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Anomalous thermodynamic power laws near topological transitions in nodal superconductors
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Unconventional superconductors are most frequently identified by the observation of power-law behavior
on low-temperature thermodynamic or transport properties, such as specific heat. Here, we show that, in
addition to the usual point and line nodes, a much wider class of different nodal types can occur. These
new types of nodes typically occur when there are transitions between different types of gap node topology,
for example, when point or line nodes first appear as a function of some physical parameter. We identify
anomalous, noninteger thermodynamic power laws associated with these new nodal types, and give physical
examples of superconductors in which they might be observed experimentally, including the noncentrosymmetric
superconductor Li2Pd3−xPtxB.
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I. INTRODUCTION

A defining feature of many unconventional Fermi
superfluids and superconductors is the existence of lines or
points on the Fermi surface where the energy gap vanishes and
so-called “nodal quasiparticles” can exist at arbitrarily low
energies. In Fermi systems with such nodal quasiparticles,
the low-temperature specific heat will show a particular
power-law behavior as a function of temperature. The
expected point and line node power-law dependencies were
first derived in relation to the proposed low-temperature
superfluid phases of liquid 3He.1 These were subsequently
clarified further2 and are now widely used to identify pairing
states in unconventional superconductors.3–5 Here, we show
that gap nodes in superconductors can occur in a number of
more general types than simply the usual line or point zeros
and that each of these has a corresponding thermodynamic
signature, typically in the form of noninteger power laws
in low-temperature specific heat. We predict that these
anomalous power laws generically occur at points in the
phase diagram where there is a topological change in the
line or point nodal structure on the Fermi surface, which we
illustrate with a specific example: the noncentrosymmetric
superconductors Li2Pd3−xPtxB. In this case, the gap node
topological changes are also associated with changes of bulk
topological quantum numbers for the quasiparticles. The
future experimental observation of such noninteger power laws
could therefore be used to identify not only superconductors
with highly unconventional pairing symmetries, but also
topological superconducting and superfluid systems.6

Similar physics is realized in the high-temperature
cobalt-doped pnictide materials Ba(Fe1−xT x)2As2

(T = Co, Ni, Pd).7–9

For the usual types of point and line nodes, the quasiparticle
energy spectrum is linear in the vicinity of the gap node.
A familiar example is the case of the 3He A phase with
triplet pairing order parameter dk ∝ (kx + iky)ẑ, which has
point nodes at the points k = (0,0, ± kF ) on the Fermi sphere,
of radius kF . Near to these points, the quasiparticle energy
spectrum, Ek, obeys E2

k = v2
F (kz − kF )2 + |dk|2, where vF

is the Fermi velocity, giving a linear dispersion relation as

shown in Fig. 1(a). For this type of gap node, we expect a
specific heat, Cv ∝ T 3, at temperatures T much lower than
the critical temperature Tc. The case of line nodes in the
superconducting gap is also well known, as, for example, found
in d-wave superconductors such as YBa2Cu3O7. Assuming in
this case that the Fermi surface is an open cylinder of radius
kF , and the energy gap is of the form �k = �0(k2

x − k2
y), then

there are four line nodes spaced around the Fermi surface at
k = kF (±1, ± 1)/

√
2. Again, the energy spectrum is linear

near these gap nodes, as shown in Fig. 1(c), so in this case we
expect Cv ∝ T 2.10

While the generic point and line nodes of this type are
expected in the majority of unconventional superconductors,
other types of nodal energy spectrum are possible. For exam-
ple, it is possible that the system has a point node, but that the
energy spectrum is quadratic not linear near the nodal point, see
Fig. 1(b). The heat capacity at this critical point is a power law,
with Cv ∝ T 2 rather than the usual Cv ∝ T 3 for point nodes.2

This aspect of nonlinear excitation spectra was identified by
Leggett in his review of the superfluid phases of 3He,2 though
at the time no examples were known. Later, a ground state
with E2u symmetry having this feature was proposed for the
heavy-fermion superconductor UPt311 and possible thermal
transport signatures were discussed.12 Here, we show that
this different type of point node behavior is not restricted
to certain special symmetries but occurs generically when the
gap structure is changing from having a point node to having
no nodes, as a function of some parameter defining the pairing
potential on the Fermi surface. We extend this notion to a much
wider class of nodal types and node topology transitions.

