
BinSlayer

Accurate Comparison of Binary Executables

Martial Bourquin Andy King Edward Robbins

University of Kent

bourquin.martial@gmail.com a.m.king@kent.ac.uk er209@kent.ac.uk

Abstract

As the volume of malware inexorably rises, comparison of binary
code is of increasing importance to security analysts as a method of
automatically classifying new malware samples; purportedly new
examples of malware are frequently a simple evolution of exist-
ing code, whose differences stem only from a need to avoid de-
tection. This paper presents a polynomial algorithm for calculat-
ing the differences between two binaries, obtained by fusing the
well-known BinDiff algorithm with the Hungarian algorithm for
bi-partite graph matching. This significantly improves the matching
accuracy. Additionally a meaningful metric of similarity is calcu-
lated, based on graph edit distance, from which an informed com-
parison of the binaries can be made. The accuracy of this method
over the standard approach is demonstrated.

1. Introduction

Automated auditing of binary code is a topic of increasing interest
to both academia and industry. The pace of software development is
such that governments and other organisations must deal with soft-
ware updates on an almost daily basis that must be vetted for vul-
nerabilities. Meanwhile the anti-virus (AV) industry is attempting
to cope with an almost constant proliferation of new malware, most
of which are simple evolutions of known code, and needs to iden-
tify, classify and protect against each. For these tasks binary differ-
encing is of great necessity; for vulnerability discovery in software
updates the security analyst wishes to examine only the new code
and so must identify what is old and what is new quickly, while in
malware identification/classification the key questions are whether
the code is a mutation of a known piece of malware, and if so, what
has changed that needs to be accounted for? In contrast to various
nefarious applications, such as reversing security patches, binary
differencing has also found application in legal settings as a litmus
test for infringement against open source licensing and copyright
agreements.

The most obvious cause of changes between different versions
of the same application is simple addition and removal of code.
However there are at least two other sources of differences which
result in some binaries appearing different, while in fact being func-
tionally identical. The first is so-called ‘server-side polymorphism’,
typically a result of using different compiler optimisations, a dif-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPREW ’13 Jan 26, 2013 Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1857-0/13/01. . . $15.00

ferent compiler version, or a different compiler all together. The
second is wilful obfuscation in order to bypass detection by signa-
ture engines of anti-virus software. Regardless of the source of the
changes, they render simple comparison techniques such as byte-
for-byte file differencing almost completely useless. Some exam-
ples of such changes are:

• Sequences of opcodes may remain identical but register alloca-
tion can change depending on availability at a compile time, i.e.
‘ecx’ may become ‘edx’ and so on.

• If instructions do not depend on other instructions they may
be reordered due to pipeline optimisations without affecting
operational semantics.

• Junk/do-nothing code is inserted between instructions in order
to bypass detection by signature engines of anti-virus software.

• Obfuscating [7] or diversifying [2, 8] transforms are applied to
a binary to replace sets of instructions by equivalent ones, thus
preserving the action of the code but changing its representation
at the instruction level. In the former case the new code aims to
be more cryptic; in the latter case it aims to be unique.

This paper seeks to address these issues in binary comparison by
bringing together two existing approaches to the problem. Both
techniques perform structural matching [16]. In the context of bi-
naries this means that they seek to identify/recover key structural
components from each binary to compare and match, establishing
an isomorphism between the two binaries.

The first technique was developed by Thomas Dullien (AKA
Halvar Flake) and his colleagues in their tool BinDiff [15]. BinDiff
attempts to reconstruct the Control Flow Graph (CFG) of each
binary, as it uses the functions and basic blocks as the units for
comparison.

Note that the Control Flow Graph can be understood as a graph
of graphs; at the top level it consists of the Call Graph (CG), which
links functions together via function calls and returns, while each
function is itself a CFG linking basic blocks via simple branch-
es/jumps. To clearly disambiguate whether the term CFG refers to
the CFG as a graph of graphs of a whole program, or the CFG
of a single function, henceforth when used in this paper it can be
assumed that it refers to the graph of a function alone, unless oth-
erwise stated.

The BinDiff algorithm compares functions and basic blocks
based on graph-centric properties derived as identifiers for them,
such as number of out-going edges, in-coming edges etc. These
properties make up a tuple for each function or basic block, but it is
important to note that the tuples are not necessarily unique. BinDiff
first creates an initial set of matches consisting only of uniquely
identical functions from each binary. This set is then expanded
upon by taking each matched pair and searching for more unique
matches, but only amongst their unmatched neighbours, thus limit-
ing the search space and increasing the likelihood of finding unique
matches. This is then repeated with the new matches exhaustively

Algorithm 1: Initial match discovery

function initialMatches(SA, SB);1

M ← ∅;2

foreach vertex ai ∈ SA do3

foreach Selector ε do4

if (ai, bj)← ε(ai,SB) then5

M ← M∪ {ai �→ bj};6

SA ← SA\{ai};7

SB ← SB\{bj};8

break;9

return (M, SA, SB);10

until no new unique matches can be found. The treatment of chil-
dren and parent nodes are discussed subsequently. The BinDiff al-
gorithm can be applied to match blocks in an analogous way to
matching functions.

The second technique is also graph-centric [14], and is based
on a thread of work in Graph-Edit-Distance (GED) computation
[17, 23]. GED, from graphing theory, is the minimal number of edit
operations required to transform a graph GA into a graph GB [30].
A series of edit operations is called an edit path. With a directed
labelled graph, an edit operation is either vertex substitution, vertex
insertion or vertex deletion. A vertex substitution occurs when a
vertex in graph GA is substituted for one from graph GB . Edge
substitutions are defined analogously. Vertex insertion occurs when
a vertex from graph GB is added to graph GA. Edge insertion
is defined in a corresponding manner. Vertex deletion and edge
deletion are defined similarly.

