirements and conforms to its specification. During the deployment stage the final 
system is installed in the user's environment. 

The presented guidelines are applied to the provisioning and assembly stages of the 
development process. We assume that the following artefacts, as described in Section 
2.2, have already been produced: (i) a system blueprint describing the initial software 
architecture and the system's safety specifications; and (ii) a set of component’s 
blueprints specifying the components' interfaces and their safety specifications. 

3.2.1 Steps for the Provisioning Stage 
Step 1. Develop a basic test plan for the component. This test plan should be based 

on the expected operational profile [11] of the component in the system being 
developed. 

Step 2. List candidate COTS components. One should obtain a list of candidate 
COTS software components that could be used to instantiate the provided 
interfaces specified in the component's blueprint. 
For each candidate COTS component, execute steps 3 to 6, as below. 

Step 3. Consolidate COTS blueprint. One should obtain from the COTS vendor (or 
developer) the following information, which are consolidated in the COTS 
blueprint. 



a) The specification of the COTS provided interfaces, which is commonly 
referred to as the COTS API (Application Programming Interface). 

b) The specification of the COTS required interfaces, which is commonly 
referred as the COTS System Requirements. 

c) Information about known design faults in the COTS, which is usually found in 
sections called ‘Known Bugs and Problems’. 

d) Any information that may give a “grey-box” view of the COTS, with selected 
details visible only [14]. Usually, this information may be found in technical 
articles and white papers from the COTS developers. 

Step 4. Test the COTS. One should test the COTS instance applying the basic test 
plan previously developed. The results obtained from these tests should be 
documented with information about: 

a) The subset of the COTS interfaces (provided and required) activated during 
the tests. 

b) The input domains covered by the tests. 
c) The erroneous conditions detected and the observed COTS behaviour under 

those conditions. 
d) Discrepancies between the behaviour specified in the COTS blueprint and its 

actual observed behaviour. 
Step 5. Enhance test coverage. One should revise the test plan and repeat the testing 

procedure until adequate test coverage is attained. Test coverage influences 
reliability, as higher test coverage is more likely to remove a greater number of 
software faults, leading to a lower failure rate and higher reliability [19]. The 
final tests should detect all known design faults in the COTS that can be activated 
under the component’s expected operational profile. The test plan should also 
include test cases based on the “grey-box” view of the COTS. 

Step 6. Produce the annotated COTS blueprint. The annotated COTS blueprint 
consolidates the information obtained about the COTS actual behaviour. This 
annotated COTS blueprint is based on the COTS blueprint, the system’s safety 
specifications and the results of the final tests and should include: 

a) Detailed specifications of the actual behaviour of the interfaces that were 
activated during the tests, under both normal and erroneous inputs. 

b) Specification of potentially dangerous conditions associated with the interfaces 
that were not activated during the tests. 

c) Additional information that may be available from previous use of the same 
COTS instance. 

Step 7. Select COTS instance. If there are two or more candidate COTS instances 
being considered, select the one that fits best in the system. This selection is 
based on the information contained in the system blueprint and the various 
annotated COTS blueprints. For this selection, it may be necessary to develop 
alternate versions of the system blueprint adapted to limitations and requirements 
specific to each COTS instance. The result of this step is a revised system’s 
blueprint with the version of the software architecture that includes the selected 
COTS instance wrapped by a protector (to be developed during the assembly 
stage). 



Step 8. Decide COTS integration. At this point, it should be decided between the 
system integration using the selected COTS instance or, alternatively, using a 
new component to be developed in-house.  

3.2.2 Steps for the Assembly Stage 
Step 9. Classify erroneous conditions. One should define a set of generalised 

erroneous conditions that may arise in the protected interface. The erroneous (or 
dangerous) conditions specified in the annotated COTS blueprint (Step 6) are 
analyzed in view of the system’s safety specification and classified according to 
how and in what extent they may affect the system’s dependability requirements. 
For each resulting class it is defined a generalised exceptional condition. 

