University of

"1l Kent Academic Repository

Heaton, Andrew, Hill, Pat and King, Andy (2000) Abstract Domains for Universal
and Existential Properties:9th European Symposium on Programming,

ESOP 2000 Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2000 Berlin, Germany, March 25 — April

2, 2000 Proceedings. In: Smolka, Gert, ed. Programming Languages and
Systems. Lecture Notes in Computer Science, 1782 . Springer, pp. 150-164.
ISBN 978-3-540-67262-3.

Downloaded from
https://kar.kent.ac.uk/37619/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-46425-5 10

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/37619/
https://doi.org/10.1007/3-540-46425-5_10
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Kent Academic Repository
Full text document (pdf)

Citation for published version
Heaton, Andrew and Hill, Pat and King, Andy (2000) Abstract Domains for Universal and Existen
Properties:9th European Symposium on Programming, ESOP 2000 Held as Part of the Joint Eurc

Conferences on Theory and Practice of Software, ETAPS 2000 Berlin, Germany, March 25 —
April 2, 2000 Proceedings. In: Smolka, Gert, ed. Programming Languages and Systems. Lectt

DOI
https://doi.org/10.1007/3-540-46425-5_10

Link torecord in KAR
http://kar.kent.ac.uk/37619/

Document Version
UNSPECIFIED

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR =

Kent Academic Repository

Abstract Domains for Universal and Existential
Properties

Andrew Heaton' and Patricia M. Hill> and Andy King?

L School of Computer Studies, University of Leeds, 1.S2 9JT, UK,
heaton@scs.leeds.ac.uk,
tel: +44 113 233 5322, fax: +44 113 233 5468.
2 School of Computer Studies, University of Leeds, 1.52 9JT, UK,
hill@scs.leeds.ac.uk.
? Computing Laboratory, University of Kent at Canterbury, CT2 7NF, UK,
amk@ukc.ac.uk.

Abstract. Abstract interpretation theory has successfully been used for
constructing algorithms to statically determine run-time properties of
programs. Central is the notion of an abstract domain, describing certain
properties of interest about the program. In logic programming, program
analyses typically fall into two different categories: either they detect
program points where the property definitely holds (universal analyses)
or possibly holds (existential analyses). We study the relation between
such analyses in the case where the concrete domain is a lattice join-
generated by its set of join-irreducible elements. Although our intended
application is for logic programming, the theory is sufficiently general for
possible applications to other languages.

1 Introduction

Abstract interpretation theory has successfully been used for constructing al-
gorithms to statically determine run-time properties of programs. Traditionally,
the semantics of the program is specified with a concrete domain. The central no-
tion is to approximate program semantics by defining an abstract domain whose
operations mimic those of the concrete domain. The abstract domain describes
certain properties of interest about the program. Each element of the abstract
domain specifies information about a possibly infinite number of concrete states.
Thus, in order to construct an abstract domain tracing a property of the pro-
gram, the property needs to be considered as a property over sets of concrete
states.

Our aim is to provide new techniques for the construction of new abstract
domains from given ones. Many operations have been designed for systematically
constructing new domains. Domain operators studied include reduced product
[8,4], reduced power [8] and disjunctive completion [8,11]. Linear refinement is
introduced in [13] as an extension of the Heyting completion studied in [14]. Tn
[15], a new domain for freeness analysis of logic programs is defined using linear

refinement. In this paper, we suppose that the concrete domain is a lattice join-
generated by its set of join-irreducible elements. In this case, given any property
p defined over each individual concrete state, p can always be uniformly extended
to a property over sets of concrete states.

For example, in logic programming it is standard to define the concrete do-
main as the powerset of substitutions, p(Sub), partially ordered by set inclusion.
©(Sub) is join-generated by Sub. For many properties of logic programs, it is nat-
ural to first define the property on substitutions and then lift the property to
include sets of substitutions. Consider the property of groundness. A variable z
is ground under a substitution # € Sub if # binds z to a term with no variables.
Letting X be the set of variables of interest, the mapping gr : Sub — p(X) is
defined:

gr(0) ={z € X |var(0(z)) = 0}.

Suppose we now want to consider groundness as a property with domain g(Sub).
We can consider either definite (universal) groundness or possible (existential)
groundness. For definite groundness, Gr” : p(Sub) — p(X) is defined:

Gr7(@) = {gr(0) | 6 € ©}.
For possible groundness, G : p(Sub) — p(X) is defined:

Gri(@) = J{gr(0) |6 € ©}.

Note that definite groundness traces positive information about the groundness
of program variables, whereas possible groundness traces negative information.
Knowledge of both positive and negative information about program properties
such as groundness 1s particularly useful for debugging applications.

