
Simon, Axel and King, Andy (2005) Exploiting Sparsity in Polyhedral Analysis:
12th International Symposium, SAS 2005, London, UK, September 7-9,
2005. Proceedings. In: Hankin, Chris and Siveroni, Igor, eds. Static Analysis
Symposium. Lecture Notes in Computer Science, 3672 . Springer, pp. 336-351.
ISBN 978-3-540-28584-7.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/37606/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/11547662_23

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/37606/
https://doi.org/10.1007/11547662_23
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Exploiting Sparsity in Polyhedral Analysis

Axel Simon and Andy King

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK
{a.simon,a.m.king}@kent.ac.uk

Abstract. The intrinsic cost of polyhedra has lead to research on more
tractable sub-classes of linear inequalities. Rather than committing to the
precision of such a sub-class, this paper presents a projection algorithm
that works directly on any sparse system of inequalities and which sac-
rifices precision only when necessary. The algorithm is based on a novel
combination of the Fourier-Motzkin algorithm (for exact projection) and
Simplex (for approximate projection). By reformulating the convex hull
operation in terms of projection, conversion to the frame representation
is avoided altogether. Experimental results conducted on logic programs
demonstrate that the resulting analysis is efficient and precise.

1 Introduction

Recently there has been much interest in so-called weakly relational domains [7,
25, 29] that trade the precision of operations on systems of linear inequalities for
improved tractability. These domains seek to address the scalability problems
of the polyhedral domain [8] whose operations are inherently exponential, irre-
spective of the algorithms used to implement them: Chandru et al. [6] showed
that eliminating variables from a system of inequalities can increase the number
of inequalities exponentially; Benoy et al. [2] showed that polytopes (bounded
polyhedra) exist whose convex hull is exponential in the number of inequalities
defining the input polytopes. Exponential growth also can arise when converting
into the frame representation, which is the classical approach for computing the
convex hull and projection [21]. Consider, for example, the convex hull of two
n-dimensional hypercubes where one is translated along one axis. The frame
consists of 2n vertices for each hypercube. However, the resulting hull can be
represented by 2n inequalities, just as the inputs. A natural question is whether
there are faster methods to calculate the convex hull that do not convert the
input polyhedra into their frame representation and that over-approximate the
output polyhedron in case the resulting set of inequalities has exponential size.

One answer to this question is represented by the class of weakly relational
domains where inequalities are restricted in order to prevent exponential growth.
The Octagon domain [25] uses inequalities of the form ±xi ± xj ≤ ci,j where
xi and xj are variables and ci,j is a constant. In this domain the convex hull
reduces to calculating the element-wise maximum of two matrices. The Octagon
domain was generalised into the Octahedron domain [7], allowing more than two
variables with zero or unary coefficients whilst maintaining a hull operation that

is polynomial in the number of variables. Finally, the two variables per inequality
(TVPI) domain [29] allows arbitrary coefficients. This domain stores a planar
polyhedron for each variable pair and employs a convex hull algorithm that
operates on planar polyhedra [28]. All these domains employ a closure opera-
tion to propagate information between inequalities. Even incremental versions of
these closure operations are quadratic, hence Blanchet et al. advocate a packing
strategy when analysing large-scale programs [3]. They keep a set of Octagons,
each describing relationships between variables occurring in a pack. Packs can
overlap and are chosen by examining which variables occur in the same pro-
gram statement. Packs are determined up front and hence packing variables is
a commitment to a fixed degree of precision. Interestingly their program can be
verified with packs that contain no more than four variables on average which
suggests that useful inequalities contain relatively few variables. Halbwachs et
al. also exploit the loose coupling of variables by partitioning the variable set
into non-overlapping groups [13]. By applying the standard domain operations
independently to each partition (rather than over the whole set of variables)
useful speedups are obtained.

This paper shows how to exploit the fact that a given variable typically occurs
in only a few inequalities. The key observation is that projection on these sparse
systems can be realised efficiently by carefully applying the Fourier-Motzkin
method [26]. We restrict the size of the output and the intermediate systems to
be no larger than that of the input system which avoids exponential growth in the
number of inequalities, thereby providing a performance guarantee. Surprisingly,
even with this draconian size restriction the vast majority of variables can be
eliminated. In the remaining cases we use Simplex to approximate the projection
space by combining those inequalities that still contain uneliminated variables.
Our method creates one inequality in the projection space for each call to Sim-
plex. Simplex is called once for each remaining inequality which ensures that the
final system is no larger than the original. This second stage over-approximates
the projection (if applied at all). In terms of complexity, Fourier-Motzkin elim-
inates n variables in O(nm) time where m is the number of inequalities. When
variables remain to be eliminated, no more than m Simplex queries are per-
formed where each query operates over m dimensions and n inequalities (note
that n and m are exchanged). This method is attractive because, although Sim-
plex is not a polynomial-time algorithm, the number of pivoting steps is about
linear in the number of dimensions [27] and each pivoting step is in O(nm) for
the Simplex method in the tableau form. In fact, the average number of steps is
polynomial [4]. To complete the set of domain operations, convex hull is recast
in terms of projection [2] so that the frame representation is avoided altogether.

The remainder of the paper is structured as follows: After Section 2 intro-
duces necessary mathematical notation, Section 3 presents techniques for using
Fourier-Motzkin variable elimination for sparse inequality systems. Section 4 de-
scribes an approximation to projection. Section 5 describes how these efficient
projection algorithms can be used to calculate convex hull. The paper finishes
with sections on performance evaluation and related work before concluding.