Step 10. Specify acceptable behaviour constraints (ABCs) associated to the erroneous 
conditions. This specification is based on the information contained in the 
annotated COTS blueprint.  The ABCs may include assertions on: 
a) The domain of parameters and results of the requests that flow between the 

COTS instance and the ROS. 
b) The history of messages exchanged through the interface. 
c) Portions of the internal state of system’s components that can be inspected 

by calling side-effect-free functions. 
Step 11. Specify the desired system’s exceptional behaviour. This exceptional 

behaviour defines the error recovery goals, which may depend on the type and 
severity of the errors detected. The main source of this specification is the 
system’s safety specifications 

Step 12. Allocate error recovery responsibilities. The system’s exceptional behaviour 
specified in the preceding step is decomposed in a set of recovery actions 
assigned to specific components in the software architecture. Some of these 
responsibilities will be allocated to the protector associated to the selected COTS 
instance (Step 7). These recovery actions are also specified during this step. 

Step 13. Refine the software architecture. This refinement decomposes the 
components involved with error processing (Step 11) into new architectural 
elements that will be responsible for error processing.  

Step 14. Implement error detectors. The specified ABCs (Step 10) are implemented 
as the executable assertions encapsulated in two error detectors that act as 
message filters. The first error detector intercepts and monitors the service 
requests that flow from the ROS to the COTS and the corresponding results that 
flow back to the ROS. The second error detector intercepts and monitors the 
service requests that flow from the COTS to the ROS and the corresponding 
results that flow back to the COTS. The error detector intercepts these messages 
and verifies their associated assertions before delivering the message. When an 
ABC violation is detected the error detector raises an exception of a specific type 
associated with this ABC. The exception raised contains the pending message 
that, in this case, is not delivered to its recipient. Messages that do not cause an 
ABC violation are delivered to their recipients without change. 

Step 15. Implement error handlers. The specified recovery actions (Step 12) are 
implemented in error handlers associated with the various exception types. These 
error handlers can be attached to the respective components of the architecture. 



This placement depends on the scope of the recovery action, which may vary 
from a single component instance to the whole system.  

Step 16. Integrate the protectors. During this step, the COTS instances are integrated 
with their associated error detectors (Step 14) and errors handlers (Step 15) as 
specified by the refined software architecture (Step 13). The result of this step is a 
set of COTS instances in the form of iC2C. 

Step 17. Integrate the system. During this step, the COTS instances are integrated 
with the in-house instances to produce the final system.  

The integration of COTS instances in the form of iC2C into a C2 architectural 
configuration will be the topic of the next section. Such architectural configuration 
will contain iC2Cs for structuring in-house instances, and idealised C2 COTS 
component (iCOTS) for structuring COTS instances and their respective protective 
wrappers. 

3.3 Idealised C2 COTS (iCOTS) Overall Architecture 

A protective wrapper for a COTS software component is a special type of application-
specific fault-tolerance capability. To be effective, the design of fault-tolerance 
capabilities must be concerned with architectural issues, such as process distribution 
and communication mode, that impact the overall system dependability. Although the 
C2 architectural style is specially suited for integrating COTS components into a 
larger system, its rules on topology and communication are not adequate for 
incorporating fault tolerance mechanisms into C2 software architectures, especially 
the mechanisms used for error detection and fault containment [8]. The idealised C2 
fault-tolerant component (iC2C) architectural solution (section 3.1) overcomes these 
problems leveraging the C2 architectural style to allow such COTS software 
components to be integrated in dependable systems. 

The idealised C2 COTS component (iCOTS) is a specialization of the iC2C that 
employs protective wrappers for encapsulating a COTS component. In our approach, 
the COTS component is connected to two specialized connectors acting as error 
detectors (Figure 2) to compose the NormalActivity component of the iCOTS. These 
detectors are responsible for verifying that the messages that flow to/from the COTS 
being wrapped do not violate the acceptable behaviour constraints specified for that 
system.  