In general, given a concrete domain C'; an abstract domain D and a property
p mapping the join-irreducible elements of C' to D, p is extended to C' using the
join operation of D. We name this extension of p the D-lattice property of p. For
example, Gr¥ is the DZr—lattice property of gr where DZ, is the lattice p(Sub),

partially ordered by D with set intersection as the join operation. Gr3 is the
Dgr—lattice property of gr where D;'r is the lattice p(Sub), partially ordered by
C with set union as the join operation.

The main theoretical results shown are as follows:

— Given a Galois connection (C,a, D,v) (where C' is completely distributive
and join-generated by its set of join-irreducible elements) specifying an anal-
ysis tracing positive information of p, we show how to construct a mirror
Galois connection (C,a™, D4 4™) (where D? is the dual lattice of D) spec-
ifying an analysis tracing negative information of p.

— Suppose op : C' — C' is a concrete operation and (D, op’) is a correct ab-
stract interpretation of (C, op) specified by (C,a, D,~v). We find conditions
on (D, op’) and (C, op) which ensure that (D¢ op') is a correct abstract in-
terpretation of (C, op) specified by (C,a™, D4 ™).

The paper is organised as follows: in Section 3 we define the notion of lattice
properties and mirror properties. Section 4 considers some applications with
the well-known domains Pos and Sharing of logic programming. In Section 5
we consider the safe approximation of concrete functions in analyses for mirror
properties. Finally, Section 6 gives some concluding remarks and directions for
future work.

2 Preliminaries

Throughout the paper, we assume familiarity with the basic notions of lattice
theory ([3]) and abstract interpretation ([7-9]). Below we introduce notation and
recall some of the central notions.

2.1 Lattice Theory

In the following, we assume (A, C4,Ma,Ua, T4, La) is a complete lattice. The
dual lattice (A, C4, M4 04, T4, 1%) is defined such that:

1. Ya,b€ AaC4 biff b Cy a;
2. MY = Uy;
3. U4 =My;
4. Td = 14,
5. L% =T4.

We will often write A¢ to denote the dual lattice (4, C%, 1%, U4, T4, L4). Given
a mapping f : Ay — As, we will sometimes abuse notation by also writing f to
denote the dual mapping f¢ : A — A4 such that f(a) = f4(a) for all a € A;.

An element a € A is join-irreducible if, for any S C A, a = UaS implies
a € S. The set of join-irreducible elements of A is denoted by JI(A). Letting
S C A, then A is join-generated by S if, for alla € A, a = Us{z € S|z T4 a}.
For convenience, we assime L 4 = LI4#. An element @ € A is an atom if @ covers
Lla,ie.a# Laand Vo € A(La Ca © Ca a) = (x = a). We denote by
atomy the set of atoms of A. Note that atoma C JI(A). A is atomistic if A is
join-generated by atoma. A is dual-atomistic if A? is atomistic.

A complete lattice A is completely distributive if, for any {z;x | i € I,k €
K (i)} C A, the following identity holds:

|_| |_| Tk = |_| |_|£L‘i,f(i)7
i€l keK (i) fel-Kiel

where for any i € I, K(4) is a set of indices, and I ~» K is the set of all functions

[from I to | J;.; K (i) such that Vi € I.f(i) € K(i).

Ezample 1. The powerset of any set S, ©(S), ordered with set-theoretic inclu-
sion, is completely distributive and join-generated by S. In this case p(.59) is also
an atomistic lattice where the atoms are the elements of S.

The key property of completely distributive lattices we shall use 1s:

Lemma 1 ([2]). Let A be a completely distributive lattice. Then, z € JI(A)
iff for any S C A, 2 C4 ||, S implies 2 £4 s for some s € S.

2.2 Galois Connections

If C and D are posets and « : C" = D, v : D — (' functions such that
Ve € CVd € D.a(e) Cp d & ¢ Ce y(d), then (C,a, D,v) is a Galois con-
nection between C' and D. If in addition v is 1-1, or, equivalently, a is onto
then (C,a, D,~) is a Galois insertion of D in C. In the setting of abstract inter-
pretation, C' and D are called the concrete and abstract domains, respectively.
Given a Galois connection (C, a, D,), @ and « are uniquely determined by each
other. A practical consequence of this is that an abstract interpretation can be
performed by defining only one of « or 7. We assume that every concrete domain
C and abstract domain D form complete lattices. Given a concrete domain C'
and an abstract domain D, a property is defined as a (partial) mapping from C
to D. Every Galois connection (C,a, D,v) can be viewed as a specification of
the property a: C' — D.

An important property of Galois connections is the preservation of bounds.
Suppose ', D are complete lattices. A mapping o : C' = D is additive if it
preserves least upper bounds. Thus if S C C then (| |- S) = [{a(e) | c € S}.
A mapping a : C = D is co-additive if a : C¢ — D% is additive. If (C,a, D, %)
is a Galois connection, then « is additive. The converse is also true, i.e. if «
is additive then « entirely determines a unique Galois connection (C,«a, D, 7).
Thus in order to define a Galois connection (C, a, D,) (where C, D are complete
lattices), it is sufficient to define an additive .