2 Preliminaries

Let Lin=
X and Lin≤

X denote the set of linear equalities and inequalities, respec-
tively, defined over a finite set of variables X . Elements of Lin=

X and Lin≤
X take

the form of c · y = b and c · y ≤ b where |c| = |y|, b ∈ Z and the elements of c
and y are drawn from Z and X respectively. Furthermore let ConX denote the
set of all finite subsets of Lin=

X ∪ Lin≤
X and IneqX the set of all finite subsets of

Lin≤
X . The set of real solutions for c · y ≤ b is defined by:

solnR
x(c · y ≤ b) =

{
〈r1, . . . rn〉 ∈ Rn

∣∣∣∣
c · 〈r′1, . . . r′m〉 ≤ b ∧
ri = r′j for all xi = yj

}

where x = 〈x1, . . . xn〉 and y = 〈y1, . . . ym〉. The real solution set for c · y = b
is defined likewise and for any linear system E ∈ ConX the real solution set for
E is defined solnR

x(E) = ∩e∈EsolnR
x(e). Two linear systems E1, E2 ∈ ConX are

partially ordered by the subset relation on their solution sets, that is, E1 |=R E2

iff solnR
x(E1) ⊆ solnR

x(E2) where var(x) = var (E1)∪var (E2) and var (o) denotes
the set of variables in a syntactic object o. The set of integer solutions solnZ

x can
be defined analogously to solnR

x to induce a different partial order E1 |=Z E2.
The ordering |=R over-approximates |=Z in the sense that if E1 |=R E2 then
E1 |=Z E2; this is convenient in applications that are concerned with integral
entities because (domain) operations associated with the ordering |=R are more
tractable than those induced by |=Z [27]. Thus, henceforth, |= and solnx will
abbreviate |=R and solnR

x respectively. The predicate sat ⊆ ConX is defined so
that sat(E) holds iff solnx(E))= ∅ where var(x) = var(E). Finally, let false
denote a particular system E ∈ ConX such that sat(false) does not hold.

3 Fourier-Motzkin Projection

Eliminating a variable from two equalities by scaling and adding them is a well
known principle that is attributed to Gauss. Fourier refined this elimination
strategy to pairs of inequalities. The basic observation is that inequalities may
only be scaled by non-negative numbers which implies that the coefficients of
the variable to be eliminated must have opposing signs in the two inequalities.
His method was later elaborated on by Motzkin and henceforth it will be re-
ferred to as the Fourier-Motzkin variable elimination. While this algorithm has
been thoroughly studied [11, 15, 18], little practical work has been reported on
combining different refinements. This section presents strategies that are useful
for program analysis – each strategy is reported in a separate sub-section.

Algorithm 1 presents the basic Fourier-Motzkin algorithm to remove a vari-
able xr ∈ X from a system of inequalities E ∈ IneqX . E is partitioned into
E+, Er and E−, corresponding to inequalities that have positive, zero and neg-
ative coefficient for xr. Er is augmented to obtain the projection by combining
positive multiples of pairs of inequalities drawn from E+ and E−. The vari-
able xr is eliminated since the coefficient of xr in each inequality added to

Algorithm 1 Fourier-Motzkin fourier(xr , E)
Require: xr ∈ X, E ∈ IneqX

〈E+, Er, E−〉 ← 〈∅, ∅, ∅〉
for a · x ≤ c ∈ E do

if πr(a) = 0 then
Er ← Er ∪ {a · x ≤ c}

else if πr(a) > 0 then
E+ ← E+ ∪ {a · x ≤ c}

else
E− ← E− ∪ {a · x ≤ c}

for a+ · x ≤ c+ ∈ E+ do
for a− · x ≤ c− ∈ E− do

a ·x ≤ c ← simplify((πr(a
+)a− + |πr(a

−)|a+) ·x ≤ (πr(a
+)c− + |πr(a

−)|c+))
if a (= 0 then

Er ← Er ∪ {a · x ≤ c}
else if c < 0 then

return false
return Er

Er is πr(a+)πr(a−) + |πr(a−)|πr(a+) = 0 where a+ ∈ E+ and a− ∈ E−

and πi(〈a1, . . . an〉) = ai. Note that a generated inequality might take the form
0 ·x ≤ c. If c < 0, the original system E is unsatisfiable and false is returned as
the projection, otherwise the inequality is a tautology [20] and is discarded.

3.1 Simplification

To identify equivalent inequalities, a unique representation is desirable. The
simplify function presented as Algorithm 2 is designed to remove common factors
from a newly generated inequality. The algorithm is generic in the sense that it
supports equalities, so that it is also applicable in Gaussian elimination (as dis-
cussed in Section 3.5). In both cases the function is the identity if all coefficients
are zero since this represents either a tautology or a contradiction. Otherwise
an inequality is divided by the greatest common denominator of its coefficients.
Note that dividing the constant might not result in an integral number and
therefore the result is rounded down. This is sound only if integer entities are
represented. In the case of equalities, the assignment g ← c ensures that the gcd
calculation also considers the constant so that the division has no remainder,
thereby guaranteeing that the exact equality relationship is preserved.

