
King, Andy and Soper, Paul (1992) Ordering Optimizations for Concurrent
Logic Programs. In: Nerode, Anil and Taitslin, Michael, eds. Logical Foundations
of Computer Science. Lecture Notes in Computer Science, 620 . Springer,
pp. 221-228. ISBN 978-3-540-55707-4.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/37629/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/BFb0023876

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/37629/
https://doi.org/10.1007/BFb0023876
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Ordering Optimisations for Concurrent Logic Programs

Andy King and Paul Soper

D e p a r t m e n t of Electronics and C o m p u t e r Science,
Universi ty of Sou thampton , Sou thampton , S09 5NH, UK.

Abstract

Ordering optimisations are optimisations that can be applied to a con-
current logic program when the atoms of a clause are known to be ordered.
In this paper ordering optimisations are reviewed, reformulated and refined.
The paper explains how ordering optimisations can be realised in terms of
abstract interpretation and shows that by, building on schedule analysis,
simple, efficient and accurate forms of abstract interpretation can achieved.
The paper outlines how to: identify instances of unification which can be
simplified or removed; distinguish repeated synchronisation instructions; in-
dicate which redundant checks can be removed when producers are ordered
before consumers in the same thread; identify which variables can be accessed
without dereferencing; indicate where variable initialisation and unification
can be simplified; and show which variables can be allocated to an environ-
ment. Some safety checks can also be removed by using mode information.

1 Introduction

Schedule analysis[l] can be used to introduce sequential threads into a concurrent
logic program. The analysis is an adaptation of the dependence analysis[2] pro-
posed by Traub for lenient functional languages. A partial schedule of processes
is determined at compile-time which does not contradict any data-dependence of
the program. The data-dependencies are inferred from producer and consumer
analysis[3]. In general all processes cannot be totally ordered and so the analysis
leads to a division into threads of totally ordered processes. In this way the work
required of the run-time scheduler is reduced to ordering sequential threads rather
than ordering individual processes. This is likely to be a useful optimisation since
the overhead of invoking a scheduler is significant.

Parlog supports sequential conjunction and thus provides a way to order to
order the evaluation of atoms within a clause. Typically its use as a programming
device is linfited, and Gregory[4] argues for its inclusion in Parlog primarily as
a mechanism for controlling granularity. Schedule analysis builds on this work
by providing a mechanism which is both automatic and formally proven (the
behaviour of the program is preserved) for removing the overheads of fine-grained
parallelism.

Gregory[4] documents several optimisations that can be applied in connection
with sequential conjunction. These optimisations, which we collectively call order-
ing optimisations, generalise to threads. Gregory advocates that. the programmer

222

should indicate where sequential conjunction can be introduced into the program.
Schedule analysis, instead of relying on the programmer, systematically generates
threads. Schedule analysis is likely, therefore, to identify circumstances for which
atoms can be ordered, which the programmer does not. A consequence of this
is likely to be more scope for optimisation. Indeed, in connection with schedule
analysis, ordering optimisations first proposed for sequential conjunction might
assume a new importance. A notable special case for Which ordering optimisa-
tions are of particular value is when a concurrent logic program is compiled to a
uniprocessor.

In this paper we review, reformulate and refine ordering optimisations. We
explain how ordering optimisations which relate to sequential conjunction can be
reformulated in terms of abstract interpretation. We argue that by building on
threads, simple and effective forms of abstract interpretation can be achieved.
This approach not only extends the scope of the ordering optimisations, but addi-
tionally, the information inferred by abstract interpretation can be used to identify
where other optimisations can be applied. We show how optimisations reported
in the Prolog literature can be adapted to threads by combining mode analysis
and type analysis, described in Section 2, with reference analysis, described in
Section 3. (Section 3.2 presents an exception to this since we detail how to perform
the safety check at compile-time. This optimisation is just as applicable to Prolog
as it is to a concurrent logic language, and yet it does not seem to have been
mentioned in the Prolog literature.) Section 4 presents our concluding discussion.

