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Abstract

Sound event detection is an extension of the static auditory

classification task into continuous environments, where perfor-

mance depends jointly upon the detection of overlapping events

and their correct classification. Several approaches have been

published to date which either develop novel classifiers or em-

ploy well-trained static classifiers with a detection front-end.

This paper takes the latter approach, by combining a proven

CNN classifier acting on spectrogram image features, with

time-frequency shaped energy detection that identifies seed re-

gions within the spectrogram that are characteristic of auditory

energy events. Furthermore, the shape detector is optimised to

allow early detection of events as they are developing. Since

some sound events naturally have longer durations than others,

waiting until completion of entire events before classification

may not be practical in a deployed system. The early detection

capability of the system is thus evaluated for the classification

of partial events. Performance for continuous event detection is

shown to be good, with accuracy being maintained well when

detecting partial events.

Index Terms: sound event detection, convolutional neural net-

works, audio classification, segmentation.

1. Introduction

Continuous sound event detection means the identification of

sound events as they occur in a continuous audio medium.

It extends the classification of isolated and separated sounds

into real-world machine hearing scenarios. This is important

for smart home and vehicle environments, speech interaction

and telecommunication systems, and has relevance to audio-

based security monitoring, ambient event detection and audi-

tory scene analysis. Sound event detection research has tradi-

tionally been driven by techniques developed for speech recog-

nition, including Mel-frequency cepstral coefficients (MFCCs),

perceptual linear prediction (PLPs) with Gaussian mixture mod-

els (GMMs) and hidden Markov models (HMMs) [1, 2, 3, 4, 5].

However these features and methods have more recently been

surpassed by spectrogram-based techniques [6, 7], especially

for the classification of noise-corrupted sounds. Recent sys-

tems have demonstrated very good results from the use of deep

learning, including deep neural networks (DNN) [8, 9, 10, 11]

and convolutional neural networks (CNN) [12, 13]. Both DNN

and CNN classifiers perform well in the presence of acoustic

background noise, with the latter demonstrating superior noise

robustness.

While acoustic noise robustness is an important real-world

attribute of such systems, practical methods must also have the

capability to distinguish between the absence of sound events,

the presence of individual events, and the occurrence of overlap-

ping events, and do so in levels of signal-to-noise (SNR) that are

unknown a priori. The task is particularly difficult when many

possible sound classes are involved, and when some classes

have an inherently noise-like sound.

This paper proposes a detection front-end to identify seed

regions from spectrogram image features that have the charac-

teristic time-frequency shape of sound events, prior to classifi-

cation. Detected seed regions are then classified using a well-

trained CNN to classify zero, one or multiple events. The seed

region detector is further optimised to enable early event detec-

tion. This is inspired by systems such as [14, 15] which aim

to enable reliable classification of sound events as they are oc-

curring, rather than waiting until they have completed (i.e. on-

line classification). This is an important requirement for future

real-time machine hearing systems that need to classify sound

events that have long durations. We evaluate performance on

the standard continuous audio event detection task first devel-

oped in [16] and extended in [17], then evaluate the abilities

of the system when forced to perform partial detection. Re-

sults show very good performance for full event detection, and

gracefully degrade as classification is performed earlier.

2. Background

The basic classifier in many recent sound event classifiers is

typically trained in a supervised fashion using data which is pre-

sented in individual files. Each file contains an isolated sound

event without added noise, corresponding to a single class. In

the baseline CNN classifier used in this paper (in Section 3),

spectrogram image features (SIF) are obtained from individual

labelled sounds, conditioned, downsampled, and used to train

a CNN. Since the training material has no added background

noise, a basic energy detector is easily capable of identifying

regions of interest in the SIF prior to training.

For classification of detected sounds, many types of fea-

ture have been explored in the research literature, including raw

waveform, MFCC, several kinds of spectrogram and correlo-

gram, as have many kinds of back-end classifier. For exam-

ple MFCC-HMM [18], SIF-SVM [8], SIF-DNN [8] and SIF-

CNN [12]. Each of those systems was evaluated in clean and

noisy isolated sounds (known as robust sound event classifica-

tion), using a standard 50-class evaluation of real-world sounds

first proposed by Dennis [18]. However real-world audio is con-

tinuous rather than discrete, with sounds of unknown duration

occurring at unknown, perhaps overlapping, times. A detection

operation is thus required in conjunction with the classification

task.