One way of defining new Galois connections is by composition. Given two
Galois connections (C, a4, A,v4) and (A, ap, D,vp), (C,aa o ap, D,¥p o ~va)
is a Galois connection. We call (C,aa o ap,D,yp o ya) the composition of
(Cyaa, A,va) and (A, ap, D, yp).

Suppose (C, a, D,) is a Galois connection and ope : C' = C, opp : D = D
are operations on C' and D, respectively. (D,opp) is a correct abstract inter-
pretation of (C,opc) specified by (C,a, D,v) if a(opc(y(d))) Cp opp(d) for
all d € D. (D,opp) is optimal if opp = a o opc o~. If (D,opp) is optimal,
then opp is the best approximation of op¢ relative to D. (D, opp) is complete if
aoopc = opp o a. Completeness 1s a stronger property than optimality. Indeed,
whenever (D, opp) is complete, it can be shown that opp = « o ope o v [10,
12]. The completeness of ope depends on D and is a property of the abstract
domain.

If (C,a, D,~) is a Galois insertion, each value of the abstract domain D
is useful in the presentation of the concrete domain as all the elements of D
represent distinct members of C'. Moreover, any Galois connection may be lifted
to a Galois insertion. This is done by identifying those values of the abstract
domain with the same concrete meaning into an equivalence class. This process
is known as reduction of the abstract domain. Each Galois insertion (C, a, D, %)

can equivalently be considered as an upper closure operator on C', p = yo . For
every Galois connection (C,a, D, %), let (C,a=, D=,v=) be the Galois insertion
obtained by reducing (C,a, D,~). We associate the (upper) closure operator
p = y= o a= with (C,a, D,y). The set of closure operators on C' is partially
ordered such that p; C pa if Ve € C. p1(¢) Ce pa(c). In this approach, the order
relation on the set of closure operators on C' corresponds to the order by means
of which abstract domains are compared with regard to precision. More formally,
if (C,ay, D1,v1) and (C, as, Da,v2) are Galois connections with the associated
closure operators p; and ps, respectively, then we say D is more precise than
D2 if P1 E pa.

3 Properties of Programs

In abstract interpretation, Galois connections are used to specify properties of
programs. To define a Galois connection (C, a, D,) between a concrete domain
C and an abstract domain D, all we need to do 1s define an additive function
a : C' = D. It is well known that in the case where the concrete lattice C' is
join-generated by JI(C'), additive functions mapping C' to an abstract domain
D are completely determined by their values for join irreducible elements. More
specifically, if a : C'— D is additive then

a(e) =| [{a(x) |z € JI(C) Aw Ce c}.

Ezxample 2. For logic programs, a standard choice of concrete lattice is the atom-
istic lattice C = (p(Subd), C,N, U, d, Sud), where Sub denotes the set of idem-
potent substitutions.

A program variable is ground if it is bound to a unique value. Groundness
can be thought of as a property over Sub, i.e. as a property over JI(Cpr). Let
X be the set of variables of interest. Then the set of variables ground under

0 € Sub is given by gr : JI(CL) = p(X) defined
gr(0) = {z € X |var(0(z)) = 0}.

Let ©® C Sub. The set of variables that are definitely ground under all § € @ is
given by Gr¥ : Cf, — p(X) where

GrY(0) = {z € X | V0 € O.var(0(x)) =0} = [{gr(0) | 0 € O}.

Alternatively, the set of variables that are possibly ground under all § € © is
given by Gr? : Cr, = p(X) where

Gr(@) = {x € X |30 € O.var(0(x)) = 0} = J{gr() |0 € 6}. O

Definition 1. Let C be a lattice. Then p is an JI property for C' if there exists
a set D such that p maps JI(C) to D (denoted p: JI(C) = D). D

Definition 2. Suppose C' is join-generated by JI(C) and let p : JI(C) = D
be a JI property for C'. Suppose D forms a complete lattice under the partial
ordering Cp. Then the D-lattice property of p, P : C' = D, is defined such that
for every ¢ € C,

P(e)=Upir(z) |z € JI(C) ANz Ce c}.

Let D? be the dual lattice of D. If P is the D-lattice property of p then we define
the mirror property of P to be the D% lattice property of p. O

Note that the mirror of the mirror of P 1s P.

Ezample 3. Let Dg, be the complete lattice (p(X), C,N,U, 0, X). In Example 2,
Gr3 is the Dgy,-lattice property of gr, and GrY is the D‘gir—lattice property of gr.
Hence Gr¥ and Gr? are mirror properties. O

In the case where C'is also a completely distributive lattice, we have the following
theorem.

