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Backward Type Inference Generalises Type Checking

Lunjin Lu! and Andy King?

! Qakland University, MI 48309, USA.
2 University of Kent at Canterbury, CT2 7NF, UK.

Abstract. This paper presents a backward type analysis for logic programs. Given
type signatures for a collection of selected predicates such as builtin or library
predicates, the analysis infers type signatures for other predicates such that the
execution of any query satisfying the inferred type signatures will not violate
the type signatures for the selected predicates. Thus, the backward type analy-
sis generalises type checking in which the programmer manually specifies type
signatures for all predicates that are checked for consistency by a type checker.

1 Introduction

This paper focuses on the inference of type signatures for predicates in a logic program
that ensure the execution of the program with a query satisfying the inferred type signa-
tures will be free from type errors. This generalises type checking in which the program-
mer declares type signatures for all predicates in the program and a type checker verifies
if the program is well-typed with respect to these type signatures, that is, these type sig-
natures are consistent with the operational semantics of the program. For instance, for
the quicksort program in Prolog, a type checker would require the programmer to de-
clare type signatures for quicksort/2, partition/4 and append/3 and then check if the
program is well-typed with respect to these and the type signatures for builtin predicates
> /2 and =< /2 stipulated in the Prolog language manual. In contrast, type signature
inference will infer that if quicksort/2 is called with a list of numbers as the first ar-
gument then the execution of the program will not violate the type signatures of > /2
and =< /2; the programmer need not declare types for quicksort/2, partition/4 nor
append/3.

Type analyses traditionally propagate type information in the direction of program
execution and cannot infer type signatures (see section 7 for a short survey). One no-
table exception is the backward analysis framework of [15] that can, in principle, be
instantiated with a type domain. However, the framework propagates information back-
wards using the (intuitionistic) logical implication operator and this requires domains
to be closed under Heyting completion which is a strong requirement by any standard.
The backward type analysis proposed in this paper is based on a novel abstract se-
mantics (that will be presented in a companion paper) that relaxes this requirement.
The backward type analysis is obtained by specialising the new abstract semantics
with domain operators for type inference and in particular type inference using an ab-
stract domain [18] which is particularly precise since it is disjunctive and supports non-
deterministic regular types. The resulting analysis is the first analysis that infers type
signatures for a logic program. It gives the programmer the flexibility not to declare and



maintain type signatures for predicates that are subject to frequent modifications during
program development. In the extreme situation, the programmer may choose to leave
unspecified type signatures for all user-defined predicates and let the analyser to infer
type signatures from builtin and library predicates. One application of the new analysis
is automatic program documentation; type signatures provide valuable information for
both program development and maintenance. Another application is in bug detection.
The inferred type signature for a predicate can be compared with that intended by the
programmer and any discrepancy indicates the possible existence of bugs.

The remainder of the paper is organised as follows. Section 2 motivates the analysis
with a worked example. Section 3 introduces the fundamental concepts used in the pa-
per and outlines the abstract semantics on which the backward type analysis is based.
Sections 4 and 5 present the abstract domain and the abstract operations for the back-
ward type analysis. A prototype implementation and analysis examples are presented
in section 6 and related work is discussed in section 7. Section 8 concludes. Proofs are
omitted due to space limitations.

2 Worked Example

This section informally presents a backward type analysis that deduces typing prop-
erties of the call which, if satisfied, guarantee that the execution of the call can never
encounter a type error. Consider the following partition program.

pt(ws, @, ys, 28) - @xs = [ylas'). ys = [ylys' | Oy =< z,@pt(zs’, z, ys'. 25).0
pt(zs, x,ys, 28) - Das = [2|x5'], 28 = [2]28'], ©® 2 > x, @ pt(zs’,x,ys, 28').0)
pt(zs, z,ys, zs) - @as =[],ys =[], 2s = [].®

The program is in a normalised form in which the arguments of atoms are distinct
variables. Textual points of interest in the program are numbered.

The analysis presupposes the existence of type assertions that are type constraints
which must be respected by program execution. A type constraint is a disjunction of
primitive type constraints. A primitive type constraint is a conjunction of atomic type
constraints of the form x € R where z is a variable and R a type that denotes a set of
terms closed under instantiation; x is said to be of type R if z € R (see section 4). The
type assertions are given by a map A from atoms to type constraints. The type assertions
for the partition program are as follows where type num denotes the set of numbers.

Alx >y) =2 € num Ay € num
A(r =<y) =z € num ANy € num
A(pt(zs, z,ys, zs)) = true

The above type assertions stipulate that the only program states in which z > y or
x =< y can be called are those in which both z and y are numbers. For the partition
program, the only non-trivial type assertions arise from builtins. This would change if
the programmer introduced type assertions for the purposes of verification.

The analysis also requires a set of type rules that gives the denotations of types. For
the partition program, type rules are list(3)—| | and list((3)—[3|list(3)] that define
polymorphic lists, According to these two type rules, [1, 2] is of type list(num) while
[1]2] is not.



The analysis is formulated in terms of abstract interpretation that iteratively re-
fines and updates a function until stability is reached. The function maps a demand
(p(x), pr) to a type constraint ¢;, where & denotes a tuple of distinct variables and ¢
a type constraint. The guarantee is that if the execution of p(x) begins in a state satisfy-
ing ¢, then the execution will respect type assertions in 4 and, if it succeeds, terminate
in a state satisfying ¢g. ¢ is called a type post-condition and ¢y, a type pre-condition
for (p(x), ¢r). The type pre-condition for the demand (p(x), true) specifies the type
signature for p(x). Note that there may be more than one demand for a predicate.