3.2 Variable Selection

Whenever a set of variables Y = {y1, . . . yn} needs to be projected out, the
Fourier-Motzkin algorithm can be applied iteratively by setting E0 = E and
Ei = fourier(yi, Ei−1). In each step, |E+

i | + |E−
i | inequalities are removed from

Ei and |E+
i ||E−

i | are added. Hence the growth in each step is in O(|Ei|2) and
the number of inequalities in the final system En is in O(|E|2n

) which prohibits

Algorithm 2 Simplification simplify(a · x , c) where , ∈ {≤, =}
if a = 0 then

return a · x) c
if) ∈ {≤} then

g ← 0
else

g ← c
for ai ∈ a do

if ai (= 0 then
if g = 0 then

g ← ai

else
g ← gcd(g, ai)

return (a/g) · x) *c/g+

Algorithm 3 Select variable select(Y, E)
Require: E ∈ IneqX , Y ⊆ X

〈p1, . . . p|X|〉 ← 0
〈m1, . . . m|X|〉 ← 0
for a · x ≤ c ∈ E do

for i ∈ {1, . . . |X|} do
if πi(a) > 0 then

pi ← pi + 1
else if πi(a) < 0 then

mi ← mi + 1
bestGrowth ← |E|2
for xi ∈ Y do

growth ← pimi − (pi + mi)
if growth < bestGrowth then

bestGrowth ← growth
bestVar ← xi

return 〈bestGrowth , bestVar 〉

direct use of this method even for projecting out a few variables. A standard
rule [11] suggests delaying the growth of the intermediate systems by always
eliminating the variable that minimises |E+

i ||E−
i |− (|E+

i | + |E−
i |). Algorithm 3

calculates how many positive and negative coefficients each variable has in the
given inequality system E. It returns the variable xr such that applying Fourier-
Motzkin elimination will result in minimal growth.

3.3 Complete Redundancy Removal

Each Fourier-Motzkin step may introduce redundant inequalities. Algorithm 4
uses the Simplex method to check every inequality for redundancy. The function
simplex (a, x, E) calculates a vector m that maximises a ·x subject to the linear
inequalities in E. Running compress after each Fourier-Motzkin elimination step

Algorithm 4 Complete Redundancy Removal compress(E)
Require: E ∈ IneqX

if ¬sat(E) then
return false

for a · x ≤ c ∈ E do
m ← simplex(a, x, E \ {a · x ≤ c})
if m · a ≤ c then

E ← E \ {a · x ≤ c}
return E

Algorithm 5 Quasi-Syntactic Redundancy Removal quasi(E)
Require: E ∈ IneqX

while {a1 · x ≤ c1, a2 · x ≤ c2} ⊆ E ∧ a1 = a2 do
if c1 > c2 then

E ← E \ {a1 · x ≤ c1}
else

E ← E \ {a2 · x ≤ c2}
return E

is prohibitively expensive and therefore it is desirable to only apply compress
when more lightweight redundancy removal algorithms fail to constrain growth.

3.4 Quasi-Syntactic Redundancy Removal

Lassez et al. identify several classes of redundant inequalities that can be de-
tected by purely syntactic means [20]. For instance, inequalities with identical
coefficients are called syntactically redundant (if the constant is equal) and quasi-
syntactically redundant (if the constants differ). Given a pair of quasi-syntactic
redundant inequalities, only the one with the smaller constant needs to be re-
tained. Algorithm 5 removes both classes of redundancy by examining pairs
of inequalities. In practise, inequalities can be sorted lexicographically by their
coefficients which allows the algorithm to run in O(|E| log |E|).

3.5 Equality Removal

Rather than modelling an equality as two opposing inequalities, it is more pru-
dent to retain equalities that arise during the analysis and precede the Fourier-
Motzkin elimination with a Gaussian elimination phase. Algorithm 6 takes as
input the system of equalities and inequalities E and the set of variables Y that
are to be eliminated. It returns as output a triple consisting of a set of variables
that remain to be eliminated, a set of equalities P in the projection space, and a
system of inequalities that still retain variables to be eliminated. The algorithm
iterates as long as there remains an equality a · x = c ∈ E. If there exists a
coefficient πi(a))= 0 and πi(x) ∈ Y then Gaussian elimination is performed on
all inequalities and remaining equalities that contain a non-zero coefficient for

Algorithm 6 Equality Removal gauss(Y, E)
Require: E ∈ ConX , Y ⊆ X

P ← ∅
while a · x = c ∈ E do

E ← E \ {a · x = c}
s ← −1
for xi ∈ Y do

if πi(a) (= 0 then
s ← i

if s = −1 then
P ← P ∪ {a · x = c}
s ← i such that πi(a) (= 0

Y ← Y \ {xs}
if πs(a) < 0 then

〈a, c〉 ← 〈−a,−c〉
E′ ← ∅
for b · x) d ∈ E where) ∈ {≤, =} do

if πs(b) = 0 then
E′ ← E′ ∪ {b · x) d}

else
e · x) f ← simplify((asb − bsa) · x) (asd − bsc))
if e = 0 then

if () ∈ {≤} ∧ f < 0) ∨ () ∈ {=} ∧ f (= 0) then
return 〈Y, false, P 〉

else
E′ ← E′ ∪ {e · x) f}

E ← E′

return 〈Y, E, P 〉

πi(x). Since πi(x) is to be eliminated, the equality is then discarded. Alterna-
tively, if there is no variable πi(x) ∈ Y with πi(a))= 0 then the equality is part
of the projection space P . Observe that each iteration of the while loop makes
progress in the sense that it reduces the set of variables that appear in E.

The value of applying Gaussian elimination is fourfold: (1) it avoids reformu-
lating each equality as two inequalities; (2) it reduces the number of inequalities
that Fourier-Motzkin is applied to; (3) it reduces the number of variables that
remain to be eliminated and perhaps most subtly (4) it increases the number
of inequalities that can be identified as quasi-syntactically redundant. The last
point stems from the observation that substituting an equality into a system of-
ten reformulates one inequality to the extent that it becomes quasi-syntactically
redundant with respect to another [20]. This motivates the substitution of all
equalities, even those that do not contain variables to be eliminated.