There are multiple edit paths from one graph to another, as one
would expect, but the desired path is the one with the lowest total
cost of edit operations. GED also provides a convenient and mean-
ingful metric for measuring graph, and hence binary, similarity. Un-
fortunately computation of the GED is an NP-hard problem [33].
However, it has been shown [26, 30] that an approximation can
be obtained by transforming the problem into a weighted bipartite
graph matching problem, which can be solved in cubic time with
the Hungarian algorithm [24]. Furthermore, Hu et Al. have shown
that performing automatic analysis and classification of malware
samples into families using an approximation of the GED is indeed
possible [17].

BinDiff is fast and moreover the matches it makes are usually
accurate. The problem is that the matches it derives are often
incomplete: It frequently fails to match a pair of functions that
are conspicuously similar. This issue stems from the fact that a
function can exist in one binary whose tuple does not uniquely
match the tuple of a function in the other. The real problem is
that basing the matching of functions purely on tuples is brittle,
as they abstract the structural features of a function. This is not a
problem if the desire is to only match functions which are identical
as deemed by the abstraction, rather than those that have undergone
modification and are similar but not identical. It is arguable whether
this is an issue when two related executables are scrutinised so
as to diagnose the effect of a patch. However, for the problem of
malware classification, namely quantifying the degree of similarity
between two arbitrary binaries, it is important to also match similar
functions, a concept which is crystalised with the notion of shortest
edit path. BinDiff does provide a metric for the similarity of the
graphs, but it is not particularly meaningful as the developers of
BinDiff themselves concede [22]. On the other hand GED is one of,
perhaps the, most natural graph metric [11], and its solution always
provides a suggested match for remaining unmatched nodes.

Algorithm 2: Match propagation

function propagateMatches(M, SA, SB);1

foreach {ai �→ bj} ∈ M do2

foreach Property π do3

S ′
A ← π(ai,SA);4

S ′
B ← π(bj ,SB);5

if S ′
A
= ∅ ∧ S ′

B
= ∅ then6

foreach vertex a′i ∈ S ′
A do7

foreach Selector ε do8

if (a′i, a
′
j)← ε(a′i,S

′
B) then9

M ← M∪ {a′i �→ b′j};10

S ′
A ← S ′

A\{a
′
i};11

S ′
B ← S ′

B\{b
′
j};12

SA ← SA\{a
′
i};13

SB ← SB\{b
′
j};14

break;15

return (M, SA, SB);16

The work presented here performs automated static compari-
son of binary executable files by combining the two approaches
outlined. The BinDiff algorithm for matching both functions and
basic blocks between two binaries is improved by augmentation
with the Hungarian algorithm, which finds matches with the min-
imum possible GED over all functions and basic blocks. The net
effect of overlaying the Hungarian algorithm on top of the Bin-
Diff algorithm is a more robust matching procedure that mops up
and matches functions that would otherwise remain unmatched. We
consider this to be the main contribution of the work. Moreover, the
mop up phase is cubic, which is pleasing considering the computa-
tional complexity of GED.

GED is also adapted to provide an accurate metric for the
edit operations required to transform one binary into another. The
system is implemented in a novel way that provides an accurate
final edit path to the analyst at the end of the diffing process,
and quantitative accuracy results are presented for the number
of functions matched that conclusively demonstrate the value of
this method. As far as we know, our work also represents a step
change in systematic evaluation; previously accuracy testing has
been carried out on a few examples, at best.

2. BinDiff

As briefly explained in section 1, BinDiff [16] associates each basic
block/function with a tuple that describes some of its properties.
For example, the tuple for a function is (α, β, γ) where:

• α is the number of basic blocks in the CFG of the function.

• β is the number of edges in the CFG of the function.

• γ is the number of function calls in the CFG of the function.

In fact, in the later paper by Dullien [9], the concept of matching
is generalised using the idea of a selector. A selector is a function
that takes a vertex ai from a graph GA, and a set SB of vertices
from another graph GB and returns a vertex from SB that uniquely
matches ai if precisely one exists. Thus matching based on the tuple
defined above can be thought of as a selector that simply compares
the elements of the tuples for equality and uniqueness. Another
example of a selector is a checksum selector based on a cyclic
redundancy check (CRC32) of the machine code that constitutes a
block. For unstripped binaries the symbolic names of the functions

Algorithm 3: BinDiff

function binDiff(GA, GB);1

SA ← GA;2

SB ← GB ;3

M′ ← ∅;4

(M, SA, SB) ← initialMatches(SA, SB);5

whileM′
= M do6

M′ ← M;7

(M, SA, SB) ← propagateMatches(M, SA, SB);8

return (M, SA, SB);9

provide a natural selector [9], however this selector should be
applied with caution as very different functions can share the same
name, for instance main.

The BinDiff algorithm finds an initial set of matches by com-
paring (using selectors) all vertices SA in the first graph with all
the vertices SB in the second graph. In Dullien’s first publications
[14, 15] these initial matches were then expanded upon by taking all
neighbours of a pair of matched vertices, and searching for matches
amongst those. This limited the vertices that were searched, and in
so doing increased the likelihood of finding new matches. However,
Dullien later [9] generalises neighbours to more abstract concepts
that he refers to as properties. Consider a function that takes a ver-
tex and returns all neighbours of that vertex; it is in fact taking a
vertex and returning a subset of the vertices in the graph for which
the neighbour relationship holds. Properties abstract the construc-
tion of subsets to arbitrary relationships, for example, the parent
property can be used to return all parents of a vertex, or the child
property to return all children.

2.1 BinDiff Algorithm

Initial matches are found by using all selectors across all the ver-
tices in the first graph GA. If a selector finds a uniquely matching
vertex in the second graph GB it returns a match (ai, bj). The re-
turned matches then create an initial mapping M, containing all
matching vertices. The initial match discovery algorithm is shown
in Algorithm 1.

The next step of the BinDiff algorithm is to find more matches
based on those found initially. The propagateMatches algorithm
listed in Algorithm 2 does exactly this. For each initial match
properties are used to create subsets S ′

A and S ′
B of the remaining

unmatched graph vertices, consisting of all the neighbours of the
vertices in the match, or all the parents, etc., depending on which
property is used. Selectors are then used on the vertices in the
subsets to find new matches. Note that, as in initial match discovery,
after a match is discovered the vertices must be removed from the
sets so that the algorithm only ever searches amongst unmatched
vertices.