The analysis is performed by computing a greatest fixpoint (gfp). One starts with
assuming no call causes a type error and then checks this assumption by reasoning
backwards over all clauses. If a type assertion is violated, type pre-conditions for de-
mands are strengthened (made smaller), and the whole process is repeated until the
assumptions turn out to be valid (the gfp is reached). A series D; : ¢ > 0 of iterates
is computed. Each iterate D; that is computed corresponds to a function that maps a
demand to a type pre-condition. The iterate contains only those demands whose type
pre-conditions are required for the analysis to proceed. If a demand is not in the iterate,
its type pre-condition is assumed to be true.

The process is exemplified by computing a type pre-condition for a demand
(pt(zs, x, ys, zs), true). The initial iterate is

Dy = {<pt(:vs,a:, s, zs), tTue) — true}

Each clause for pt/4 is used to compute the type pre-condition for the demand
(pt(xs,x,ys, 2s), true) in Dy. lllustrated below are steps in reasoning backwards over
(from right to left) the body of the first clause for pt/4. The type constraint for each pro-
gram point in the clause is listed. The comment following the program point explains
the action taken to compute the type constraint for the next program point to the left.
Types num and list(num) are abbreviated as n and [(n) respectively.

true 3

true (@) builtin predicate
(r € n Ay € n) @ abstract unification
(xennyen)V(zselln) Az en)V(xenAys €lln)) ©

The demand (pt(zs’, x, ys', zs), true) is a variant of (pt(zs, x, ys, zs), true) which is
in Dy. Thus, the type constraint for point 2)is true which is obtained by applying
Dy and renaming. The type constraint (x € n Ay € n) at point (D) results from the
type assertion for =< in 4. The type constraint at point (0)is obtained by performing a
backward abstract unification. An informal explanation follows. The conjunct (z € n A
y € n) derives from the fact that a type constraint that holds in the program state before
unification also holds in the program state after unification. The conjunct zs € I(n) A
x € n is derived as follows. Both xs and [y|zs'] are of the same type after unification
zs = [y|zs’]. If zs € I(n) then [y|zs’] € I(n) which implies y € n. Therefore, if
(zs € l(n) A x € n) holds at point @ then (zx € n Ay € n) holds at point @)
The conjunct (x € n A ys € l(n)) is derived similarly. The type constraint at point
© is universally quantified with respect to variables {y, zs’, ys’'} to compute a type
constraint that is only defined in terms of the variables in the head of the clause. This



gives type constraint (zs € I(n) Az € n) V (x € n A ys € l(n)) which is strictly
stronger than the type constraint at point (0) More generally, universal quantification of
a type constraint ¢ obtains a type constraint ¢’ that is at least as strong as ¢ in that a
program state  satisfies ¢ whenever 6 satisfies ¢’. By restricting a type constraint in
this way to variables in the head, the type constraints are kept small and manageable.
Universal quantification is required because weakening type constraints compromises
safety whereas strengthening the type constraints preserves safety.

Processing the second and third clauses for pt /4 gives type constraints (zs € [(n) A
x € n)V(r € nAzs € l(n)) and true respectively. The three type constraints
obtained are conjoined to give the new type pre-condition (zs € I(n) Az € n) V (z €
nAys €l(n) A zs € l(n)) for (pt(zs,x, ys, zs), true). Conjunction is required since
type assertions must be respected no matter which clause is selected. Thus,

Dy = {{(pt(xs,x,ys, 28), true) — (xs € [(n)A\x € n)V(z € nAys € [(n)Azs € I(n))}

Omitting the details of the computation of Do, the gfp is reached at D, since Dy =
D;. The gfp expresses safe call pattern; it states that pt /4 cannot generate a type error if
either it is called with a list of numbers as its first argument and a number as its second
argument or it is called with a number as its second argument and lists of numbers as
its third and fourth arguments. Manual inspection might miss the latter.

3 Preliminaries

‘We now recall some terminology of logic programming and that of abstract interpreta-
tion. The reader is referred to [16] and [6] for more detailed exposition.

3.1 Basic Concepts

Let X be a set of function symbols, V' a denumerable set of variables. We assume that
X contains at least one function symbol of arity 0. Term (X, V') denotes the set of terms
that can be constructed from X and V where V' C V.

The object resulting from renaming a variable x in object o to another variable y is
denoted pzy(0). Let & and y be vectors of variables of the same dimension. pz,(0)
is the result of simultaneously replacing elements of & in o with corresponding elements
of y. An equation over V' is a formula of the form ¢; = to with ¢1,¢2 € Term(X, V). An
equational constraint is a finite set (conjunction) of equations. The set of all equational
constraints is denoted as Fgn whereas the set of all idempotent substitutions is denoted
Sub. Let Subggy = Sub U {fail}. Given E € Eqn, mgu : Eqn +— Subg,; returns
either a most general unifier for F if F is unifiable or fail otherwise. For brevity, let
mgu(t1,t2) = mgu(t; = t2). The function composition operator o is defined as fog =
Az.f(g(x)). Sub is ordered by less general than, thatis, 61 < 0 iff there exists § € Sub
such that 6; = 0 0 65. The ordering < extends to Subqy by fail < 6 forall 0 € Sub ;.
The equivalence between substitutions is defined as 6 ~ 65 iff 61 < 65 and 0, < 6.
Furthermore, let 6 o fail = fail and fail o @ = fail for any 6 € Suby,;.

Let VI be the set of variables in the program, domn(6) the domain of an idempotent
substitution 6, and Var(o) the set of variables in the syntactic object o. Existential



quantification 3, : Subyai +— Subg, for x € VI is defined as 3, (fail) = fail and, for
0 € Sub, 3,.(0) = {y — p(0(y)) | vy € dom(0) Ny # x} where p = {z — 2} and
z & (VIUVar(h)). Thus, 3,(0) projects out x if z € dom(#) and otherwise renames
x to a fresh variable if © € Var(¢). Universal quantification V, : Subgai — Subsai
for z € VI is defined as V,,(0) = (if z € Var(0) then 6 else fail) . If ¢ Var(6) then
6 does not constrain z, hence V. (0) = . Observe that V,,(6) < 6 < 3,(0).