The lower_detector inspects incoming requests and outgoing responses (C2 
notifications) from/to the COTS clients while the upper_detector inspects outgoing 
requests and incoming responses to/from other components providing services to the 
COTS. In the context of the overall diagram, the iC2C_bottom connector connects 
the iCOTS with the lower components of a C2 configuration, and serializes the 
requests received. The iC2C_internal connector controls message flow inside the 
iCOTS. The iC2C_top connector connects the iCOTS with the upper components of 
a C2 configuration. 
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Fig. 2. Idealised C2 COTS (iCOTS) Overall Structure 

When a constraint violation is detected, the detector sends an exception 
notification, which will be handled by the AbnormalActivity component, following 
the rules defined for the iC2C. Any of these detectors may be decomposed in a set of 
special purpose error detectors that, in their turn, are wrapped by a pair of connectors. 
For example, Figure 3 shows an upper_detector decomposed into a number of error 
detectors. The detector_bottom coordinates error detection, and the detector_top 
connects the whole detector either to the COTS or to the iC2C top_connector.  

Error
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Error
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detector_bottom

detector_top
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Fig. 3. Decomposition of a Detector 

The AbnormalActivity component is responsible for both error diagnosis and error 
recovery. Depending on the complexity of these tasks, it may be convenient to 
decompose it into more specialized components for error diagnosis and a set of error 
handlers, as shown in Figure 4.  In this design, the ErrorDiagnosis component is able 
to react directly to exceptions raised by the NormalActivity component and send 
notifications to activate the ErrorHandlers or, alternatively, to stand as a service 
provider of requests sent by the ErrorHandlers. 
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Fig. 4 . Decomposition of the AbnormalActivity 

4 Case Study 

In this section, we present a case study that demonstrates the applicability of the 
iCOTS architectural solution when dealing with mismatches in the failure 
assumptions of COTS software components. 

4.1 Problem Statement 

Anderson et. al. [1] present the results of a case study in protective wrapper 
development [15], in which a Simulink model of a steam boiler system is used 
together with an off-the-shelf PID (Proportional, Integral and Derivative) controller. 
The protective wrappers are developed to allow detection and recovery from typical 
errors caused by unavailability of signals, violations of limitations, and oscillations. 

The boiler system comprises the following components: the physical boiler, the 
control system and the rest of the system (ROS). In turn, the control system consists 
of PID controllers, which are the COTS components, and the ROS consisting of: 
1. Sensors - these are “smart” sensors that monitor variables providing input to the 

PID controllers: the drum level, the steam flow, the steam pressure, the gas 
concentrations and the coal feeder rate. 

2. Actuators - these devices control a heating burner that can be ON/OFF, and adjust 
inlet/outlet valves in response to outputs from the PID controllers: the feed water 
flow, the coal feeder rate and the air flow. 

3. Boiler Controller - this device allows to enter the configuration set-points for the 
system: the steam load and the coal quality, which must be set up in advance by the 
operators. 
The Simulink model represents the control system as three PID controllers dealing 

with the feed water flow, the coal feeder rate and the air flow. These three controllers 



output three variables: feed water flow (F_wf), coal feeder rate (C_fr) and air flow 
(Air_f), respectively; these three variables, together with two configuration set-points 
(coal quality and steam load) constitute the parameters which determine the behaviour 
of the boiler system. There are also several internal variables generated by the smart 
sensors. Some of these, together with the configuration set-points, provide the inputs 
to the PID controllers, in particular: bus pressure set-point (P_ref), O2 set-point 
(O2_ref), drum level (D_l), steam flow (S_f), steam pressure/drum (P_d), steam 
pressure/bus (P_b), O2 concentration at economizer (O2eco), CO concentration at 
economizer  (Coeco), and NOx concentration at economizer (Noxeco). 

