University of

"1l Kent Academic Repository

Hopkins, Tim (2002) Renovating the Collected Algorithms from ACM. ACM
Transactions on Mathematical Software, 28 (1). pp. 59-74. ISSN 0098-3500.

Downloaded from
https://kar.kent.ac.uk/13816/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/513001.513005

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
[Note: DOI: http://doi.acm.org/10.1145/513001.513005]

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/13816/
https://doi.org/10.1145/513001.513005
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Renovating the Collected Algorithms from ACM

Tim Hopkins
University of Kent, UK.

Since 1960 the Association for Computing Machinery has published a series of refereed algorithm
implementations known as the Collected Algorithms of the ACM (CALGO). Most of those pub-
lished since 1975 are mathematical algorithms, and many of them remain useful today. In this
paper we describe measures that have been taken to bring some 400 of these latter codes to an
up-to-date and consistent state.

Categories and Subject Descriptors: G.4 [Mathematical Software|: Certification and testing;
Reliability and robustness; D.2.7 [Software Engineering|: Distribution, Maintenance, and En-
hancement— Portability; Restructuring, reverse engineering, and reengineering

General Terms: Algorithms

Additional Key Words and Phrases: Standardization, Software Re-engineering, Software Tools,
Software Testing

1. INTRODUCTION

We report on the steps that were taken to upgrade the codes, which form the
electronic version of the Collected Algorithms from ACM (CALGO), into a more
modern, consistent and usable state. These revised codes form the major content
of the first release of the CALGO Collection Special Edition CD.

We begin in Section 2 by providing a brief history of the CALGO and trace how
the requirements for publication have changed as our understanding of software
engineering has improved. This is followed by a description of the original state
of the codes and the initial steps necessary to make the component files easier to
identify and handle.

Section 4 looks at the ways in which we were able to improve the readability,
reliability and portability of the Fortran codes which form by far the largest fraction
of the available algorithms. We then consider the testing of the algorithms and
detail some of the common problems that were found and corrected.
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In Section 6 we discuss how the updated versions of the algorithms have been
packaged and what value-added features have been included on the CD. Finally, we
consider how the software may be further improved in later releases.

2. A BRIEF HISTORY OF THE CALGO

The first algorithm published in the CALGO series appeared in the February 1960
edition of Communications of the ACM (cAacm) [Herbold 1960]. The idea was
to provide a means for programmers to make available their coded versions of
algorithms to a wider audience for both pedagogical and reuse reasons. The first
331 published algorithms were all in Algol 60 and, although the Algorithm Policy
was extended in September 1966 to allow Fortran, it was not until June 1968 that
the first Fortran code made its appearance [Witte 1968]. The early codes were
published as submitted and there was certainly no formal refereeing of the software
before publication. Rather, other interested readers performed the quality control
by rekeying the published code, running their own tests and submitting a follow-up
certificate or remark reporting either successful execution or the changes required
to obtain a working code.

The fact that the vast majority of the software being written in the 1960s and
1970s was for scientific applications is reflected in the preponderance of numerical
algorithms appearing in the CALGO during that time. During the early 1970s the
size of the published algorithms increased and there was a move away from Algol
60 to Fortran as the language of choice.

In 1975 the publication of CALGO moved to ACM’s Transactions on Mathematical
Software (ACM-TOMS) and this proved to be a turning point. Algorithm papers
were now placed on the same footing as regular papers with both the accompany-
ing paper and, more importantly, the software being rigorously refereed. The new
Algorithms Policy [Fosdick 1975] required submitted algorithms to be either a new
and interesting idea or a new and useful implementation. Code could be in Fortran,
Algol or PL/1 but it was noted that other languages, while not excluded, needed
to be “reasonably well known” and their use in preference to the three above “jus-
tified”. Evidence of testing was required and it was expected that referees would
independently run the submitted code. As an aid to portability there was a further
requirement that any machine dependent constants were to be collected together
and clearly identified.