Letx = {x1,x2, -, Ty} be asubset of VI.Define 3,(0) = 3, (3o, (--- 32, (0)))
and Vg0 = Vg, (Va, (- - - Va, (0))). Also, 35(0) = Ty (0) and V4 (0) = Yy »(0).

Let (C,C¢, 0%, MY T 1Y) be a complete lattice and S C C. S is a Moore
family iff T € S and (s, M° s3) € S for any s1, 52 € S. Let (D, CP) be a poset. A
function v : D — C'is a concretization function iff + is monotone and (D) is a Moore
family. A concretization function from D to C induces a Galois connection between D
and C [6]. The Kleene closure of a set S is denoted as S™*.

3.2 Abstract Semantics

The backward type analysis is based on a novel abstract semantics for backward anal-
ysis of logic programs that is sketched below so that the paper is self-contained. The
abstract semantics is a (lower) approximation to a collecting semantics that maps a
call p(x) and a set © of substitutions into a set = of substitutions such that, for any
& € Z,if § is a computed answer for £(p(z)) then § o £ € O, i.e., {Z}p(x){O} is
a valid partial correctness formula. Note that = = () is valid solution. In a more pre-
cise solution, = contains more substitutions while maintaining partial correctness. The
collecting semantics is defined on the concrete domain (p(Sub), C) and in terms of
six operations: N : E(Sub) x E(Sub) — p(Sub), ufy,, : Egn x p(Sub) — p(Sub),
eTpy 1 VIT X p(Sub) x p(Sub) — o(Sub), I : p(Sub) — p(Sub) forz € VI,
Vot p(Sub) — p(Sub) for v € VI and pgey @ p(Sub) — p(Sub) where N is the set
intersection operation and the others are defined as

uf p, (E,0) = {§ | mgu(§(E)) o £ € O}

- (F=(§) € ©2)
erou(®, 2,0) = {U V5 € Sub.(30 € 0.(5 0 Tu(€) ~ Tu(8)) — (o & € @))}

3.(6) = {3.(0) | 0 € 6)
Va(6) = {0 € 6]V, (0) ~ 6}
pry(0) = {pary(0) | 0 € O}

The collecting semantics guarantees that {2} p(x){3(6)} is a valid partial correctness
formula for some p(x) before expy, (x, £2,0) is called to extend {2 to obtain a set = of
substitutions such that { Z'}p(x){O} is also valid. This is guaranteed by requiring, for
each & € =, (1) 3,(¢) € 2 and (2) if § is a computed answer for (35 (¢))(p(z)) then
do&€0.

The abstract semantics is parameterised by an abstract domain (Z, %) and six
operations: M7 : Z X Z v Z, uft, : BEqn X Z — Z, exf, : VI* X Z x Z v Z,
37— ZN: Z— Zandpl, ., : 7 — Z with 117 being the greatest lower bound



operation on Z. The correctness of a backward analysis is guaranteed by requiring that
there be a concretization function v# : Z ~ (Sub) and that each operation on Z
safely approximates its corresponding operation on p(Sub) from below with respect
to vZ. For instance, 3% : Z + Z approximates 3, : p(Sub) — p(Sub) from below
iff vZ(3%(2)) C 3.(74(2)) for all z € Z. Note that MZ safely approximates M from
below with respect to ¥Z since y# is a concretization function. Furthermore, if 7%
is additive, that is, 7Z(S) = |J,cg7Z(s) for any S C Z then it turns out that the
precision of the abstract semantics can be improved because the disjunction of two or
more pre-conditions for a demand is then a pre-condition for the demand. An abstract
domain (Z,C%) with an additive vZ can be constructed from a pre-order (K, %)
with a monotone v : K+ o(Sub) satisfying |Jv* (K) = Sub as follows. Let
~, XC p(K) x p(K) be defined as S1 = Sy = |, cs, 7" (51) = U, es, 7 (s2) and
81 = 82 = Us1€31 /YK(Sl) - U52€52 /YK(SQ)‘ Define 7 = p(K)/z and EZ:j/z

It follows that (Z, =%) is a complete lattice. Let 77 : Z +— p(Sub) be vZ([S].) =
Uses 7™ (s). Itcan be verified that 4 is an additive concretization function. Under this
construction, ex?, : VI*xZ x Z + Z canbe replaced with ez, : VI*xZx K + Z.
Thus, the design of the backward type analysis can be accomplished by (i) designing a
pre-order (VT, CVT) of primitive type constraints and a monotone vV : VT + ((Sub)
such that | JyVT(VT) = Sub, (ii) constructing an abstract domain (DVT, ZPVT) of type
constraints and corresponding concretization function v°VT : DVT + o(Sub), (iii)
designing abstract operations ufy, ', expy ', IRV, VOV and p2VT and (iv) showing
that they safely approximate (from below) corresponding operations on p(Sub) with

respect to 7DVT.

4 Abstract Domain

The domain for the backward type analysis is the same as that for a forward type anal-
ysis [18]. A type system is first introduced on which the domain is based.