Theorem 1. Suppose C is a completely distributive lattice join generated by
JI(C) and D is a complete lattice. Let (C, e, D, 5) be a Galois connection. Then
there exists o™, 4™ such that

1. a™ 1s the mirror property of «.
2. (C,a™, D% ~4™) is a Galois connection.

Proof. To prove 1, observe that as C'is join-generated by JI(C'), for each ¢ € C|
ale) =pfa(z)|ze JI(C) ANz Ce c}.

Hence by Definition 2,
a™(c) =[pla(z) |z € JI(C) Az Ce c}.

To prove 2, it is sufficient to show that o™ is additive. But

a”(UeS) =T p{alz) |z € JI(C) Az Ce | S} (by Definition 2)
=[|p{a(z) |z € JI(C) Az Ce sAs €S} (by Lemma 1)
=[lp{a™(s) | s € S}.

Hence a™ is additive. O

The compositional design of Galois connections is a method for specifying pro-
gram properties by successive refinements. The following lemma gives a suffic-
ient condition for the preservation of compositions of Galois connections between
mirror properties.

Lemma 2. Suppose C' is a completely distributive lattice join-generated by
JI(C), and A, D are complete lattices. Suppose (C, a;, D,7,), (C,a, D,)
(Cyaa, A,ya) and (C, a7, A4, 47) are Galois connections such that a,, oy
and a4, @’y are mirror properties. Also suppose (A,ap,D,vp) is a Galois
connection such that (C,ap, D,v,) is the composition of (C, a4, A,v4) and
(A,ap, D,vp). Then if ap is co-additive, there exists vp : D? — A% such that
(A ap, D yp) forms a Galois connection and (C, ay’, D, 7,') is the compo-

sition of (C, a7, A%, 4™) and (A% ap, D yp).
Proof. First note that ap : A — D is co-additive implies that ap : A% — D% is

additive, and so there exists vp : D¢ — A? such that (A% ap, D% vp) forms a
Galois connection.

To show that (C, oz;”,Dd,'y;”) is the composition of (C,a, A% 47) and
(A ap, D% yp), it is sufficient to show that ay' = apoa’y. Suppose ¢ € C'. By
Definition 2,

ap'(c) =] Nap(z) |z € JI(C) Az Ce e}

Now ay(2) = ap(aa(z)) and so

o7 (¢) = [Han(aa(@) | 2 € JI(C) Aa Ec c}.

But ap 1s co-additive and so
a(c) = ap(| Haa(z) |2 € JI(C) Az Ce e}) = ap(af(e)).0
A

Let pp, pa be the associated closure operators of (C, ap, D, %p) and (C, aa, A, va4),

respectively. Note that whenever (C, o, D, v,) is the composition of (C, a, A, v4)
and (A,ap, D,vp), then pa C p,. Thus Lemma 2 can be interpreted as giving a

sufficient condition for the preservation of the relative precision between mirror

properties, that is, when pa C p, implies p7y T p;* (where pi*, p}' are the asso-

ciated closure operators of (C,a’, A% 4%} and (C, oy, De, 7,"), respectively).

4 Applications

We consider the abstract domains Pos and Sharing from logic programming.
In the following, let Vars denote a countable set of variables, and X denote a
non-empty finite subset of Vars containing the variables of interest.

4.1 Pos

We briefly recall the definition of Pos. The domain Pos consists of the set of
positive propositional formulae on X, where a propositional formula 1s positive

if it 1s satisfied when every variable is assigned the value true. Pos is a lattice
whose ordering is given by logical consequence, and the join and meet by logi-
cal disjunction and conjunction, respectively. Adding the bottom propositional
formula false to Pos, makes Pos a complete lattice. Letting C';, be the concrete
domain defined in Example 2, the Galois insertion (Cr., @pos, P0S, Ypos) is such
that ap.s : C = Pos where for all © € (7,

0505 (@) = \/ N {z & J\var(6(z))}.

feE@ zeX

Note that oo is the Pos-lattice property of the JI property ppos : Sub — Pos
defined such that

Prosc(®) = N\ {z 6 \ var(8(a))}.
reX
The abstract unification function for Pos, Unif?°® : Pos x Pos — Pos, is given
by logical conjunction, that is, the meet operation of Pos.

Recall that in Examples 2 and 3, definite groundness is specified by Gr¥. In
fact GrY maps C, onto D‘gir and so there exists 47 such that (Cr, Gr", D‘gir, 1Y)
forms a Galois insertion. This domain is originally due to Jones and Sgndergaard
[16]. Tn [18], when considering the concrete domain to be sets of substitutions
closed by instantiation, it is shown that Pos can be constructed by using only
the definition of groundness. More specifically, [18] shows that Pos is exactly the
least abstract domain which contains all the (double) intuitionistic implications
between elements of D‘gir.

