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Abstract. Def, the domain of definite Boolean functions, expresses
(sure) dependencies between the program variables of, say, a constraint
program. Share, on the other hand, captures the (possible) variable shar-
ing between the variables of a logic program. The connection between
these domains has been explored in the domain comparison and decom-
position literature. We develop this link further and show how the meet
(as well as the join) of Def can be modelled with efficient (quadratic) op-
erations on Share. Further, we show how by compressing and widening
Share and by rescheduling meet operations, we can construct a depen-
dency analysis that is surprisingly fast and precise, and comes with time-
and space- performance guarantees. Unlike some other approaches, our
analysis can be coded straightforwardly in Prolog.
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1 Introduction

Many analyses for logic programs, constraint logic programs and deductive
databases use Boolean functions to express dependencies between program vari-
ables. In groundness analysis [2, 4, 10, 20, 26], the formula z A (y « z) describes
a state in which x is definitely ground, and there exists a grounding dependency
such that whenever z becomes ground then so does y. Other useful properties
like definiteness [5, 21], strictness [19], and finiteness [6] can be also expressed
and inferred with Boolean functions. Different classes of Boolean functions have
different degrees of expressiveness. For example, Pos, the class of positive propo-
sitional formulae, has the condensing [1] property and is rich enough for goal-
independent analysis. Def, the class of definite positive propositional formulae,
is less expressive [1] but has been proposed for goal-dependent analysis of con-
straint programs [21].

The objective behind this work was to construct a goal-dependent groundness
(and definiteness) analysis for logic (and constraint) programs, that was fast
and precise enough to be practical, maintainable and easy to integrate into a
Prolog compiler. Binary Decision Diagrams (BDD’s) [7] (and their derivatives
like ROBDD’s) are the popular choice for implementing a dependency analysis [1,
2, 4, 20, 26]. These are essentially directed acyclic graphs in which identical sub-
graphs are collapsed together. BDD operations require pointer manipulation and
dynamic hashing [20] and thus BDD-based Pos analyses are usually implemented
in C [1, 2, 4, 26]. Fecht [20] describes a notable exception that is coded in ML.
The advantage of using ML is that it is more declarative than C and therefore



easier to maintain. The disadvantage is that it impedes integration into a Prolog
compiler [25]. The ideal, we believe, is to implement a dependency analyser in
ISO Prolog. The problem, then, is essentially one of performance.

Our contribution to solving this problem is as follows: In terms of precision,
we provide the first systematic precision experiments that compare Pos and Def
for goal-dependent groundness (and definiteness) analysis. We found that Def
was as precise as Pos for all our realistic Prolog and CLP(R) benchmarks. We
build on this and demonstrate how Def can be implemented efficiently and coded
succinctly in Prolog. Our starting point is the work of Cortesi et al [15, 16] that
shows that Share, which is a domain whose elements are sets of sets of variables,
can be used to encode Def. We develop this to show:

— how the meet and join operations of Def can be computed straightforwardly
based on this encoding, without the closure operation of Share [22] that has
a worst-case exponential complexity;

— how an operation (that we call compression) aids fixpoint detection;

— how meet operations can be rescheduled to improve efficiency;

— how widening can be applied to ensure that both the time-complexity of the
analysis (the number of iterations) and the space-complexity (the number of
sets of variables), grows linearly in the size of the program;

— that the speed of our analysis compares surprisingly well against state-of-
the-art BDD-based Pos analysers [4, 20].

The rest of the paper is structured as follows. Section 2 surveys the neces-
sary preliminaries. Section 3 recalls the relation between Share and Def and is
included so that the paper is self-contained. Section 4 shows how the meet and
join operations of Def can be computed efficiently using a Share based represen-
tation. Section 5 introduces compression and meet scheduling whereas Section 6
discusses widening. Section 7 describes the implementation. Section 8 reviews
the related work, and finally Section 9 presents our conclusions.

2 Preliminaries

In this section, we introduce some notation and recall the definitions of Boolean
functions and the domain Share. For a set S, |S| denotes the cardinality and
©(S) the powerset of S. Var denotes a denumerable set (universe) of variables
and X C Var denotes a finite set of variables; the set of variables occurring in a
syntactic object o is denoted by wvar(o); the set of all idempotent substitutions
is denoted by Sub; and Bool is defined to be {true, false}.

If (S,=) is a poset with top and bottom elements, and a meet sqcap and
join LI, then the 4-tuple (S, <,M, 1) denotes the corresponding lattice. A map
g: L — K, where L and K are lattices, is a homomorphism iff g is join-preserving
and meet-preserving, that is, g(aUb) = g(a) U g(b) and g(amb) = g(a) N g(b) for
all a,b € L. An isomorphism is a bijective homomorphism.



2.1 Boolean Functions

A Boolean function is a function f : Bool™ — Bool where n > 0. A Boolean
function can be represented by a propositional formula over X where | X| = n.
The set of propositional formulae over X is denoted by Boolx. We use Boolean
functions and propositional formulae interchangeably without worrying about
the distinction [1]. We follow the convention of identifying a truth assignment
with the set of variables that it maps to true.