3.6 Combining All Strategies

This section composes the strategies previously presented so as to ensure tractabil-
ity even in those pathological cases when the size of the projection is exponen-

tial [2]. The overall projection method is presented as Algorithm 7 and takes a
linear system E and a set of variables Y that are to be eliminated. The algorithm
applies Gaussian elimination to produce a system of inequalities E no larger than
the initial input. Fourier-Motzkin elimination is then performed, which is inter-
leaved with quasi-syntactic redundancy removal, until no more variables can be
eliminated without exceeding the preset limit. Due to sparsity, a variable will
often only appear once with a certain polarity (say with a positive coefficient). In
this case the number of inequalities removed will be |E+|+ |E−| = 1+n and the
number of newly created inequalities is at most |E+||E−| = n which makes the
system shrink. Another frequently occurring case is that of |E+| = |E−| = 2. If
the limit is exceeded, complete redundancy removal is activated in an attempt to
remove enough inequalities to resume Fourier-Motzkin. At this stage, the limit is
further reduced to |E|. This is good practise since E is usually reduced consider-
ably. Finally, if Fourier-Motzkin cannot be reapplied and variables remain to be
eliminated, the system E is partitioned into those inequalities E′ that contain
variables in Y and into those in P that do not. The projection of the set E′ is
approximated by the extreme point projection which is presented next.

4 Extreme Point Projection

While the Fourier-Motzkin method works well on sparse systems, Huynh et
al. [14] propose using the extreme point method of Lassez [19] for dense sys-
tems. This method can find inequalities in the projection space incrementally,
thereby enabling the projection to be approximated with a limited number of
inequalities. To illustrate the method, consider eliminating the variables Y from
a linear system E = {a1 · x ≤ c1, . . . an · x ≤ cn}. W.l.o.g., let Y = var(y) and

a1

...
an

 = (A|B)

x1

...
xm

 =
(

y
z

)
c =

c1

...
cn

where y and z are column vectors and x = 〈x1, . . . xm〉. Then Ay + Bz ≤ c is
equivalent to E and the problem of calculating an inequality in the projection
space reduces to finding non-negative linear combinations λ ∈ Rn of rows of
A such that λA = 0. Then λ(Ay + Bz) ≤ λc and λ(Ay + Bz) = λBz hence
(λB)z ≤ λc which yields an inequality in the projection space. The vector λ = 0
is the trivial solution to the system λA = 0 yielding a tautology. Observe that
if λ ∈ Rn is a solution to λA = 0 and {λi ≥ 0 | λi ∈ λ}, then so is sλ where
s ∈ R is any non-negative scalar. Hence, w.l.o.g., we can enforce the constraint
λ1 + . . . + λn = 1. The set of all extreme points of the bounded space, given
by λA = 0, {λi ≥ 0 | λi ∈ λ} and λ1 + . . . + λn = 1, corresponds to the exact
projection which potentially contains an exponential number of inequalities. To
give a performance guarantee, we only enumerate |E| extreme points thereby
ensuring that the number of inequalities does not grow beyond the set limit.

Since extreme point enumeration does not consider the B matrix, two ex-
treme points λa)= λb might produce the same coefficient vector λaB = λbB

Algorithm 7 Projection project(Y, E)
Require: E ∈ ConX , Y ⊆ X

〈Y, E, P 〉 ← gauss(Y, E)
if ¬sat(E) then

return false
limit ← |E|
〈g, xi〉 ← select(Y, E)
while Y (= ∅ ∧ |E| + g ≤ limit do

E ← fourier(xi, E)
if E = false then

return false
E ← quasi(E)
Y ← Y \ {xi}
〈g, xi〉 ← select(Y,E)
if |E| + g > limit then

E ← compress(E)
if E = false then

return false
limit ← |E|
〈g, xi〉 ← select(Y, E)

if Y = ∅ then
return compress(E ∪ P)

E′ ← ∅
for a · x ≤ c ∈ E do

if ∃xi ∈ Y.πi(a) (= 0 then
E′ ← E′ ∪ {a · x ≤ c}

else
P ← P ∪ {a · x ≤ c}

return compress(extreme(Y, E′) ∪ P)

such that one of the resulting inequalities will be quasi-syntactically redundant.
Kohler [18] observed that if the set of indices containing zero coefficients in λa is
a strict superset of those of λb, then the latter leads to a redundant inequality.
This observation can be exploited by maximising the number of zero coefficients
in each λ which is the indirect result of running a linear program that maximises
a specific λi ∈ λ. Algorithm 8 formalises this heuristic. As a final comment, note
that Fourier-Motzkin elimination can be seen as a special case of the extreme
point method where A only contains one column (and hence one variable to elim-
inate). The extreme points are those solutions that combine exactly one positive
row with one negative row in A.

