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A penalised data-driven block shrinkage approach to
empirical Bayes wavelet estimation

Xue Wang*™?, Stephen G. Walker®

@ Unwversity of Kent at Canterbury, Canterbury, UK

Abstract

In this paper we propose a simple Bayesian block wavelet shrinkage method
for estimating an unknown function in the presence of Gaussian noise. A
data—driven procedure which can adaptively choose the block size and the
shrinkage level at each resolution level is provided. The asymptotic property
of the proposed method, BBN (Bayesian BlockNorm shrinkage), is investi-
gated in the Besov sequence space. The numerical performance and compar-
isons with some of existing wavelet block denoising methods show that the
new method can achieve good performance but with the least computational
time.
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1. Introduction

Consider the nonparametric regression model:

vi = f(i/n) + oz, i1=1,...,n, (1)

where o is the noise level and {z;} are independent standard normal random
variables. The problem of interest is to estimate the unknown regression
function f(-), which belongs to a certain class of function FJ0, 1], using the
observed sample {y;}.

Wavelet based procedures have shown their suitability for such settings,
and non-parametric estimators of f(-) can be readily obtained by applying
various shrinkage rules on the wavelet transformed data.
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A variety of shrinkage methods based on classical and Bayesian statistical
models in the wavelet domain have been proposed and studied after the works
by Donoho and Johnstone (1994), and Donoho et al.(1995a, 1995b). In this
broad context of function estimation, Bayesian procedures have proved effec-
tive for their capability to incorporate prior information about the unknown
signal.

It is now well known that classical wavelet estimators’ performance can be
improved by grouping wavelet coefficients into blocks. Block wavelet estima-
tion has generated considerable interest in recent years through the articles
by Hall et al. (1997, 1999), where local blockwise thresholding procedures
with fixed block sizes were introduced and their excellent mean square error
(MSE) performance has been reported. Cai (1999) considered block James-
Stein rules and investigated the adaptive effect of the block size and the
threshold level using an oracle inequality approach. Cai and Zhou (2009)
also investigated a data-driven block thresholding procedure which adap-
tively chose the block size and the threshold level at each resolution level by
minimizing Stein’s unbiased risk estimate.

Recently, the block methodology has been explored from the Bayesian
point of view. In Abramovich et al. (2002), an empirical Bayes approach to
incorporate information of neighbouring wavelet coefficients was considered.
In their work, wavelet coefficients at each resolution level were grouped in
blocks of a given size and the modeling was accomplished by using a mixture
of a point mass at zero and a multi-normal distribution. Various Bayesian
models have also been proposed since then. Their performance has been
reported through simulation results; see, for example, De Canditiis and Vi-
dakovic (2004), where a mixture of two normal-inverse gamma distributions
(replicating a point mass at zero and a normal but with priors on the vari-
ances, one large and one small) as a prior was used. Also, Wang and Wood
(2006) investigated a block shrinkage method based on the sum of squares
of wavelet coefficients in the block, where a mixture of a point mass at zero
and a non-central chi-squared distribution was used.

The block size and the threshold level play an important role in the
performance of a block thresholding estimator. Although the Bayesian block
methods mentioned above reported better performance compared with term-
by-term thresholding methods and classical block thresholding methods, the
choice of the block size was not adaptive. The systematic study of consistency
and optimality still remains a challenge. Furthermore, in terms of computa-
tional time, most of those existing methods are still quite time consuming,.



We propose a data-driven approach to empirically select both the block
size and the threshold level at individual resolution levels. At each resolu-
tion level, the block size and the threshold level are chosen by minimizing a
penalised maximum likelihood estimate (PMLE). The theoretical properties
of the proposed estimator are considered here in the Besov sequence space
formulation that is by now classical for the analysis of wavelet regression
methods. It is shown that the minimizer of PMLE yields an optimal esti-
mate of the wavelet coefficient vector. Simulation results with four different
functions at various sample sizes are provided, and their comparisons with
other existing methods show that the new method can achieve good perfor-
mance but with the least computational time.

The paper is organized as follows. A basic review of Besov spaces and
standard theoretical properties of the analysis of wavelet regression methods
will be given in Section 2. We also introduce our approach: the Bayesian
BlockNorm (BBN) procedure in this section. Asymptotic properties of the
BBN estimator are presented in Section 3 and its numerical implementation
and finite sample performance will be discussed in Section 4. Finally, we
conclude with a brief discussion in Section 5.