For this reason, an experimental evaluation was proposed



by the authors [17] that combined detection and classification

of real-world sounds in continuous waveforms that included

overlapping sounds – with the test material as illustrated in

Fig. 1. The system proposed and evaluated in this paper for

the robust classification of continuous and overlapping sounds,

uses identical training data, but enhances the evaluation fur-

ther through the development of early-detection capabilities, in-

spired by those first introduced in [19].

Early detection is another capability that is important for

real-world sound event detection. Some sound events have

longer durations than others, and waiting until completion of

entire sound events before classification – as most current sys-

tems do (including [17]) may be impractical for longer sounds.

Early detection is needed for online detection, and the degree of

earliness is a factor in the classification latency of a system.

3. The proposed detection system

The proposed system is shown in Fig. 2, roughly divisible into

the detection process (top half) and the classifier (bottom half).

Within the classifier, a CNN architecture is employed that is

unchanged from the baseline classifier in [17]; this means that

improvements in performance are due to the capabilities of the

detection system alone.

3.1. Spectrogram image features

Both DNN and CNN classifiers have been shown very capa-

ble of extracting discriminative information from spectrogram

features [8, 12, 13], with the best performing classifiers being

CNN-based, and acting on SIF features. the SIF extraction pro-

cess is; (a) take FFT magnitude of overlapping analysis win-

dows (size 25 ms, overlap 20 ms), (b) downsample in both time

and frequency to a 52 × 40 patch, (c) normalise in amplitude

and (d) optionally denoise prior to classification.

3.2. Energy detector

During training – which uses clean and labelled sound files –

energy gating is used to select SIF patches for classification,

with up to 9 patches per file (with one sound per file and 2500

files in total) being used to contribute to the training. While

this works well when testing clean sounds, the method is easily

defeated by background noise, and it does not work well for

overlapping sounds or complex multi-part sounds. More noise-

robust methods are thus required for testing.

Waveform frames are processed sequentially from each

sound file during training, with up to 9 highest energy frames

and their immediate 40-frame context being selected as an im-

age patch. A hold-off of 20 frames is imposed until the next

Figure 1: Illustration of the continuous test material.

Figure 2: Block diagram of the classifier in test mode.

patch can be selected, and frames with energy lower than 10%

of peak energy inside the context are excluded. This confers a

degree of noise resistance, with the hold-off period designed to

ensure that loud sounds spanning multiple frames do not dom-

inate over quieter sounds occurring elsewhere. This applies to

sounds characterised by a strong attack energy and a sustained

release, or multi-part sounds that have double or multiple en-

ergy peaks (e.g. stapler, footsteps, doorbell).

The CNN classifier outputs posterior probability Pk, for

each image patch, over k = 1...50 classes. Index n =
argmax(Pk), k = 1...50 identifies the highest probability

class, but is only accepted if Pn > Pth, otherwise this sound

event is classed as noise. As mentioned above, this energy-gated

detector is used primarily during training.

3.3. Shape-based seed detection

Discrete sound events in nature are characterised by their acous-

tic energy, which is often the result of the conversion of kinetic

energy to sound, where the cause is percussive or frictional, or

the resonance of moving air (which itself is the conversion of

kinetic energy in the air to correlated wave motion). The obser-

vation of the authors is that the physical basis for sound creation

means that sound energy from single events tends to be either

narrowband in frequency yet of relatively long duration, or is

wideband but of shorter duration. Percussive sounds, clicks,

staplers, claps and bangs have wideband, short duration energy

releases. Horns, whistles, bells, squeaks typically have nar-

rowband acoustic releases, but of longer duration. Even if the

same amount of energy is generated/received for each sound, its

shape in the time-frequency space will differ. This observation

motivated the creation of a shape-based detector that detects ei-

ther narrow-but-long or wide-but-short regions.