5 Convex Hull via Projection

The convex hull operation takes as input two inequality sets E1, E2 ∈ ConX and
produces as output an E ∈ ConX such that solnx(Ei) ⊆ solnx(E), solnx(E) is
minimal and var(x) = var(E1 ∪ E2). For purpose of exposition, let E1 and E2

Algorithm 8 Extreme-Point Projection extreme(Y, E)
Require: E ∈ IneqX , Y ⊆ X

(A|B) ←

0

B@

a1

...
an

1

CA where (ai · x ≤ ci) ∈ E, var(y) = Y and Ay + Bz ≤

0

B@

c1

...
cn

1

CA

Λ ← λA = 0 ∪ {λi ≥ 0 | λi ∈ λ} ∪ {
P

λi = 1}
E′ ← ∅
for f ∈ 〈1, 0, . . . 0〉, 〈0, 1, . . . 0〉 . . . 〈0, 0, . . . 1〉 do

m ← simplex(f , λ, Λ)
e ← simplify(mB ≤ m · 〈c1, . . . cn〉)
E′ ← E′ ∪ {e}

return E′

be represented in matrix form as Aix ≤ ci, i = 1, 2 (with the equalities in Ei

expressed as two rows in Ai). The smallest convex set of points P that includes
solnx(E1) ∪ solnx(E2) is given by

P =
{

x

∣∣∣∣
x = σ1x1 + σ2x2 ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧
A1x1 ≤ c1 ∧ A2x2 ≤ c2 ∧ σ2 ≥ 0

}
.

To avoid the non-linearity x = σ1x1+σ2x2, the system can be relaxed by setting
y1 = σ1x1 and y2 = σ2x2 so that x = y1+y2 and Aiyi≤ σici to define:

P ′ =
{

x

∣∣∣∣
x = y1 + y2 ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧
A1y1 ≤ σ1c1 ∧ A2y2 ≤ σ2c2 ∧ σ2 ≥ 0

}
.

Note that, although P ⊆ P ′, in general P)= P ′ since P might not be topolog-
ically closed whereas P ′ is represented by a set of (non-strict) inequalities and
therefore is closed. In fact projecting out σi and the variables in y1 and y2 yields
a system E representing the closure of the convex hull of the two input polyhedra
E1 and E2 as is formally proved in [2]. Henceforth let hull(E1, E2) = E encapsu-
late this computational tactic for calculating the convex hull. Since entailment
can be realised straightforwardly with Simplex, this section completes the suite
of polyhedral domain operations without recourse to the frame representation.

6 Performance Evaluation

In order to assess the precision and efficiency of the domain operations reported
thus far, the algorithms have been integrated into an argument size analyser
[10]. The analysis is key to termination checking [10], termination inference [24],
control generation [17] and determinacy inference [23]. The last application uses
argument size relationships that are synthesised for each clause in the program
to infer a determinacy condition for each predicate that, if satisfied by a call,
guarantees that there is at most one computed answer for that call and that the
answer is produced only once if ever. The value of this analysis quickly degrades
unless three variable inequalities can be inferred (see [23, Section 2.2]) which
precludes the use of octagons [25] or the TVPI domain [29].

6.1 Argument-Size Analysis of Logic Programs

This section summarises the essential details of an argument-size analysis. The
analysis abstracts the standard TP [22] operator of a logic program P . In this
presentation, TP is defined for clauses of the form p(x) ← H, p1(x1), . . . pn(xn)
where x and xi are vectors of variables, H is a finite (possibly empty) set of
Herbrand equations {s1 = t1, . . . sn = tn} and si and ti are arbitrary terms. The
set of unifiers of H is denoted by unify(H). For a given clause c, the operator
Tc(I) maps one set of ground atoms I to another in the following manner:

Tc(I) = I ∪

θ(p(x))

∣∣∣∣∣∣

c = p(x) ← H, p1(x1), . . . pn(xn) ∧
var (θ(c)) = ∅ ∧

θ ∈ unify(H) ∧ θ(pi(xi)) ∈ I

The condition var(θ(c)) = ∅ ensures that the substitution θ grounds c, hence the
atom θ(p(x)) is variable-free. The operator lifts to a program P = {c1, . . . cn}
by defining TP (I) = In where I0 = I and Ii = Tci(Ii−1). Since TP is monotonic
and the computation domain of sets of ground atoms constitutes a complete
lattice under the subset ordering, then lfp(TP) exists which provides a convenient
fixpoint formulation of the semantics of P [22].

Argument-size analysis aspires to find size invariants for each p that describe
a tuple of terms t whenever p(t) ∈ lfp(TP). Size is quantified in terms of a norm
that maps a ground term to a non-negative size. In our experiments we use the
term-size norm |.|term-size [9] which is defined as follows:

|t|term-size =
{

1 +
∑n

i=1 |ti|term-size if t = f(t1, . . . tn) ∧ n > 0
0 otherwise

The established approach to finding such invariants involves describing Her-
brand (syntactic) equations with linear equations. Formally, a linear equation
c · x = b describes s = t with respect to |.|, denoted by (c · x = b) ∝|.| (s = t),
iff |θ(x)| ∈ solnx(c · x = b) whenever θ is a grounding substitution for s = t
such that θ ∈ unify({s = t}) where |〈t1, . . . tn〉| = 〈|t1|, . . . |tn|〉. Since ∝|.| is
a relation, a natural question is whether there is a best description of a given
Herbrand equation s = t. In fact, this is given by e = α|.|(s = t) where α|.| is
defined such that e is the best abstraction with e ∝|.| (s = t). For the term-size
norm, and more generally the class of semi-linear norms [5], the function α|.|
is well-defined. The mapping α|.| extends to sets of Herbrand equations by
α|.|(H) = {α|.|(si = ti) | (si = ti) ∈ H}.

Example 1. To illustrate, consider the equation C = succ(N) ∗ pow(X, N) where ∗
is an infix functor. The linear equation C = 3 + X + 2 ∗ N describes the Herbrand
equation with respect to |.|term-size. To see this, let θ be a grounding unifier of the
Herbrand equation. Then |θ(C)|term-size = |succ(θ(N)) ∗ pow(θ(X), θ(N))|term-size,
hence: |θ(C)|term-size = 1+(1+|θ(N)|term-size)+(1+|θ(X)|term-size+|θ(N)|term-size)
Observe that the linear equation expresses the relative sizes of any ground in-
stance of the variables C, X and N that satisfies the syntactic equation.