Definition 1 modelx. The (bijective) map modelx : Boolx — p(p(X)) is de-
fined by: modelx (f) = {M C X | (AM) A (-VX\M) |= f}. |

Ezample 1. If X = {x,y}, then the function {(true,true) — true, (true, false) —
false, (false,true) — false, (false, false) — false} can be represented by

z Ay. Also modelx (x Ay) = {{z,y}} and modelx (zVy) = {{z}, {y},{z,y}}.1

Definition 2 Posx, Def y, Monx. Posx is the set of positive Boolean func-
tions over X. A function f is positive iff X € modelx(f). Def x is the set of
positive functions over X that are definite. A function f is definite iff M N
M' € modelx (f) for all M, M' € modelx(f). Monx is the set of monotonic
Boolean functions over X. A function f is monotonic iff M € model x (f) implies

M' € modelx(f) for all M’ such that M C M' C X.

Note that Def y C Posx and Monx € Posx. It is possible to show that each
f € Def x is equivalent to a conjunction of definite (propositional) clauses, that
is, f = Al (yi < AY:) [18].

Ezample 2. Suppose X = {x,y, z} and consider the following table, which states,
for some Boolean functions, whether they are in Def x, Posx or Monx, and also
gives model x .

f |Def x Posx Monx]| modelx (f)
false . 0
Ay . . o z,Yr, z,Y,2
x\/y L4 ° T ,{y}7 "I:7y ) x"z 7{y7 Z}7 x7y7z
T Yy ° ° Q)a Ty, {Z}a T, Yg,\L,27, z,Y,z
x\/(ykz) b ®7 T Y y Y "I:7y Y x"z Y y"z ) x7y7z
true L4 L4 L4 Q)a Ty, Y 7{2}7 T, Ygr W Ly25,1Y,25,1L,Y,%2

Note, in particular, that zVy is not in Def x (since its set of models is not closed
under intersection) and that false is neither in Posx nor Def y. |

Defining fiVfo = A{f € Defx | fi F fAfo = f}, the d-tuple (Def x, |5, A, V) is
a finite lattice [1], where true is the top element and AX is the bottom element.
Existential quantification is defined by Schréder’s Elimination Principle, that is,
Jz.f = flz — true] V flxz — false]. Note that Jx.f € Def x if f € Def x [1].

Example 3. If X = {z,y} then zV(z < y) = A{(z « y),true} = (z < y), as can
be seen in the Hasse diagram for Def x (Fig. 1). Note also that zVy = A{true}
= true # (z V y). |
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Fig. 1. Hasse diagrams

The maximum number of iterations of a fixpoint analysis relates to the length of
the longest ascending chain in the underlying domain. For Posx, it is well-known
that the longest chain has length 2" — 1 where |X| = n. It is less well-known
that the same holds for Def x.

Proposition3. Let |X| = n. Let f1 = fo... |= fir be a maximal strictly as-
cending chain where f; € Def y for all i € {1,...,k}. Then k = 2". |

2.2 Sharing Abstractions

For completeness, we introduce the basic ideas behind the Share domain [22].
This domain traces the possible variable sharing behaviour of a logic program.
Two variables share if they are bound to terms that contain a common variable.

Definition 4 Sharex. Sharex = p(p(X) \ {0}). |

Thus we have the finite lattice (Sharex, C,N,U). The top element is p(X) \ {0}
and the bottom element is {).

Definition5 a3, v§#. The abstraction map a5? : p(Sub) — Sharex is defined
as a5t (©) = {occ(@,v) N X | 0 € O Av € Var} \ {0} where occ(d,v) = {z €
Var | v € var(f(z))}. The concretisation map 3 : Sharex — p(Sub) is defined
as 1§(S) = {0 € Sub | a%({6}) C S). I

To streamline the theory and reduce the size of abstractions, the empty set
is never included in a share set. However there is some loss of information.
That is, if every element of @ maps every element of X to a ground term then
st (©) = {03\ {0} = 0 = a5k(0). Thus a3 (and hence v§) cannot distinguish
between a set of ground substitutions and the empty set. In practice, the empty
set only arises when a computation fails and this would normally be flagged
elsewhere in the analyser [9].



Ezample {. Let X = {z,y, 2} and consider abstracting @ = = f(y,2) ® where
at program point @), no variable in X is ground or shares with any other element
of X. The bindings on X, for example, could be 8, or ¢, as given below. Then
the bindings at (B would be 8, or ¥, respectively.

9a=§y'—>g(u),z'—>v} 0,,:ifoEg(u;,v),yn—)g(u),sz}
190,: CU'—)f(’U,,’U/)} 191): CUny,y,Z’_)y}

The abstraction S, = {{z},{y},{z}} describes ,, that is 6, € v5#(S,), since
occ(0,,z) = {z}, occ(0,,u) = {u,y}, occ(8,,v) = {v,2z} and occ(0,,y) =
occ(8,,z) = (. Similarly 9, € v5#(S,). The abstract unification operation of Ja-
cobs and Langen [22] will compute the abstraction Sy = {{z,y},{z, z},{z,y,2}}
for the program point (. A safety result of Jacobs and Langen [22] asserts that
0y, € 7 (Sp). Indeed, we see that 6, € v5¢(Ss) since occ(fp,u) = {u,z,y},
occ(by,v) = {v,z, 2}, and occ(Bp,x) = occ(Bp,y) = occ(By, z) = (). The reader is
encouraged to verify that 9, € v5#(Sp). |

3 Quotienting Sharex to obtain Def x

In this section we construct a homomorphism from Sharex to Def . We recall
the well-known connection between Sharex and Def x [13, 14, 15, 16]. For the
elements of Sharex, we define an abstraction ax which interprets a sharing
abstraction as representing a set of models and hence a Boolean function.