II. GENERALIZED NODAL TYPES AND
ANOMALOUS POWER-LAWS

The fact that it is possible to continuously remove a point
node of the gap is surprising, since the usual linear spectrum
point node behavior is usually thought to be topologically
stable against perturbations.13–16 The shallow node behavior
is not topologically protected, since it only occurs for specific
parameter values in which accidental cancellations occur
between different order parameter components. Nevertheless,
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FIG. 1. The four generic types of point and line nodes in a
superconductor or Fermi superfluid and the two generic types of line
crossings: (a) a point node with a linear excitation spectrum, (b) a
shallow point node, (c) a line node with linear spectrum, (d) a shallow
line node, (e) a crossing of ordinary line nodes, and (f) a crossing of
shallow line nodes. For the point and line nodes (a)–(d), we give
example gap functions, densities of states and low-T specific heat
capacity power-law exponents n for Cv ∝ T n. The coordinates kx‖ and
ky‖ refer to a local coordinate system on the Fermi surface centered on
the node, where kz is normal to the Fermi surface, and where kx‖ and
ky‖ are coordinates tangential to the plane of the Fermi surface at the
node. The crossings (e,f) each have a distinct gap spectrum, density
of states and power law, which is distinct from the cases of point and
line nodes alone, and which becomes dominant at low temperatures.
The densities of states in these two cases are logarithmic, where the
parameter L denotes the length of the line nodes on the Fermi surface
(measured to midway between crossing points).26 These densities of
states approximate a power law, as shown, and we also show the
approximate heat capacity power-law exponents n. Details of the
derivations are given in Appendix A.

as we shall see, its influence extends throughout the finite-
temperature phase diagram.

If we generalize the shallow point node behavior to line
nodes, we obtain a spectrum near to the node shown in
Fig. 1(d), which we will refer to as a shallow line node. In
this case, we find an anomalous noninteger power law for the
low-temperature specific heat, of the form Cv ∝ T 1.5. Similarly
to the shallow point node, this type of shallow line node
only occurs at a boundary between a nodeless superconductor
and one with ordinary line nodes, as discussed recently for
the pnictide superconductors.7,8 In particular, both nodal and
nodeless compounds of the system Ba(Fe1−xCox)2As2 have
been reported,17,18 suggesting that the T 1.5 power law could
be observed experimentally. This would provide compelling
evidence for the s± gap model.19

Another type of nodal behavior occurs when there is a
crossing or topological reconnection of line nodes. These
again lead to distinctive low-temperature power laws, with
noninteger power-law exponents. A crossing of linear line
nodes is illustrated in Fig. 1(e). This type of crossing can
occur in a d-wave superconductor, for example, �k ∝ k2

x − k2
y ,

in the case where the Fermi surface is spherical rather than
cylindrical. Although the node crossing point occurs for a
small portion of the Fermi surface, it turns out that this
point dominates the low-temperature heat capacity, and such
crossings can therefore be detected experimentally. This is
because the density of states resulting from the node crossing
has a logarithmic term. This logarithmic term approximates
a power law at low temperatures, and leads to a specific heat
capacity contribution approximately of the form Cv ∝ T 1.8,
which at low enough temperatures dominates over the usual
line node contribution Cv ∝ T 2 arising from the line nodes
away from the crossing. Unlike the shallow point node, the
crossing of line nodes is expected to be topologically protected
against small perturbations.

The final distinct type of gap node, which we shall discuss,
is a crossing of shallow line nodes, as shown in Fig. 1(f).
Again, this leads to a logarithmic term in the density of states,
which dominates the low-temperature behavior compared to
the shallow line node case in the absence of crossings. The
corresponding specific heat capacity is approximately Cv ∝
T 1.4 for the shallow line node crossing, compared to Cv ∝ T 1.5

for the case without crossings. Interestingly, n = 1.4 is not so
far from the value obtained for the ungapped Fermi surface of
a normal (nonsuperconducting) Fermi liquid, n = 1.