To capture linear invariants between the arguments of predicates, it is neces-
sary to lift the |= ordering on linear systems to atoms paired with linear systems
as follows: 〈p(x1), E1〉 |= 〈p(x2), E2〉 iff solnx1(E1) ⊆ solnx2(E2). Observe that
two pairs 〈p(x1), E1〉 and 〈p(x2), E2〉 that differ syntactically may express the
same invariants, that is, 〈p(x1), E1〉 |= 〈p(x2), E2〉 |= 〈p(x1), E1〉 yet E1)= E2.
To express invariants between argument positions it is thus necessary to con-
struct sets of syntactically different but equivalence pairs. (This is more than
an aesthetic predilection since this construction simplifies the way formal argu-
ments are matched against actual arguments.) Formally, equivalence is defined by
〈p(x1), E1〉 ≡ 〈p(x2), E2〉 iff 〈p(x1), E1〉 |= 〈p(x2), E2〉 |= 〈p(x1), E1〉 which, in
turn, induces a notion of equivalence class. To simultaneously record the invari-
ants that hold on different predicates, the ordering is further extended to sets of
equivalence classes to obtain a preorder. Specifically, given two sets of equivalence
classes I1 and I2, the preorder |= is defined I1 |= I2 iff for all [〈p(x), E1〉]≡ ∈ I1

there exists [〈p(x), E2〉]≡ ∈ I2 such that 〈p(x), E1〉 |= 〈p(x), E2〉. Sets of equiv-
alence classes provide a computation domain for the following operator that
simulates TP in such as fashion so as to discover argument-size relationships.
The operator is denoted by T CLP

c since it operates in the domain of linear con-
straints. Like before, it is defined in a clause-wise fashion:

T CLP
c (I) = I∪

[〈p(x), hull(F, F ′)〉]≡

∣∣∣∣∣∣∣∣

c = p(x) ← H, p1(x1), . . . pn(xn) ∧
[〈pi(xi), Ei〉]≡ ∈ I ∧ [〈p(x), F 〉]≡ ∈ I ∧
E = α|.|(H) ∪ (∪n

i=1Ei) ∧
F ′ = project(var (c) \ var(x), E)

This operator can be lifted to the level of a program P = {c1, . . . cn} by defining
T CLP

P (I) = In where I0 = I and Ii = T CLP
ci

(Ii−1). The computational domain is
neither a complete lattice nor admits finite ascending chains. However, by adding
a widening operator [8] a post-fixpoint can be finitely computed, that is, a set
of equivalence classes I such that T CLP

P (I) |= I. Such a post-fixpoint faithfully
describes the lfp of the original program in the following sense: if T CLP

P (I) |= I
and p(t) ∈ lfp(TP) then there exists [〈p(x), E〉]≡ ∈ I such that |t| ∈ solnx(E).
The proof is not given since it can be constructed straightforwardly by adapting
proofs that have been reported elsewhere [12]. T CLP

ci
provides a way to calculate

a post-fixpoint in a bottom-up fashion by iterating and stabilising each strongly
connected component (SCC) of the static call graph in turn. SCCs that contain
a single, non-recursive clause can be evaluated exactly without a stability check.

6.2 Experimental results

For simplicity, an argument-size analyser was implemented in SICStus Prolog
3.8.5 which comes equipped with a built-in Simplex solver. The analyser was
applied to a range of standard Prolog benchmarks varying in size between 100
and 10000+ LOC. Figure 1 presents the analysis times in seconds when the
analyser is run on a 2.40GHz PC with 512 MB of RAM running Windows XP
with all modules compiled to so-called compactcode (interpreted bytecode). The

vars approx’ed proj approx’ed sparsity
benchmark LOC ratio % ratio % size system vars time

gabriel 114 0/186 0.0 0/60 0.0 5.6 10.4 1.4 0.06
browse 137 0/294 0.0 0/79 0.0 6.5 11.9 1.4 0.06

ime v2-2-1 181 21/888 2.3 8/132 6.0 11.9 21.3 1.6 0.70
kalah 284 0/533 0.0 0/133 0.0 7.3 12.4 1.4 0.14

mastermind 311 0/352 0.0 0/89 0.0 6.3 12.2 1.4 0.11
sdda 331 4/432 0.9 2/137 1.4 6.2 11.0 1.4 0.11
press 349 14/802 1.7 7/215 3.2 6.5 11.9 1.5 0.31

trs 368 7/1651 0.4 5/209 2.3 12.2 21.4 1.6 0.37
peep 371 11/665 1.6 6/163 3.6 7.7 12.5 1.6 0.34

qplan 424 0/380 0.0 0/104 0.0 7.9 14.7 1.4 0.09
ga 437 0/479 0.0 0/87 0.0 10.7 20.0 1.4 0.17

read 442 4/844 0.4 2/213 0.9 7.7 15.4 1.3 0.23
simple analyzer 488 5/1183 0.4 3/287 1.0 8.6 15.0 1.4 0.44

ann 503 9/1089 0.8 3/268 1.1 7.7 12.9 1.5 0.39
nbody 562 0/684 0.0 0/147 0.0 9.2 15.9 1.3 0.13

ili 582 6/1789 0.3 3/504 0.5 7.8 13.6 1.3 0.64
asm 594 1/761 0.1 1/217 0.4 7.2 12.3 1.3 0.24