Finally the main program loop (Algorithm 3) brings all this
together by first creating the initial matches, and then by calling
propagate until no new matches are discovered. Like many iterative
algorithms BinDiff can be reformulated in terms of so-called delta
sets so that propogateMatches is not called on all of M, but merely
on those pairs that have been most recently added.

2.2 Illustrated Example

We will now consider an example execution of the BinDiff algo-
rithm by comparing a simple binary with itself, using only the stan-
dard 3-tuple selector given previously. Listing 1 is a listing of the
C source code of the program, while Figure 1 shows the recovered
call graph (CG). Notice that only 8 functions can be seen in the
source code of the program, while the CG contains 18 nodes. This

Listing 1. A basic C program

inc lude <s t d i o . h>
inc lude < s t d l i b . h>
inc lude <t i me . h>

void D() {
p r i n t f (”\n ”) ; re turn ;

}

void C () {
D () ;
p r i n t f (”\n ”) ;

}

void B () {
C () ;
p r i n t f (”\n ”) ;

}

void A() {
B () ;
p r i n t f (”\n ”) ;

}

i n t main () {
s r a n d (4 5) ;
A () ;
B () ;
C () ;
D () ;
r an d () ;

}

is due to code inserted by the compiler for program initialisation,
and support functions such as srand. Since we are comparing the
binary with itself we would expect that all vertices will be matched.

11(6, 6, 2) 10(6, 6, 2)
13(19, 22, 6)

12(6, 6, 2)

15(1, 0, 0)

14(7, 8, 3)
17(5, 6, 1)16(1, 0, 0)

18(2, 1, 1)

1(1, 1, 0)

0(5, 5, 3)

3(1, 1, 0)

2(1, 1, 0)

5(1, 1, 0)

4(1, 1, 0)

7(7, 9, 1)

6(2, 2, 1)

9(5, 5, 1)

8(4, 5, 1)

Figure 1. Extracted Call-Graph from the binary ’test’

Searching for initial matches selects 9 vertices: 0, 6, 7, 8, 9, 13, 14,
17 and 18. The matches represent those vertices that are unique.
For example, note that vertex 7 has been matched since the tuple
(7, 9, 1) is unique, while vertex 10 is unmatched since the tuple
(6, 6, 2) also characterises vertex 11.

BinDiff now proceeds with propagation to find more matches.
On the first iteration of propagateMatches, vertices 1, 3, 4, 10
and 16 are matched. To demonstrate how, consider propagation on
vertex 9 using the child property. We can see that vertex 4, which
is not unique in the graph, is unique in the subset of children of
vertex 9, being its only child, and so it is immediately selected.
Similarly, vertex 10 is matched in this iteration when applying the
parent property to vertex 9, as it is both unique in the parent subset

and the only remaining unmatched parent (vertex 13 having already
been removed in initial matching).

The final iteration will match vertices 11 and 12 in a similar
manner, and after this the algorithm stops since it cannot propagate
any more matches. Thus, although the compared binaries in this
example are identical, the algorithm failed to match three vertices;
2, 5, and 15. Indeed, vertices 2 and 5 have the same tuple, so
they cannot be matched because the selector will always return the
empty set.

However, vertex 15 has a unique label in the unmatched vertex
sets. We could run the the BinDiff algorithm again, using the
unmatched sets of vertices from each binary as inputs, and in
this second run vertex 15 will be matched by the initial match
function immediately. However a better tactic is to simply modify
the BinDiff algorithm to call the initial matches function again after
propagation has finished.

2.3 Similarity Metric

Once BinDiff has computed its matches it presents statistics that
purport to measure similarity and confidence for each match and
for matching across the binary as a whole. The BinDiff manual
explains these values as follows:

“The confidence value displayed by the differ is the average
algorithm confidence (match quality) used to find a particu-
lar match weighted by a sigmoid squashing function . . . The
final similarity value is multiplied by confidence - even a
seemingly good match is not trustworthy if produced by
weak algorithms.”

www.zynamics.com/bindiff/manual/#N2049A

Similarity is constructed from a weighted sum, though it is not clear
how confidence values are derived.

3. Bipartite Graph Matching, GED and the

Hungarian Algorithm

The Hungarian algorithm [24] was designed to solve the assign-
ment problem, which is well known in the combinatorial opti-
misation literature, and is concerned with finding an optimal as-
signment between two input sets of the same size. However, the
algorithm can be reinterpreted as finding an optimal matching in
a bipartite graph, as first demonstrated by Jonker and Volgenant
[18]. A bipartite graph matching is defined as a bijective function
φ : VGA

→ VGB
, where VGA

is the vertex set of graph GB and
VGA

the vertex set of graph GB . To fully explain the relationship
between the two problems let us first consider a simple example of
the assignment problem:

Problem: We have a list of tasks to do and a list of workers, and
a matrix that shows the cost of a worker undertaking a certain task.
We want to assign a task to each worker so that the final assignment
minimises the total cost required to perform all tasks.





TaskA TaskB TaskC

Worker1 3 7 4

Worker2 15 8 7

Worker3 3 4 9





Finding an optimal assignment does not necessary imply that each
worker will be assigned to the task for which their cost is minimal.
In this example, the optimal assignment is made by all grey boxes
and its total cost is 14.

The problem of bipartite graph matching is analogous to the assign-
ment problem, in that the aim is to uniquely assign each vertex of
a graph GA to a vertex in another graph GB so that the assignment
minimises the cost (i.e. edit distance) required to transform GA into
GB . The minimum total cost is then considered the GED between
the graphs. However, there are some problems:

1. There is no clear way to assign costs to the edit operations
required to calculate GED.

2. There are three different edit operations possible between any
two vertices, and each has a separate cost. Therefore determin-
ing a single cost to be used as an element in the cost matrix is
not possible.

3. The CG/CFG of different binaries can have different sizes, and
the standard form of the Hungarian algorithm only works over
equal size graphs.