Figure 2 shows the predicted exponents of the power-law
temperature dependencies of specific heat for each of the
different nodal types shown in Fig. 1. In all cases, the
predicted power-law behavior Cv ∝ T n is accurate at very
low temperatures, below 0.1Tc, and in many cases the low-
temperature power laws apply over a range of temperatures
up to 0.3Tc. The details of our calculations of specific
heat leading onto the results in Figs. 1 and 2 are given
in Appendix A.

Non-integer power laws, especially powers below 2, are
a highly distinctive signature of the low-energy excitation
spectrum, and their experimental observation would be a
relatively clear and direct form of evidence for the existence
of the corresponding type of gap node in a given material.
In systems where the gap topology is changing as a function
of some experimental parameter (e.g., doping or spin-orbit
coupling), these anomalous powers will only be observed to
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FIG. 2. (Color online) The simulated exponent of temperature T

in the specific heat capacity as a function of temperature for each
of the nodal characters. The value of n in the power law Cv ∝ T n

is obtained by calculating n = d ln(Cv )
d ln(T ) . These match analytics (dotted

lines) in the limit T → 0. The methodology employed to produce
this plot is described in Appendix A.

the lowest temperatures if the material is exactly at the critical
parameter value for the shallow node to occur. However, if the
material is merely near to, not exactly at, the critical parameter
value, then the shallow node power laws will hold over a wide
temperature range, reverting to ordinary line, point, or nodeless
behavior at the very lowest temperatures. Again, experimental
observation of such a crossover between power laws would
be a clear signature of the unusual gap nodal structure—we
provide an explicit example of this below.

In practice, it is unlikely that the power laws shown in Fig. 2
can be distinguished from one another in a single measurement
as a function of temperature, however, a transition of the type
shown in Fig. 5 (inset), discussed below, is more feasible as a
function of doping at constant temperature.

III. ANOMALOUS POWER-LAWS THROUGH NODAL
RECONFIGURATION TRANSITIONS

In addition to the ad hoc mechanisms mentioned above,
we expect shallow line or point nodes to occur generically
in superconductors with multicomponent order parameters.
Consider the simple model shown in Fig. 3. This shows
a hypothetical system, such as an ordinary s-wave BCS
superconductor with a significant level of anisotropy in the
gap. Here, �0 is the average gap and �1 is a measure of
the gap variation with k‖ parallel to the Fermi surface. In the
case where |�0| > |�1|, the gap is nodeless everywhere on the
Fermi surface. On the other hand, if |�0| < |�1| then the gap
changes sign at some points on the Fermi surface, leading to
pairs of line nodes. At the critical parameter value |�0| = |�1|,
the line node pairs coalesce, leading to a single, shallow, line
node. In this example, no symmetry change occurs in the
gap function, however, “accidental” line nodes occur within a
single symmetry of the Cooper pair order parameter because
of the large degree of gap anisotropy.

An explicit example of this mechanism by which anomalous
power laws may be observed is provided by noncentrosym-
metric superconductors where the superconductor order
parameter

�̂k = (�0,k + dk · σ )iσ̂y (1)

has singlet and triplet components �0,k and dk, respectively,
such as the compounds Li2Pd3−xPtxB.20–22 Platinum doping
in this system is thought to increase the spin-orbit coupling,
and hence increase the triplet component of the order
parameter relative to the singlet component.22–25 In doing so,
the spin-orbit coupling introduces nodes in the gap. Within
a standard symmetry classification of the possible order
parameter structures, the simplest one takes the form27,28

�0,k = �0 (2)

dk = �0{A[X,Y,Z]

−B[X(Y 2 + Z2),Y (X2 + Z2),Z(Y 2 + X2)]}, (3)

where X,Y,Z are functions with the same symmetry properties
as the components of the electron wave vector kx,ky,kz and A

and B are material-specific parameters that depend on doping
x. Equations (2) and (3) correspond to the A1 irreducible
representation of the cubic O group, which is the only one
where only gauge symmetry is broken. Other pairing states
break additional symmetries and therefore are not compatible