This policy was revised in June 1978 [Krogh 1978] and June 1979 [Krogh 1979]
to allow algorithm submissions that provided “capabilities not readily available” or
that performed “a task better in some way than had been done before”. In this
context “better” was defined as meaning “anything from improved reliability or effi-
ciency to more attractive packaging”. The testing requirements were also extended
to include an example driver program along with a single stringent test driver that
provided “a sufficient variety of test cases to exercise all the main features of the
code”.

Submissions were now constrained more by portability; “It must be possible
to move the code in machine readable form from one machine to another with
only minor, well documented changes”. Implementation languages were controlled
by the need to provide evidence that the software executed successfully on three
computers with different basic instruction sets. An alternative form of proof was to
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Number of  First Appearance
Algorithms  Year Number

Algol 60 414 1960 1
Fortran (66/77) 360 1968 332
Fortran (90/95) 9 1994 734
C 8 1993 722
PL/1 4 1973 444
Matlab 3 1991 694
C++ 3 1996 764
Ada 1 1999 795
Lisp 1 1995 744
Nitpack 1 1984 620
Pascal 1 1989 673
Ratfor 1 1981 568
Awk 1 2000 803

Fig. 1. ©ALGO Implementation Languages (1960-2000)

run the code through a verifier that checked for portability and/or conformance to
a standard. In particular it was a pre-requisite that Fortran code be given a clean
bill of health from the PFORT portability verifier [Ryder 1974]. Brief advice was
also given to Fortran programmers regarding the use of array space and common
blocks.

The increasing availability of Fortran 77 was acknowledged in the March 1982
revision of the Algorithms Policy [Krogh 1982] with a requirement for codes to
adhere to the new standard. Submissions in Fortran 66, checked by PFORT, were
still acceptable and this remained the case until the September 1990 revision [Krogh
1990]. The use of the PORT library functions [Fox et al. 1978a] for setting common
machine dependent constants was also advocated, otherwise standard names and
definitions were to be used [Ford 1978].

Table 1 gives a breakdown of the CALGO by implementation language along with
the number of algorithms appearing in each language, and the year and algorithm
number of the first use of a language.

The majority of the pre-ACM-TOMS codes were never collected in machine read-
able form although a number of the later codes appearing in CACM were made
available by the Algorithms Editor on magnetic tape; the first one appears to be
Algorithm 468 in 1973. At this time a user had a choice of a single file of BCD,
80-character, card images at either 556 or 800 bpi.

With the move to ACM-TOMS, ACM started to offer an official algorithms distri-
bution service with individual codes available as program listings, card decks or
magnetic tape (now in three formats; EBCDIC, ASCII and BCD!). It appears that
each magnetic tape contained all the algorithms from a particular issue of ACM-
TOMS. By 1980 it was possible to obtain combinations of algorithm codes on a
variety of media. 1985 saw the introduction of the floppy disk as a media option
while 9 track magnetic tapes were still on offer in 1993. The postal distribution of
algorithms ceased in 1996.

Meanwhile 1985 saw the introduction of the netlib service for distributing soft-
ware via electronic mail [Dongarra and Grosse 1987] with one of the first available
packages being the cALGO. This allowed algorithms to be easily obtained, as soon
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as they were published in ACM-TOMS, to anyone with a network connection. The
intervening years have seen the introduction of both FTP and HTTP access to the
netlib collection as well as the mirroring of the netlib service throughout the world.

3. ORIGINAL STATE

In the remainder of this paper we discuss the improvements we have made to the
originally published algorithms to make them easier both to test and to integrate
into user code, more portable, more reliable and more maintainable. From now
on the collection of algorithms referred to are those that have been published in
AcM-TOMS (numbered from 493). Since the vast majority of the CACM published
algorithms were implemented in Algol, we see from Table 1 that a large percentage
of the current collection is in Fortran.