Fortunately, the problems outlined above have already been ad-
dressed by several researchers, most recently Riesen and Bunke
[29]. They define the cost matrix as follows:

Definition 3.1 (Cost Matrix for Bipartite Graph Matching). Let
GA = (VA, EA) be the source graph and GB = (VB , EB) be the
target graph, where VA = {a1, . . . , an} and VB = {b1, . . . , bm}.
The cost matrix is:

C =

































c1,1 c1,2 · · · c1,m c1,ε ∞ · · · ∞

c2,1 c2,2 · · · c2,m ∞ c2,ε
. . .

...
...

...
. . .

... . . .
. . .

. . . ∞
cn,1 cn,2 · · · cn,m ∞ . . . ∞ cn,ε

cε,1 ∞ . . . ∞ 0 0 · · · 0

∞ cε,2
. . .

... 0 0
. . .

...
...

. . .
. . . ∞

...
. . .

. . . 0
∞ · · · ∞ cε,m 0 . . . 0 0

































where

• the upper-left quarter contains all costs ci,j to substitute a vertex
ai from graph GA with a vertex bj from graph GB ;

• the diagonal of the upper-right quarter contains all costs ci,ε to
delete a vertex ai from GA;

• the diagonal of the bottom-left quarter contains all costs cε,j to
insert a vertex bj from graph GB into graph GA;

• the bottom-right quarter is zero.

The dimensions of the cost matrix are (n + m) × (m + n), and
it is thus square. Costs can be set in such a way that the algorithm
computes a lower bound of the true edit distance (the minimum
number of edits) [17], though we define costs using the selectors in
the BinDiff algorithm to quantify the degree of distortion required
to transform a vertex from GA to a vertex in GB .

4. BinSlayer

BinDiff is able to match CG/CFG nodes with a high degree of ac-
curacy, however, it leaves it to the analyst to deal with unmatched
sets of functions from compared executables, and it may be a long
and fastidious process to manually sort them and decide which
have been deleted, inserted or modified. To address this problem,
BinSlayer applies the Hungarian algorithm to the unmatched ver-
tices in GA and GB with costs assigned as follows:

ci,j = |αi − α′
j |+ |βi − β′

j |+ |γi − γ′
j |

ci,ǫ = αi + βi + γi
cǫ,j = α′

j + β′
j + γ′

j

where αi, βi and γi are, as previously stated, the number of basic
blocks in the function at vertex ai of GA, the number of edges
in ai and the number of function calls in ai. Likewise α′

i, β′
i

and γ′
i represent the corresponding values for the vertex bj of

GB . These costs are designed to reflect whether or not an edit
operation represents a strong modification of the graph. The cost
ci,j quantifies the structural difference between vertices ai and
bj , as characterised by differences in their αi, βi and γi values.
Observe that ci,j < ci,ǫ and ci,j < cǫ,j reflecting that deletion and
insertion are both stronger than a substitution operation.

BinSlayer also applies the Hungarian algorithm in the same way
to the problem of matching basic blocks. This can be achieved
merely by replacing αi, βi and γi with structural measures appro-
priate for blocks, again using the selector used for matching blocks
in BinDiff [9]. In this case, αi is assigned to the number of blocks
on the shortest path from the given block to a function exit; βi is set
to the number of blocks on the shortest path from the entry point
into a function to the given block; and γi is defined to be the num-
ber of function calls within the block. There is no reason why these
measures could not be augmented with others [9].

Assigning non-uniform costs to the edit operations of deletion,
insertion and substitution leads to a generalised notion of GED
[29] where the cost of an edit path is defined to be the sum of the
costs of the component edit operations. Moreover this new notion
of GED can be normalised, to give a metric between 0 and 1 for the
similarity (or, in fact, dissimilarity) of two binaries:

Definition 4.1 (Graph Dissimilarity). The dissimilarity δ(GA,GB)
between two graphs GA and GB is a real value on the interval [0, 1],
where 0 indicates they are identical whereas a value near 1 implies
that they are highly dissimilar:

δ(GA,GB) =
ged(GA,GB)

(
∑n

i=1
αi + βi + γi) + (

∑m

j=1
α′
j + β′

j + γ′
j)

where EGA
and EGB

are the edges of graphs GA and GB respec-
tively and ged(GA,GB) is the GED between graphs GA and GB .

Observe that the numerator never exceeds the denominator, though
it can equal it, and hence dissimilarity is guaranteed to give a
variable in the interval [0, 1].

Therefore our approach to binary comparison is quite straight-
forward; first use the BinDiff algorithm to match as many nodes
in the executables as possible with a high degree of confidence,
and second use the Hungarian algorithm to match the remaining
unmatched nodes. Due to the inaccuracies of the Hungarian algo-
rithm, we have written a validation algorithm to attempt to correct
the edit path it produces. The validator uses both BinDiff and the
Hungarian algorithm to improve the accuracy of the matches. Fi-
nally, a normalisation of the GED is calculated as a metric of graph
similarity to present to the user.

4.1 Validator

The Hungarian algorithm is used to find an edit path between two
binaries that has the minimum overall GED. However, the resultant
edit path will typically contain errors, where structurally dissimilar
functions have been substituted one for the other because the edit
cost for substitution is lower than that of insertion or deletion. The
validator, Algorithm 4, attempts to correct these errors by adjusting
the costs of edit operations for functions to better reflect structural
differences.

Since it is not clear exactly how BinDiff forms its similarity
measurement (see section 2.3), we created a simple metric for
our implementation of BinDiff to measure similarity, based on the
number of matches it found as a fraction of the maximum number
of vertices in the compared binaries:

Definition 4.2 (Match Similarity). For a given match M between
two graphs, GA and GB , the match similarity is defined as:

δM(GA,GB) = |M|/max(|VGA
|, |VGB

|)

The validator checks the assignments made for functions (and only
functions) against BinDiff, using this similarity measurement to
decide how good the matches made by the Hungarian algorithm
actually were. It takes a list of vertex substitutions made by the
Hungarian algorithm, P , and a threshold t. For each substitution
{ai �→ bj} ∈ P , it compares the structural similarity of the func-
tion at ai with the function at bj . The CFGs of these functions
are denoted Gai and Gbj respectively. Note, the vertices ai and bj
are actually functions. If ai is sufficiently similar to bj , as deter-
mined by δM and the similarity threshold t, then the substitution
{ai �→ bj} is added to P ′. Otherwise, the cost, ci,j of the substitu-
tion in the cost matrix is doubled, so as to decrease the likelihood of
this substitution being generated again by the Hungarian algorithm.
In addition ai and bj are added to the sets of unmatched vertices
in readiness for the next application of the Hungarian algorithm.
When all input substitutions have been considered, the Hungarian
algorithm is reapplied to the adjusted cost matrix, yielding a new
set of substitutions. This should increase the accuracy of the match-
ing.