FIG. 3. (Color online) The transition between a nodal and nonnodal gap structure in any superconductor as a result of continuously admixed
order parameters will be characterized by a nonlinear gap energy spectrum close to the node. This is because in any wavelike order parameter
the deep minima have no linear order term in the expansion.
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FIG. 4. (Color online) (Top) Fifteen gap topologies correspond-
ing to different triplet admixtures in a cubic noncentrosymmetric
superconductor. Within this set, the only point nodes are shallow
point nodes, occurring in plots 1, 5, 10, and 15. Topologies 3, 6, 8,
and 14 are all line reconnection transitions between distinct topologies
and include crossings of linear line nodes. Topology 11 is a crossing
of shallow line nodes. (Bottom) Phase diagram of gap node topology
corresponding to triplet admixture parameters A and B in Eq. (3)
on a spherical Fermi surface. Each line represents a phase boundary
where gap nodes appear or disappear on the Fermi surface.

with a conventional (phonon-mediated) pairing mechanism. In
spite of this, a large number of different gap nodal structures
are obtained, as shown in Fig. 4 (top panel). As a function of
the parameters A,B we obtain the rich phase diagram of Fig. 4
(bottom panel). The corresponding specific heat exponents are
illustrated in Fig. 5. Upon doping, the material explores the
phase diagram along some unspecified path from small values
of A and B (x = 0) to larger values (x = 3).22 Small values
of A and B correspond to a fully gapped, singlet-dominated
superconducting order parameter as believed to be realized
in Li2Pd3B. Order parameters with a large triplet component
and line nodes on the Fermi surface are thought to occur
in Li2Pt3B and correspond to the case when either A or B

(or both) are larger.
Inspection of the phase diagram shows that at some values

of A and B we expect point nodes to appear, labeled by
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FIG. 5. (Color online) (Top) Specific heat exponent as a function
of temperature for different values of the A and B parameters,
as indicated. The inset shows the value of the specific heat as a
function of B for fixed A = 3 and constant temperature, T = 0.005Tc.
(Bottom) Specific heat exponent as a function of temperature and
parameter B for fixed A = 3. Details of the calculation of the
quasiparticle spectrum and phase diagram are given in Appendix A.

“1” in Fig. 4, before line nodes appear on the gap, labeled
by “2” in the same figure. These point nodes are shallow
point nodes, and so instead of the usual T 3 power-law
dependence of the heat capacity for point nodes, we instead
expect a T 2 power-law dependence. Upon further change of
the A and B parameters, these shallow point nodes expand
into rings of ordinary line nodes, as shown in Fig. 4, plot
labeled “2.” Increasing the parameters yet again there is a
level which causes a topological line reconnection, labeled
“3,” where the different line nodes intersect before becoming
rings again, now centered at different points on the Fermi
surface, “4.” Note that the number of line nodes on the
Fermi surface is always a multiple of two as predicted by the
topological theory of gapless phases in time-reversal-invariant
superconductors.29 That number jumps at the line reconnection
transition, indicating its topologically nontrivial nature. The
line reconnection transition has a distinct thermal signature in
the low-T heat capacity originating from the crossing of line
nodes associated with such a line reconnection. As is evident
from the figure, there are many other paths along the phase
diagram with similar phase transitions. In our analysis of the
cubic noncentrosymmetric superconductors, we also found a
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single instance of crossing of shallow line nodes, labeled “11”
in Fig. 4. These are realized when line nodes are spontaneously
introduced on a nodeless Fermi surface without first appearing
as points. The specific heat exponent of n = 1.4 for this case
is clearly seen in Fig. 5.