2 Mode analysis and type analysis

Mode analysis is a well-established analysis technique which infers how the argu-
ments of a predicate (or an atom) can be expected to be bound when the predicate
(or the atom) is invoked. Knowing that an argument is bound, or unbound, for
instance, enables unification to be specialised. Type analysis can be regarded as
an extension of mode analysis. Instead of inferring that arguments are expected to
be unbound, bound or ground, the classification is refined to additionally deduce
type information. Type aalalysis typically might infer that a variable is unbound
or bound to a number, string, list or tuple. A knowledge of which types can be
anticipated can, for example, be used to further simplify unification.

Mode analysis and type analysis can be regarded as forms of top-down abstract
interpretation. A consequence of this is that the analyses critically depend on
control. Debray[5] explains how modes call be inferred when a total (left-to-
right) ordering of the atoms of a clause is replaced with a partial ordering. This
approach can be refined to deduce type information too. However, the generality
of substituting a total ordering with a partial ordering reduces the accuracy,
and therefore the usefulness, of the mode or type information. Furthermore,
the and-parallelism of a concurrent logic program means that the only ordering
that exists between the atoms of a clause is imposed by the data-dependencies
between the atoms. Therefore, without considering the ordering imposed by data-
dependencies, the mode or type information inferred by the technique of Debray[5]
is likely to be of little use.

223

Codognet et al.[6] and Codish el a/.[7] detect possible deadlocks in concurrent
logic programs by reasoning about groundness and sharing and including special
machinery in the analysis to model the possible suspension of processes. Such
analyses consider the data-dependencies between atoms of the clause and therefore
provide a framework to infer accurate mode and type information. However,
a simpler and more efficient alternative is to apply the analysis of Debray to
threads. The method is particularly attractive since the partial order defined
by the threads often carries more information than the partial order defined by
the data-dependencies. Thus a~:curate modes and types are likely to be inferred.
The fundamental difference between this technique and the approach described
by Codognet et al.[6] and Codish et a/.[7] is that data-dependencies are considered
at an earlier stage of compilation, in the generation of threads.

2.1 Write-first occurrence optimisation
Gregory[4] first described how the unification of a variable with a term can be
replaced with a form of assignment if the variable is a write-first occurrence of
a variable. Gregory[4] lists conditions which define a write-first occurrence of a
variable. These conditions guarantee that a write-first occurrence of a variable
is unbound prior to unification. The definition of a write-first occurrence of a
vaxiable, however, concerns only local properties of a clause, and the scope of the
optimisation can be improved by considering global properties by mode analysis.
Specifically the unification of a variable with a term can be specialised to a form of
assignment if mode analysis infers that the variable is unbound prior to unification.
Write-first occurrence is a useful optimisation because the unification algorithm is
usually implemented as a complex piece of code and thus is usually accessed out-
of-line. In-lining Call be used, however, to implement the write-first occurrence of
a variable.

Type information can also be used to simplify unification. The unification of
two variables can, for example, be reduced after type analysis to just a comparison
for equality if one variable is known to be a constant and the othcir is known to
be bound. The gains from in-lining can be considerable. Not only is branching to
and returning from an out-of-line routine made unnecessary but also the code is
exposed to subsequent improving optimisations such as common sub-expression
elimination and register allocation. Even if in-line code cannot be produced type
information can still be useful. If both variables involved in the unification are
found to be bound, for instance, then a more suitable entry-point to the unification
code can be selected.

2.2 Repeated synchronisation instruction optimisation
A synchronisation instruction checks that a variable is bound. In the kernel
Parlog language described by Gregory[4], for instance, a synchronisation instruc-
tion corresponds to a DATA~1 atom. If the variable is bound the synchronisation
instruction succeeds; otherwise suspension occurs until the variable is bound.
Gregory[4] describes how repeated DATA/1 atoms which occur across a sequen-
tial conjunction can be removed. More generally, synchronisation instructions
which are repeated within a thread are not required and can be removed. This

224

redundancy can be detected by mode analysis by ensuring that on exit from a
synchronisation instruction the mode of the variable is updated to bound. If the
mode analysis infers that the synchronisation instruction tests a bound variable
then the instruction can be removed. Again reformulating the optimisations as
mode analysis broadens the scope for the optimisation.