Algorithm 4: Validator

function validator(P , t);1

U1 ← ∅;2

U2 ← ∅;3

P ′ ← ∅;4

foreach {ai �→ bj} ∈ P do5

(M,Si,Sj) ← binDiff(Gai ,Gbj);6

if δM(Gai ,Gbj) ≤ t then7

U1 ← U1 ∪ {ai};8

U2 ← U2 ∪ {bj};9

ci,j ← 2ci,j ;10

else11

P ′ ← P ′ ∪ {ai �→ bj};12

return P ′∪ hungarian(U1, U2);13

4.2 Implementation Details

BinSlayer is implemented in a highly configurable C++ program
with a Qt based GUI. The user is presented with a clear list of
matched and unmatched nodes, including the source of the match
(BinDiff/Hungarian algorithm/validator), is able to correct matches
manually and to view the CFGs and binary code itself.

As far as we can tell from published sources, most other bi-
nary comparison implementations use the industry standard IDA
Pro disassembler to recover the programs CFG, however, IDA Pro
is known to struggle in this task, especially with obfuscated bina-
ries. We decided instead to use DynInst [1], which excels at CFG
reconstruction, able to recover the full CFG for many obfuscated
and stripped binaries, and even succeeding at determining indirect
jump targets.

5. Experimental Results

To investigate the accuracy of composing BinDiff with the Hun-
garian algorithm we have compared the number of matched func-
tions against the number found by the vanilla BinDiff algorithm.
Our evaluation focused on various versions of the coreutils suite of
programs. Coreutils consists of various Unix shell utilities which

cat dd ls chown chroot cp rm base64

Coreutils: v6.10 VS v8.19

N
u
m

b
e
r

o
f
C

o
rr

e
c
tl
y
 M

a
tc

h
e
d
 S

y
m

b
o
ls

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

Reference

BinDiff

BinDiff+Hungarian

BinDiff+Hungarian+Validator

Hungarian

Hungarian+Validator

cat dd ls chown chroot cp rm base64

Coreutils: v8.15 VS v8.19

N
u
m

b
e
r

o
f
C

o
rr

e
c
tl
y
 M

a
tc

h
e
d
 S

y
m

b
o
ls

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

Reference

BinDiff

BinDiff+Hungarian

BinDiff+Hungarian+Validator

Hungarian

Hungarian+Validator

cat dd ls chown chroot cp rm base64

Coreutils: v6.10 VS v8.19

N
u
m

b
e
r

o
f
In

c
o
rr

e
c
t
M

a
tc

h
e
d
 S

y
m

b
o
ls

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

Reference

BinDiff+Hungarian

BinDiff+Hungarian+Validator

Hungarian

Hungarian+Validator

cat dd ls chown chroot cp rm base64

Coreutils: v8.15 VS v8.19

N
u
m

b
e
r

o
f
In

c
o
rr

e
c
t
M

a
tc

h
e
d
 S

y
m

b
o
ls

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

Reference

BinDiff+Hungarian

BinDiff+Hungarian+Validator

Hungarian

Hungarian+Validator

Figure 2. Number of Correctly Matched Functions

are attractive for the purposes of analysis because many versions
are readily available. Moreover the relatively small size of the utili-
ties facilitates hand checking. For the purposes of assessing perfor-
mance we chose to compare eight different versions of the libxml2
dynamically linked library for XML file handling. This binary is
sufficiently large to enable timing differences to be observed. We
have investigated scalability by measuring the running time of both
the BinDiff algorithm and the Hungarian algorithm against the size
of the executable. We chose 12 executables with sizes between 200
kilobytes and 22 megabytes.

To assess accuracy and more specifically to measure how many
of the matches were actually correct or incorrect, we ran BinDiff
using symbols as the only selector. This is guaranteed to match
all named functions and therefore provides an upper bound on the
best possible matching, hereafter referred to as the reference. Note
that we cannot assess correct matching of basic blocks or unnamed
functions because there is no automatic way to establish if a match
is correct or not. We thus used named functions because names
suggest that they share provenance and should be matched. As
noted in section 1, we consider matches between different versions

of the same function as correct, even if they are not structurally
identical as is required by BinDiff.

The graphs of Figure 2 present the reference as the leftmost
column for each of the eight binaries. For the top panes, which
show correct matches, the second column gives the number of cor-
rect matches found by the vanilla BinDiff algorithm without us-
ing the symbolic selector, but using the other standard selectors,
namely, child, parent and CRC32. Henceforth these selectors, and
only these selectors, are used in subsequent experiments. The fol-
lowing columns of each graph detail the number of correct or in-
correct matches found with:

• BinDiff followed by the Hungarian algorithm;

• BinDiff and the Hungarian algorithm followed by the validator;

• the Hungarian algorithm alone; and

• the Hungarian algorithm followed by the validator.