Schnyder et al.27,28 have shown that a number of these
phases of cubic noncentrosymmetric superconductors pos-
sess nontrivial topological quantum numbers,6,29 and have
corresponding surface edge states of topological nature. In
principle, these surface states can be probed experimentally by
electron tunneling through an interface with a normal metal.30

However, we propose that a more direct, bulk, measurement of
this nontrivial gap topology can be obtained by measurements
of the low-temperature heat capacity. If the anomalous power
laws we have predicted can be observed, then it should be
possible to detect the phase boundaries between different types
of topological gap structures, and hence determine in a bulk
measurement the topological quantum numbers associated
with different doping regimes. Phases 1–5 in Fig. 4 correspond
to those considered by Schnyder et al.27,28

The anomalous power-laws due to changes of nodal topol-
ogy are realized exactly at each transition. On the other hand,
by being close to, but not exactly at one of those transitions one
expects a crossover from conventional (fully gapped or normal
power-law) behavior to anomalous behavior as the temperature
is increased through a characteristic temperature scale T ∗. A
demonstration of this is provided for the case of Li2Pd3−xPtxB,
see Fig. 5, specifically the curves corresponding to A = 3,

B = 3.5–4.0 (top panel), and the density plot (bottom panel)
showing how the temperature scale T ∗ converges to zero at the
transition. This may be used to detect topological transitions
in superconductors and in fact shows that the influence of the
topological transition extends over a wide region in the phase
diagram, not just at a single point. The detection of the phase
boundary itself is facilitated by its higher specific heat, at fixed
low temperature, due to the enhanced phase space available to
quasiparticles in that state. This is illustrated in the inset to
Fig. 5. We emphasize, however, that it is in the anomalous
power laws that we find the evidence of the special nature of
quasiparticles at the phase boundary.

In recent years, it has become widely recognized that point
or line nodes in the bulk spectrum of topological matter may
evolve into topologically protected surface or vortex core states
with zero dispersion.31,32 In contrast, the shallow dispersions
discussed here exist in the bulk excitation spectrum near
topological transitions.

IV. CONCLUSION

To conclude, we have shown that a more general classifica-
tion of nodal characters of superconductors yields anomalous,
noninteger power laws for low-temperature thermodynamic
quantities. Some such power laws can be used to detect line
node crossings; others are expected at phase transitions where
the nodal topology reconfigures itself. An example is provided
by the topological transitions expected to occur as a function
of doping in the noncentrosymmetric cubic superconductor
Li2Pd3−xPtxB. It is important to stress that the observation of
anomalous low-temperature power laws, just as the ordinary,

integer ones, requires going to temperatures well below Tc. On
the other hand, it is not necessary to sit exactly at the transition,
as there is a crossover temperature separating conventional
from anomalous power-law behavior that converges to zero
there. In that sense, the influence of the topological transition
extends throughout the bulk phase diagram in a manner similar
to that of a quantum critical endpoint.33,34
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APPENDIX A: CALCULATION OF SPECIFIC
HEAT OF NODAL SUPERCONDUCTORS

To describe the energy Ek of quasiparticles near any
specific point on the Fermi surface, it is convenient to
change coordinate systems to three mutually orthogonal k-
vector components: one perpendicular to the Fermi surface,
k⊥, and two parallel to it, kx‖, ky‖. We then have E2

k =
vF

2k⊥2 + �k
2, where vF is the Fermi velocity, k⊥ = 0 when

|k| = kF (the Fermi vector), and �k is a function determined
by the superconducting gap function, which may be either
singlet, triplet, or a combination (for noncentrosymmetric
systems).

The gap energy spectra shown in Fig. 1 are described by
an equation for the gap energy �k, which has the form �2

k =
Iμνkμ‖kν‖ + · · · near to a gap nodal point, where Iμν is a
positive tensor of rank 2, which is determined by the symmetry
of the gap function around that nodal point. In general, Iμν will
have two principal axes, which we can choose as kx‖ and ky‖.
If the two eigenvalues corresponding to these axes, Ix and Iy

are both positive and nonzero, we have an ordinary point node
with linear spectrum illustrated in Fig. 1(a) (with I1 = √

IxIy).
If one eigenvalue is positive and nonzero (I1) and the other is
zero we have an ordinary line node. In the case of two zero
eigenvalues, it is necessary to continue the expansion to quartic
or higher order, giving the various shallow nodes or crossings
illustrated in Fig. 1. In principle, even higher powers may be
possible, but we have not found any realistic examples of gap
models where this could occur. In contrast, all the node types
presented in Fig. 1 can be realized in the specific gap models
presented in this paper.