To make their distribution simpler, each algorithm was originally held in a sin-
gle file and most of these files contain no separators. This resulted in algorithm
sources, driver programs, data and results files, makefiles, support subroutines and
documentation being found in largely random order within each file.

One requirement for a published algorithm is that the code appearing in the
CALGO should be stand alone, and the use of freely available software has always
been advocated in preference to authors re-inventing the wheel. So, for example,
routines from the Lapack [Anderson et al. 1999], Linpack [Dongarra et al. 1979]
and Eispack ([Smith et al. 1976] and [Garbow et al. 1977]) software libraries are
commonly used to solve linear algebra subproblems within an algorithm code.

The sources to all such auxiliary routines were included with every algorithm
that used them. Although guaranteeing that each algorithm was self-contained
this inclusion policy had two serious drawbacks. First, any corrections within this
external software rarely found its way back into the CALGO submissions. Second,
many of the libraries are already available at installations, often as specially tuned
versions. This means that these auxiliary routines need to be removed from the
CALGO code to ensure that any more efficient platform dependent versions are used.

The implementation and testing of a CALGO algorithm available in a single flat
file is thus often a lengthy and error prone task consisting of some or all of the
following steps

—identify and, possibly, remove auxiliary library routine sources,

—identify and collect together the routines making up the algorithm source. Even
these routines might not appear contiguously within the file and a single file
may contain implementations in more than one precision often with a duplicated
namespace,

—identify the test drivers and supporting routines along with corresponding data
and results, if present. Many of the currently available algorithms do not include
a set of expected results which makes the testing stage more difficult,

—identify any machine dependent values and/or code and alter, as necessary, for
the target platform.

The first task in the renovation process was thus to improve the accessibility of
the various components which make up each individual algorithm submission. This
was achieved using a directory structure with a consistent naming convention which
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Algorithm Number

/

Doc Language 1 Language 2
/ . Precision1  Precision 2 Precision1  Precision 2
m/c readable  Makefile
documentation / \
Src Drivers
src.f driver.f res data

Fig. 2. Overview of directory structure used for individual algorithm codes

allows the contents of most files to be identified from their path name. A very small
number of submissions did not fit easily into this convention and these have been
left largely “as submitted”.

Figure 2 shows the directory layout used for most of the algorithms. An example
file path might be

493/Fortran77/Sp/Src/src.f

which would lead to the single precision, Fortran 77, source code for algorithm 493.
None of the files within these algorithm directories contains any sources of exter-
nal library routines, rather the complete libraries are provided within a separate
Packages directory. Currently this directory contains

—Blas. The Level 1, 2 and 3 routines are provided. The Level 1 routines consist
of a subset of the routines which appeared as Algorithm 539 [Lawson et al. 1979).
This subset is the same as that offered by the netlib service and consists of the most
heavily used of the original routines. The Level 2 and 3 routines are the complete
set as published as Algorithms 656 [Dongarra et al. 1988] and 679 [Dongarra et al.
1990].

It should be noted that one or more of these libraries are often available as a
manufacturer-tuned library which will generally provide much better performance
than that produced by compiling the standard Fortran versions.

—Lapack. The Lapack library of linear algebra routines was designed to both
replace and extend the functionality of Linpack and Eispack. As with its two
predecessors it is designed to be both efficient and portable over a wide range
of architectures. A full description of the contents of the library, the methods
used and details of the individual routines may be found in the extensive user
manual [Anderson et al. 1999].

—Linpack. The Linpack library of linear system solver routines was first released
in the late 1970s. It has been replaced by Lapack.

—FEispack. Eispack represents one of the first attempts to create a software li-
brary of high quality numerical routines. These eigensolvers have been replaced by
routines in the Lapack library.