Let ap : Pos — D‘gir be defined such that for all ¢ € Pos,

ap(@) ={z € X |6 Ea}.

Now ap is additive since ap(¢1 V ¢2) = ap(¢1) Nap(d2). Hence there exists
~p such that (Pos,aD,D‘gir,'yD) forms a Galois connection. Also Gr¥(©) =
ap(apes(@)) for all @ € Oy, therefore (Cr, GrY, D‘gir,'yv) is the composition of
(CrL, apos, Pos,vpos) and (Pos, ap, Dgr,'yp).

The mirror property of Gr¥ is Gr3. Now Gr? maps C, onto Dy, and so there
exists 47 such that (Cp,, Gr3, D‘gir, 43) forms a Galois insertion.

The mirror property of a;,s is apy, : Cp — Pos® where

o (@)= N\ Nz e \var(d(z))}.
fe@ TeX
Lemma 3. There exists v, such that (C’L,a;”OS,Posd,'yl’,”os) forms a Galois
connection. Also (Cr,Gr3, Dy, 47) is the composition of (C7, s Pos?, Ypos)
and (Pos?, ap, Dy, vp).

Proof. By Theorem 1 there exists v, such that (Cr, Xpos s Posd,'y;’(’;s) forms a
Galois connection. Now ap(¢ A) = ap(¢) Uap(¥), and so ap : Pos — D‘gir
is co-additive. Therefore by Lemma 2, (Cf, Gr?, Dg,»,'ya) is the composition of
(Cp,a? Posd,'yl’,”os) and (Pos?, ap, Dgr,yp). O

pos»

Lemma 4. If Card(X) > 2, o),
a Galois insertion.

is not onto, thus (Cr, a” Pos?, Ypos) is not

S pos)

Proof. By inspecting the definition of a7, it can be seen that a7}, (@) #\/ X
when Card(X) > 2, for any © € Cr. Hence o' is not onto. O

pos

In order to obtain a Galois insertion, we apply the reduction process to Pos?.

(Cp,a™ Posd,'yl’)”os) reduces to (C, « Pos?/ =, 4™) where for ¢, €

m
; pos) pos/=> pos/=
Pos

¢ =1 & V505 (0) = Vs (), 0fyy=(c) ={ | 6 = o (o)}
Let I' C Pos® be defined such that

F={zo Ny, o} IVI<i<nax#y)

m

By inspecting the definition of @ . (and noting that Sub is the set of idempotent
substitutions, i.e. # € Sub imphes z ¢ var(f(z)) for all), it can be seen that
Pos®/ = is the lattice A C Pos® where A is the closure of I under conjunction.
From Lemma 3 we obtain:

Theorem 2. Pos®/ = is more precise than Dy .

Thus the precision ordering has been preserved for the mirror properties.

4.2 Sharing

We define Sharing as in [1]. We define the set sharing domain SH = p(SG)
where SG = {S C p(X) | # ¢ S}. SH is partially ordered by set inclusion such
that the join is given by set union and the meet by set intersection.

Let Cf be the concrete domain defined in Example 2. The set of variables

occurring in a substitution # through the variable v is given by the mapping
oces : Sub x X — p(X) defined such that

oces(0,2) ={y € X | v € var(0(y))}.

Given this, the Galois insertion (Cr, asn, SH,vs1) specifying SH can be defined
such that

ash (@) = U {oces(6,z) | & € Vars,oces(0,x) # 0}.
e®
Note that agp is the SH-lattice property of the JI property pgp @ Sub — SH
defined such that
psn(8) = {oces(8,z) | & € Vars,oces(0, x) # 0}.

For Sharing, the abstract unification function is defined as a mapping which
captures the effects of a binding £ — ¢ on an element of SH. The definition uses
the following three operations defined over SH.

The function bin : SH x SH — SH, called binary union is given by
bin(S1,S2) = {s1 Usa | s1 € S1,89 € Sa}.
The star-union function (-)* : SH — SH is given by
S ={s€8G |38 CSs=])9}
The relevant component function rel : p(X) x SH — SH is given by
rel(V,S)={seS|snNV #0}.
Let v, = {z}, v = var(t) and vy = vy Uvg. Then
Um'fSh(S, z—=1) = (S\ (rel(vge, S)) Ubin(rel(vy, S)*, rel(ve, S)™).

A domain for pair sharing is PS = p(Pairs(X)) where Pairs(X) = {{z,y} |
z,y € X, x # y}. PS is specified by the Galois insertion (Cr, aps, PS, Vps),
where

aps(0) = U {{z,y} € Pairs(X) | var(6(z)) Nvar(6(y)) # 0}.

0e®

Note that oy, is the PS-lattice property of the JI property p,s : Sub — PS
defined such that

pps(0) = {{z, y} € Pairs(X) | var(6(z)) Nvar(0(y)) # 0}.