4.2 The Provisioning Stage 

In this case study, we assume that the provisioning stage has been completed with the 
selection of a COTS PID Controller instance, as mentioned in Step 7 (Select COTS 
instance) of Section 3.2.1 (Steps for the Provisioning Stage). Anderson et. al. [1] 
summarise the available information describing the correct COTS component 
behaviour to be used in developing the protective wrappers. This document play the 
role of the annotated COTS blueprint mentioned in Step 6 (Produce the annotated 
COTS blueprint). Figure 5 shows the initial software architecture that is part of the 
system blueprint (Section 3.2). This architecture, which is based on the C2 
architectural style, is organized in four layers: (i) the BoilerController component; (ii) 
the WaterFlowController and CoalFeederController; (iii) the AirFlowController, 
which has as input the CoalFeederRate from the CoalFeederController; and (iv) 
the sensors and actuators required by the system. Table 1 specifies the operations 
provided by some key components that appear in Figure 5. 
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Fig. 5.  C2 Configuration for the Boiler System 



Table 1. List of Operations 

Operation Provider Component 

readDrumLevel() : D_l Drum Level Sensor 
readSteamFlow() : S_f Steam Flow Sensor 
readBusPressure() : P_b Steam Pressure Bus Sensor 
readO2Concentration() : O2eco O2 Concentration Sensor 
setFeedWaterFlow(F_wf) Feed Water Flow Actuator 
setCoalFeedRate(C_fr) Cool Feeder Rate Actuator 

Air Flow Controller 
setAirFlow(Air_f) Air Flow Actuator 
setConfiguration(P_ref, O2_ref) Coal Feeder Controller 

Air Flow Controller 
 

4.3 The Assembly Stage 

The following paragraphs illustrate the assembly stage, starting from Step 9 of 
Section 3.2.2 (Steps for the Assembly Stage). 
Step 9. Define a set of generalised erroneous conditions that may arise in the 

protected interface. Three types of such erroneous conditions are considered: (i) 
unavailability of inputs/outputs to/from the PID controllers; (ii) violation of 
specifications of monitored variables; and (iii) oscillations in monitored variables. 

Step 10. Specify acceptable behaviour constraints (ABCs)  associated to the 
erroneous conditions. These ABCs are summarized in the second column of 
Table 2 (ABC to be checked). 

Step 11. Specify the desired system’s exceptional behaviour. Depending on the 
severity of the errors and on the specific characteristics of the system, two types 
of recovery are used in the case study: raising an alarm and safe stop. 

Step 12. Allocate error recovery responsibilities. The AirFlowController, 
WaterFlowController and CoalFeederController components are responsible 
for error detection (ABCs violations). The BoilerController component is 
responsible for error recovery, which may be either to sound an alarm or to shut 
down the system, depending on the exception type. 

Step 13. Refine the software architecture.  The proposed solution applies the concepts 
of iCOTS and iC2C for structuring four components. The AirFlowController, 
WaterFlowController and CoalFeederController components are structured as 
iCOTS components that encapsulate a COTS instance (the COTS PID controller) 
wrapped by a protector. The BoilerController component is structured as an 
iC2C, to be provided as an in-house instance. Next we describe how we can build 
an iCOTS AirFlowController encapsulating a COTS PID controller wrapped by 
a protector. This solution equally applies to the WaterFlowController and 
CoalFeederController components. 