2. The model

2.1. Wavelet series and Besov spaces

The Besov space, By, contains functions having o bounded derivatives in
the L” norm, while the parameter ¢ provides a finer gradation of smoothness.
The Besov spaces are a rich class of function spaces and contain many tradi-
tional smooth spaces such as the Holder (B, ) and Sobolev (Bg;) spaces.
For full details of Besov spaces, please see Triebel (1983) and DeVore and
Popov (1988).

For a given r-regular mother wavelet ¢ with » > «, a corresponding
father wavelet ¢ and a fixed primary resolution level jj, a function f can be

expanded as

270 oo 291
F@O = wipnde(t) + > > wintbu(t)
k=0 Jj=jo k=0
and the Besov sequence norm || - [|e ~of the wavelet coefficients of f is then
defined as
s 1/q
1 log,, = 1Twollp + <Z(2jslle||p)q>
J=jo
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where wj, is the vector of the father wavelet coefficients at the primary
resolution level jy, w; is the vector of the wavelet coefficients at level j, and
s=a+1/2—1/p > 0. Note that the Besov function norm of index («, p, q)
of a function f is equivalent to the sequence norm of the wavelet coefficients
of the function. For this see Meyer (1992).

2.2. Bayesian BlockNorm estimator
Now let us suppose that f € By,. Performing the wavelet transform on
(1), we have

i = wip +n" 2oz, i> o, k=0,...,2 —1, (2)

where jp is fixed, {2;;} are independent standard normal random variables
and the noise level o is assumed known (we will define this precisely later on).
Let x represent the observation vector and w be the true signal vector, then
the nonparametric problem of estimating f turns into a problem of estimating
a high dimensional normal mean vector w based on the observations x under
certain rules.

For each fixed resolution level 7 > jo, let L > 1 be the possible length of
each block, and M = 27/L be the number of blocks. (For simplicity we shall

assume that L is a power of 2.) Let X, = (Z(,—1)141, - - - ; Tp1,) Tepresent obser-
vations in the b-th block on level j, and similarly wy, = (W@Ep—1)41; - - - Wsr,)
and zy, = (2(p-1)111, - - - » 261.), als0 0, = n~/20, we have

Xp = Wy + 0pZp. (3)

We impose the prior on the wavelet coefficients in b-th block to be
wy, ~ N(0, 7011 x1), (4)

where 77, the noise level for the b-th block, will be estimated from the data,
as an empirical Bayes exercise.
Subject to the model (3) and prior (4), the posterior distribution of [wy|xp]
follows a normal distribution:
2 2.2

7 O-T
wy|xp] ~ N b _xp, UL i
bl (a%m? (02 +7P) “L)

The Bayes rule we will consider here corresponds to the L2-loss and yields
the posterior mean

V/\\/'b = E(Wb|Xb) = Xp. (5)



This will be our proposed estimator for w;, and in the next subsection we
show how to derive a natural estimator for 7.

2.8. The penalised adaptive procedure

According to the model (3) and prior (4), we know, by integration,
that the observation x, = ((-1)z41,- .-, %pr) is a realization of a multinor-
mal random variable following N (0, (62 4+ 72)I1x1,) with likelihood function
L(my, L; Xy, 0,,) as follows:

2
Ly, L%y, 0,,) = [2m(72 + 02)] */2 _ball ' 6
(Tbv 1 X, O ) [ 7T(Tb +Jn)] exp 2(0—721_‘_7_1)2) ( )

Also, we know through simple calculations, that the maximum likelihood
estimator of 7 is

2

72 = max {O, [xellz 02} : (7)
L

In this way, we can see that 77 provides the “natural” threshold rule. When

the average of sum of squares of observations in the same block is less than

the noise level, we set all the coefficients in that block to zero.

It is of course necessary to specify the value of the parameter L at each
level. The maximum likelihood estimator is usually asymptotically optimal
in the parametric context, but it has too many degrees of freedom here.
We regularise the maximum likelihood problem by adding constraints. For
simplicity, we assume that the best choice of the block size for each resolution
level j lies in the set {1,2,...,27}. If the probability for each choice is
pr = 0%, where 0 < § < 1and k = 0,...,j corresponding to the block set

{1,2,...,27}, the weighted maximum likelihood function for the whole level
jis
M [EAF
k 2 2\1—L/2 i b 112
0 E[QW(Tb +02)] exp { 207 + 07) } . (8)

We can obtain the optimal block size through minimizing the following pe-
nalized log-likelihood function,

M
I = min {— ; lmy(L), L; Xp, 0] — klog, 9} : 9)
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where [7,(L), L; xp, 0,,] is the log version of the function (6) for the level j,
and k£ = log, L.