Defining o, : SH — PS such that

asp(S) = [J{Pairs(s) | s € 5},

it follows that a,s(@) = asp(an(0)) for all @ € Cr. Also a,p(S1 U Sy) =
(U{Pairs(s) | s € S1US2} = a,p(S1) U agp(S2). Therefore g, is additive
and so there exists v,, such that (SH, a,p, PS,~v,p) forms a Galois connection.
It follows that (Cr,aps, PS,7ps) is the composition of (Cr,asn, SH,vsp) and
(SH, asp, PS,7sp), and so PS is more abstract than SH.

The mirror property of a,p is o : O, — SH? defined such that

all (@) = m {oces(6,z) | & € Vars,oces(0,x) # 0}.
9co

Lemma 5. There exists 47} such that (Cr,, a7}, SH?, 7) forms a Galois inser-
tion.

Proof. By Theorem 1, there exists 47, such that (C’L,ag’}”SHd,'yg}l) forms a
Galois connection. To prove a7 is onto, we show Ya € SH?.30 € Sub.a™ ({0}) =
a by induction on Card(a).

The base case is when a = . Let § = {x =t | x € X} where ¢ is a ground
term. Then o7} ({0}) = 0.

Suppose s € @ and let o’ = a \ {s}. Using the induction hypothesis, 3¢’ ¢
Sub.al}({0'}) = a'. Let u € Vars \ X be a variable such that u ¢ var(¢’(z))
for any = € X. For every y € s, suppose '(y) = t;,. Let t, be a term such that
var(ty) = var(t,) U {u}. Then defining 0 such that 6(z) =, for all z € s and
0(z) = ¢'(z) otherwise, a7} ({6}) = a. O

The mirror property of ap; is ayy : O — PS? defined such that

0) = ﬂ {{z,y} € Pairs(X) | var(6(z)) Nvar(6(y)) # 0}.

0e®

Lemma 6. There exists 'y]’,’; such that (Cp, ol
tion.

Qpy, PS4, 7ps) forms a Galois inser-

Proof. By Theorem 1, there exists 7, such that (Cr, o
Galois connection. We show that o} is onto.

First suppose a = Tp, = Pairs(X). Let u € Vars\ X. Then if §(z) = u for
every r € X, ap({0}) = Pairs(X) as required.

Suppose a # Tp,. PS is dual-atomistic with atom, . = {Pairs(X)\{{z,y}} |
{z,y} € PS}. Therefore for every a # Tps, a = ({{z | x € atomy,a Aa C x}.
But api (@) = ({pps(0) | & € @}, and so it is sufficient to show that Ya €
atomy,a.30 € Sub.pps(0) = a.

Suppose a = Pairs(X) \ {{z,y}} and let u,v € Vars\ X. Defining @ such
that 0(z) = u,0(y) = v and 0(z) = f(u,v) for every z € X \ {2, y}, pps () = a.
O

pS,PS ,Yps) forms a

Theorem 3. If Card(X) > 3 then SH™ is not more precise than PS™.

Proof. Weneed to show there exists @ € Cy, such that v} (a7}, (0)) € 77 (api(@)).

Suppose X = {z,y,z} (it is easy to generalise the proof for Card(X) >
3). Let ©® = {61,602} where 0; = {# — y,z — y} and 6, = {z — y}. It
follows that 47 (a7}, ({01, 02})) = v7 ({{z, y, z} }n{{z,y}}) = v7} (#) = Sub. But
g ({61, 621)) = 272 ({2, 1)) € Sub. Therefore 173 (a4 (O)) € 472 (a7 ().
O

Thus in general the precision ordering is not preserved for mirror properties.

Theorem 4. PS™ is not more precise than SH™ .

Proof. Weneed to show there exists @ € Cy, such that v (a73(@)) € 72 (a7},(9)).
Let © = {e} where ¢ is the identity substitution. Now (@ ({e }))
'ysh({{x} | r € X}) C Sub and v (ari({e})) = v2(0) = Sub. Therefore

’Yps s ,@ ’Ysh) O

Hence the precision of SH™ and PS™ is not comparable in general.

5 Operations on Concrete Domains

When the concrete lattice C' is join-generated by JI(C'), many operations on C'
can be defined in terms of operations on JI(C).

Definition 3. Suppose C is join-generated by JI(C'). Then op is a JI operation
ifop : JI(C) x JI(C) — JI(C)!. For each concrete operation Op : €' x C' — C,
we say Op is uniformly defined from a J1I operation op if for all ¢1,¢5 € C|

Op(cr,ea) = | eo{op(z1,22) | 21,22 € JI(C) A1 Ce 1 Aza Ce o}

Ezxample 4. In logic programming, unification and projection can both be de-
fined as JI operations unif : Sub x Sub — Sub, projy : Sub — Sub (for
V C Vars) as follows:

unif(61,02) = mgu(eqn(61), eqn(6s)),

projv (0) = 6" where for each z € Vars, §'(x) = {Z(:C) i)ft}fefw‘i/se
where eqgn(f) ={z =1t |2 —>1 € 6}.