Table 2. Error Detection Specifications 

Message Type ABC to be checked Exceptional Notification 

Lower Detector 

 0 <= O2_ref <= 0.1 InvalidConfigurationSetpoint 
Request setConfiguration 

(P_ref, O2_ref) 
corresponding notification must be 
received within a specified time 
interval 

PIDTimeout 

 0 <= C_fr <= 1 InvalidCoalFeederRate 
Request setCoalFeeder 

(C_fr) 
check_oscillate(Air_f) CoalFeederRateOscillating 

 corresponding notification must be 
received within a specified time 
interval 

PIDTimeout 

Upper Detector 

 0 <= Air_f <= 0.1 InvalidAirFlowRate 
Request setAirFlow(Air_f) check_oscillate(Air_f) AirFlowRateOscillating 

 corresponding notification must be 
received within a specified time 
interval 

AirFlowActuatorTimeout 

Notification from 
readO2Concentration() 

0 <= O2eco <=1 InvalidO2Concentration 

Table 3. Summary of Exceptional Notifications 

Exception Notification Generic Exception Type 

PIDTimeout NoResponse 

AirFlowActuatorTimeout (unavailability of inputs/ outputs to/from the PIDController) 
InvalidConfigurationSetpoint*  
InvalidCoalFeederRate* OutOfRange 

InvalidO2Concentration (violation of specifications of monitored variables) 
InvalidAirFlowRate  
CoalFeederRateOscillating Oscillation 

AirFlowRateOscillating (oscillations in monitored variables) 
* Interface exceptions.  

Figure 6 shows the internal structure of the iCOTS for the AirFlowController, 
based on the patterns shown in Figures 2 and 3. This solution equally applies to the 
WaterFlowController and CoalFeederController components.  
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Fig. 6. Decomposition of the AirFlowController 

The COTS PID controller is wrapped by a pair of error detectors (upper_detector 
and lower_detector) and inserted into an iC2C as its NormalActivity component. 
Both detectors use OscillatorChecker, which is responsible for checking whether 
oscillating variables revert to a stable state before a maximum number of oscillations. 
Table 2 specifies, for each detector: the message types to be inspected, their 
corresponding assertions that guarantee the acceptable behaviour constraints (Section 
2.2), and the type of the exception notification that should be generated when a 
constraint is violated. Table 3 summarises these exception types, grouped by their 
generalised types. Two of these exception types are interface exceptions that are sent 
directly to the next lower level in the architectural configuration. The other exception 
types are internal exceptions, to be handled by the AFCErrorHandler. Thus, the 
AFCErrorHandler propagates internal exceptions as failure exceptions of the generic 
type of the corresponding internal exception, using the mapping shown in Table 3. A 
PIDTimeout exception, for example, will generate a NoResponse failure exception. 
The BoilerController component is responsible for: 
1. Configuring the boiler system, sending setConfiguration requests when 

appropriate. 
2. Handling interface exceptions of type InvalidConfigurationSetpoint, which may 

be raised in response of a setConfiguration request. 
3. Handling failure exceptions of type NoResponse, OutOfRange or Oscillation, 

which may be raised by the three controllers (WaterFlowController, 
CoalFeederController, AirFlowController). 
The BoilerController component was structured as an iC2C to cope with fault-

tolerance responsibilities, which are captured by items (2) and  (3) above, in addition 
to its main functional responsibility, which is captured by item (1) above. 

Figure 7 shows the resulting fault-tolerant architecture for this system, which is 
derived from the overall architectural configuration for the boiler system (Figure 5). 
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Fig. 7. Resulting Configuration for the Boiler System 

Each of its three controllers is structured as idealised C2 COTS (iCOTS) and the 
BoilerController as an idealised C2 component (iC2C). It is assumed that the sensors 
and actuators, as well as the connectors, do not fail. Figure 8 illustrates the flow of 



messages between the various components involved when a PIDTimeout exception 
occurs, after the BoilerController fails to configure the AirFlowController, which 
contains the COTS PID3Controller. When the AirFlowController bottom connector 
(afcld_bottom) detects that the AirFlowController is not responding, it raises an 
exception to AFCErrorHandler. Since AFCErrorHandler cannot cope with this 
exception type, it raises another exception to the BCErrorHandler that shuts down 
the whole system. 
Step 14. Implement error detectors. During this and the following steps it was used an 