—Fftpack. This is a package of subprograms for performing Fast Fourier Trans-
forms on periodic and other symmetric sequences. Routines are available for han-
dling both real and complex data. See [Swarztrauber 1982] for more details.
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—Port. The Port mathematical subroutine was a library of portable Fortran sub-
routines for numerical computation developed at Bell Laboratories in the 1970s [Fox
et al. 1978b]. A number of these routines, dealing with the setting of machine
dependent constants, storage management and error handling, were published as
Algorithm 528 [Fox et al. 1978a]. The three routines that are used extensively in
the CALGO codes are IIMACH, RIMACH and D1MACH which allow a programmer to
gain access to a number of machine dependent constants.

The original routines were implemented in Fortran 66 and required a user either
to uncomment data statements defining the constants for a particular machine or
to set the values required. With the arrival of Fortran 90 all the values describing
the underlying number systems on the machine may be obtained using intrinsic
functions.

A number of different implementations of these routines are available including
the original versions, a Fortran 90 implementation and a Fortran 77 implementation
which automatically sets the required constants [Gay and Grosse 1999].

—FError Handling. The CALGO codes offer little consistency in the way in which
internally discovered errors and failures are handled. Some routines just print a
message and stop, others return an error flag and may, or may not, generate an
explanatory message.

Algorithm 528 [Fox et al. 1978a] offered some support for error handling but, like
the routines for dynamic storage allocation, this facility has been largely ignored by
the scientific software writing community. Although more complex, versions of the
Slatec error handling package [Jones and Kahaner 1983] have appeared in a number
of published CALGO codes, there would appear to be a number of different versions
of these routines. The one provided with this library is a Fortran 77 version using
CHARACTER variables rather than integer arrays to store and manipulate string data.

Since error messages are always passed as character constants to the required
error handling routines the above change has no other effects on the underlying
software. Thus all calls of the form

CALL XERROR(23HSMOOTH -- NUM WAS ZERO.,23,1,2)
may be replaced by
CALL XERROR(’SMOOTH -- NUM WAS ZERO.’,23,1,2)

without problems. It should be noted that some of the arguments to the routines in
this package are superfluous in Fortran 77, for example, the length of the message
(argument 2 in the call to XERROR above) may be deduced from argument 1 using
the LEN intrinsic function.

—Others. This section contains routines for generating random numbers and
obtaining timing information along with the subroutine machar [Cody 1988] which
may be used as a starting point for obtaining floating point characteristics.

The random number generator provided is by Schrage [Schrage 1979] and has
replaced the large variety of different generators that were originally embedded
within the algorithm collection. The implementation is self contained and consists
of two routines, SEED, which takes an integer argument and is used to initialize
the generator and a real function, RAND, which returns a single random real in
the range (0,1). The implementation is in standard Fortran 77 and may easily be
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made to use the new Fortran 90 routines random_seed and random number. The test
drivers associated with all algorithms that require random numbers set the initial
seed to a particular value to ensure that the sequence generated is repeatable across
platforms and compilers.

The timing routine is a real function, SECOND, that returns the time in seconds
since the start of program execution. Fortran 90 users may like to implement this
using the standard Fortran 90 timing function system_clock or the Fortran 95
function cpu_time.

4. CODE IMPROVEMENTS

Early codes, written in Fortran 66, are often difficult to understand due, for ex-
ample, to the lack of adequate control structures and the restricted use of integer
expressions in array subscripts, do-loop ranges, etc. No attempt was made to up-
date the codes by removing such restrictions although a number of restructuring
tools are available for Fortran (for example, spag [Polyhedron Software 1997] and
nagstruct [Numerical Algorithms Group Ltd. 1999]) which may be able to perform
some of these improvements. However, the resultant code often requires manual
tuning and this was considered to be too time consuming and error prone for a first
upgrade.

Other software tools were used extensively on the algorithm codes. Once split
into components, all algorithm files were stored using the source code control system
CVS [Fogel 1999]. This allowed all code changes to be documented and previous
versions of all files (including the original submission) to be easily regenerated.