The concrete operations Unif : Cr x C, — Cf, and Projy : C, — Cp, can
be uniformly defined from unif and proj as follows:

Unif(©1,05) = | J{unif(61,02) | 61 € @1 A 02 € O3},

Projyv (@) = U{projv(ﬁ) |6 cO@}.O

Given an abstract operation Opp, we show that if (D, Opp) is a complete (and
therefore also correct) abstract interpretation of (C,Op), then (D,Opd) is a
correct abstract interpretation of (C, Op).

Lemma 7. Suppose C, D are complete lattices and C'is join-generated by JI(C').
Let Op : C'x C' = C be a concrete operation uniformly defined from the JI
operation op : JI(C) x JI(C) = JI(C). Let (D, Opp) be a complete abstract in-
terpretation of Op specified by (C,a, D, 7). Then (D% Opp) is a correct abstract
interpretation of (C, Op) specified by (C,a™, D4, y™).

Proof. We need to show that Op(y™ (d1),v™(d2)) Ce v™ (Opp(di, d2)) for all
dl, dy € D.

Note that from Definition 3 it follows that Op is monotonic, i.e. if ¢ C¢ ¢}
and cg C¢ ch then Op(cy, ca) Ce Op(cl, cb). Since (D, Opp) is complete, Opp =
a o Opo~y. Hence since Op, a, 7 are all monotonic, Opp is also monotonic. Now
! Note that to simplify the notation we assume that a JI operation has at most two

input arguments. The results presented can easily be extended to operations with
any number of arguments.

Op(y™ (d1),y™ (d2)) =

Lc{op(z1,z2) | 21,22 € JI(C) Ax1 Ec ™ (d1) Axa Ec y™(d2)}

Therefore it is sufficient to show that op(z1,22) Ce v (Opp(di, ds)) for all
z1, 29 € JI(C) such that 1 Ce 4™ (dy) and 29 Ce 4™ (d2). Now 21 Ceo 4™ (d1)
implies o™ (21) E% dy and 25 Ce 4™ (d2) implies o™ (22) E% do. Hence since
Opp is monotonic,

Opp(a™(w1),a™(22)) CF, Opp(di, ds).

But 21,22 € JI(C), thus Opp(a™(z1),a™(x2)) = Opp(a(z1),a(zs)). Since
Opp is complete,

Opp(a(z1),a(r2)) = a(Op(x1, 72)) = a(op(z1, 2)).

By Definition 3, op(z1, z2) € JI(C) and so a(op(z1, 22)) = o™ (op(z1, 22)). Thus
a™(op(x1,22)) Cf Opp(di,ds) and so op(z1, 22) Ce 4™ (Opp(di, da)). O

Ezample 5. The abstract projection function for Pos, Projl” : Pos — Pos,
amounts to existentially quantifying a formula (see [6] for details). Tt is shown
that (Pos, Projb®®) is complete in Lemma 36 [6]%. Therefore by Lemma 7,

<Posd, Projb®) is a correct abstract interpretation of (C'r, Projy).
The abstract projection function for Sharing, Proji?,h :SH — SH, is defined
such that

Projif(S) ={snV |seS}

Theorem 5.2 [5] shows that (SH, Proji?) is complete. Therefore by Lemma 7,
(SH?, Proji®) is a correct abstract interpretation of (Cp,, Projy).

On the other hand, [6] shows that (Pos, Unif"’") is not complete and [5]
shows that (SH, Unif5h> is not complete. O

In fact, it can be shown that both (Pos?, UnifP°*) and (SHY Unif*") are
not correct abstract interpretations of (Cr, Unif).

Lemma 8. (Pos® Unif?°®) is mnot a correct abstract interpretation of

(Cr, Unif).
Proof. Tt is sufficient to find ¢ € Pos? such that

UnifP* (¢, ¢) F apo, (Unif (v555(9): Vpos(4)))-

Let ¢ be the formula z + y and 6, = {x — f(1,y)} and 62 = {z — f(y,1)}.
Note that 61,02 € v;,,(#). Now unif(01,02) = {z — f(1,1),y — 1} and so it
follows that

Aos (Unif (705 (0): 7505 (8))) FE 2 Ay
But Unif?”(¢,¢) = ¢ and so Unif"*(¢,0) ¥ o (Unif (v, (8), 7505 (4))),

as required. O

2 Note that in [6] and [5], Pos and Sharing are formulated differently from our pre-
sentation. In [6] and [5], however, it is evident that the proofs can be adapted.

Lemma 9. <SHd, Unif5h> is not a correct abstract interpretation of

(Cr, Unif).