objected-oriented framework that provides a generic implementation for the key 
abstractions of the iC2C and iCOTS structuring concepts. Using this framework, 
the iCOTS lower and upper detectors are implemented as subclasses of, 
respectively, LowerDetectorAbst and UpperDetectorAbst. Figure 9 shows the 
main parts of the AfcLowerDetector class that implements the lower error 
detector associated with the AirFlowController component. In this code sample, 
the setConfiguration() and setCoalFeedRate() methods intercept the requests 
sent to the AirFlowController and check their associated ABCs, based on the 
specification shown in Table 2. When an assertion is violated an exception is 
raised by means of the raiseException() method, which is implemented by the 
abstract classes. Accepted requests are delivered to the AirFlowController that is 
connected to the wrappedNormal interface. 

Step 15. Implement error handlers. Using the framework aforementioneted, the error 
handlers are implented as subclasses of AbnormalActivityAbst. Figure 10 shows 
the AFCErrorHandler class that implements the error handler associated with 
the AirFlowController. In this code sample, the handle() method is called when 
a failure exception is raised by one of the error detectors that wrap the 
AirFlowController. The exceptions raised are re-signalled with a more generic 
exception type according to the specifications shown in Table 3. 

Step 16. Integrate the protectors. The following code snippet creates a component afc 
that encapsulates the AirFlowController and its associated error detectors and 
error handler, according to the iCOTS structuring. This new component is an 
iC2C instance composed by the basic AirFlowController wrapped by the two 
error detectors, acting as the iC2C normal activity component, and the error 
handler acting as the iC2C abnormal activity component. 

Icomponent afc=new iC2C( new AfcWrappedNormal 
                            ( new AirFlowController (), 
                              new AfcLowerDetector( ), 
                              new AfcUpperDetector( ) ), 
                            new AFCErrorHandler() ) ; 



setConfiguration()

:PID3 Controller
( COTS )Error Handler

:AFC:Boiler Controller
Normal Activity Error Handler

:BC
:afcld_bottom

setConfiguration()

timeStep()

FailureException
("PIDTimeout")

FailureException
("NoResponse")

shutDown()

timeStep()

timeStep()

(stopped)

 
Fig. 8. UML Sequence Diagram for a PIDTimeout Exception 

Step 17. Integrate the system. The integration of the various components and 
connectors that are composed into the system is coded in the main() method of a 
StartUp class, based on the configuration shown in Figure7. The code snippet 
bellow illustrates this method body with: (i) the instantiation of component bc as 
an iC2C composed by the BoilerController component and its associated error 
handler; (ii) the instantiation of connector conn1; and (iii) the connection 
between the top interface of component bc and the bottom interface of connector 
conn1. 

IComponent bc=new iC2C 
       (new BoilerController(), new BCErrorHandler( )); 
IConnector c1=new Conn1(); 
bc.connectTop(c1); 

The resulting system was tested in a simulated environment that allowed us to 
inject different faults in the system. The final system passed all tests successfully. The 
system behaved as specified even in the presence of faults, aborting the erroneous 
operations and either stopping the system or activating an alarm.  

A limitation of the case study is that it is based on a simulation of a boiler system, 
which does not allow an objective performance analysis. During execution time, the 
main overhead associated to a protector occurs when a service requested passes 
through a protected interface. This overhead is proportional to the number and 
complexity of the assertions encapsulated in the protectors. Assuming that this 
complexity should be much lower than the complexity of the services provided by the 
COTS, we may infer that the performance impact of the protective wrappers will be 
low. An ongoing experimental work in the DOTS1 project is confirming this. The 
protector associated with the air flow controller, comprising its two error detectors 
with the eight ABCs and the associated error handler, required about a hundred lines 
of code. This additional code is added to the system in three new classes, which does 
not require any changes in the class that implements the base AirFlowController. An 
ongoing work is applying the proposed approach in a real world system and to more 
complex COTS software components. 