Definition 6 ax. The (abstraction) map ax : Sharex — Def x is defined as
follows: ax (S) = modelx' ({X \ (US') | S' C S}). |

The definition of ax is essentially that of a of Cortesi et al [14, Section 8.4],
adapted to our definition of Sharex. ax is well-defined, that is, ax (S) € Def x
for all S € Sharex. First, since X € modelx (ax(S)), it follows that ax(S) €
Posx. Secondly, if My, My € modelx (ax (S)) then M; = X'\ (US;) where S; C S
(Z = 1,2). Clearly Sl U SQ g S. As M1 N M2 =X \ (U(Sl U Sg)), it follows that
My N M, € model x (ax (S)).

Lemma7. ax is surjective. |

However, ax is not injective, and thus it is a strict abstraction of Sharex. As
an example, consider X = {z,y}, S1 = {{z},{y}} and S> = S; U{{x,y}}. Then
ax(S1) = modelx ({0, {z},{y}, {z,y}}) = ax(S:) but S; # S,.

Ezample 5. Let X = {z,y,z} and S = {G1,G2,G3} where G; = {z}, G2 =
{y,z} and G5 = {z}. The table illustrates how ax(S) can be computed by
enumerating US’ and X \ (US’) for all S" C S.

s | us |X\ US’ )| s' us' |X\ (US")
69 {2} { z} G G i«zi teuk
o] | | 5| e Ey:zi t

{Gl’ }{CE Y,z { .T y,z} 0



Thus aX(S) = mOdelX_l({wv {:L’}, {y}) {x,y}, {y,z}, {1‘,y,2}}) = (y — Z) The
reader is encouraged to verify that ax () =AX and ax ({{z} | z € X})=true. |

It is perhaps easier to interpret an abstraction of Sharex as definite Boolean
functions by using the C : Sharex — Def x abstraction map of Cortesi et al
[15, 16]. C can be expressed particularly succinctly using the auxiliary operation
rel which, given a set of variables G and an S € Sharex, selects the subset of S
which is relevant to the variables of G.

Definition 8 rel. The map rel : p(X) x Sharex — Sharex is defined by:

rel(Y,S)={Ge S|GNY # 0} |
Definition 9. The map C : Sharex — Def x is defined by C(S) = AF where
F={y«ANY |ye X ANY CX\{y} A rel({y},S) Crel(Y,S)}. |

F is defined with Y C X \ {y} rather than ¥ C X to keep its size manageable.
Ezample 6. Consider again Example 5. The set of ¥ C X \ {z} such that

rel({z},S) Crel(Y,S) is {{z}, {z,y},{z, 2}, {x,y, 2}}. Likewise, set of ¥ C X\
{y} such that rel({y}, 5) C rel(Y, S)is {{y}, {2}, {=, 2}, {=,y},{y, 2}, {=,y, 2} }.
Finally, the set of Y C X \ {z} such that rel({z},S) C rel(Y,S) is {{z},

|

{z,z},{y, 2}, {z,y,2}}. Thus C(S) = (y « z).
The following proposition asserts the equivalence of C and ax. It is proven by

Cortesi et al [14], albeit for slightly different definitions. Modifying their proof
to our definitions is straightforward.

Proposition10. C = ax. |

By defining S = S" iff ax(S) = ax(S'), ax induces an equivalence relation
on Sharex which quotients Sharey. Using the closure under union operation
of Jacobs and Langen [22], we obtain a useful lemma about these equivalence
classes.

Definition 11. Let S € Sharex. Then the closure under union S* of S is defined
by: S* = {US" | " C S} \ {0}. |

Note that closure under union is exponential.
Lemmal2. Let Sl,SQ € Sharex. Then Sl* = Sl and Sl = SQ iff Sf = S; I

We lift ax to ax : Sharex /=— Def x by defining ax([S]=z) = ax(S). Since
ax : Sharex — Def x is surjective it follows that ax : Sharex/=— Def x is
bijective. We now define, for the the operations =, V and A on Def y, analogous
operations C, Ll and M on Sharex /=.

Definition 13 C, LI, M.

[Si]= C [So]= < X ax([Si]z) F ax([S2]=)
[S1]= U [S2]= = ax ™ (ax([Si]=) V ax([S2]=)) |
[Si]= N [S2]= = axHax([Si]=) A ax([S:2]=))

Proposition 14. (Sharex /=,C, M, L) is a finite lattice. |

It follows by construction that ax is an isomorphism. For the dyadic case, the
isomorphism is illustrated in Fig. 1.