In operation, the detector computes the energy from the

spectrogram, S of Lx frequency bins over Ly frames, i, so

that; Ei =
∑Ly

y=0
|S(i, y)| and then the box filter-smoothed

envelope Ẽi =
∑P

l=1
al.Ei−l is extracted, where al = 1 for

0 < l < 240. Peak candidates are obtained from the dif-

ferential of the envelope, Ẽ′ and then sorted by peak energy

with a 240-frame hold-off and a minimum height threshold of

1.0. Energy is computed over a longer time span, encouraging

both short duration, wideband energy events, as well as longer

narrowband events (i.e. instantaneous frame energy is unim-

portant). Thresholding then improves noise rejection, similar

to the thresholding mentioned in Section 3.2, Pth defines the
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Figure 3: Det curve for energy-only front-end detector operat-

ing on clean, 20dB, 10dB and 0dB SNR sound recordings.

minimum probability threshold for detection of any class at the

output of the classifier (we sweep Pth during experiments, but

the best results are generally obtained when Pth ≈ 0.05).

3.4. Convolutional neural network

CNNs are well known in image classification [20, 21], and in

this application, the spectrogram patch is an image. The CNN

structure used, derived from [17], can be seen in Fig. 2. It has 5-

layers (2 convolutional layers, 2 subsampling layers and 1 fully

connected layer), with 52 × 40 = 2080 input dimensionality

and 50 output classes from a single fully connected layer. The

first and second convolutional layers consist of 6 and 12 ker-

nels, each with a kernel size of 5 × 5. The subsampling layers

employ average pooling with a common factor of 2:1. Batch

normalization [22] is applied before each convolutional layer.

3.5. The evaluation task

The sound material used for training and evaluation consists of

4000 recordings divided into 50 different sound event classes,

each of 80 files. The files were randomly selected from the Real

World Computing Partnership (RWCP) Sound Scene Database

in Real Acoustic Environments [23] across a subset of 50
classes, as specified in [7]. Of the 80 files in each class, 50
were randomly selected to be the training set (50× 50 = 2500)

with the remainder (30×50 = 1500) being used for evaluation.

The evaluation material is formed by first creating 100 sep-

arate 1-min long empty test files to which 15 randomly-selected

test sound events are inserted at random time indices. The ran-

dom nature of the selection means that some sounds are rep-

resented multiple times per test file, and that double and even

triple overlap events occur. In the original definition of the eval-

uation method [17], noise was randomly selected from random

positions within four different NOISEX-92 noises, however the

tests in the current paper employ only AWGN, which improves

the repeatability of the experiments. One further change is made

to the current evaluation compared to the testing methodology

described in [17]. The is the adoption of a much stricter crite-

rion for class detection; in the current paper, any analysis frame

containing any classes with posterior probability exceeding Pth

are counted as a detection, with the detection being correct only

if the candidate classes match the ground truth. There may be

between 0 and many (up to 50 if Pth is low) detections per

analysis frame, and perhaps several hundred analysis frames for

each ground truth class region. Yet each ground truth class re-

gion can only contribute either 0 or 1 correct detections. In

the previous work [17], detections were made for each analy-

sis frame in the same way, but correct detections were counted

for each analysis segment, rather than for a whole ground truth
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Figure 4: Det curve for shape-based front-end detector operat-

ing on clean, 20dB, 10dB and 0dB SNR sound recordings.

class region. Therefore, it was possible that there could be

many correct detections within a single ground truth class re-

gion (e.g. if one ground truth class region contained 20 analysis

segments, there could be up to 20 correct detections counted

across that region, rather than up to 1 in the current system).

The stricter criterion is important because we are measuring

early detection, which affects event-based detection much more

than frame-based detection. We therefore first re-evaluate the

baseline detector from [17] using the stricter criterion.

In the reported results, we define precision as P = M/N ,

where M is the number of ground truth sound events detected

correctly, and N is the total number of detected events. Recall

is computed as R = M/K, where K is the total number of

ground truth sound events in the test. The composite F1 score

combines both metrics to yield a single overall performance fig-

ure; F1 = 2/(P−1 +R−1).