2.3 Producers before consumers optimisation

Within the single framework of mode analysis a further optimisation can be in-
corporated. Threads are generated so as not to contradict any data-dependence
between producers and consumers. Consequently producers are frequently ordered
before consumers. Some of the synchronisation instructions in the consumers axe
thus made redundant. Mode analysis can detect this redundancy so that superflu-
ous synchronisation instructions can be removed. Additionally type information
can identify which type tests and which type checks are extraneous and therefore
can be removed. The producers before consumers-optimisation is likely to be
useful for code which evaluates arithmetic expressions because most of the code
used to perform arithmetic is actually spent checking that the arguments are of
the right type.

3 Reference analysis

The logical variable enables variables to be unified together without being bound.
A unification which binds a variable must also bind all the variables to which it
is aliased. The conventional variable representation achieves this by representing
a variable as a pointer. On the unification of two unbound variables one variable
pointer to set to reference the other. To determine the binding of a variable,
therefore, the chain of pointers emanating from a variable has to be followed.
This is called dereferencing. Dereferencing is a significant factor in performance
because it is incorporated into many abstract machine operations and is usually
implemented as a non-trivial cycle of memory fetch, check and loop instructions.
Furthermore, chains of pointers introduce additional complexity to garbage collec-
tion. These overheads can be reduced by applying reference analysis to threads.

Taylor[S] and Mari~n et a/.[9] proposed reference analysis as a way of keeping
track of the length of pointer chains. Types derived by type analysis are paired
with length information to indicate whether a term can be accessed without a
pointer, with just a single pointer, or requires a chain of pointers of unknown
length to be followed. Reference analysis, like mode and type analyses, depends
on control and therefore threads, for its accuracy and usefulness. However, unlike
mode and type analysis, reference analysis cannot be directly applied to threads.
This is because reference analysis is concerned with sequential behaviour, that is,
the order in which variables are created and references are established. Suppose,
for instance, that a variable is shaxed across two threads and in both threads
the variable participates in a unification with a non-ground term. Then an alias
can be formed straddling the two threads with one of the aliased variables in
one thread and the other aliased variable in the other. The order in which the
threads are scheduled and evaluated determines which of the aliased variables is

225

set to reference the other. Thus reasoning about the length of pointer chains
for variables which are aliased across threads is problematic. Notice, however,
that unaliased variables can always be accessed without a chain of pointers. The
adaptation of reference analysis to threads thus corresponds to simply determining
whether a variable is possibly aliased or is definitely unaliased. This form of alias
analysis can be formulated in terms of the mode analysis described by Debray[5]
to give an efficient and effective reference analysis for threads.

Touati and Despain[10] present statistical evidence which suggests that the
unification of two unbound variables accounts for only a small proportion of
unifications and therefore small, usually zero length, chains of pointers can be
expected. Taylor[8] gives figures for reference analysis which coincide with this
because the majority of lengths inferred were actually zero. Indeed, in later
revisions of the compiler, Taylor[l i] restricts reference analysis to infer that either
a chain is zero length or unknown length. Thus the adaptation of reference analysis
to threads is likely to accurately determine the length of a high proportion of the
pointer chains.

3.1 Dereference optimisation

The adaptation of reference analysis to ,threads identifies variables which are
guaranteed to be unaliased. Unaliased variables are not associated with a chain of
pointers and therefore do not need to be dereferenced. This is the dereference opti-
misation. The dereference optimisation is likely to be more effective in simplifying
variable access for a shared-memory implementation than a distributed-memory
implementation. For a shared-memory implementation au unali~ed variable
guarantees immediate access to the variable whereas for a distributed-memory
implementation communication might still be required with another processor.