4 Computing the join and meet within Share

In this section we show how the meet (as well as the join) of Def y can be
computed with Sharex /= via the isomorphism. It is not obvious from the defi-
nition of V how f1V fo is computed, and it turns out that f; and fo must be put
into (orthogonal) reduced monotonic body form [1]. In contrast, it is well-known
[15, 16] that with the Share representation, join basically reduces to set union.

U [Sa]l2 = [S1U 5]

Proposition15. [S)]

Ezample 7. Consider calculating [S1]= U [Sz2]= where X = {w,z,y,2}, S1

{{w,a:,y}, {x,y}, {y}v {Z}}and 52 = {{U},Z}, {1‘}, {y}v {Z}}'NOte that aX(Sl)
(w+ z) A (z + y) and ax(S2) = w + z. Then ax(S; USs) = ax({{w,z,y},

{w, z}, {z},{z,y}, {y}, {z}}) = (w < (x A2)) A (w <+ (y A z)) as required.

The challenge is in defining a computationally efficient meet. This is defined
in terms of a map iff which, in turn, is defined in terms of the binary-union
operation of Jacobs and Langen [22]. We follow Cortesi et al [16] and denote
binary union as ®.

Definition 16 binary-union, ®. The map ® : Sharex? — Sharex is defined
by251®52:{G1UG2|G1651/\G2€SQ}. |

The if and iff maps defined below are similar to the classical abstract unification
operation of Jacobs and Langen [22]. Their interpretation, however, is that given
variable sets Y7 and Y5 and an abstraction S such that ax(S) = f, iff and if
compute new abstractions that represent fA(AY; <> AY2) and fA(AY] + AY?).

Definition 17. The two maps iff : p(X) X p(X) x Sharex — Sharex and if :
p(X) x p(X) x Sharex — Sharex are defined by: iff(¥1,Y>,5) =
(S \ (51 U Sz)) U (Sl X Sz) and if(Yl,Yz,S) = (S \ Sl) U (Sl X SQ) where
S1 =rel(Y1,5) and Sy = rel(Ys, S). |

One important difference between iff and if on the one hand and the abstract
unification algorithm of Jacobs and Langen [22] on the other hand is that iff
and if involve no costly closure calculations that arise because of the transitivity
of variable sharing. Consequently the complexity iff and if is not exponential in
the number of variable sets in S, but quadratic. This is a similar efficiency gain
to that obtained with the Share pair-sharing quotient of Bagnara et al [3].

Proposition 18. ax(iff (Y1,Y2,5)) = ax(S) A (AY] & AY3) |
Corollary 19. ax(if (Y1,Y2,S5)) = ax(S) A (AY] < AY2) |

Even though if (Y, Y2, S) can be simulated with iff (Y;', Y2, S) where Y1’ = Y; U
Ys, it is cheaper to compute rel(Y;,S) than rel(Y;',S). This is one reason why
if (Y1, Y2, S) is more efficient than iff (Y;', Y2, S). The map if is particularly useful
in the analysis of constraint logic programs, where a constraint like x = y + z is
abstracted by (z <+ (yA2)) A (y < (x A2)) A(z < (x Ay)).

Projection is an important component of a Def analysis within itself [21].
For completeness, we state its correctness as a proposition.



Deﬁ_nition 20 projection 3. The map 3 : p(X) x Sharex — Sharey is defined
by: V.S = {GNY |G € S} \ {0}. |

Proposition21. If Y C X then 3(X \ YV).ax([S]z) = ay([FY.S]=). |

Finally, Theorem 22 shows how meet can be computed with a sequence of iff
calculations.

Theorem 22. [Sl]f [Sa]= = [EX.S)4]= where X = {z,...,2z,}, S| =
p(S1) U Sz, Siyy = iff ({p(z;)},{z;},S}) for j € {1,...,n} and p is a renaming
such that p(X)N X = 0. |
Note that [S1]=[S2]= could also be computed by [S1]=M[S2]= = [S1* N S2*]=.

This, however, would be inefficient.

Ezample 8. Consider calculating [S1]=M[S2]= where X = {w, z,y}, S1 = {{w, z},

{z},{y}} and S2 = {{w},{z,y},{y}}. Thus ax(S;) = w + z and ax(S:) =
z+—y Ifp={w—w,z— 2y y'} then

512 ww’} bAwh Az, y} {y}}
5, %&“ﬂi’{?}’g')i v éfyﬂygj ! y},y;}yi}}
S§= ﬁ(gy’ y%:&f) = ' 2y w,,yh {2y 2,y Y,y y )

Thus [S;]=MN[Ss]= = [3X.S4']= = {{w, z,y}, {z,y}, {y}}. Observe that ax ([S1]=M
[S2]=) = (w < x) A (z < y) as required. |

5 Representing equivalence classes and meet rescheduling

In our analysis, the functions f and f’ would be represented by elements of
Sharex, S and S’, say. The fixpoint stability check, f = f', amounts to check-
ing whether [S]= = [S’]= which, in turn, reduces to deciding whether ax(S) =
ax (S"). To make this test efficient we represent an equivalence class by its small-
est representative and thus introduce a compression operator c.

