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Abstract

One unique feature of logic languages, which makes them well-suited for artificial intelli-
gence problems, is their ability to succinctly and declaratively express non-determinacy and
hence search. Improving search effiency is one of the main goals of Al and, by studying how re-
dundant search may be factored out, this paper contributes to this goal. In logic programming,
alternatives can be specified by a set of sentences defining the same predicate. By backtrack-
ing, considering in turn each of these sentences, these alternatives can be explored until a
solution (if one exists) is found. However, though backtracking is essential for certain parts of
a program, typically, many predicates are deterministic, and most queries to a program have
no more than one solution. Providing for non-determinacy can slow down the execution of a
program on a uni-processor and limit the scope for parallel execution on a multi-processor.
As a consequence, programmers are often forced to resort to the non-logical features of the
language to ensure any determinacy is fully exploited. A number of papers on determinacy
and its detection have been published. However, because of the diversity of applications for
determinacy analysis, there has been a similar diversity of definitions of determinacy and its
related concepts. This paper reformulates the determinacy definitions in a uniform framework;
identifying and contrasting the different approaches. Techniques for detecting and exploiting
determinacy are also reviewed together with some directions for future research.

1 Introduction

In logic programming, alternatives can be specified by a set of sentences defining the same predicate.
By backtracking, considering in turn each of these sentences, these alternatives can be explored
until a solution (if one exists) is found. However, though backtracking is essential for certain parts
of a program, typically, many predicates are deterministic, and most queries to a program have no
more than one solution. Providing for non-determinacy can slow down the execution of a program
on a uni-processor and limit the scope for parallel execution on a multi-processor.

In the sequential execution of a program, non-deterministic code will normally cause the cre-
ation of choice-points and these are computationally expensive in both time and memory. As all
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implementations, including parallel ones, have sequential components, it is clear that detecting de-
terministic code at compile time can reduce the number of unnecessary choice points and improve
the efficiency of the resulting code. In practice, programmers often resort to the non-logical fea-
tures of the language such as the Prolog cut to ensure any determinacy is fully exploited. However,
programs with features such as the cut are difficult to write and expensive to maintain. Moreover,
as concluded in [3], for inductive logic programming with current induction techniques, it is not
practical to learn logic programs with the cut. It would be better if a more declarative program was
written (or learnt) and then either annotated with determinacy information or the deterministic
parts detected in an automatic way.

The efficient distribution of work to as many of the available processors as possible is fundamen-
tal to any parallel implementation. In broad terms, there are two forms of parallelism that have
been recognised, or-parallelism and and-parallelism. Or-parallelism exploits the non-determinacy
in a program by exploring the different parts of the search tree in parallel. However, or-parallelism
is rarely scalable and there are often insufficient alternative paths in a program to make it vi-
able. The other form of parallelism, called and-parallelism, computes the different conjuncts of a
goal in parallel. In the latter case, the implementation is simplified if backtracking is local to a
processor. This can be ensured by executing goals in parallel only if they do not share variables
(independent and-parallelism), or, more generally, any shared variables are not re-assigned (depen-
dent and-parallelism). One sufficient condition for the latter is that the predicate which binds the
shared variable must be deterministic.

Determinacy information can be used by program transformers such as partial evaluators [24]
and program verifiers in proofs of properties such as termination [2]. Normally, the intention
of a program transformer is to create (possibly specialised) code that is more efficient than the
original. Thus it is important that the transformation minimises the amount of non-determinacy
in the transformed program. Although an important transformation technique is unfolding, un-
folding non-deterministic code can cause an explosion in the number of clauses increasing the
non-determinacy as well as repeating computations unnecessarily [24]. It is shown in [2] that,
if a goal is determinate and has at least one SLD-derivation that terminates successfully, then
every SLD-derivation for that goal will terminate successfully. This and similar results are partic-
ularly important for logic programming languages that have flexible computation rules or parallel
implementations where the behaviour and hence termination is less predictable.

It 1s expected that a knowledge of determinacy would also be of benefit to theorem provers.
Many analysis and transformation techniques that have been developed for logic programming can
also be successfully applied to automatic theorem proving. For example, in [15], it has already been
demonstrated that, by avoiding sentences in a theory that cannot contribute to a proof, significant
improvements can be made to the efficiency of the theorem prover.