We compared two different versions of the utilities, v6.10 and
v8.15, against the latest version, v8.19. The rational behind these
choices was to compare versions which were similar, as well ver-
sions that were dissimilar, in an attempt to explore how sensitive
BinSlayer is to the similarities of the graphs under test. The results
clearly show that BinDiff combined with the Hungarian algorithm
finds more correct matches than BinDiff alone. Moreover often the
number of extra matches is truly significant. Adding the valida-
tor to this generally finds further matches, with the exception of a
single outlier in the case of version 8.15 of chroot. It is interest-
ing to see that the Hungarian algorithm alone sometimes, though
not with any consistency, finds more correct matches than Bin-
Diff. This is surprising because BinDiff is reliable in those matches
it makes, though it falls short in the number of matches that it
finds. Conversely the Hungarian algorithm finds more matches, but
with a higher degree of error. The validator again improves the de-
gree of matching with the Hungarian algorithm. It is interesting
to observe that the proportional increase in matches over BinDiff
is greater when there is a greater disparity between version num-
bers. This suggests that the Hungarian algorithm is particularly im-
portant when there is a significant difference between the structure
of the executables under test. As alluded to earlier, the Hungarian
algorithm matches a number of functions incorrectly. This is be-
cause it seeks the lowest overall GED, which can mean matching
functions with a high substitution cost even when they are struc-
turally dissimilar. However, the validator does reduce the number
of incorrect matches to some extent. The overall message is that a
combination of BinDiff and the Hungarian algorithm consistently
outperforms either algorithm alone in making correct matches, and
therefore appears to be a good candidate for binary matching.

In order to measure performance eight successive versions of
libxml were selected, all of which exceed 3.6MB in size. All com-
parisons were made against v2.8.0, the latest version. The leftmost
pane of Figure 3 indicates the overall runtime of the comparison.
The test environment used to perform the benchmarking is a virtu-
alised (with VMware) 32-bit Ubuntu Linux machine, with an Intel
i5 2500k (4 cores at 3.33GHz) CPU and 4GB of RAM. The Linux
implementation of the POSIX.1 clock gettime was used to mea-
sure execution time. The BinSlayer executable was compiled with
gcc optimisation level 2. Running times were variable but never
exceeded 90 seconds, which is encouraging for such large bina-
ries. Not surprisingly, the running time grows with the size of the
cost matrix, which suggests that other (less redundant) representa-
tions of the cost matrix could improve performance. However, Fig-
ure 4 shows that, perhaps surprisingly, there is no clearcorrelation
between the size of the executable and the running time of either
BinDiff or the Hungarian algorithm. This is presumably because
BinDiff is an iterative algorithm whose running time is dependent

not only on how many matches can be found, but also on the de-
pendencies between them (the fact that one match can lead another
being discovered in a subsequent iteration). Furthermore, the size
of the cost matrix and therefore the running time of the Hungar-
ian algorithm depends on how many matches remain undiscovered
by BinDiff. The only only correlation we have noticed is that the
running time of the Hungarian algorithm increase as the GED be-
tween the binaries increases. This is illustrated in the third pane of
Figure 4.

Finally, it is encouraging to see that the GED increases as
the difference between the version numbers increases. Although
it is not monotonically increasing, the centre graph of Figure 3
supports the hypothesis that GED is truly a measure of semantic
similarity. We conjecture that v2.7.5 included one-off features that
were subsequently scrapped.

6. Related Work

Several approaches have been developed for automatically compar-
ing the structural similarity of executables, and they can broadly be
divided into four categories: BinDiff-like, fingerprint/string hash-
ing, bipartite graph matching/GED, and other graph based methods.
(Further afield, model checking has been proposed for malware de-
tection [21] though, as far as we know, not for measuring similarity.
Somewhat surprisingly, binary matching also arises in the problem
of migrating profile information from an older, extensively profiled
build to a newer build [32].)

6.1 BinDiff-inspired algorithms

Between 2002 and 2005, Dullien and his colleagues developed a
binary comparison algorithm based on graph matching [9, 14–16]
that has come to be known as BinDiff. This work has been in-
fluential, inspiring a number of researchers, including ourselves.
Based on these ideas, Carrera and Erdlyi built an automated system
for classifying malware samples into families [5]. Later, Briones
and Gomez refined this approach applying matching based on the
CRC32 of opcodes, which speeds up the matching and allows the
techniques to scale smoothly to large malware databases [4]. They
also filtered samples by such characteristics as the number of func-
tions, size, compiler and instruction entropy to avoid comparing
graphs of clearly unrelated samples. However, all graph-based ap-
proaches, including our own work, ultimately depend on the quality
of CG and CFG recovery. CG and CFGs recovery is difficult due
to indirect calls, though advances are gradually being made on this
problem [3, 20].

6.2 Fingerprint/string hashing Algorithms

Due to CFG recovery issues, other research has focused on an ap-
proach called fingerprint hashing [27]. The core idea is to generate
a unique fingerprint for each basic block and use the generated sig-
nature to match basic blocks as realised in the DarunGrim2 [28]
tool. This approach has the advantage of coping better with func-
tion splitting and inlining, which impede CFG matching. An ana-
log of graph edit distance, string edit distance, appears in this work
[13] and is applied on the block signatures to compare basic blocks.
String edit distance has also been applied to measure the similarity
of CFG graphs by encoding them as strings [6]. Weighted n-grams
have also been applied on basic blocks for the purposes of compar-
ison [31] as have Bloom filters [19].

6.3 Bipartite Graph Matching/GED Algorithms

Graph edit distance is arguably the most reliable graph similarity
metric [11], and consequently has been studied for some time as
a method by which to compare binaries. However it suffers from
a major drawback - its complexity [33]. Although algorithms exist

v2.7.2 v2.7.3 v2.7.4 v2.7.5 v2.7.6 v2.7.7 v2.7.8 v2.8.0

libxml2: Time

T
im

e
 (

in
 s

)

0

2

4

6

8

10

12

14

16

18

Bindiff

BinDiff+Hungarian

BinDiff+Hungarian+Validator

v2.7.2 v2.7.3 v2.7.4 v2.7.5 v2.7.6 v2.7.7 v2.7.8 v2.8.0

libxml2: Grah Edit Distance

N
o

rm
a

liz
a

ti
o

n

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Hungarian

v2.7.2 v2.7.3 v2.7.4 v2.7.5 v2.7.6 v2.7.7 v2.7.8 v2.8.0

libxml2: Cost Matrix Size

S
iz

e

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0

Hungarian

Figure 3. Computation Time, Normalised GED and Cost Matrix Size

Figure 4. Execution times: BinDiff algorithm vs size (MB), Hungarian algorithm vs size (MB) and Hungarian algorithm vs GED

for GED computation [26], they are not efficient enough for binary
comparison.