Definition 23. ¢ : Sharex — Sharex is defined by: ¢(S) =n{S' | ' =S}. |
The following proposition explains how ¢(S) is actually computed.

Proposition24. Let n = |X|. Then ¢(S) = S,, where S; ={G € 5| |G| = 1}
and Sj11 = S;U{G € S||G|=j+1AG ¢ St}

Trivially, if S = S’, then ¢(S) = ¢(S'). From the proposition we also see that
S* = S8,* = ¢(8)* and hence if ¢(S) = ¢(S’) then S* = ¢(S)* = ¢(S')* = S"* so
that S = S’ by Lemma 12. Hence ¢(S) = ¢(S’) iff S = S’ and thus by testing
whether ¢(S) = ¢(S') we can check for the fixpoint condition S = S’.

When computing ¢(S) we can test whether G ¢ S;* without actually com-
puting S;* as follows. Suppose S; = {G1,...,G} and Gy’ = G. Then compute
Gi' = Gi 1"\ G;if G; C G and put G;' = G;_,' otherwise. Then G,," = 0 iff
G € S;*. Using this tactic we can compute ¢(S) in quadratic time.

Projection can sometimes lead to abstractions that include redundant vari-
able sets as is illustrated below.



Ezample 9. Consider S = {{z},{y},{z,vy,2}} which, incidentally, represents
ax(S) = (z + 2) A (z + y). Projecting onto {z,y} like so I{z,y}.S =
{{z},{y}, {z,y}} introduces the set {x,y}, whereas c(I{z,y}.S) = {{z}, {y}}.]

Compression is only applied to check for stability. In our framework, however,
projection always precedes a stability check. For example, the answer pattern for
a clause is obtained by projecting onto the head variables, and then a stability
check is applied to see if other clauses need to be re-evaluated. Thus, in our
framework, compression is applied after projection. Compression could be ap-
plied more widely though since, in general, iff (Y1, Y2, ¢(S)) # c(iff (Y1, Y2, ¢(S))).

Ezample 10. Let S = {{z},{y,z},{y, z},{z,2}}. Then ¢(S) = S and iff {y}, {z},
S) = {zh {y, 21 {y, 2, 23} but c({{z}, {y, 2}, {y, =, 2}}) = {{z}, {v, 2} }. I

In practice, however, the space saving yielded by c(iff (Y1, Y>, S)) over iff (Y1, Y5, S)
is usually small and not worth the effort of computing c.

Curiously, the efficiency of meet computations can often be significantly im-
proved by introducing some redundancy into the representation. Specifically,
a Boolean function is represented by a pair (M,S) where M = X \ var(S).
The pair (M, S) does not include any information that is not present in S: it
simply flags those variables, M, that are ground (or definite). (This is rem-
iniscent of the reactive ROBDD representation of Bagnara [2].) This is very
useful in computing [Si]= M [S2]= by the method prescribed in Theorem 22.
Since meet is commutative, [S1]= M [S2]= can be computed by the sequence
S1 = p(S1)US2, Siy = iff ({p(zx(j))}s {zx(j)},S;) where 7 is a permutation on
{1,...,n}. The tactic is to choose a permutation with a maximal m € {0,...,n}
such that (p(zr(1)) € M V1) € M) ... (p(Tr(m)) € MV Zr() € M) where
M = My UMy, My = X\ var(S1) and My = X \ var(S2). We call this technique
meet rescheduling, and illustrate its usefulness in the following example.

Ezample 11. Consider [S1]=M[S2]= where X = {z1, 22,23}, S1 = {{z1,22}} and
Sy = {{z1},{z2,23}}. Thus ax(S1) = (x1 < z2) Azs and ax(S:) = (z2 > z3).
Also My = {z3}, My = and thus M = {x3}. If p = {21 = 21", 20 = 22/, 25 —
x3'} then scheduling naively and using 7 = {1 — 3,2 — 1,3 — 2} we obtain,
respectively

gi = {{a1, 25}, ,{:ﬁ, {xz,a}:i}} 5= {{x'},x%, ?1%,}{1«2,%}}
e B L R
Sy = Sy =

Note how the re-ordering 7 tends to reduce the size of the intermediate S!. |

A pair (M, S) representation is preferred to recomputing M prior to each meet
because formulae typically occur as the operands of many meet operations. Thus
M serves as a memo, avoiding unnecessary recomputation.



6 Widening

Apart from reducing the size of abstractions, it is also worthwhile to avoid gener-
ating large abstractions that can arise from the quadratic growth of iff (Y1,Y2,5)
and if (Y1,Y2, 9) stemming from S; ®S3. However, if |S| = n, |S1| = n1, |S2| = na
then |iff (Y1,Y2,5)| < n+niny — (n1 + n2). Thus it is possible to detect that
liff (Y1, Y5, S)| will definitely be small, say less than a threshold k, without com-
puting iff (Y1,Y2,5) itself. This leads to the following (widened) versions of iff
and if that trade precision for efficiency.