4.1 Types

A (monomorphic) type is a ground term constructed from a set Cons U {,1J,1, 0} of
type constructors. It is assumed that (Cons U {I1,J,1,0}) N X' = {). The denotations
of M, U, 1 and O are fixed whilst the denotations of those in Cons are determined by
type rules [7]. The set of all types is then RT = Term(Cons U {M,L},1,0},0). A
type parameter is a variable that ranges over RT. Let Para,, = {1, -+,(3mn} and
Para = (J,ccons Para,rity(c). A general type over Para,, is either a type parameter in
Para,, or of the form d(3, - - -, B) with d € Cons and f31, - - - , B being different type
parameters in Para,,. Note that general types are polymorphic. The set of all general
types over Para,, is denoted GT,, and GT = {J,.ccons GTarity(c)- A type rule is of the
form ¢(fBy, -, Bm)—>f (71, -, 7) where f € X and {c(B1, -, Bm),T1, -+ T} C
GT,,. The set of all type rules is denoted A. It is assumed that each function symbol
f € X occurs in at least one type rule in A and that each type constructor ¢ € Cons
occurs in the lefthand side of at least one type rule in A.



Example 1. Let X = {0,s(),[ ],[ | ]} and Cons = {nat, even, odd, list()}. Then
{B, list(B)} C GT and list(evenUlist(odd)) € RT. The following type rules define
natural numbers, even numbers, odd numbers and lists. A = {nat—0, nat—s(nat),
even—0, even—s(odd), odd—s(even), list(B)—[], list(8)—[5|list(5)]}. |

A type valuation is a mapping k = {8, — Ri,---, 3, — R,} where 3; € Para
and R; € RT. The domain of k is defined dom(k) = {81, -, Bn}. Let k(3) = O for
any 3 & dom(k). Let VL denote the set of all type valuations. The application of a type
valuation k to a general type 7 is to replace simultaneously each occurrence of 3 in 7
with k(/3). A special type valuation TV is introduced and defined TVt (7) = 1 for any
general type 7. Let ground(A) be the set of all ground instances of rules in A plus
rules of the form 1 — f(1,---, 1) for every f € X. More exactly,

ground(A) = {k(d) |6 € ANk € (Para— RT)} U {1 f(1,---,1)| fe X}
Given A, the set of terms denoted by a type is defined as follows.

[1], = Term(X,V) [0], =
[RaMR2] 4 = [Ra] 4 D[R] 4 [R1UR] 4 = [Ra] 4 U[R2] 4
[C(Rla Tt Rm)]A =

{f<t15 e atn) | 3(C<R17 Tty Rm)_bf(Tl e 7Tn)) € g’l"O’U/I’Ld(A) [ZS [TZ]]A}

[, gives fixed denotations to 1, L, 1 and 0. M and U are interpreted by [] , as set inter-
section and set union respectively. Every type in RT denotes a regular term language.

Example 2. Let A be that in Ex. 1. Then [nat] , = {0, 5(0), s(s(0)), - - -}, [list(0)] , =
{[1},and [tist(1)] , = {[].[z],---} where z € V. |

Proposition 1. Let R € RT. If t € [R], then &(t) € [R] 4 for all £ € Sub. That is,
types are closed under instantiation.' |

Let Ry and R» be two types. The set RT of types is ordered by R1C Ry iff [R1] , C
[R2] , and equivalence between types is defined by Ri1 =R iff [R1] , = [R2] 5.

4.2 Abstract Domain

The abstract domain is obtained by choosing a representation of type constraints in-
formally introduced in section 2. Let VT = (VI + RT) and MVT and CVT be the
point-wise extensions of the type constructor 'l and the pre-order C respectively. Let
TVT = {2 — 1 |z € VI}. (VT,CVT) is a pre-order since (RT,C) is a pre-order.
Members of VT represent primitive type constraints. For instance, if VI = {z,y} then
{z + nat,y — list(nat)} constrains x to be of type nat and y to be of type list(nat).
The denotation of a primitive type constraint is given by vV : VT + ©(Sub) defined
as YVWT(u) = {0 | Vo € VI.(0(z) € [u(z)],)}. Observe that |JyVT(VT) = Sub
since YVT(TVT) = Sub. A type constraint — a disjunction of primitive type constraints

! This would change if set complement were a type constructor.



— is represented as a set containing exactly those primitive type constraints in the dis-
junction. For instance, if VI = {z,y} and S = {{z — nat,y — list(nat)},{z —
list(nat),y +— nat}} then S denotes {0 | O(z) € [nat] , AO(y) € [list(nat)],} U{ |
&(a) € [list(nat)] 5 A E(y) € [nat] ).

There may be many type constraints that denote the same set of substitutions. Type
constraints that have the same denotation are identified as follows. Let relation < on

©(VT) be defined as S1 < Sz = U5, 7T (1) € U,es, 7" (v). Define relation ~

on p(VT) by S1 = Sy = (81 < S2) A (S2 = S1). Observe that = is an equivalence
relation on p(VT).

Let DVT = (VT) ,, and CPVT = </« The abstract domain (DVT, CPVT, LPVT,
MPVT, TDVI | DVTY is a complete lattice where [Sy] UPVT [Sa]. = [S1USs.,
[S1]. MPVT [So] = [{{z = (w(@)w(2)) |2 € VI} [ pe SiAv e So}]., LOVT =
0] and TPVT = [{TVT}].. Define vPVT : DVT +— p(Sub) by vPVT([S].) =

Ues 7V (1) ~°PVT(DVT) is a Moore family [18]. Thus, v°V" is a concretization func-

tion from (DVT, CPVT) to (p(Sub), C). Type constraints are closed under instantiation
because types are closed under instantiation.

5 Abstract Operations for Backward Type Analysis

The design of the backward type analysis is now completed by defining those operations
required by the abstract semantics outlined in section 3.2.

5.1 Simple Operations: 32VT, VOVT, pPVT and expy’

The construction begins with the simple operations. Let x € VI, x = {21, ---,2z,} a
subset of VI and 1 € VT. The existential quantification operation 3YT : VT + VT
returns {y — 0 | y € VI}if u(z) denotes the empty set of terms; otherwise, it removes
the constraint on x from p.