Theoretical results given in Section 3 show that the pair (L*, 72(L*)), L*
is the minimiser of (9), obtained by the above procedure is asymptotically op-
timal in the sense that the resulting block thresholding estimator adaptively
attains the ideal block thresholding risk.

Note that, in contrast to some other block thresholding methods, both
the block size and the threshold level of the proposed procedure are cho-
sen empirically and vary from resolution level to level. Both the theoretical
and numerical results given in the next two sections will show that the pro-
posed estimator outperforms classical block thresholding estimators and are
comparable with Bayes Block estimators with a fixed block size.

3. Theoretical properties

In this section we investigate the asymptotic minimax properties of the
proposed approach above. Assume f € By , a > max(0,1/p — 1/2) and

p,q > 1. Among all possible estimators f, the minimax mean squared error
is defined as
R(n,By,) = inf sup E|[f — f[|7210.)-
J reBg,
Now let ¢ be the mother wavelet of regularity » > «. The set of the cor-
responding wavelet coefficients w of f belongs to a Besov ball of radius R,
that is b)) ,(R) = {w : [|w|[sa, < R}. Due to the orthonormality of a wavelet
basis, it is that
e} : -~ 2
R(n,By,) =inf sup E|l@ —w||;,
wowebg ((R)
where @ is the wavelet coefficient of f

Proposition 1. Let a mother wavelet 1) have regularity v, with max(0,1/p—
1/2) <a<randp,q>1. Then

—20/(2a+1)
SUPyepe (m) Ellw — |3 = O(n—er=" ) p=2
webg ((R) 2 O(n—(2a+1—2/p)/(2a+2—2/p)) 1 < p< 92

The proof is given in the Appendix and follows a similar path to the
one given in Abramovich et al. (2004). Our estimator achieves the optimal
minimax rate within a small constant factor over any Besov space By, in
both casesof p>2and 1 < p < 2.



4. Numerical results

The purpose here is to illustrate the practical performance of our proposed
approach. In practice the noise level o in (2), which we assumed known for
simplicity, needs to be estimated from the data and we will use the following
robust estimator of o given in Donoho and Johnstone (1994a). This estimator
o is based on the empirical wavelet coefficients at the highest resolution level,

o= median (|CCJ_17]€| 1<k < 2‘]_1) )

1
0.6745
Four functions, ‘HeaviSine’,'Blocks’, ‘Bumps’ and ‘Doppler’, representing dif-
ferent levels of spatial variability, are used as test functions for the purpose
of our simulation study. Each test function is rescaled to achieve different
signal-to-noise ratios (SNR), and the standard normal noise is added to the
functions. The average MSE for the estimator f of f is defined as

n—1

vsE; = -3 | {Fam - st} (10)

1=0

In order to examine the effect of the proposed method on numerical per-
formance, we performed a preliminary simulation study to examine the pa-
rameter 6 introduced in (8). We found that a value of § € [0.5,0.8] was the
reasonable choice for the four test functions with various sample sizes and
SNRs. Therefore we take # = 0.6 for all test functions in this simulation
study.

In Table 1, the proposed method BBN is compared with some of the
recently proposed methods in the literature: SureBlock (Cai and Zhou 2009),
BlockJS (Cai, 1999), BPM (Abramovich et al., 2002) and NCP (Wang and
Wood, 2006). BlockJS is a classical block thresholding procedure with a fixed
block size L = log,(n) and a fixed threshold level. SureBlock is a classical
block thresholding procedure which empirically chooses the block size and
the threshold level at each resolution level by minimizing Stein’s unbiased
risk estimation. BPM is a Bayes block threshold method which imposes a
mixture of multinormal distribution and a point mass as the prior with block
length L; = 91l08,(i/2)] at resolution level j. The posterior mean is used here
as the shrinkage rule. NCP is a Bayesian block shrinkage approach based on
the block sum of squares with a fixed block size. It imposes a mixture of a
non-central chi-squared distribution and a point mass. The “power” prior as
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Table 1: Simulation results of five methods (BlockJS, SureBlock,
BBN, BPM and NCP) with 100 simulation runs, where AMSE was
obtained with SNR=7 and sample sizes N=(256,512,1024 or 2048).