Definition 25.
iff i (Y1,Y5,8) = if (Y1,Y5,8) =
{iﬁ(yl,}/é,S) ifn+n1n2—(n1 +’TL2) <k {Zf(Yl,}/é,S) ifn+nine—ng <k
S otherwise S otherwise
where S; = rel(Y1,S), Sy = rel(Y3, S), |S| = n, |Si| = n1 and |Ss| = na. |

This (space) widening ensures that at each stage of the analysis the size of an ab-
straction is kept smaller than k. In fact, since the size of the abstraction depends
on the number of variables, k is defined as a multiple of the number of the vari-
ables in a clause. This is enough to ensure that, in our interpreter, our space usage
grows linearly with the size of the program. A widened meet can be obtained
by replacing each iff ({p(z;)}, {z;}, S}) of Theorem 22 by iff ;. ({p(z;)}, {z;}, S})-
(Interestingly, a widening for ROBDD’s is described by Fecht [20] that combats
the space problems that arise in the analysis of high arity predicates.)

Folklore [8] says that call and answer patterns rarely get updated more than
3—4 times. This is true for many small programs, but in chat_80.pl and aqua_c.pl
we have observed patterns being updated 10-12 times. To bound the number of
iterations that can occur, we widen abstractions if they are updated more than,
say, 8 times. This (time) widening is defined by: A(S) = S'U{{z} | = € var(S)\
var(S’)} where S = {G' € S |VG € S.(GNG" # 0) —» (G’ C G)}. Observe that
[S]= C [A(S)]= and that ax (A(S)) = (AY)ANMz < y | G € A(S)Az,y € G})
where Y = X \ var(A(S)). Formulae of this form occur in the W Pos domain
of Codish et al [11] and thus have a maximal chain length that is linear in | X]|.
This ensures that the number of iterates will be linear in the sum of the arities of
program predicates, and thus provides a time guarantee for a cautious compiler
vendor.

7 Experimental work

To investigate whether a quadratic meet, meet rescheduling and widening are
enough to obtain an efficient and scalable dependency analysis, we have imple-
mented an analyser in Prolog as a simple meta-interpreter that uses induced
magic-sets [9] and eager evaluation [27] to perform goal-dependent bottom-up
evaluation. Induced magic is a refinement of the magic set transformation, avoid-
ing much of the re-computation that arises because of the repetition of literals
in the bodies of magic’ed clauses [9]. It also avoids the overhead of applying the



magic set transformation. Eager evaluation [27] is a fixpoint iteration strategy
which proceeds as follows: whenever an atom is updated with a new (less pre-
cise) abstraction, a recursive procedure is invoked to ensure that every clause
that has that atom in its body is re-evaluated. Eager evaluation can involve
more re-computation than semi-naive iteration but it has the advantages that
(1) a (A-)set of recently updated atoms does not need to be represented; (2)
eager evaluation performs a depth-first traversal of the call-graph so that infor-
mation about strongly connected components (SCCs) of the call-graph is not as
important as in semi-naive iteration. Thus we also avoid computing SCCs.

fixpoint recision
file| abs|Con Def, Def, Def, Pos|Con Def Def, Pos
disjr.pl| 0.13]0.06 0.I3 0.09 0.08 0.03] 38 97 97 97
sccl.pl| 0.21/0.13 0.81 0.81 0.77 0.37| 44 89 89 89
tictactoe.pl| 0.22/0.02 0.12 0.08 0.09 0.04| 56 56 56 56
dialo%.pl 0.13/0.03 0.1 0.07 0.07 0.04] 46 70 70 70
ime_v2-2-1.pl| 0.18/0.05 0.56 0.3 0.29 0.36] 77 101 101 101
csr.pll 0.26/0.06 0.11 0.1 0.09 0.05| 36 149 149 149
flatten.pl| 0.17|0.03 0.76 0.36 0.35 1.62| 26 27 27 27
conman.pl| 0.2] 0.0 0.01 0.02 0.01 0.01 6 6 6 6
unify.pl| 0.21/0.04 0.87 0.45 0.44 59.06| 69 70 70 70
bridge.clpr| 0.34{0.01 0.06 0.03 0.03 0.04] 24 24 24 24
neural.clpr| 0.25[0.05 0.58 0.15 0.14 0.12] 80 118 118 118
kalah.pl| 0.22| 0.1 0.12 0.13 0.12 0.04] 91 199 199 199
bryant.pl| 0.28{0.06 1.46 1.04 1.03 70.24| 89 89 89 89
nbody.pl| 0.33{0.05 8.44 0.33 0.32 1.03| 83 109 109 109
sdda.pl| 0.25/0.04 0.34 0.38 0.38 3.33| 17 17 17 17
peep.pl| 0.51{0.04 0.37 0.3 0.29 0.87 8 10 10 10
boyer.pl| 0.32{0.03 0.11 0.18 0.19 0.15 3 3 3 3
read.pl| 0.38/0.05 0.81 0.42 0.4 1.15] 90 99 99 99
gplan.pl 0.36{0.12 1.77 1.59 1.56 63.8] 42 49 49 49
reducer.pl| 0.31/0.04 oo oo 0.93 oo 36 - 41 -
press.pl| 0.36{0.17 11.6 4.23 1.26 2.29] 45 53 53 53
asm.pl| 0.51{0.07 0.33 0.39 0.43 0.23| 86 87 87 87
parser_dcg.pl| 0.39/0.08 0.53 0.58 0.55 0.97| 25 41 41 41
trs.pl| 0.52{0.09 3.08 2.51 2.48 oo 13 13 13 oo
dbqas.pl| 0.36/0.02 0.31 0.09 0.09 0.23| 36 43 43 43
ann.pl| 0.4110.09 1.9 1.27 094 1.99| 73 73 73 73
nand.pl| 0.49(0.62 0.67 0.39 0.39 0.16] 123 402 402 402
simple_analyzer.pl| 0.38/0.08 2.37 0.74 0.72 oo| 88 89 89 -
sim.pl| 0.76/0.18 3.62 2.51 2.46 oo| 81 100 100 —
ili.pl| 0.61]0.13 00 oo 1.69 19.16 4 - 4 4
lnprolQE.pl 0.4110.16 0.37 0.53 0.5 0.23] 54 143 143 143
rubik.pl| 0.79] 0.2 2.0 1.96 193 oo| 1563 160 160 -
strips.pl| 0.7910.04 0.17 0.16 0.16 0.06| 144 144 144 144
peval.pl| 0.68/0.08 1.92 1.49 1.06 9.34| 27 27 27 27
sim_v5-2.pl| 0.86{0.11 0.48 0.55 0.54 0.49| 100 101 101 101
chat_parser.pl| 1.09|0.62 4.27 3.88 3.52 oo| 444 505 505 —
aircraft.pl| 2.01/8.56 1.34 1.33 1.3 0.35| 228 687 687 687
essln.pl| 1.49/0.25 2.76 1.43 1.39 17.44| 103 155 155 155
chat_80.pl| 4.63/1.23 12.89 9.99 9.82 ool 457 839 839 —
aqua_c.pl|12.17|7.07 oo oo 69.56 oo|1087 - 1227 —