T () = {y —0|ye VI}if p(z)=0
z M po{xr— 1} otherwise

Let YT (n) = %XI(HXI(HXI(N))) and T (n) = 3\‘/;\%(/1). It follows that
AT () VT 3YT () = 4VT (). The existential quantification operation 3PV :
DVT + DVT is defined as 32VT([S] L) = [{3YT (1) | u € S}]. It removes the con-

straint on z from those primitive type constraints that describe a non-empty set of sub-

stitutions. Let IV (¢) = F2VT (IR T(--- IV (¢))) and 32V () = IO, (¢). The

universal quantification operation VOV : DVT + DVT is defined as VEVT([S].) =

{u] (pe8) A (u(x)=1)}] .. Itremoves primitive constraints that place any constraint

on . Let VOVT(g) = VRVT(¥OVT(-..vOVT(4))) and Y2VT(g) = VOUT, (g). Exis-

tential and universal quantifications differ in their direction of approximation in that
VOVT () CPVT ¢ CPVT 3DVT(4). The renaming operation p2VT : DVT +— DVT is

z—y
defined as pRVT (¢) = [y/z]¢ where [y/z]¢ results from substituting y for z simulta-

neously. The operation exPVT (x, ¢, 11) is applied to ¢ € DVT and ;1 € VT when the

bw



execution of an atom p(x) in a state satisfying ¢ can only succeed in a state satisfying
IVT([{u}]~)- The following definition of ezP¥T : VI* x DVT x VT ~ DVT ensures
that exPVT (z, ¢, 1) is a type constraint 1 such that the execution of p(z) in any state
satisfying v succeeds only in a state satisfying p.

expy (¢, 1) = o1V VT ([{u}]2)

It is straightforward to show that the abstract quantification and renaming operations
are correct, but the exPVT operator is more subtle. Therefore let € vPVT (¢ MPVT
3IEVT([{u}])) and suppose O(p(x)) succeeds with a computed answer (. Since 0 €
7PVT(9). o8 € yPVT(IRVT([{1}] <)) by assumption. Since 6 € VT (IRVT([{1}] <))
and type constraints in DVT are closed under instantiation, (o € vPVT (IDVT([{1}]L))-
Thus, ¢ 00 € ¥yPVT([{u}].) by the definitions of vPVT and V7. The remaining opera-
tion ufpy ' : Egn x DVT — DVT is the most complex; it simulates the (reverse) effect

of unification.

5.2 Backward Abstract Unification: uf bDTY,T

In forward type analysis [18], abstract unification takes as inputs an equation E and a
type constraint ¢ (an upper approximation) and produces as output a type constraint
(another upper approximation) which describes mgu(6(F)) o 6 whenever ¢ describes
0. In backward type analysis, abstract unification takes as inputs an equation F and a
type constraint v (a lower approximation) and produces as output a type constraint ¢
(another lower approximation) which describes 6 whenever 1 describes mgu(6(E))o6.
Backward abstract unification is defined as a rewriting system which in turn is formu-
lated in terms of the operations type_low (lower approximation to a type) and tc_low
(lower approximation to a type constraint). These operations are themselves defined
with the auxiliary operations introduced below.

Conjoining type valuations Given two type valuations k; and ko, A : VL X VL — VL
defined below gives another type valuation.

kg if (kl = TVL);
]kl A ]kg = kl else if (kg = TVL);
{8~ ki(B)Mka(B) | B € dom(ky) Ndom(ke)} otherwise

By the definitions of [] , and A, it follows that (k1 A ko)(7) = kq(7)Mks(7) for any
7 € GT and that A is commutative and associative with respect to =.

Approximating type valuations Given a type R, a general type 7, the function tvs_low :
RT x GT — (VL) defined below returns a set of type valuations that instantiate 7 to
types smaller than or equal to R.



(TvVH) ifR=1
{{r — R}} else if 7 € Para

| tvslow(Ry,T) Utvslow(Ry, T) elseif R = R1LURy
tvs low(R,7) = { {k; A ky | k; € tvs low(R;,7)} elseif R = RyMRy

[ Bil1<i<mly  elseif (M0t

{} otherwise

The first two and the last two branches in the definition of tvs_low are obvious. The
two recursive calls in the third branch returns two sets of type valuations members of
which instantiate 7 to types smaller than or equal to 7 and R, respectively. Therefore,
the union of two sets consists of type valuations that instantiate 7 to types smaller
than or equal to R1LIR5. The fourth branch applies A to each pair consisting of a type
valuation from tvs_low(R1,7) and a type valuation from tvs_low(Rs, 7) resulting in a
type valuation that instantiates R to a type smaller than or equal to R1MRa.

Example 3. Let A be that in Ex. 1. Then tvs_low(nat,3) = {{8 — nat}} and
tvs_low(list(nat)Ulist(list(nat)), list(B)) = {{B — nat}} U{{B — list(nat)}} =
{{B — nat}, {8 — list(nat)}}. |

Lemma 1. Let R be a type and T a general type. Then [Uyctys_ow(r,n k()] , C [B] A-
[ |

Approximating types Given a primitive type constraint x and a term t, type low :
VT x Term(X, VI) — RT gives a type that describes a subset of those terms 6(t) for
which p describes 6.

type low(u, t) =
u(t) ifte VI
R; = type low(u, t;)
U (kg Awee K (T)|A (T f(T1, 5 m)) € A Bif = f(tr, - tn)
Nk; € tus low(R;, ;)

Lemma 2. Let p € VT, t € Term(X, VI) and 6 € Sub. If 6(t) € [type_low(p,t)]
then 6 € YVT (). |