3.2 Environment optimisations

Crammond[12] explains how variables which are shared between ordered atoms
can be allocated to an environment. Variables which are not allocated to an
environment are placed in the heap. Environments are useful because they are
stored in a stack and thus reduce the overhead of garbage collecting the heap.
The environments employed by Crammond differ from the those conventionally
used in Prolog[13]. Instead of "allocating unbound variables to an environment,
the variables are stored in the heap and a reference to the variable placed in the
environment. Crammond explains that this is necessary for avoiding dangling
references and also simplifies garbage collection. Specifically if two environment
variables in the stack are bound together then the younger variable (nearer the
top of a stack) must be set to point to the older variable (nearer the bottom of
the stack), otherwise when the environment containing the younger vaxiable is
deallocated, a dangling reference is created. For Prolog, since there is a single
stack, the decision of which variable is the younger can be made by address
comparison. For a concurrent logic language, the multiple argument stacks make
the relative age of a variable more difficult to determine. Therefore, instead
introducing extra machinery to deal with age comparison, Crammond advocates
migrating all variables from the argument stacks to the heap. Placing all variables

226

in the heap also simplifies the garbage collection of the argument stacks since all
pointers in the argument stacks reference the heap. (In general, garbage collection
of the argument stacks is required because, although the argument stacks act as
stacks for allocation, items are not necessarily deallocated in reverse order and
thus large holes can potentially develop.)

Threads increase the potential for environments in two ways. First, schedule
analysis is likely to identify circumstances, undetected by the programmer, for
which atoms can be ordered. Consequently there is likely to be a movement of data
from the heap to the argument stacks. This is suggested by statistical evidence
presented by Crammond[12] which shows that (without schedule analysis) very
few Parlog clauses create environments. Threads change this. Second, the
adapted reference analysis can be used to introduce variables into an "environment.
A variable which is guaranteed to be unaliased can be safely allocated to an
environment since a dangling reference will never be created when the environment
is deallocated. Furthermore, apart from the self-reference of an unbound variable,
all pointers in the argument stacks reference the heap so that the overhead of
compacting an argument stack is still low.

The handling of environments is not completely solved, however, and dangling
references can still occur. Although all the pointers in the argument stacks
reference the heap, pointers in the argument registers can possibly reference the
argument stacks. Specifically an argument register can point to an unbound
variable contained in anenvironment so that on deallocation a dangling reference
can be formed. Because of the way variables are copied, a dangling reference
cannot occur if the last occurrence of a variable is known to be bound. For Prolog
a safety check is employed to test if the variable is bound[13]. If so the variable
can be safely deallocated. If not a new variable is created in the heap and the
environment variable copied to the heal) variable. The safety check, instead, can
be performed by mode analysis by inferring the mode of the last occurrence of
each environment variable. If the last occurrence of an environment variable is
bound then the safety check can be dispensed with. This enables environment
handling to be refined further.

3.3 Initialising variable optimisation
Within a thread, atoms frequently instantiate unbound and unaliased variables.
Conventionally such variables are initialised when the arguments are constructed,
and thus typically the variable is initialised, examined in the process of unification
and then bound. Van Roy[14] and Taylor[ill suggest how mode analysis and
aliasing analysis can be applied to Prolog to reveal which arguments of an atom
correspond to unbound and unaliased variables. This information, in turn, enables
the code which initialises and unifies such variables to be simplified. The mode
analysis and reference analysis of threads deduce just this information so that the
principle behind the initialising variable optimisation can be applied to threads.

The initialising variable optimisation can be implemented by designating as
uninitialised any argument of an atom which coincides with art unbound and
unaliased variable on entry to the associated predicate, and corresponds to a
bound variable on exit from the predicate. The onus of initialising an uninitialised

227

argument is moved from the atom (the caller) to the predicate (the callee) to
enable initialisation and unification Of the variable to be refined.

I

Taylor[ill reports that the gains from applying the initialising variable opti-
misation to Prolog are substantial. This is presumably because of the frequency
with which the optimisation can be applied. The drawback of the optimisation
is likely to be in the garbage collection of the heap. Spurious references tem-
porarily introduced by uninitialised arguments will not significantly complicate
compaction of the argument stacks but may well dictate that extra pointers need
to be traversed in the compaction of the heap. The spurious references which
are introduced by the optimisation can, however, limit the applicability of the
technique. This is because the optimisation can be applied to variables which
are used only within a single thread. Without this restriction it is possible,
for instance, for one thread to temporarily generate a spurious reference, and
concurrently, for another thread to synchronise on that variable waiting for it
to be instantiated. Finding which variables are used in which threads will not
significantly complicate the optimisation since the check is merely a syntactic
issue.