The table summarises our experimental results for applying Def to some of
the largest Prolog and CLP(R) benchmark programs that we could find on the
WWW. The programs are ordered by size, where size is measured in terms of the
number of (distinct abstract) clauses. To assess the precision of the Def analysis,
we have implemented a standard Pos analysis following the technique of Codish
and Demoen [10]. Ideally our Def analysis should match its precision. We have
also modified this analysis to obtain a C'on analysis [23]. Ideally our Def analysis



should significantly improve on its precision, since otherwise neither Def or Pos
are worthwhile! For completeness, we have included the timings for Pos and Con,
but we are primarily concerned with precision. Our Pos analysis is not state-of-
the-art. The abs column give the time for parsing the files and abstracting them,
that is, replacing built-ins, like arg(X, T, S), with formulae, like X A (S « T).
This overhead is the same for all the analyses. The fizpoint columns gives the time
to compute the fixpoint. Def, is a naive implementation of our analysis (that
took two person weeks to construct) which applies compression but not meet
rescheduling and widening; Def, additionally applies meet rescheduling; and
Def,, applies compression, meet rescheduling and widening. The Def, and Def,,
analysers were developed together and took an additional 4 days to construct.
The code for Def,, Def, and Def,, meta-interpreters (including all the set
manipulation utilities) is less than 700 clauses. We widen for time at iteration
8 and widen for space when the number of variable sets is more than 16 times
the number of variables in a clause. Times are in seconds and oo indicates that
the fixpoint calculation timed out after two minutes. The timings were carried
out on an Sun-20 SuperSparc with 64 MByte to match the architecture of Fecht
[20]. The analysers were coded in SICStus 3#5 and compiled to naive code. The
precision columns give the total number of ground arguments in the call and
answer patterns: this is an absolute measure which reflects the usefulness of the
analysis for code optimisation. The precision figures for Def, and Def, are the
same and given in column Def.

The experimental results indicate that Def, has good scaling behaviour.
This is the crucial point. Put simply, there are no programs for which Pos ter-
minates within two minutes and Def, does not (although Pos is sometimes
faster). Usually meet rescheduling gives a speedup and sometimes this speedup
is very dramatic. 10% of the programs, however, run slower with meet reschedul-
ing. This typically occurs in programs with very few ground arguments where
the effort of rescheduling in not repaid by a reduction in the size of sharing
abstractions. Widening seems to be crucial for scalability as is illustrated by
reducer, ili and aqua-c. Widening, in fact, is rarely applied. It is crucial for effi-
ciency though because, just one large sharing abstraction can have a disastrous
impact on performance. (This also suggests that widening is necessary in the
pair-sharing quotient of Share [3].)