Example 4. Continuing with Ex.3, let 1 = {1 — nat, ty — list(nat)Ulist(list(nat))}
and t = [tq|t2]. Let Ry = type low(pu,t1) and Ry = type low(u,ts). Then Ry = nat
and Ry = list(nat)Ulist(list(nat)). The only applicable type rule is list(3)—[5|list((3)].
By Ex. 3, tus low(R1,3) = {{8 — nat}} and tvs low(Rs, list(B)) = {{B —
nat}, {8 — list(nat)}}. Letk; = {8 +— nat}, koy = {B +— nat} and kay = {f —
list(nat)}. Then tvs_low(Ry,0) = {ki} and tvs_low(Rs, list()) = {ka1,kaz}.
Thus, type low(p, [t]tz]) = U{(ky A kay)(list(B)), (ke A koo)(list(B))} =
list(nat)Ulist(natNlist(nat))=list(nat) since natMlist(nat)=0. Observe that if
0([t1]t2]) € [type low(u, [t1]t2])] 4 = [list(nat)] , then 6 € YV (p). ]



Approximating type constraints Let R € RT and ¢t € Term(X, VI). The operation
te-low : RT x Term(X, VI) — DVT defined below gives a type constraint ¢ such that
0(t) € [R] 5 for every 6 described by ¢:

telow(R,x) = [{TVT o {z +— R}}]
tedow(RiURy, t) = telow(Ry,t) UPVT telow(Ry,t)
te low(RiMRy,t) = telow(Ry,t) MPVT te low(Ry,t)

) =

tCJO’LU(R, f(t17 T ) - UDI\{—I—Df (R1,---,Rp))Eground(A) |—|I13\</;,r<n tCJO’U}(RIL‘, tl)
Observe that if R = 0and t = f(ty,---,t,) then te low(R,t) = LPVT via the fourth
definition because 0— f (R, - - -, R,,) is not in ground(A). Also note thatif R = 1 and
t = f(t1,---,t,) then tc low(R,t) = TOVT since 1—»f(1,---,1) is in ground(A).

Example 5. Let A be thatin Ex. 1 and VI = {z,y}. Then te_low(list(odd), [z]y]) =
telow(odd, x) MPVT te low(list(odd),y) = [{{z — odd,y — 1}}]. MOVT [{{z —
1,y — list(odd)}}~ = [{{z — odd,y — list(odd)}}], and tc_low(list(even), [z|y])
= [{{z — even,y — list(even)}}] .. Thus, tclow(list(odd)Ulist(even), [z|y]) =
te_low(list(odd), [x|y])LUPY Tt low(list(even), [z]y]) = [{{x — odd,y — list(odd)}
,{x — even,y — list(even)}} . |

Lemma3. Let R € RT and t € Term(X,VI). Then 0(t) € R for any
0 € vPVT(tc low(R,t)). |

Propagating type constraints backwards by rewriting The abstract unification is
based on a rewriting relation that propagates a type constraint ) over an equational
constraint F in solved form. The relation ~»C (VT x Eqn) x (VT x Eqn) is constructed
from from type_low and tc_low and is defined as follows:

{p )~ {1, 0) (M
(i, EU o = 1) ~ (TVT o {z > type low(u, )H VT N (0. B) @
(i, EU{z =t}) ~ (T () NVT v, E) where v€S and [S]. = telow(u(z),t)(3)

The relation ~* is the reflexive and transitive closure of ~+. The first rule is justified
because VT (11) is downward closed and hence & = mgu(0(E)) o 6 is described by p
if @ is described by p. Each rewriting step by the other rules infers a primitive type
constraint g’ from p and an equation x = ¢ such that if u’ describes 6 then p describes
& = mgu((z),0(t)) o 6. Consider rule (2) first. Let R = type_low(u,t) and 0(t) €
[R] 4. Then 6(y) € vVT(u(y)) for all y € Var(t) by Lemma 2, in other words, if
the z is constrained to be of type R then the type constraints on y € Var(t) can be
removed from g since they are implied by the type of x. Now consider rule (3). Let
[S] = telow(u(z),t),v € Sand § € 4VT(v). Then O(¢) € VT (u(z)) by Lemma 3.
Thus, the type constraint on z in w is implied by v, hence can be removed if v is asserted.

Example 6. Let VI = {z,y,h,l1,l2}, E = {z = [h|li],y = [hll2]} and pg =
{z — lst(nat), y — list(nat),h — nat,ly — list(nat),ly — list(nat)}. Then



(po, B) ~>@=0101.2) (1) Ly = [R]ly]}) ~ @=L (1) 0) and (g, E) ~»@=1h121:3)
(s, {x = [h|l1]}) ~@=rIE12) (1, ) where each step is labelled with the selected
equation and the selected rewriting rule and

w1 = {x — list(nat),y — list(nat), h — 1,11 — 1,15 — list(nat)}
( y — list(nat),h— 1,1 — 1,1 — 1}

(

(

y— 1, h— nat,ly — list(nat),la — list(nat)}
pa = {x +— list(nat),y — 1, h— 1,1 — 1,15 > list(nat)}

pa = {x — list(nat

ps = {x +— list(nat

),
);
);
),

Moreover (p1,{y = [h|l2]}) % (ua,0) and (us, {z = [h|l1]}) % (u2,0). Observe
that YT (u2) Z vV () and vV (14) € ¥VT (112). This shows that ~» does not have
the diamond property with respect to the selection of the equation. |

Proposition 2. Let E € FEqn and p,v € VT such that {(u, E) ~* (v,0). Then
mgu(0(E)) o 0 € ¥V (1) for every 0 € yVT(v). |

Backward Abstract Unification The backward abstract unification operation ufpy '

FEqgn x DVT — DVT is defined

uf gy (B,[8].) = v | 3u € S.((n, B) ~* (.0))}]
uf YT (E, [S].) rewrites (i, E) in every possible way for primitive constraint 4 in
S and collects the resulting primitive constraints. Proposition 2 can be interpreted as
saying that correctness is not compromised by barring either rule (1), rule (2) or rule
(3). Maximising the number of rules used maximises ufp. ' (E,[S].) and therefore
maximises precision by minimising the resulting type constraint.