nand 603 29/1356 2.1 6/240 2.5 11.1 19.8 1.4 1.53
bryant 670 22/1381 1.5 4/252 1.5 14.1 26.3 1.3 1.38

sim v5-2 986 14/2923 0.4 8/840 0.9 6.0 11.2 1.4 0.88
peval 993 36/2709 1.3 18/719 2.5 9.7 17.3 1.3 1.79

sim 1071 0/2412 0.0 0/394 0.0 12.0 20.1 1.3 0.61
rubik 1229 0/1062 0.0 0/276 0.0 5.7 9.4 1.5 0.20
chat 4698 105/7917 1.3 50/1581 3.1 9.7 19.1 1.5 4.58

pl2wam 4775 96/4078 2.3 34/1020 3.3 8.0 13.4 1.5 3.20
lptp 7419 213/12525 1.7 81/3624 2.2 8.2 15.2 1.4 9.97

aqua c 15026 493/32340 1.5 188/6292 2.9 10.3 19.5 1.5 27.59

Fig. 1. Timing and precision results

leftmost column records the time to actually calculate the size invariants and
write the results to an output file (little variance was observed between different
runs of the analyser). This excludes the time to read, parse and normalise the
input program and compute the SCCs (which is a small and varying fraction of
the analysis time). These experiments were conducted using the classic widening
[8] but delaying its application within an SCC until 2 complete iterations had
been computed. Performance figures for an argument size analysis have been
reported for the cTI termination inference tool [24]. cTI realises its argument
size analysis with the Parma Polyhedra Library (PPL version 0.5 [1]) and timings
of 0.26s, 0.17s, 3.89s, 3.99s and 2.12s are reported for read, ann, chat, lptp and
pl2wam – the largest five benchmarks that we have in common and which were
publicly available. These experiments were also performed on a 2.4GHz PC with
512 MB of RAM, albeit running Linux, with widening activated after one SCC
iteration. Repeating our experiments with this widening tactic gives times of
0.11s, 0.27s, 3.98s, 6.12s, 1.94s for the same benchmarks. These timing results

suggest that the domain operations reported in this paper are not as grossly
inefficient as one might expect.

In order to assess to precision of the analysis, columns 3–6 of Figure 1 present
statistics on the frequency with which extreme point elimination is required.
Columns 5 and 5 give the ratio and percentages of the number of times the
projection algorithm actually applies extreme point elimination and therefore
(possibly) loses precision. The percentages are low (with the notable exception
of ime v2-2-1). How much precision is lost has been assessed in columns 4 and
5 which show how many variables remain to be projected out when the extreme
point method takes over. Note that even at this stage, inequalities, that do not
mention the variables that remain to be eliminated, are already in the projection
space and are therefore exact. The ratio between the number of variables and
projections approximated, indicates that typically 3 or less variables remain to
be eliminated when the extreme point elimination is applied. Columns 7, 8 and 9
respectively report statistics on the way project(Y, E) is called, namely, average
|var (E)|, |E| and (

∑
e∈E |e|)/|E| where |e| denotes the number variables of e

with non-zero coefficients. These figures suggest that sparsity is the norm in
argument-size analysis, which helps to explain the low number of calls to the
extreme point algorithm. (Note that although the mean number of variables
is low, one projection operation in aqua c eliminates 60 out of 90 variables.)
Interestingly, widening after one rather than two SCC iterations almost always
reduces ratio of approximated projections and variables.

Finally, approximately 1% of the inequalities generated by Fourier-Motzkin
projection contain very large, relatively prime coefficients (only observed for
aqua c). These inequalities often arise alongside a low coefficient inequality that
almost exactly describes the same half-space. These large coefficient inequalities
obfuscate the presentation of the results and slowdown the analysis with costly
arbitrary-precision arithmetic. In the spirit of the weakly relational domains that
use inequalities with coefficients of -1, 0 or 1 [7, 25], we discard any inequality
which contains a coefficient whose absolute value exceeds a preset bound. The
large coefficient issue has only been observed on very large benchmarks and
understanding the conditions in which it arises will be a topic for future work.

7 Related Work

Huynh, Lassez and Lassez [14] observed that sparsity is a key issue in variable
elimination and suggest applying Fourier-Motzkin on (small) sparse systems and
their extreme point method for dense systems. However, the context of their
work was originally output in constraint logic programming [16] where over-
approximation is usually unacceptable. They therefore systematically enumerate
all extreme points in a breadth-first manner. Curiously, they do not consider
switching between different projection strategies depending on the density of
the system which, as this paper shows, is a good strategy.

Lassez, Huynh and McAloon [20] catalogue different types of redundant in-
equalities which include so-called syntactic and quasi-syntactic redundancies (as

discussed in Section 3.3). They identify five other classes of redundancies that
reduce to syntactic and quasi-syntactic redundancies if all equalities are removed
from the inequality system. For example, pairs of opposing inequalities such as
x − y ≤ 5 and −x + y ≤ −5 can be merged into x − y = 5 and all occurrences
of x in the remaining inequalities can be replaced by y + 5. Note that merg-
ing inequalities with opposing coefficients and constants does not find implicit
equalities whose opposing inequalities are linear combinations of two or more
inequalities. Implicit equalities can be readily detected with a Simplex solver
and future work will assess whether the benefit of removing all such equalities
justifies the cost of their detection.

Our implementation of Fourier-Motzkin can potentially be further refined by
applying Kohler’s rule [18]. Kohler distilled his observations on extreme vectors
(mentioned in Section 4) into a cheap strategy to avoid generating redundant
inequalities during Fourier-Motzkin elimination. The idea is to count the number
of inequalities in the original system that feed into an inequality e produced in
the n-th elimination step. The observation is that if the count of e exceeds n+1
then e is redundant. Kohler’s rule has not been applied in our implementation
because its correctness can, in general, be compromised when it is combined
with other redundancy removal techniques [14].