The Edinburgh Portable Compilers (Epc) Fortran 90 compiler was chosen to be
the project compiler as it allowed a comprehensive set of both compile and run time
checks to be performed. Among the problems reported at compile time were

—the use of undeclared variables,
—the use of Hollerith constants in both assignment and format statements,

—the use of some inconsistent argument types in subprogram calls.
At run time the system checked, amongst other things, that

—all array indexes were within their declared bounds.
—all variables had been assigned a value before use, this included all array elements,

—actual arguments supplied in subprogram calls agreed in number and type with
the subprogram definition. Note that these checks were only performed when
actual calls were made.

A small number of algorithms could not be compiled with the EPC compiler
without extensive source changes. These codes typically involved the illegal use of
either common blocks or array arguments with the incorrect type. In such cases the
more forgiving Sun 77 compiler was used. All the development work was performed
on a variety of Sun workstations running the Solaris version 8 operating system.

In addition all code was checked by the NagWare Fortran 77 standard confor-
mance checking tools, nag_pfort [Numerical Algorithms Group Ltd. 1999]. By con-
catenating the driver and source files it was possible to check the complete sub-
mission for adherence and consistency. As well as performing a number of global
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checks, the verifier reported a number of useful ‘clutter’ problems. These included
such things as unreferenced labels (also reported by the EPC compiler), variables
that were set but never used, and variables that were declared but never used.
Among the global checks performed were the consistent use of common blocks and
associated save statements, recursive calling sequences and possible problems with
variables being passed to subprograms via common blocks and as an argument.
Several of the more minor problems reported by the compiler and the verifier
could have been resolved using existing tools; for example, declaring all variables
and removing those that have been declared but never used may be achieved by
the NagWare tool, nag_decs. However, an early decision on the project was to keep
the source codes as close to the original submissions as possible and, unfortunately,
one side effect of using such tools is that they completely reformat the software. A
small number of simple perl scripts [Wall et al. 2000] were thus constructed to

—insert declaration statements for all undeclared variables,

—replace Hollerith constants that appeared inside format statements by character
constants,

—replace all array arguments declared to be of length one by assumed size arrays.

while making as few changes as possible to the original sources. The removal of
unused variables and unreferenced labels was performed manually.

Additional Portability Changes

Having cleaned up the submitted sources to bring them in line with the Fortran
77 standard, the next stage was to improve the portability of the code by ensuring
that all system dependent parameters were, as far as possible, set using calls to the
Port library functions RIMACH, DIMACH and I1MACH.

The RIMACH and DIMACH functions provide a reasonably effective way of ob-
taining the largest and smallest available floating point numbers and the machine
epsilon for single and double precision respectively. These values need to be pro-
vided for a user’s system either as hardwired constants or, if using Fortran 90, via
the new numeric enquiry functions HUGE, TINY and EPSILON.

The original CALGO submissions included a variety of different methods of ob-
taining these constants, for example, the machine epsilon was set by

—hardwiring constants into the sources (using either DATA or assignment state-
ments),
—using the Port library routines,
—using the routines DPMPAR and SPMPAR from the Minpack library [Moré et al.
1980],
—using the epslon function from Eispack [Hopkins and Slater 1993],
—computing the value by various means, for example,
eps = one
10 if (one .ne. epstone) then
eps = eps/two
goto 10
endif
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eps = two*eps

To ensure that these values were set in a consistent manner it was, therefore, nec-
essary to consider each algorithm source to ascertain whether it used any machine
dependent constants and, if so, to set them via calls to the Port functions.

A second inconsistent use of machine dependent parameters occurred in the def-
inition of the unit numbers for the standard input and output channels. The vast
majority of the submitted codes required at most one read and one write channel.
Although it could be argued that failure messages should be output on a separate
error channel, the standard error and output streams were not distinguished. In the
updated sources the standard input and output unit numbers are both set by calls
to the Port library function, I1MACH, thus allowing a user the freedom to change
them easily.