Computation of the density of states integral g(E) =∫ ∫ ∫
δ(Ek − E)dkxdkydkz for each of these gap energy

spectra gives a unique expression. The specific heat capacity
in the superconducting state is in turn given by2

Cv ≡ T

(
dS

dT

)

=
∑

k

1

2
kBβ2

[
Ek + β

(
dEk

dβ

)]
Ek sech2

(
βEk

2

)
, (A1)

where β = 1/kBT . The low-T specific heat capacity can
therefore be found analytically from g(E) by evaluating
the integral 1

2kBβ2
∫ ∞

0 dEg(E)E2 sech2(βE/2), giving the
power-law dependence of a low-T specific heat capacity
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measurement. We find the terms listed in Fig. 1 for point
and line nodes with linear and nonlinear excitation spectra,
where L is the length of the line node from end to end. For
cases where line nodes cross, we expect the terms listed in
Fig. 1, where L is now the length of the line node on the Fermi
surface measured from the center to the corner of the crossing
whose contribution is being calculated. The cases in Figs. 1(e)
and 1(f) are not power laws, however, they approximate very
closely to the noninteger power laws indicated, with very slight
variations depending on the constant L. In the case of line
reconnection transitions such as Fig. 4, plots 3, 8, and 14,
where the Fermi surface includes regions where the gap energy
spectrum expands as �2

k = I1kx‖2ky‖2, the contribution of the
line crossing to the density of states is ∼E0.8.

The low-T specific heat capacity can also be calculated
numerically using Eq. (A1) by summing over a sufficient
number of integration points corresponding to different values
of the gap in k space near the Fermi surface for selected
temperature ranges below Tc. The exponent of temperature,
n, can then be obtained using the general formula n =
d ln Cv/d ln T . When this quantity approaches a constant, we
have Cv ∝ T n. This yields the curves in Figs. 2 and 4(c), where
the temperature dependence of the gap is taken to be given
by the expression from Ginzburg-Landau theory, (T − Tc)1/2.
This approximation, made for convenience, introduces a weak
additional temperature dependence for T � Tc compared to
the BCS approximation and therefore provides an upper bound
on the temperature dependence introduced by the gap. We
find that the exponents are not affected by this: even in the
case where the temperature dependence of the gap is assumed
to be constant, the same power laws are obtained with flat
temperature dependence.

Each contour in Fig. 4(a) corresponds to a line where the
gap energy �k derived from the gap function of Eqs. (2) and (3)
vanishes. This gap energy is given by |�k| = |�0 ± d(k)| = 0,
where d(k) = |dk|. The phase diagram in Fig. 4(b) shows the
values of the parameters A and B where the nodal topology
changes for this form of the gap energy. This form of �k
has also been used to compute the specific heat exponent
in Fig. 4(c).

APPENDIX B: SPECTRUM OF O-GROUP
SUPERCONDUCTORS

Here, we give the details of the derivation of the nodal
topologies and phase diagram presented in Fig. 4(b). We use
a single-band mean-field model with antisymmetric spin-orbit
coupling to obtain the resulting gap node topologies on the
Fermi surface, which we take to be spherical for simplicity.
The Bogoliubov-de Gennes Hamiltionian is

H (k) =
(

ĥ(k) �̂(k)

�̂†(k) −ĥT (−k)

)
. (B1)

The noncentrosymmetric (NCS) gap function, which mixes
singlet and triplet as a result of the parity violation in the crystal
lattice structure, is given in Eq. (1), where σx,y,z denotes the
Pauli matrices and �0,k and dk denote the singlet and triplet
components of the gap, respectively.