4. Results and discussion

4.1. Energy and shape detection

We first explore the performance of the system with a basic en-

ergy detector. Fig. 3 plots the recall against precision for a range

of Pth thresholds in clean and noisy conditions. The results

show degradation in overall detection and classification perfor-

mance due to the presence of noise. This is not unexpected,

given that region detection is based only on patch energy. The

shape-based detector of Section 3.3 was then applied and the

above tests repeated, with results plotted in Fig. 4. In this case,

very little degradation was experienced at 20dB SNR, or even

at 10dB SNR, although at 0dB SNR it is significantly degraded.

Further results are given in Table 1. Results were obtained

for a range of peak candidate thresholds Pth around the maxi-

mal F1 region, and the scores at which peak F1 occurs are re-

ported for each test. For now, consider just the lines beginning

with “full”, which are the results in which early detection is not

being evaluated.

It is interesting to note that the highest F1 score actually

occurs when low levels of noise are present – due to the fact that

even ‘clean’ recordings contain low levels of noise, and that it

is better to spread noise evenly than to cluster it around sound

events. The same phenomenon was found in CNN classification

of isolated sounds (e.g. in [12]) where low levels of background

noise tended to be beneficial to performance. Nevertheless, as

noise increases beyond 10dB SNR, performance degrades, so

that scores at 0dB are very poor, in common with prior methods

such as [17]. Even with isolated sound event classification [8],

recognition of sounds in 0dB SNR is extremely challenging.

From the overall results presented so far, the best F1 for each



Table 1: Precision (P), recall (R) and F1 score for the original energy-based detector and the proposed shape-based detector performing

feature selection with backend CNN-based classification. The results report the best achieved F1 score over a Pth range [0.01:0.95]

with a step size of 0.05 for clean, 20dB, 10dB and 0dB SNR AWGN and early detection degrees of 100%, 50%, 25% and 12.5%.

Clean 20dB 10dB 0dB

Earliness P R F1 P R F1 P R F1 P R F1

Energy-based detector

full 0.711 0.567 0.631 0.732 0.600 0.659 0.725 0.617 0.667 0.711 0.533 0.610

50% 0.711 0.517 0.598 0.749 0.587 0.658 0.763 0.580 0.659 0.798 0.487 0.605

25% 0.667 0.373 0.479 0.776 0.403 0.531 0.740 0.473 0.577 0.511 0.403 0.451

12.5% 0.084 0.057 0.068 0.135 0.073 0.095 0.127 0.083 0.101 0.025 0.077 0.038

Shape-based detector

full 0.852 0.633 0.727 0.843 0.647 0.732 0.814 0.670 0.735 0.582 0.547 0.564

50% 0.839 0.627 0.718 0.851 0.630 0.724 0.870 0.623 0.726 0.633 0.540 0.583

25% 0.750 0.490 0.593 0.790 0.477 0.595 0.786 0.490 0.604 0.659 0.450 0.535

12.5% 0.376 0.137 0.200 0.373 0.137 0.200 0.361 0.143 0.205 0.292 0.150 0.198
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Figure 5: Spectrogram of a fixed of one of the 100 test files from

the (a) full, (b) 50% and (c) 12.5% event test databases.

noise condition for the shape-based detector system compares

well with the energy-based detector apart from in 0dB AWGN.

4.2. Early detection

Early detection was then explored by creating four sets of ex-

perimental continuous sound recordings. Each used the same

random selection of sound events, starting positions and over-

laps, but only included the beginning segment of each sound

included in the test. It is thus a task of detecting partial sounds,

but since these segments all include the beginning of the sounds

under question, with the end truncated, it forces the system to

perform detection on just the early parts of each sound. The

task is illustrated in Fig. 5, which shows a fixed short segment

of spectrogram from a single experimental condition, from three

early detection databases. In each case, these are clean sounds

without additional AWGN. In the figure, the same three events

are present, starting at the same position in each recording. The

full event data (a) includes the entire sound for each of the three

events, whereas in (b) only the first half of each sound has been

included, and in (c) only the first 12.5% has been pasted in. The

25% data has not been shown for space reasons, but follows a

similar pattern. For each of the experiments, classification uses

this data alone with no a priori information regarding the length

of each event. It is interesting to note that as the length of event

is curtailed, the degree of overlap also reduces; the full data test
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Figure 6: F1 score achieved by the shape-based detector in dif-

ferent levels of AWGN, for each early detection condition.

in spectrogram (a) has a significant overlap between the second

and third events. The overlap is small when only 50% of the

sounds are included, and is absent in the 12.5% case (although

overlap still occurs in other parts of the test database).