Methods HeaviSine BlockJS

256 512 1024 2048 256 012 1024 2048

BlockJS 0371 0.197 0.125 0.074 0.990 0.707 0473  0.289
SureBlock 0.228% 0.160+ 0.087  0.056 0.583 0.481 0.334  0.251

BBN 0.250 0.166 0.096 0.063 0.407 0.310 0.285 0.213
BPM 0.269 0.189 0.120 0.079  0.268+« 0.233 0.169 0.110
NCP 0.269  0.171  0.085% 0.050% 0.312  0.232% 0.153% 0.095%
Mathods Bumps Doppler

256 512 1024 2048 256 512 1024 2048

BlockJS 0.865 0.571 0389 0.193 0405 0.208 0.146 0.074
SureBlock 0.636 0.487 0.378 0.237 0.359 0.304 0.174 0.110

BBN 0.575« 0.466 0348 0.215 0337+« 0.216 0.135 0.081
BPM 0.701 0474 0302 0.197 0.344 0.189« 0.139  0.095
NCP 0.677  0.426x 0.275% 0.178x 0.351  0.195  0.125% 0.071%

the distribution of the hyperparameter and posterior mean as the shrinkage
rule are used here and the block size is fixed as L = 2. Each of these wavelet
estimators has been shown to perform well numerically.

The average MSE (AMSE) results with 100 simulation runs for four test
functions with SNR=7 at different sample sizes (256, 512, 1024 and 2048) are
provided. In Table 1, for each simulation condition, the best AMSE is high-
lighted with a star. The simulation results show that the proposed method is
very competitive with the best of the existing block methods. In three of the
four functions, the new method does better than classical methods: BlockJS
and SureBlock. Generally, BBN is comparable with Bayesian methods: BPM
and NCP.

In Table 2 the average CPU time in seconds as reported by the MATLAB
program is shown, where each average value is taken from 100 simulation
runs. The “Bumps” signal is tested by four methods (BlockJS, BBN BPM
and NCP) at sample sizes 256, 512, 1024 and 2048. As anticipated, the BBN
method along with the BlockJS are superior in terms of CPU time to the
BPM and NCP methods.



Table 2: Average CPU time involved in computing 100 simulation
runs for the Bumps signal using four methods with SNR=7 and
sample sizes N=(256,512,1024, or 2048). Standard errors are given in

parentheses.
Bumps 256 512 1024 2048
BlockJS 0.0189 (.0349) 0.0266 (.0318) 0.0372 (.0354) 0.0483 (.0322)
BBN 0.0080 (.0079) 0.0136 (.0053) 0.0242 (.0078) 0.0453 (.0047)
BPM 1.5241 (.1455) 2.3287 (.1734) 8.1894 (.8263) 29.307 (1.131)
NCP 0.7925 (.0312) 1.6948 (.0803) 3.7175 (.1276) 7.8644 (.2522)

5. Conclusion

We have studied the theoretical properties of a proposed Bayesian block
wavelet shrinkage method, where the prior distribution imposed on wavelet
coefficients is a multinormal distribution and parameters are estimated via
empirical Bayes ideas. This provides us with a natural threshold level with-
out a usual mixture model and an explicit estimator for the wavelet coeffi-
cients, which makes it easy to implement and fast to compute with alternative
Bayesian block methods.

Comparisons with other existing methods using simulation studies of four
different test functions at various sample sizes show that the new method is
comparable (similar or better performance) with the existing methods. An
important advantage of this new method is that its computational cost in
terms of CPU time is the least among all the compared methods.

A. Appendix

Without loss of generality we assume that 02 = 1/n in the model (2).
For each fixed resolution level j, we spilt the wavelet coefficients into M;
non-overlapping blocks each with L; coefficients, so M; x L; = 2. The
parameter 7}'21 for the [—th block at level j will be estimated by the coefficients

within the block, which is 75 = max {0, ||x;|[3/L; — 02} . Then we have
Wi = E(wjulxj) = buxy, where by = 75/(77 4 07.) according to (5) for

j=>0andl=1,...,M;.