Example 7. Continuing with Ex. 6, let

ps = {x +— 1,y — list(nat), h — nat, l; — list(nat), lo — list(nat)}
pe = {x +— list(nat),y — list(nat), h — 1,1 +— list(nat),ly — 1}
pwr = {z — 1,y — list(nat),h — 1,1; — list(nat),ls — 1}

pus = {z — 1,y — 1, h — nat,l; — list(nat),ly — list(nat)}

Then (po, E) ~* (p;,0) for each 0 < ¢ < 8. It can be verified that there is no
other primitive type constraint v such that (ug, E) ~* (v,0). Thus, by the defini-
tion of uf VT, VT (B, [{jt0}]2) = [{1i | 0 < i < 8} = [{#t2, s, . s}, Since
po EVT iy EVT pao, piz EVT pua, pis CVT g and pig EVT pir. n

The following result states the correctness of ufp. ', which together with correct-
ness of exl?;/-r, 3OVT wDVT and pg\fy implies the correctness of the backward type
analysis.

Theorem 1. Let F € Eqn and ¢ € DVT. Then mgu(0(E)) o 6 € vPVT(¢) for every
0 €42V (uf 5, (B, ) .

bw



6 Prototype Analyser and Examples

In order to evaluate the usefulness of the analysis presented in sections 4 and 5, a back-
ward type analyser has been constructed for inferring type pre-conditions. The analyser
is coded in SICStus Prolog 3.8.3. The analyser takes, as input, a program written in
a declarative subset of ISO Prolog, type definitions for function symbols occurring in
the program, type assertions for selected user-defined predicates, and a set of initial
demands each consisting of an atom paired with a type post-condition. The analyser
outputs a type constraint that is a type pre-condition for each initial demand. The safety
result of the analysis ensures that if the atom in an initial demand is executed in a state
satisfying the inferred pre-condition for the demand, then the execution will not violate
any type assertion and the post-condition in the demand will be satisfied by any state in
which the execution succeeds. The analyser supports pre-defined types such as atom,
float, int, num and string with usual meanings.

The implementation of abstract operations follows section 5 closely. The top-level
of the analyser was straightforward to implement as it is essentially a fixpoint compu-
tation. The only subtlety is in handling the builtins. For each builtin, it is necessary to
specify a type assertion that is strong enough for avoiding a type error. This is a lower
approximation (the Assertion column of table 1). It is also necessary to specify an op-
eration that transforms a type post-condition for a builtin to a type pre-condition. These
operations output lower approximations (the Operation column of table 1). Table 1 dis-
plays type constraints instead of their representations in DVT for improved readability.

Type assertions for some builtins are given in Table 1; most are easily verified but
some warrant further explanation. Unification =/2 is modelled by the abstract unifi-
cation operation uf bDIXT. Builtins such as >/2 and put/1 that never instantiate their
arguments, are modelled by the identity function A\¢.¢ since any type constraint that
holds when the builtin succeeds must also hold before the builtin is called. The builtin
fail /0 is modelled by the constant function that always returns true (TPVT) since any
type post-condition of fail/0 is vacuously satisfied.

Consider a builtin to which a call p(x) will definitely instantiate z in @ to a term
of type R upon success. Let i be a conjunct in the type post-condition for the call. Ob-
serve that y is a type pre-condition for the demand (p(x), i1). This type pre-condition,
however, can be weakened if RCpu(z). Specifically, if 3YT.. holds before the exe-
cution of the call and RCp(z) then p holds upon success of the execution. In other
words, VT4 is a type pre-condition for the demand (p(x), u) if RCju(z). Thus define
relax : VT x VI x RT by

relaz (i, r, R) = if RCp(x) then 3T .y else p

and relaz : DVT x VI x RT by relax([S], z, R) = [{relaz(u,z,R) | p € S} -
The operation for the builtin p(x) transforms ¢ to relax (¢, z, R) for each z in x that
is definitely of type R upon success of the execution of p(x). For instance, the oper-
ation for is(x1,x9) is Ap.relax(p, x1, num) since x; is definitely of type num upon
success of is(x1, x2). Note that the execution of is(x1, 22) does not instantiate 5. The
operation for read(x1) is Ag.¢ since 1 does not necessarily belong to any type other
than 1 upon the success of read(x1).



Builtin Assertion Operation
abort, fail, false true Ap.true
l, 21@<xma, T1@>m2, T1=<Qma2, x1@>=x2, x1==x2, true Ao.d

r1\==w2, x1\=T2, compound(xr1), display(zi),
ground(z1), listing, listing(z1), nl, nonvar(zi),
portray_clause(x1), print(x1), read(z1), repeat,
true, wvar(xi), write(x1), writeq(z1), float(x1),
string(xz1), atom(x1), atomic(xzi), integer(x1),

number(z1)

T1=T2 true )\gb.uf%T({xl =12},0)
format(x1), format(z1,x2), format(zo, z1,x2) b1 2.

is(z1, z2) b2 Ap.relax(p, z1, num)
erase(x1), put(w1), tab(w1) ®3 Ap.¢
T1<T2,T1 > Ta, T1=<Ta, T1>=Tg, T1=:=T2, T1=\=T2 04 Ap.¢
length(x1, x2) true f1
compare(r1, T2, T3) true | Ao.relax(¢, x1, atom)
name(z1, x2) b5 fa

Table 1. Type assertions and abstract operations for builtins where ¢1 = (z1 €

atomUstringUlist(int)), ¢z = (v2 € num), ¢z = (x1 € int), ¢4 = (v1 € num A z2 €
num), ¢s = (x1 € atomlint V x2 € string), f1 = Ad.relax(relax(p, x1, list(1)), x2, int)
and fo = Ag.relaz(relax(p, x1, atomllint), xa, string) .