Full results for precision, recall and F1 score are presented

in Table 1 for both energy-based and shape-based detector, for

each early detection condition. The shape-based detector re-

sults degrade much less for the early detection cases than do

the energy-based detector results. In fact, degradation due to

early event detection is small up to even 25%, and may even be

beneficial in some cases (for example, some slightly improved

accuracy for 50% early detection), which we believe is due to

a trade off between less data being available for classification,

and the reduction in overlap. Fig. 6 shows the peak F1 score for

each tested condition of the shape-based detector.

5. Conclusion

This paper has proposed a shape-based front-end detector that

operates in conjunction with a well-trained isolated sound CNN

classifier, to perform robust early sound event detection. The

baseline CNN classifier is first evaluated in clean and noisy con-

ditions, using a standard acoustic noise database, with a simple

energy-based front-end. The proposed shape-based detector is

then evaluated in the same conditions, and shown to improve

performance. The early-detection task is derived from the stan-

dard test methodology, allowing performance to be evaluated

for four early-detection conditions. The new detector allied

with the backend CNN classifier are shown to perform very well

when even 50% of each sound event is omitted, and to degrade

gracefully as detection is forced on the basis of less and less

classification data.



6. References

[1] H. Phan, M. Maas, R. Mazur, and A. Mertins, “Random regres-
sion forests for acoustic event detection and classification,” Audio,

Speech, and Language Processing, IEEE/ACM Transactions on,
vol. 23, no. 1, pp. 20–31, 2015.

[2] H. Phan, L. Hertel, M. Maass, R. Mazur, and A. Mertins, “Learn-
ing representations for nonspeech audio events through their sim-
ilarities to speech patterns,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 24, no. 4, pp. 807–822,
April 2016.

[3] J. Portelo, M. Bugalho, I. Trancoso, J. Neto, A. Abad, and
A. Serralheiro, “Non-speech audio event detection,” in Acoustics,

Speech and Signal Processing, 2009. ICASSP 2009. IEEE Inter-

national Conference on. IEEE, 2009, pp. 1973–1976.

[4] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D.
Plumbley, “Detection and classification of acoustic scenes and
events,” IEEE Trans. Multimedia, vol. 17, no. 10, pp. 1733–1746,
2015.

[5] T. Heittola, A. Mesaros, T. Virtanen, and A. Eronen, “Sound event
detection in multisource environments using source separation,”
in Workshop on machine listening in Multisource Environments,
2011, pp. 36–40.

[6] J. Dennis, H. D. Tran, and H. Li, “Spectrogram image feature
for sound event classification in mismatched conditions,” Signal

Processing Letters, IEEE, vol. 18, no. 2, pp. 130–133, 2011.

[7] J. Dennis, H. D. Tran, and E. S. Chng, “Image feature representa-
tion of the subband power distribution for robust sound event clas-
sification,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 21, no. 2, pp. 367–377, 2013.

[8] I. McLoughlin, H.-M. Zhang, Z.-P. Xie, Y. Song, and W. Xiao,
“Robust sound event classification using deep neural networks,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 23, pp. 540–552, Mar. 2015.

[9] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Poly-
phonic sound event detection using multi label deep neural net-
works,” in 2015 International Joint Conference on Neural Net-

works (IJCNN), July 2015, pp. 1–7.

[10] T. L. Nwe, T. H. Dat, and B. Ma, “Convolutional neural network
with multi-task learning scheme for acoustic scene classification,”
in 2017 Asia-Pacific Signal and Information Processing Associ-

ation Annual Summit and Conference (APSIPA ASC), Dec 2017,
pp. 1347–1350.

[11] J. Li, W. Dai, F. Metze, S. Qu, and S. Das, “A comparison of deep
learning methods for environmental sound detection,” in 2017

IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), March 2017, pp. 126–130.

[12] H. Zhang, I. McLoughlin, and Y. Song, “Robust sound event
recognition using convolutional neural networks,” in Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE Interna-

tional Conference on, no. 2635. IEEE, Apr. 2015, pp. 559–563.
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