4 Conclusions

Schedule analysis plays a more central rSle than just another intermediate stage of
compilation, since as well as reducing the enqueuing and dequeuing of processes,
ordering optimisations can additionally be applied within a thread. Many ordering
optimisations can be reformulated in terms of abstract interpretation, which not
only extends the scope of these optimisations, but additionally facilitates other
optimisations. This improves the integration and economy of the compilation
process. In broad terms the optimisations follow from combinations of mode
analysis, type analysis and reference analysis. Building these forms of abstract
interpretation on threads leads to simple, efficient and accurate analyses. Mode
analysis and type analysis can be used to: identify instances of unification which
can be replaced with a form of assignment; distinguish repeated synchronisation
instructions Which can be removed; and indicate which redundant checks can
be removed when producers are ordered before consumers in the same thread.
Iteference analysis can be used to: identify which variables can be accessed
without dereferencing; indicate where variable initialisation and unification can
be simplified; and show which variables can be allocated to an environment. Some
safety checks can also be removed by using mode information.

References

[1] A. King and P. Soper, "Reducing scheduling overheads for concurrent logic
programs," in International Workshop on Processing Declarative Knowledge,
(Kaiserslautern, Germany), (1991).

[2] K. It. Traub, Implementation of Non-strict Functional Programming Lan-
guages. Pitman, (1991).

228

[3] A. King and P. Soper, "A semantic approach to producer and consumer
analysis," in International Confe~cnce on Logic Programming Workshop on
Concurrent Logic Programming, (Paris, France), (1991).

[4] S. Gregory, Parallel Logic Programming in Parlog, The Language and its
Implementation. Addison-Wesley, (1987).

[5] S. K. Debray, "Static analysis of parallel logic programs," in Proceedings of
the Fifth International Conference and Symposium on Logic Programming,
pp. 711-732, MIT Press, (1988).

[6] C. Codognet, P. Codognet, and M. Corsini, "Abstract interpretation for con-
current logic languages," in Proceedings of the North American Conference
on Logic Programming, (Austin, Texas), MIT Press, October (1990).

[7] M. Codish, M. Falaschi, and K. Marriott, "Suspension analysis of concurrent
logic programs," in Proceedings of the Eighth International Conference on
Logic Programming, (Paris, France), pp. 331-345, MIT Press, (1991).

[8] A. Taylor, "Removal of dereferencing and trailing in prolog compilation,"
in Proceedings of the Sixth International Conference on Logic Programming,
pp. 48-60, MIT Press, (1989).

[9] A. Mariiin, G. Janssens, A. Mulkers, and M. Bruynooghe, "The impact of
abstract interpretation: an experiment in code generation," in Proceedings of
the Sixth International Conference on Logic Programming, pp. 33-47, MIT
Press, (1989).

[10] H. Touati and A. Despain, "An empirical study of the warren abstract
machine," in Proceedings of the 1987 Symposium on Logic Programming,
(San Francisco, California), pp. 114-124, (1987).

[11] A. Taylor, High Performance Prolog Implementation. PhD thesis, Basser
Department of Computer Science, July (1991).

[12] J. A. Crammond, hnplementation of Committed-Choice Logic Languages
on Shared Memory Multiprocessors. PhD thesis, Heriot-Watt University,
Edinburgh, May (1988).

[13] D. H. D. Warren, "An abstract prolog instruction set," Tech. Rep. 309,
Artificial Intelligence Center, SRI International, Menlo Park, California,
August (1983).

[14] P. Van Roy and A. Despain, "The benefits of global dataflow aalalysis for
an optimising prolog compiler," in North American Conference on Logic
Programming, pp. 501-515, MIT Press, October (1990).