8 Conclusion

This paper presented algorithms to approximate the projection and convex hull
operations on the abstract domain of polyhedra, thereby providing an alternative
to the classic approach based on the (potentially exponential) frame represen-
tation. Experimental results show that the sparsity of inequalities generated by
program analyses allows most operations to be carried out exactly. Being able to
approximate only when the size of the result becomes unmanageable is a distinct
advantage over weakly relational domains which sacrifice precision up front.

Acknowledgements We thank Jacob Howe and Peter Linnington for discussions
on polyhedra and Lunjin Lu and Jonathan Martin whose work [17, 23] motivated
this study. This work was partly supported by EPSRC project EP/C015517.

References

1. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly Not Closed Con-
vex Polyhedra and the Parma Polyhedra Library. In Static Analysis Symposium,
volume 2477 of LNCS, pages 213–229. Springer-Verlag, 2002.

2. F. Benoy, A. King, and F. Mesnard. Computing Convex Hulls with a Linear Solver.
Theory and Practice of Logic Programming, 5(1&2):259–271, 2005.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A Static Analyzer for Large Safety-Critical Software. In Programming
Language Design and Implementation, pages 196–207. ACM Press, 2003.

4. K.-H. Borgwardt. The average number of pivot steps required by the simplex
method is polynomial. Zeitschrift für Operations Research, 26:157–177, 1982.

5. A. Bossi, N. Cocco, and M. Fabris. Norms on Terms and their Use in Proving
Universal Termination of a Logic Program. TCS, 124:297–328, 1994.

6. V. Chandru, C. Lassez, and J.-L. Lassez. Qualitative Theorem Proving in Linear
Constraints. Annals of Math. and Artificial Intelligence, To appear.

7. R. Claris and J. Cortadella. The Octahedron Abstract Domain. In R. Giacobazzi,
editor, Static Analysis Symposium, volume 3148 of LNCS, pages 312–327, 2004.

8. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Constraints among
Variables of a Program. In POPL, pages 84–97. ACM Press, 1978.

9. D. De Schreye and S. Decorte. Termination of Logic Programs: The Never-Ending
Story. The Journal of Logic Programming, 19&20:199–260, 1994.

10. D. De Schreye and K. Verschaetse. Deriving Linear Size Relations for Logic Pro-
grams by Abstract Interpretation. New Generat. Comput., 13(2):117–154, 1995.

11. R. J. Duffin. On Fourier’s Analysis of Linear Inequality Systems. Mathematical
Programming Study, 1:71–95, 1974.

12. R. Giacobazzi, S. K. Debray, and G. Levi. Generalized Semantics and Abstract
Interpretation for Constraint Logic Programs. J. Logic Program., 3(25), 1995.

13. N. Halbwachs, D. Merchat, and C. Parent-Vigouroux. Cartesian Factoring of Poly-
hedra in Linear Relation Analysis. In Static Analysis Symposium, volume 2694 of
LNCS. Springer Verlag, June 2003.

14. T. Huynh, C. Lassez, and J.-L. Lassez. Practical Issues on the Projection of
Polyhedral Sets. Annals of Math. and Artificial Intelligence, 6(4):295–315, 1992.

15. J.-L. Imbert. Fourier’s Elimination: Which to Choose? In First Workshop on
Principles and Practice of Constraint Programming, pages 117–129, 1993.

16. J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Output in CLP(R). In
Fifth Generation Computer Systems, volume 2, pages 987–995, Tokyo, 1992.

17. A. King and J. C. Martin. Control Generation by Program Transformation. Fun-
damenta Informaticae. To appear.

18. D. A. Kohler. Projections of Convex Polyhedral Sets. Operations Research Centre
Report ORC 67-29, University of California, Berkeley, 1967.

19. J.-L. Lassez. Querying Constraints. In Symposium on Principles of Database
Systems, pages 288–298. ACM Press, 1990.

20. J.-L. Lassez, T. Huynh, and K. McAloon. Simplification and Elimination of Redun-
dant Linear Arithmetic Constraints. In F. Benhamou and A. Colmerauer, editors,
Constraint Logic Programming, pages 73–87. The MIT Press, 1993.

21. H. Le Verge. A Note on Chernikova’s algorithm. Technical Report 1662, Institut
de Recherche en Informatique, Campus Universitaire de Beaulieu, France, 1992.

22. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
23. L. Lu and A. King. Determinacy Inference for Logic Programs. In European

Symposium on Programming, volume 3444 of LNCS, pages 108–123. Springer, 2005.
24. F. Mesnard and R. Bagnara. cTI: a Constraint-Based Termination Inference Tool

for ISO-Prolog. Theory and Practice of Logic Programming, 5(1&2):243–257, 2005.
25. A. Miné. The Octagon Abstract Domain. In Eighth Working Conference on Re-

verse Engineering, pages 310–319. IEEE Computer Society, 2001.
26. T. S. Motzkin. Beiträge zur Theorie der Linearen Ungleichungen. PhD thesis,

Universität Zürich, 1936.
27. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
28. A. Simon and A. King. Convex Hull of Planar H-Polyhedra. International Journal

of Computer Mathematics, 81(4):259–271, March 2004.
29. A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as

an Abstract Domain. In Proceedings of Logic-Based Program Development and
Transformation, volume 2664 of LNCS, pages 71–89. Springer-Verlag, 2002.