Open statements connecting named files to the standard input and output chan-
nels were removed. Any additional channels required are set via an open statement
and these may require user changes to provide system or application dependent file
names. Additionally, all output statements are now of the form

write(int_variable, format_specifier)output_list

which replaces an assortment of other statements including the use of print state-
ments and list directed I/0.

Finally, a number of machine dependent constants which were required by algo-
rithms were not explicitly covered by the Port functions and could not be computed
from the available values. Such constants are currently set explicitly to the IEEE
arithmetic values in a parameter statement; in a later release of the algorithms it
is expected that an extended version of the Port routines will be used.

5. TESTING

No supporting test material was included with the base versions of algorithms 493
to 521 and in a number of the later algorithms data files were missing. The overall
standard and scope of the provided test material differed widely, from simple exam-
ple uses of the algorithm to extensive, self-checking, stringent test rigs. Relatively
few of the submissions included sample output which made the task of checking the
implementation time consuming.

If no main programs were available for an algorithm, simple example drivers were
constructed. Where possible these implemented one or more of the sample problems
defined in the accompanying published paper. In a number of cases it was necessary
to consult further reference material to locate suitable problem definitions and/or
data.

In order to help prevent the introduction of new errors during the upgrading
process it was important to generate results using source as close to their submitted
state as possible. Some changes were inevitable, for example, setting machine
dependent constants, and, to obtain this initial execution, it was generally necessary
to turn off the aggressive checking of the EPC compiler or, in several cases, use
an alternative compiler that accepted non-standard conforming code. The results
obtained in this way were used as a base version for comparing with those obtained
from further code revisions.
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The most common faults that arose at run time were

—Array bound check failures. These were caused in a number of different ways.
First, there was the widespread malpractice of defining the last dimension of array
arguments to be one. This was effectively a way of obtaining assumed size arrays
in Fortran 66 which had very restrictive rules regarding the dimensioning of array
arguments. Where the lengths of array arguments could easily be deduced, say from
the comments in the source, this length was used in the upgraded code, otherwise
assumed size arrays were imposed using a perl script.

Similar bad practice occurred when using common blocks to make workspace
available throughout a package. In the algorithm code the labelled common block
would contain an array dimensioned to be of length one while the driver program
would contain a correctly dimensioned array. This contravened the standard which
stated that all labelled common blocks should be of the same length. Here the
problem is that, in order to produce standard conforming code, constants need
to be defined in all routines that access the common blocks; these constants are
either hardwired or are provided using parameter statements. Should the value
need changing, either to increase the maximum size of problem solvable or to make
more efficient use of memory, many source lines need to be edited and the code
recompiled. Without automation this process is obviously prone to error. This is
one reason why the use of common blocks to provide workspace should have been
more actively discouraged.

Finally, there were a number of ‘off-by-one’ problems with array accesses where
loops which accessed every element of an array using an index, say I, also attempted
to access indexes I-1 or I+1. These problems were commonly solved by guarding
the offending statement or by redefining the loop limits and providing special case
code.

It is the norm that arrays, especially those used for workspace, are declared to be
much larger than required in order to make the driver program more flexible. This
practice may well be masking subtle errors which are very difficult to detect. If
accesses are out of range as far as the problem is concerned, but still technically in
range because the array is larger than necessary, then, even if the element has not
been assigned to, a value of zero is often returned due to the run-time system zeroing
all data. If the access is just out of range then other program data may be accessed
or overwritten; which particular data is affected will be system dependent. In both
cases it is possible to obtain plausible, but incorrect, results. Finally, it should be
noted that many compilers appear not to perform range checks on assumed size
arrays even when bound checking is in force.

—Unassigned variable accesses. These are variables whose values are used before
they have been explicitly assigned. On many systems all variables are set, by de-
fault, to zero; whilst this is often what is required, relying on such system dependent
initializations is both dangerous and non-standard. Generally, unassigned variable
errors occurred when an initialization has been completely overlooked, when an
unusual flow of control through a routine causes an initialization to be bypassed,
or when a variable is tested unnecessarily. In a very small number of cases it was
due to the misspelling of a variable name. As mentioned above, it may also have
been masking a problem with array bounds.
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—Mismatched arguments. The Fortran 77 standard required that the actual ar-
guments used in a subprogram call should match the dummy arguments in both
number and type. It was rare that the number of arguments was found to be incor-
rect and this situation probably arose when unused arguments were removed from
a routine definition but not from all of the calls.