 

                                                        
1 Diversity with Off-The-Shelf Components Project, http://www.csr.ncl.ac.uk/dots/ 



public class AfcLowerDetector extends LowerDetector Abst 
  implements IConnector, IAirFlowController { 
  private IAirFlowController wrappedNormal; 
  private OscillatorChecker oscillatorChecker; 
  public void setConfiguration 
               (double P_ref, double O2_ref) { 
    if (O2_ref<0 || O2_ref>0.1) 
      raiseException 
        (new InvalidConfigurationSetpoint(O2_ref));  
    try {wrappedNormal.setConfiguration(P_ref, O2_r ef); 
    } catch (TimeoutException e) { 
      raiseException 
         (new PIDTimeout("setConfiguration()")); 
    } catch (AbortException e) { aborted(); } 
  } 
  public void setCoalFeedRate(double C_fr) { 
    if (C_fr<0 || C_fr>1) 
      raiseException(new InvalidCoalFeederRate(C_fr )); 
      if (oscillatorChecker.check_oscillate(C_fr)) 
        raiseException 
          (new CoalFeederRateOscillating(C_fr)); 
      try { 
        wrappedNormal.setCoalFeedRate(C_fr); 
      } catch (TimeoutException e) { 
        raiseException 
          (new PIDTimeout("setCoalFeedRate()")); 
      } catch (AbortException e) { aborted(); } 
    } … 

Fig. 9. Implementation of the AirFlowController’s lower detector. 

public class AFCErrorHandler  
  extends AbnormalActivityAbst implements IComponen t { 
  public void handle(Exception exception) { 
    try { throw exception; } 
      catch (PIDTimeout e) { 
      throw new NoResponse(e); 
    } catch (AirFlowActuatorTimeout e) { 
      throw new NoResponse(e); 
    } catch (InvalidO2Concentration e) { 
      throw new OutOfRange(e); 
    } catch (InvalidAirFlowRate e) { 
      throw new OutOfRange(e); 
    } catch (CoalFeederRateOscillating e) { 
      throw new Oscillation(e); 
    } catch (AirFlowRateOscillating e) { 
      throw new Oscillation(e); 
    } catch (Exception e) { 
      throw new FailureException(e); } 
  } 

Fig. 10. Implementation of the AirFlowController’s error handler. 



5 Related Work 

This section compares our approach with several relevant existing proposals. The 
main comparison criteria are the types of the components (application-level or 
middleware/OS level), fault tolerance (error detection and recovery) provided, type of 
the redundancy, the information used for developing error detection and recovery, 
phases of the life cycle (at which they are applied). 

Ballista [12] works with POSIX systems coming from several providers. The 
approach works under a strong assumption that the normal specification of the 
component is available, from which error detectors can be specified. In addition to 
this, the results of fault injection are used for the specification of error detectors. A 
layer between the applications and the operating system (OS), intercepting all OS 
calls as well as the outgoing results, implements this error detection. The recovery 
provided by this approach is very basic (blocking the erroneous calls) and is not 
application-specific. 

A very interesting approach to developing protective wrappers for a COTS 
microkernel is discussed in [23]. The idea is to specify the correct behaviour of a 
microkernel and to make the protective wrapper check all functional calls (similar to 
Ballista, this approach cannot be applied for application-level COTS components that 
lack a complete and correct specification of the component’s behaviour). Reflective 
features are employed for accessing the internal state of the microkernel to improve 
the error detection capability. In addition, the results of fault injection are used in the 
design of wrappers for catching those calls that have been found to cause errors of the 
particular microkernel implementation. A recent work [16] shows how recovery 
wrappers can be developed within this framework to allow for recovery after transient 
hardware faults, which is mainly based on redoing the recent operation. 