For any sequence of wavelet coefficients {w;;.} € b)) ,(R), we consider

oo M; o M;
MSE = 3 > BElbuxy —wills = Y Y Ellba(xi = wji) — (1= b)wyll3

=0 I1=1 =0 =1

< ZZ{EHbﬂxﬂ w)l +Ell(1 = b)wall} = A+ B, (11)

7=0 I=1

we have
X 2
max 40 [1x;el15 _0.2 I. 9
b ’ Lj n 1 JO'n
N P B G 3
L

Let J, = s tlog,n be a fixed resolution level. Then using the fact that
1 — L;o2/||x;l|3 is a concave function of ||x;||3, we have the following in-
equalities:

For b;

3l

il |3/ Lo, j>J
E(b.: HWJZHQ/ 1¥n i S
(]l)_{ Iwall3/Ilwalls =1 j<J.

Also, for j > Jj,

M; M; 271
ZJE(b-l) _ Zollwalll Xm0 Wi
J - L]'O'% LjO'T% ’
Let o' = afor p > 2 and o/ = a +1/2 — 1/p otherwise. For sequences from
Besov balls, we have that Z?]:Bl wjz-k < C27%% For further information, see

Johnstone (2002).
Hence, the first term A of (11) is

A= ZZ{E”bﬂ X1 — W)l + Z Z{EHbﬂ (% — wjn)|[3,

=0 1=1 j=Js+1 1=1
with
27 -1
ZEHbﬂ Xt — Wi )Nz < Z \/Eb4l(1c \/ E(zje — wjk)*
M; j
= ColL; Y [EW]'V* < ColL; | M; ZE < C-olL; [ M;) Eby
=1
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We have
A < O( (s—1) /s) +O( (s+a— 1/2)/8)

for p>2and A < O(n=C=V/5) 4 O(n=Ha=/P/s) for 1 < p < 2.
Now consider the second term B of (11). Let

2
o, 1

1y = —Tn .
102 +72 T 1+ max {0, [|xul[3/(L;o2) — 1}

Using the fixed resolution level J; = s~tlog,n, we have

L 1 < { 1 j > J
" max{L, [[xul[3/L;02} =\ Lyon/Ixalls J < J..

Hence
B = ZZEH Jl WJZH2<ZZHWJI||2 E(l—bjl)2
J=0 I=1 j=0 1=1
Js  M;
< ZZHWﬂHg 1_bjl +ZZ||WJZ||2 = By + Bs.
J=0 1=1 Jsy1 1=1

Similarly, let o/ = a if p > 2 and o/ = a+ 1/2 — 1/p otherwise. Then

co 20-1
ZZ Iwil [ =Y > wii <O~
Jsy1 =1 Jsy1 k=0

for p > 2 and By < O(n~(aF1=2/P)/3) otherwise.

Now consider B;. From the result (e.g. Moser, 2007, Theorem 4),
the expectation of the reciprocal value of a non-central chi-square random
variable Y with an even number 2m (m > 1) of degrees of freedom is
E(Y™1Y) =g, _,(€), where ¢ is the non-centrality and

/ 1 1
= —55 .= ¢k
k=0
which can be bounded by
1 / ) m+1 1
< <
£+m‘gm(g)‘mm{m(£+m+1)’£+m—1}



Hence, for L; = 2m and m > 1, we have

L;j/2+1 1
E(1-b;) < L-min{ ] , }
’ ’ L 2(lwll3/on + Li/2 + 1) [[wall3/o + L;/2 =1
Lj +2 < O'Z(Lj +2)
Iwall3/o% + Li/2+1 = [[wll3

We know that the optimal block size increases with the increase of the
resolution level (also shown by the simulations) and, for simplicity, we assume
that the best choice of block size for each resolution level j lies in the set
{1,2,...,27}. Without losing the generality, we can find a J; < J, for all
large n, so that the chosen block size is less than 4 only when j < J;, and
a C* so that C* < ||w;||3 for the resolution levels j < J; and I =1,..., M
with |[xz][3 0.

Hence

J1 M

L;o? on(L; +2)

By < ZZHWﬂHg é* Z ZHWJIHQ HW H2
=1

j= j=Ji+1 =1

< O™ +0m ),

If we choose s = 2a+ 1 for p > 2 and s = 2a + 2 — 2/p otherwise, the
proof is completed. o
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