An important advance was made by Riesen and Bunke who
transformed the problem of computing the GED into a weighted
bipartite graph-matching problem which can be solved in polyno-
mial time with the Hungarian algorithm [30], which leads an ap-
proximation of the GED. They have proved that this approximation
results in a sub-optimal edit distance, even though the Hungarian
algorithm is optimal, because of the lack of embedded structural
information for the two graphs under comparison. This approxima-
tion is also proven to be an upper bound of the true edit distance.
Further work on the subject leads to performance improvements by
taking into account the edge cost as well [29].

A complete system called SMIT which performs automatic clas-
sification of malware samples into families using the graph edit
distance metric has been realised by Hu et al [17]. Their compar-
ison engine, based on the work of Riesen and Bunk, makes some
improvements: they take into account the edit cost of adding or
deleting edges in the cost matrix each time a node is either substi-
tuted, inserted or deleted, and they use a so-called neighbour-biased
Hungarian algorithm which tends to match neighbours of already
matched functions. One thing to note is that they assigned a unit
cost to all edit operations, and so two functions can be matched
even if their number of basic blocks is very different.

Malware classification has also been conducted by Kostakis et
al in 2011 [23], but their approach is based on simulated annealing.

They also proposed a normalisation of the GED based on the
total number of functions and function calls in both executables,
providing a metric for binary differencing.

6.4 Other Graph Based Methods

BinHunt [10] uses the maximum common subgraphs metric to
measure the similarity between two compared executables, using a
backtracking algorithm. The comparison at the basic block level is
performed by a symbolic execution combined with theorem prov-
ing. While this approach leads to good results in terms of detec-
tion of code changes the computation time needed is not afford-
able for larger binaries, in part because it is a dynamic analysis.
Whole program traces have also been applied in matching algo-
rithms [25] designed to aid the comprehension of programs which
have been obfuscated by aggressive control flow transformations
such as control-flow flattening or function inlining and outlining.

7. Discussion

BinSlayer is not a finished tool; it is more an on going research
project. The work reported in this paper raises issues in both the-
ory and implementation. An interesting theoretical question is how
should the cost matrix be set up so as to best reflect structural prop-
erties of the binaries under test? This paper has used costs which
reflect the number of basic blocks and edges in the CFG, though
this has not been substantiated either by experimentation or sys-
tematic analysis. GED itself requires examination since the cur-

rent algorithm tends to prefer substitutions to deletion or insertion,
which suggests that a more refined measure might be more appro-
priate for binary matching. The BinDiff algorithm as implemented
by Dullien includes a third tier of matching, that of the instruction
level. Adding this layer to BinSlayer should further increase accu-
racy.

Our emphasis on GED reflects our desire to quantify the degree
of structural similarity between two malware objects. This objec-
tive naturally led to a matching algorithm that matches structurally
similar but not identical functions. It should be noted that this dif-
fers in philiosophy from BinDiff, which aspires to only match func-
tions which are structurally identical (in practice two functions are
deemed to be structurally identical if their selectors map to the same
values). These differing aims mean that BinDiff is well suited to
finding differences in two executables that are known to be related,
whereas BinSlayer is capable of detecting the level of similarity
between two arbitrary executables.

In terms of implementation it would be interesting to see if the
regularity in the Hungarian algorithm can be exploited by hardware
such as multicore processors or GPUs. The Hungarian algorithm
itself warrants close scrutiny as it presents the computational bot-
tleneck in the current implementation. With an eye towards user
interaction, it would be interesting to see how one can allow the
user to suggest matches or corrections whilst making interaction as
unintrusive as possible.

BinSlayer, like other tools based on structural comparison, is
susceptible to function in-lining and obfuscation [27]. The ratio-
nale for building on top of DynInst is that when its so-called defen-
sive mode becomes available it will be able to deactivate defensive
checks, and capture obfuscated control flow such as those based on
return address manipulation, exceptions, unpacking and instruction
overwriting [22]. DynInst, with its defensive mode features, repre-
sents state-of-the-art in control flow reconstruction, and BinSlayer
will inherit this functionality. Nevertheless, obfuscation techniques
such as opaque predicates [7] and control flow flattening [12] may
impede matching, which begs the question of how structural com-
parison can be generalised to become more obfuscation resistant.
When the defensive mode of DynInst is released, we intend to em-
pirically investigate how this affects matching.

8. Conclusion

Motivated by the problems of classifying malware, litigation
against copyright infringement, and discovering security vulner-
abilities, we have developed a new technique for comparing the
structure of binary executables. We have shown that the Hungarian
algorithm is not at odds with the BinDiff algorithm, but rather can
be fused with it to achieve a more robust matching algorithm that
can successfully match more functions than either technique alone.

As a by-product of the construction we compute the Graph
Edit Distance (GED), which broadly increases as the difference be-
tween version numbers increases. This suggests that GED reflects
semantic commonality between binaries. Although the technique
constructs a large cost matrix the matching algorithm is scalable
enough to compare large executables in an acceptable time frame.
Furthermore the approach of using cost functions with embedded
structural information regarding the binary appears to be novel in
itself.

Acknowledgments

We would like to thank Thomas Dullien for his fascinating seminar
on BinDiff at Dagstuhl seminar 12051 [22] that inspired this study.
This work was funded, in part, by a Royal Society joint project
grant number JP101405.

References

[1] DynInstAPI. http://www.dyninst.org/dyninst.

[2] B. Anckaert, B. De Sutter, and K. De Bosschere. Software Piracy
Prevention through Diversity. In ACM Workshop on Digital Rights

Management, pages 63–71. ACM, 2004.

[3] S. Bardin, P. Herrmann, and F. Védrine. Refinement-Based CFG
Reconstruction from Unstructured Programs. In VMCAI, volume 6538
of LNCS, pages 54–69, 2011.