Unfortunately these two approaches do not offer any assistance in developing fault 
tolerant system architectures. The Simplex framework (the best summary of this work 
performed in mid 90’s can be found in [21]) proposes an architectural solution to 
dealing with the faults of the application-level COTS components. The idea is to 
employ two versions of the same component: one of them is the COTS component 
itself and another one is a specially-developed unit implementing some basic 
functions. The second unit is assumed to be bug free as it implements very simple 
algorithms. The authors call this analytical redundancy. The two units together form a 
safety unit in which only externally observable events of the COTS component are 
dealt with. The system architect is to implement a set of consistency constraints on the 
inputs to the COTS component and the outputs from it, as well as on the states of the 
device under control. This approach is oriented towards developing fault tolerant 
architectures of control systems. The disadvantage of this approach is that it is not 
recursive as it treats the whole control software as one unit and provides fault 
tolerance at only this level. 

Rakic et. al. [17] offer a software connector-based approach to increasing the 
dependability of systems with components that evolve over time. The idea is to 
employ the new and the (several if available) old versions of a component to improve 
the overall system dependability. The authors put forward the idea of using a 
specialised multi-version connector allowing the system architect to specify the 
component authority for different operations: a version designated as authoritative 



will be considered nominally correct with respect to a given operation. The connector 
will propagate only the results from an authoritative version to the ROS and at the 
same time, log the results of all the multi-versioned components' invocations and 
compares them to the results produced by the authoritative version. This solution is 
mainly suitable for systems in which COTS components are to be upgraded (under the 
assumption that the interface of the old and new components remain unchanged) so 
there are several versions of a component in place. 

6 Conclusions and Future Work  

When building dependable systems from existing components, guarantees cannot be 
given on the system behaviour, if at least guarantees are not provided on the 
behaviour of its individual components. Since such guarantees are difficult to be 
obtained for individual COTS components, architectural means have to be devised for 
the provision of the necessary guarantees at the system level. The paper proposes an 
architectural solution to transform COTS components into idealised fault-tolerant 
COTS components by adding protective wrappers to them. We demonstrate the 
feasibility of the proposed approach using the steam boiler system case study, where 
its controllers are built reusing unreliable COTS components. Although we recognize 
that the proposed approach can result in incorporating repetitive checks into the 
integrated system, this is an unavoidable outcome considering the lack of guarantees 
provided by COTS components. For example, it might be the case that a COTS 
component has internal assertions checking the validity of an input parameter that is 
also checked by its protector, or other protectors associated with other COTS 
components. However, there are situations in which the system integrator can take 
care of this by coordinating development of fault tolerance means associated with 
individual components. 

The protective wrappers are integrated in the architectural configuration as a set of 
new architectural elements that are dependent of a runtime environment, which is 
assumed to be reliable. The proposed approach also does not consider direct 
interactions between the COTS software component and human users. This implies 
that the proposed approach may not be effective for protecting COTS software 
components that either: (i) provide infrastructure services, such as operating systems, 
distribution middleware and component frameworks; or (ii) interacts intensively with 
human users, such as word processors. 

The effectiveness of the proposed approach depends on the system designer’s 
ability to anticipate the COTS behaviour when integrating it into a specific system, 
e.g. using the COTS usage profile. An approach for anticipating undesirable 
behaviour and, thus, increasing the protector’s coverage factor for error detection is to 
perform integration tests of the COTS within the system being developed, prior to the 
specification of the protectors. These testing activities are the harder aspect in the 
development of the protectors, and they cannot be avoided. Our future work includes 
evaluating tools for automating these tests, which could be integrated in the 
protector’s development process. 



Although a single architectural style was used in the case study, software 
components in the C2 architectural style can be nevertheless integrated into 
configurations of other architectural styles of the independent components family 
[22], such as client/server and broker styles. This allows the idealised fault tolerant 
COTS (iCOTS) concept to be applied as a general solution in composing dependable 
systems from unreliable COTS components.  
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