The analyser forces termination by limiting the number of types that may occur
in demands and thereby limiting the number of demands. This is achieved by depth-%
abstraction — a technique that is frequently applied in type analysis [1, 3, 18]. Sub-terms
at depth k in a type R are replaced with 0 (rather than 1), resulting a type R’ such that
R'CR. Thus, application of depth-k abstraction to types in the post-condition ¢ in a
demand (p(x), ¢) obtains a post-condition ¢’ which is at least as strong as ¢. Safety is
preserved because a pre-condition for the stronger (p(x), ¢') is also a pre-condition for
the weaker (p(x), ¢).

The analyser has been applied to some standard Prolog benchmarks which can be
found at http://www.oakland.edu/~12lu/Benchmarks-BT.zip. Inferred type signatures
for the predicates in the smaller benchmarks, are given in table 2 which also displays
type constraints instead of their representations in DVT. The type assertions for each
benchmark program are exactly those for the builtins that are called in the program
although type assertions may be provided for user-defined predicates as well. The type
signatures were obtained by analysing the program with a set of initial demands — one
demand with the type post-condition ¢rue for each predicate in the program. The results
have been verified by hand and, though sometimes surprising, appear to be optimal. For
instance, the first conjunct in the inferred type signature ¢ for predicate partition/4
indicates that the execution of partition(xy, z2, x3,x4) is free from type errors if x5 is
a number, and x3 and x4 are lists of numbers when the execution starts. The analyser
can thus infer type signatures that may well be missed by manual inspection. The main
weakness of the prototype is that its front end does not currently support control features
such as ; and —> or the meta-programming builtins, though this is not a fundamental
limitation of the analysis itself.



Benchmark Predicate Inferred Type Signature
merge merge(xi,x2,x3) (z1 € list(num) A 2 € list(num))
heapify adjust(x1, 2, T3, T4) o
heapify(zi1,x2) (z1 € tree(num))
greater(z1,x2) (z1 € num A z2 € tree(num))
quicksort partition(x1, T2, T3, T4) b2
using igsort_aux(x1, T2, T3) (1 € list(num))
stack igsort(x1, x2) (z1 € list(num))
quicksort append(x1, 2, x3) true
partition(z1, T2, T3, T4) b2
quicksort(z1,x2) (z1 € list(num))
quicksort partition(z1, T2, T3, T4) b2
using quicksort_dl(z1, z2) (z1 € list(num))
difference list quicksort(z1, z2) (1 € list(num))
treesort tree_to list_aux(xi, x2, x3) true
tree_to list(x1,x2) true
insert(xi, x2, x3) b3
insert_list(z1, x2, x3) (z1 € list(num) A z2 € tree(num))
list to tree(x1, x2) (z1 € list(num))
treesort(z1, x2) (z1 € list(num))
lookup lookup(x1, w2, x3) x1 € num A z9 € dictionary(num, 1)
exp exp(r1, 2, x3) (z1 € num A z2 € num)
factorial factorial(z1, z2) 1 € num
Table 2. Precision of the Backward Type Analysis where ¢1 = (z1 € num A x4 €
tree(num)) V (z1 € num A x2 € tree(num) A xz € tree(num)), ¢p2 = (z2 €

num A z3 € list(num) A x4 € list(num)) V (1 € list(num) A z2 € num) and
¢3 = (x1 € num A z3 € tree(num)) V (x1 € num A z2 € tree(num)).

7 Related work

The literature on types in logic programming is vast so this section provides some initial
pointers to related work on type analysis. Analysis can be performed either with [1-3,
11,13, 14,17, 18] or without [4, 8-10, 12, 20] type definitions provided by the program-
mer. The former are easy for the programmer to understand whereas the latter are useful
in compiler optimisation but can be more difficult for the programmer to interpret.

All the above type analyses propagate type information in the direction of program
execution and compute upper approximations to the set of reachable program states. In
contrast, the backward type analysis presented in this paper propagates type information
in the reverse direction of program execution and computes lower approximations to the
set of program states from which the execution will not violate any type assertions.

In a related work [15], the authors present an abstract semantics for backward anal-
ysis of logic programs and specialise it to the groundness domain Pos [5, 19] to infer
safe modes for queries which ensure that the program will not generate an instantiation
error. Analysis is performed by first computing an upper approximation to the success
set of the program and then a lower approximation to the set of programs states (substi-
tutions) that will not violate any moding requirement. Both phases of analysis require



the domain to be equipped with a (computable) intuitionistic implication operator. Al-
though [3] presents a type domain that is a complete Heyting algebra, its intuitionistic
implication operator is left unspecified.

Pedreschi and Ruggieri [21] develop a calculus of weakest pre-conditions and weak-
est liberal pre-conditions, the latter of which is essentially a reformulation of Hoare’s
logic. Weakest liberal pre-conditions are characterised as the greatest fixpoint of a co-
continuous operator on the space of interpretations. The work is motivated by, among
other things, the desire to infer the absence of ill-typed arithmetic. Our work takes
these ideas forward to show how abstract interpretation can infer weakest liberal pre-
conditions.

8 Summary

A novel backward type analysis for logic programs has been presented. The analysis
generalises type checking and is able to infer type constraints for predicates in a pro-
gram that, if satisfied, guarantee that the execution of the program will not violate any
type assertions. The analysis can relieve the programmer from the tedium of declaring
all types, infer valuable program documentation and also aid in debugging. Algorithms
for the domain operations have been specified that can be translated directly into imple-
mentation and a prototype implementation has demonstrated that useful type informa-
tion can be inferred. Contrary to what was first thought [15], the work also shows that a
domain for backward type analysis need not be a complete Heyting algebra.
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