The normal state Hamiltonian h(k) given in Ref. 27
for noninteracting electrons in a crystal without inversion
center is

h(k) = εkI + γ k · σ , (B2)

where εk = ε−k is the nonrelativistic metallic dispersion
energy. The second term represents the antisymmetric SOC
where the coupling constant γ k = −γ −k. We will assume
the d-vector dk to be parallel to γ k. This ensures that SOC
is not destructive to the triplet component of the NCS gap
function.27,35

In a general Ginzburg-Landau theory, the possible sym-
metries of the superconducting instability depend on the
symmetry of the normal state. In this case, the symmetry
of the normal state is given by GN = O × T × U (1) where
O denotes the NCS cubic space group, T the time reversal
symmetry and U (1) the gauge symmetry operation. In any
superconducting transition, the U (1) symmetry is broken,
however, other symmetries of the normal state may be broken
as well. For the purposes of our analysis, we will, following
Ref. 27, look at the case where only the gauge symmetry and
no further symmetries of the crystal lattice are broken, i.e., the
superconducting instability has the symmetry of the A1 irrep
of the O group. This means that the gap function, given, in
general, by Eq. (1), takes the specific form of Eqs. (2) and (3).

With dk and γ k explicitly defined, the Bogoliubov de-
Gennes (BdG) Hamiltonian can be diagonalized. The single-
band BdG Hamiltonian with SOC, defined parallel to the d(k)
component of the gap,27,35 has the property that splitting of the
Fermi surface occurs as a result of SOC, whereas zero-energy
excitations occur as a result of the combination of singlet
and triplet components of the gap function. In this case,
the diagonalized BdG Hamiltonian has eigenvalues of the
form

E = ±
√

(εk − μ ± |γ k|)2 + |�0 ± |dk||2, (B3)

where the ± signs inside the square root always take the same
value, while the sign in the front varies independently. The
SOC term γ k in this expression has the effect of splitting
Fermi sheets, whereas the second term |�0 ± |dk|| determines
the node topology of the superconducting gap on either of the
Rashba-split Fermi sheets.

The zeros of the term |�0 ± |dk|| are the loci of zero-
energy excitations on the Fermi surface. In order to ensure that
the SOC parameter does not significantly warp the spherical
Fermi surface and therefore change the node topology, we
assume that εk � γ k � �0. This hierarchy of energy scales
is reasonable to assume as εk is of the order of eV, �0 is of the
order of meV, and the observed SOC-induced Fermi surface
splittings are small relativistic corrections to εk.

The conditions for zeros in the gap energy spectrum for each
Rashba-split Fermi sheet are �0 − |dk| = 0 and �0 + |dk| =
0. Thus, one of the Fermi surface sheets is always fully-gapped,
while the other one may be nodal. The gap function in this latter
case is best normalized with respect to the singlet gap energy:

�2
0

∣∣∣∣1 − |dk|
�0

∣∣∣∣
2

= �2
0|1 − |d′

k||2 = 0. (B4)
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The term |dk|
�0

has here been replaced with the term |d′
k| whose

coefficients are scaled by a factor of �0. This expression
can be fully expanded and used to derive the topological
phase boundaries by substituting in the vector d′(k) = [AX −
BX(Y 2 + Z2),AY − BY (Z2 + X2),AZ − BZ(X2 + Y 2)]. A
coordinate transformation to spherical polar coordinates using
X = cos(φ) sin(θ ), Y = sin(φ) sin(θ ), and Z = cos(θ ) allows
us to select specific points on the Fermi surface and find solu-
tions in A and B. The phase boundaries of Fig. 4(b) separate
regions of constant gap topology, which were obtained for
critical values of the polar and azimuthal angles corresponding
to the points where nodes first appear on the gap or where line
nodes reconnect at a topological transition.

Phases 1–5 in Fig. 4(a) of the main text correspond to
those considered by Schnyder et al.27,28 The coordinates
θ = cos−1(1/

√
3),φ = π

4 correspond to one topologically
distinct set of point nodes on the spherical Fermi surface shown
in Fig. 4(a), plot 5. Substituting these into the equation �0 −
|dk| = 0 gives the relationship between coefficients A and B:
A = 2

3B ± 1. The line reconnection shown in Fig. 4(a), plot 3,
corresponds to the coordinates θ = π

4 ,φ = 0 and produces
solutions A = B±2

2 . The final phase boundary in Fig. 4(b)
corresponds to point nodes at the coordinates θ = π

2 ,φ = 0
shown in Fig. 4(a), plot 1, which produces the solutions
A = ±1.
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