Since our machine matches that of Fecht [20] we can also compare the speed
of our Def analyser to the BDD-based Pos GENA analyser [20]. This the one of
the fastest (perhaps the fastest) Pos analysis that is described in the literature.
With the sophisticated CallWDFS [20] framework, ann.pl takes 0.18 s, nand.pl
takes 0.31 s, chat_80.pl takes 4.29 s, and aqua_c.pl takes 28.54 s. Since Fecht [20]
does not give processor details for his Sparc-20, we have run our experiments
on the slowest 50MHz model that was manufactured. His machine could well
be almost twice as fast. Even though our framework is not semi-naive, we are
(at most) 2-4 times as slow as GENA. Furthermore, to perform a comparison
against CHINA instantiated with Pos [4], Bagnara has run Def, and CHINA on a
Pentium 200MHz PC with 64 MByte of memory. On trs.pl and chat_80.pl Def,



take 3.17 s and 12.59 s respectively running interpreted SICStus 3#6 bytecode.
CHINA takes 2.94 s and 6.24 s respectively. It seems reasonable to assume that
with Def,, on the same PC, trs.pl and chat_80.pl would take 3.17 x % ~ 2.55s
and 12.59 x 282~ 9.59 s. This performance gap for chat_80.pl would be closed
if naive code assembly was available for the PC. To summarise, the experimental
results are very encouraging and despite the simplicity of the interpreter, our
Def, analysis appears to be fast, precise and scalable and, of course, can be

implemented easily in Prolog.

8 Related work

Cortesi et al [15] first pointed out that Share expresses the groundness dependen-
cies of Def. Quotienting was introduced by Cortesi et al [16] as a systematic way
of obtaining the reference domain of [15]. Like Bagnara et al [3], we do not fully
adhere to the quotienting terminology and methodology of Cortesi et al [15] but
rather follow the standard convention [17] of inducing an equivalence relation
(=) from an abstraction map (ax). Also, Lemma 6.2 of [16] can be interpreted
as a way of computing the meet in Def with the classic abstract unification of
Jacobs and Langen [22]. We take this further and show how the meet can be
computed without exponential time closure operations.

Bagnara et al [3] point out that Share includes redundant sharing information
with respect to pair-sharing. This work is related to ours in that our domain may
be viewed as a further quotient of the pair-sharing domain. However, widening
has not been explored for the pair-sharing domain although, we have shown that
even for our simpler domain, that widening is crucial for scalability.

Armstrong et al [1] investigate various normal forms of Boolean functions
and the relative precision of Pos and Def. C-based implementations of each
representation are described. For the representations of Pos, it is concluded
that ROBDD’s give the fastest analysis. A specialised representation for Def,
based on Dual Blake Canonical Form (DBCF), is found to be the fastest overall.
For medium-sized programs it is several times faster than ROBDD’s, and it is
concluded that this is the representation likely to scale best for real programs.
The precision achieved using Pos was found to be significantly higher than Def,
although it is remarked that a top-down analyser would improve the precision
of Def since it is not condensing. Our findings support this remark.

Bagnara and Schachte [4] develop the idea [2] that a hybrid implementation of
ROBDD’s that keeps definite information separate from dependency information
is more efficient than keeping the two together. This hybrid representation can
significantly decrease the size of ROBDD’s and thus is a useful implementation
tactic. A comparison with our Def analysis has already been given. Fecht [20]
compares his Pos analyser to that of Van Hentenryck et al [26] and concludes
that his analyser is an order of magnitude faster. For reasons of space, the reader
is referred to [20, pp. 305-307] for more details. Performance figures for another
hybrid representation are given in [24]. We just observe that [4] and [20] are very
good systems to measure against.



Garcia de la Banda et al [21] represent Def functions in terms of a domain
p(X) x p(X x p(p(X))), so that the Herbrand constraint z = f(y, z), for ex-
ample, is represented by (0, { (v, {{y, 2}})s (v, {z}}), (=, {{r}})}) which encodes
x < (y A z). Abstract conjunction is expressed in terms of six rewrite rules
that put conjunctions of formulae into a normal form. Although not stated,
the normal form is essentially the (orthogonal) reduced monotonic body form
[1] in which a definite function is represented as f = Azex(z < M,) where
M, € Monx and x € M,. Orthogonality ensures that the meet is safe. Our work
shows how this symbolic manipulation of definite function can be replaced with
a simpler domain and simpler join and meet operations.

Corsini et al [12] describe how variants of Pos can be implemented using
Toupie, a constraint language based on the u-calculus. This BDD-based analysis
appears to be at least five times as fast as [26] for success pattern analysis.
Thus, if the analyser was extended with magic sets, say, it might lead to a very
respectable goal-dependent analysis.

Codish and Demoen [10] describe a truth-table based implementation tech-
nique for Pos that would encode (z; <> (z2Az3)) as three tuples (true, true, true),
(false, -, false), (false, false,-). A widening for this Pos analysis, W Pos, is
proposed by Codish et al [11] that amounts to a sub-domain of Def that cannot
propagate dependencies of the form y <> (y A z), but only simple dependencies
like (z <> y). The main finding of Codish et al [11] is that W Pos looses only
a small amount of precision for goal-dependent analysis of Prolog and CLP(R)
programs.

9 Conclusions

We have developed the link between Def and Share to show how the meet
of Def can be modelled with an efficient (quadratic) operation on Share. We
have shown how to represent formulae succinctly with equivalence classes of
sharing abstractions, and how formulae can be widened so as to avoid bad space
behaviour. Putting these ideas together we have achieved a practical analysis
that is fast, precise, robust and can be implemented easily in Prolog.
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