[4] I. Briones and A. Gomez. Graphs, entropy and grid computing:
Automatic comparison of malware. In Proceedings of Virus Bulletin

International Conference 2008, october 2008.

[5] E. Carrera and G. Erdlyi. Digital genome mapping – advanced binary
malware analysis. In Proceedings of Virus Bulletin International

Conference 2005, october 2004.

[6] S. Cesare and Y. Xiang. Classification of malware using structured
control flow. In Australasian Symposium on Parallel and Distributed

Computing, volume 107, pages 61–70. Australian Computer Society,
Inc., 2010.

[7] C. Collberg, C. Thomborson, and D. Low. Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs. In POPL, pages 184–196.
ACM, 1998.

[8] B. De Sutter, B. Anckaert, J. Geiregat, D. Chanet, and K. De Boss-
chere. Instruction set limitation in support of software diversity. In In-

ternational Conference on Information Security and Cryptology, vol-
ume 5461, pages 152–165, 2008.

[9] T. Dullien and R. Rolles. Graph-based comparison of executable ob-
jects. In Symposium sur la Sécurité des Technologies de l’Information

et des Communications, 2005.

[10] D. Gao, M. Reiter, and D. Song. Binhunt: Automatically finding se-
mantic differences in binary programs. In Proceedings of the 10th In-

ternational Conference on Information and Communications Security,
ICICS ’08, pages 238–255. Springer-Verlag, 2008.

[11] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance.
Pattern Analysis and Applications, 13(1):113–129, Jan. 2010.

[12] J. Ge, S. Chaudhuri, and A. Tyagi. Control flow based obfuscation. In
ACM Workshop on Digital Rights Management, pages 83–92. ACM,
2005.

[13] M. Gheorghescu. An automated virus classification system. In Pro-

ceedings of Virus Bulletin International Conference, pages 294–300,
October 2005.

[14] Halvar Flake. More fun with graphs. Black Hat Federal, 2003.

[15] Halvar Flake. Graph-based binary analysis. Black Hat Europe,
2003. www.blackhat.com/presentations/bh-europe-03/
bh-europe-03-halvarflake.pdf.

[16] Halvar Flake. Structural comparison of executable objects. In Pro-

ceedings of the IEEE Conference on Detection of Intrusions and Mal-

ware & Vulnerability Assessment - DIMVA, pages 161–173, 2004.

[17] X. Hu, T. Chiueh, and K. Shin. Large-scale malware indexing using
function-call graphs. In Proceedings of the 16th ACM conference on

Computer and communications security, CCS ’09, pages 611–620.
ACM, 2009.

[18] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for
dense and sparse linear assignment problems. Computing, 38:325–
340, 1987.

[19] B. Kang, H. Kim, T. Kim, H. Kwon, and E. Im. Fast malware family
detection method using control flow graphs. In Proceedings of the

2011 ACM Symposium on Research in Applied Computation, RACS
’11, pages 287–292. ACM, 2011.

[20] J. Kinder and D. Kravchenko. Alternating Control Flow Reconstruc-
tion. In VMCAI, volume 7148 of LNCS, pages 267–282, 2012.

[21] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Proactive
Detection of Computer Worms Using Model Checking. IEEE Trans.

Dependable Sec. Comput., 7(4):424–438, 2010.

[22] A. King, A. Mycroft, T. W. Reps, and A. Simon. Analysis of Executa-
bles: Benefits and Challenges (Dagstuhl Seminar 12051). Dagstuhl

Reports, 2(1):100–116, 2012.

[23] O. Kostakis, J. Kinable, H. Mahmoudi, and K. Mustonen. Improved
call graph comparison using simulated annealing. In Proceedings of

the 2011 ACM Symposium on Applied Computing, pages 1516–1523.
ACM, 2011.

[24] J. Munkres. Algorithms for the assignment and transportation prob-
lems. Journal of the Society for Industrial and Applied Mathematics,
5(1):32–38, 1957.

[25] V. Nagarajan, X. Zhang, R. Gupta, M. Madou, B. De Sutter, and
K. De Bosschere. Matching Control Flow of Program Versions. In
IEEE International Conference on Software Maintenance, pages 83–
94, 2007.

[26] M. Neuhaus, K. Riesen, and H. Bunke. Fast suboptimal algorithms
for the computation of graph edit distance. In Structural, Syntactic,

and Statistical Pattern Recognition, volume 4109 of Lecture Notes in
Computer Science, pages 163–172. Springer, 2006.

[27] J. Oh. Fight against 1-day exploits: Diffing Binaries vs
Anti-diffing Binaries. In Black Hat USA, 2009. http:
//www.blackhat.com/presentations/bh-usa-09/OH/
BHUSA09-Oh-DiffingBinaries-PAPER.pdf.

[28] J. Oh. ExploitSpotting: Locating Vulnerabilities Out Of Vendor
Patches Automatically. In Black Hat USA, 2010. http://www.
darungrim.org/Presentations.

[29] K. Riesen and H. Bunke. Approximate graph edit distance computa-
tion by means of bipartite graph matching. Image and Vision Comput-
ing, 27(7):950 – 959, 2009.

[30] K. Riesen, M. Neuhaus, and H. Bunke. Bipartite graph matching for
computing the edit distance of graphs. In Graph-Based Representa-

tions in Pattern Recognition, volume 4538 of Lecture Notes in Com-

puter Science, pages 1–12. Springer, 2007.

[31] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and A. Lakho-
tia. A.: Exploiting similarity between variants to defeat malware: vilo
method for comparing and searching binary programs. In Proceed-

ings of Black Hat DC 2007. https: //blackhat.com/presentations/bh-

dc-07/Walenstein/Paper/bh-dc-07-walenstein-WP.pdf, 2007.

[32] Z. Wang, K. Pierce, and S. McFarling. BMAT – A Binary Matching
Tool for Stale Profile Propagation. The Journal of Instruction-Level

Parallelism, 2:1–20, 2000.

[33] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou. Comparing
Stars: On Approximating Graph Edit Distance. Proceedings of the

Very Large Databases, 2(1):25–36, Aug. 2009.