Proof. Tt is sufficient to find S € SH? and a binding z — ¢ such that

Unif*" (S, = t) € ol (Unif (v3,(S), {{z = t}})).

Let S = {{z,y}}, t = f(1,y) and 0 = {z — f(y,1)}. Note that 8 € 47} (S). Now
unif(0,{z = t}) = {z — f(1,1),y — 1} and so it follows that

oG (Unif (v (5), {{z = t}}) = 0.
But Unif*"(S,z —t) = {{x,y}, {z}, {y}} and so the result follows. O

Hence new abstract unification operations need to be devised for both Pos?®

and SH?.

6 Conclusion

We have shown how, given an abstract domain D specifying a lattice property a,,
an abstract domain D¢ specifying the mirror property ap' can be constructed.
We have also shown that if (D,Opp) is a complete abstract interpretation of
(C, Opc), then (D4 Opp) is a correct abstract interpretation of (C, Op¢).

There are instances when non-complete abstract operations computing a
property can be used to improve the precision of operations computing the mir-
ror property. For example, formulae of the form z — y in Pos are interpreted
as meaning “z ground implies y ground”. The contrapositive of this is “y non-
ground implies £ non-ground”. Thus this information could be used to improve
the precision of a Pos? analysis. In fact, since non-groundness information is
approximated by freeness information, it would seem reasonable to implement
Pos? as a reduced product construction with Pos and a domain expressing free-
ness information. It would be interesting to see if generalisations of this method
could be meaningfully applied to other domains. Another direction for future
work is to see how our approach relates to lower/upper approximations used in
concurrency [17].

Acknowledgments

We thank the anonymous referees for their useful comments. This work was

supported by EPSRC Grant GR/M05645.

References

1. R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
In P. Van Hentenryck, editor, Static Analysis: Proceedings of the 4th International
Symposium, volume 1302, pages 53-67, Paris, France, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Balbes and P .Dwinger. Distributive Lattices. University of Missouri Press,
Columbia, Missouri, 1974.

. G. Birkhoff. Lattice Theory. AMS Colloquium Publication, Providence, RI, 3rd

edition, 1967.

M. Codish, A. Mulkers, M. Bruynooghe, M. Garcia de la Banda, and
M. Hermenegildo. Improving abstract interpretations by combining domains. ACM
Transactions on Programming Languages and Systems, 17(1):28-44, 1995.

A. Cortesi and G. File. Sharing is Optimal. Journal of Logic Programming,
38(3):371-386, 1999.

A. Cortesi, G. File, and W. Winsborough. Optimal Groundness Analysis Using
Propositional Logic. Journal of Logic Programming, 27(2):137-167, 1996.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238-252,
1977.

. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.

In Proc. Sizth ACM Symp. Principles of Programming Languages, pages 269-282,
1979.

P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming, 13(2 & 3):103-179, 1992.

R. Giacobazzi and F. Ranzato. Refining and Compressing Abstract Domains.
In Proceedings of the 24th International Colloguium on Automata, Languages and
Programming ICALP 97, volume 1256 of Lecture Notes in Computer Science, pages
771-781. Springer-Verlag, 1997.

R. Giacobazzi and .F Ranzato. Optimal Domains for Disjunctive Abstract Inter-
pretation. Science of Computer Programming, 32:177-210, 1998.

R. Giacobazzi, F. Ranzato, and F. Scozzari. Making Abstract Interpretations
Complete. Journal of the ACM. (to appear).

R. Giacobazzi, F. Ranzato, and F. Scozzari. Building Complete Abstract Inter-
pretations in a Linear Logic-based Setting. In G. Levi, editor, Static Analysis,
Proceedings of the Fifth International Static Analysis Symposium SAS 98, volume
1503 of Lecture Notes in Computer Science, pages 215—-229. Springer-Verlag, 1998.
R. Giacobazzi and F. Scozzari. A Logical Model for Relational Abstract Do-
mains. ACM Transactions on Programming Languages and Systems, 20(5):1067—
1109, 1998.

P. Hill and F. Spoto. Freeness Analysis through Linear Refinement. In Static
Analysis: Proceedings of the 6th International Symposium, volume 1694, pages 85—
100, 1999.

N.D. Jones and H. Sgndergaard. A Semantics-based Framework for the Abstract
Interpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract Inter-
pretation of Declarative Languages, pages 123-142. Ellis Horwood Ltd, 1987.

F. Levi. A Symbolic Semantics for Abstract Model Checking. In Static Analysis:
Proceedings of the 5th International Symposium, volume 1503, pages 134-151, 1998.
F. Scozzari. Logical Optimality of Groundness Analysis. In P. Van Hentenryck,
editor, Proceedings of International Static Analysis Symposium, SAS’97, volume
1302 of Lecture Notes in Computer Science, pages 83-97. Springer-Verlag, 1997.