The two most commonly occurring type-mismatching problems were
—The use of one type of workspace array, usually real, for both integer and real

actual arguments to internal routine calls. Such misuse usually requires changes

to the top level calling sequence to allow the provision of workspace of both types
as well as changes to argument lists further down the call tree to ensure that the
different types are available where they are needed.

—The use of simple variables for arrays when either the array argument was not
expected to be accessed by the call or the actual array should have been of length
one. This latter problem occurred frequently when the BLAS level 1 routine SCOPY
was used to zero an array using code of the form

real zero, array(20)
parameter (zero = 0.0e0)
call scopy(20,zero,0,array,1)

where the second argument was expected to be a real array.

Infrequently there were single/double precision type mismatches but these tended

to be either overlooked type declarations or misspelled variable names.

Both the EPC Fortran 90 compiler and the nag_pfort tool were used to check all

argument lists provided the complete source code was available. At run-time the

EPC compiler would treat a call with mismatched arguments as a fatal error.

For the vast majority of algorithms, the source changes required to correct the
types of compiler detected errors described above led to codes that produced results
equivalent to those obtained using the original software. In rare cases the submitted
source codes generated incorrect results using one or more of the test compilers;
where such circumstances arose more extensive changes were occasionally necessary
to fix the problems; see, for example, Hopkins [Hopkins 2002].

In these latter cases, where source code changes were necessary to correct errors
in the original submissions, articles describing the changes will be published as
“Remarks” in ACM-TOMS, both to provide an audit trail of the changes and to
notify current users of the routines of potential problems.

6. PACKAGING

The renovated codes are available via a Web site on a CD ROM. This includes
all sources to the algorithms along with package sources and index information
designed to allow users to locate suitable software for a given class of problem.

The sources are available as both tar and zip files to make access to the material
straightforward for both Unix and Windows users. Each file contains the complete
directory structure as described in Figure 2. The zip files were generated from the
Unix files by using the -/ flag to zip to translate the Unix end of line character into
the PC convention of CR LF.

All index information was generated from the data available as part of Algorithm
620 [Hopkins and Morse 1990] which provides, in a compact format,
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—full bibliographic details of the original paper along with any associated Remarks
and Certificates,

—implementation language,

—the ACM modified Share classification, used to produce the Cumulative Index of

the CALGO [Hopkins 2000], and the Gams [Boisvert et al. 1985] classifications.
Gams (The Guide to Available Mathematical Software) allows a framework for
end users and software librarians to deal with the ever increasing amounts of
available mathematical and statistical software.
Both classification schemes provide a structured taxonomy of mathematical prob-
lems; the difference is that, while the Share scheme is restricted to just two levels,
Gams is a variable level scheme which allows a much finer granularity to problem
specification. For example, Share has just D1 to cover all integration problems;
Gams has around 40 categories in up to four levels of classification.

Three indexes are currently provided

—a list of all the algorithms in publication order, most recent first,
—the ACM modified Share classifications,
—the first two levels of their Gams classifications.

The last two indexes consist of a page containing descriptions of each problem area
with links to any relevant algorithms. Each algorithm entry in these indexes consists
of title, keywords, links to the source files and a link to more detailed information
on each algorithm.

The Full Information page associated with each algorithm contains the title,
full bibliographic details of the original publication along with any associated re-
marks and certificates, keywords, Share and Gams classifications, implementation
language and available precisions, any required external libraries and links to the
source files. An example is given in Figure 3.

The AcM holds the copyright to all the code originally published in the CALGO
and continues to do so on the modified sources appearing on the CD. As with the
original software, the new versions of the algorithms may be freely used provided
that such use is not for profit. All commercial applications require a licence to be
obtained from the ACM (see http://www.acm.org/calgo/ for more details).

7. FUTURE IMPROVEMENTS

We aim to improve the algorithm codes still further in future releases. In some
cases this means retrofitting modern software engineering practices and in others
upgrading sources to take on board features available in newer versions of the
implementation language. In particular, Fortran 90 offers a number of facilities
which could be used to simplify the argument lists. Some of these improvements
may be achieved by providing Fortran 90 wrapper routines to the existing Fortran
77 code while others require extensive changes to the sources.

Wrapper routines would relieve the user of having to provide workspace arrays
(which could be replaced by automatic arrays), the leading dimension of multi-
dimensional array (which could be replaced by assumed shape arrays) and other
information which may be deduced from the problem-defining data. Far more effort
would be required to restrict the scope of workspace arrays to just the portions of
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Algorithm 496

The LZ Algorithm to Solve the Generalized Eigenvalue Problem for Complex Matrices
Eeywords: cigenvalues, generalized eigenvalue problem
Share Classification: 22
GAMS Classification: D4b4
Implementation Language : Fortran77 (Single)
Required Libraries:
Drivers: port

Sowrce files : Unix tar file or PC Zip file
Bibliography

Kaufman, L., Algorithm 498: The LZ Algorithm to Solve the Generalized Eigenvalue Problem for Complex Matrices, ACM Trazs, Math
Softw. 1, 3 {September 1975), 271-281.

Remarks and Certificates

1. Faufman, L. Remark on Algorithm 496, ACM Trans. Mazh. Seftw. 2, 4 (December 1976), 396,

Fig. 3. Example Full Information page

the call tree that require the data. Such modifications of the source code would
appear to be well beyond the scope of current software tools.

However, a number of tools are available for performing some very useful source
upgrades. Spag [Polyhedron Software 1997] and nag_polish95 [Numerical Algo-
rithms Group Ltd. 1999] both offer the ability to translate Fortran 77 fixed format
code into the new free format; in addition spag will replace old style Fortran do-
loops with the new do-end do version with exit statements as appropriate. The
nag_decs95 tool [Numerical Algorithms Group Ltd. 1999] can generate generic pre-
cision code by using the KIND specifier thus enabling a user to generate a version
of the required precision by changing a single line and recompiling. In addition,
nag_cbm95 [Numerical Algorithms Group Ltd. 1999] could be used to replace com-
mon blocks with modules.

Finally, whenever performance or reliability is an issue, Linpack, Eispack and
user supplied linear algebra routines should be replaced by their counterparts in
Lapack.

Before embarking on extensive changes to the sources, it would be necessary, for
a large number of the algorithms, to improve test coverage of the codes so as to
increase confidence that no new errors were being introduced.

With the web-based approach taken it would be relatively straightforward to
improve the documentation accompanying the algorithms by providing links to the
abstracts and accompanying papers within ACM’s digital library.

8. CONCLUSIONS

The work so far invested in the CALGO algorithms which have appeared in ACM-
TOMS has generated a far more easy-to-use and consistent library of software than
was previously available. A large percentage of the algorithms have been tested
using a strict-checking compiler and a standard-conformance tool which resulted in
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many hundreds of source changes being made. These changes have improved the
portability of the software and removed minor errors and code clutter. The porta-
bility of the Fortran codes, in particular, has been improved further by ensuring
that the majority of machine dependent constants are set using the Port library
routines I1MACH, RIMACH and DIMACH. A number of software tools were used to
generate a consistent layout for the sources.

Apart from a relatively few platform dependent codes or those implemented in
languages for which no compiler was available, all algorithms were compiled and
run. Each of these codes now has at least one accompanying driver program and
makefile, data and results files are also provided.

Source material is available as both a tar file, for UNIX based systems and zip
files for PC users.
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