In spite of the importance of determinacy in providing efficient implementations, there is a lack
of consensus as to its precise nature. There is the classic division in logic programming between the
declarative and procedural view of a program. Under the declarative approach, determinacy, called
here functionality, depends on the uniqueness of a correct answer for the goal and program. Un-
der the procedural interpretation, computational behaviour is characterised by SLDNF-derivation.
Here, it is useful to separate the structure of a derivation from the representation of its substi-
tutions [7]. This helps to distinguish between the two main forms of procedural determinacy:
the structural and the substitutional forms. In structural determinacy, a node in the search tree
is required to have no more than one child node, while the substitutional form is based on the
uniqueness of variable bindings. These are clearly distinct. For example, with the program



P(A)

P(r) « Q(x)

Q(A)
where A is a constant, the query <+ P(v) generates a unique binding for v and therefore has
one computed answer v = A. It is thus substitutionally deterministic. The query, however, has
two child nodes in the search tree and therefore is not structurally deterministic. Note that the
determinacy terminology, functionality, structural determinacy, and substitutional determinacy is
defined for this paper and is introduced so that we can clearly distinguish these different forms of
determinacy.

Prolog is inherently sequential and literals in the goal and clauses in the program are processed
according to their textual ordering. The predominance of Prolog as a logic programming language
has meant that most work on determinacy presupposes a leftmost computation rule and a depth-
first search rule. For instance, the Prolog cut (which relies on the sequential computation procedure
described above) has had a major influence on previous work on determinacy. This is because, by
pruning alternative paths in the search tree, it is possible to remove choice points, thereby making
the program more deterministic.

Because of the drive for exploiting parallelism, however, many recent innovative logic program-
ming schemes such as NU-Prolog [48], Reform Prolog [4], Andorra [25], and Gddel [27] have been
devised with a more flexible control procedures but allowing for explicit control directives by the
programmer. Moreover, new pruning operators such as the one solution in NU-Prolog, the com-
mit in Andorra, and the Godel commait, that do not depend, like the traditional cut, on a fixed
order of execution, have been designed and implemented. However, although more flexible control
schemes have recently been considered with respect to data flow analysis ([17, 18]) and the role
of determinacy has been explored in a partial way for some less restrictive control schemes, the
more general and important problem of detecting determinacy for an arbitrary control strategy
has never been formally defined let alone solved and implemented. In this paper, we formalise the
concept of determinacy for flexible control strategies and therefore lay the foundation for future
analysis and implementation work.

The rest of the paper is organised as follows. First, in Section 2, the terminology and background
concepts used in the rest of the paper are presented. Sections 3, 4, and 5 describe and define each
of the three forms of determinacy; functional, structural, and substitutional, as outlined above,
comparing each with similar definitions in the literature. In Section 6, we examine the different
techniques that have been used to detect determinacy in logic programs. Methods for exploiting
determinacy information in the compiler to produce optimised code are discussed in Section 7.
The paper concludes with a summary and some directions for further research.

2 Preliminaries

Before discussing the different notions of determinacy, some notation and preliminary definitions
are required.

First, note that, in the example programs, names of constants, functions, and predicates have
an upper-case letter as the first character whereas names of variables have a lower-case letter as
the first character. An underscore denotes a unique variable existentially quantified in front of the
atom in which it occurs. Tt is assumed that all other (free) variables are universally quantified at
the left of the clause in which they occur. Prolog notation ([], [...], [...]...]) is used for lists. The
symbol II is reserved to denote an arbitrary program. Logic programming terminology used in this



paper is based on the book [30]. Only where, for the purposes of this paper, this terminology is
modified or extended 1is it defined here.

For any logic program there is an underlying language, either inferred from the symbols used
in the program (as in Prolog) or defined by language declarations (as in Godel). Tt is assumed
here that this language always includes at least one constant so that the Herbrand universe is
non-empty. Any practical programming language will provide built-in predicates which are either
part of the underlying language or, in a modular language such as Godel, provided by the system
modules. By a built-in atom, we mean an atom whose predicate is built-in. In particular, it is
assumed that the programming language has a built-in binary infix predicate = defined by the
single clause

r=x.

The programs in this paper are assumed to be normal logic programs (where the body of the
program clause or goal is a conjunction of literals). Also, unless otherwise specified, the programs
are assumed to be pure; that is, free of cuts, commits, or any other non-declarative constructs. Pure
logic programs permit flexible computation rules and facilitate co-routining and parallelisation. It
is assumed that the declarative semantics of a logic program IT is based on its completion comp(IT)
and that any implementation of the program is based on the procedural semantics of SLD-resolution
and its extension to SLDNF-resolution for negative literals.

As the concepts of correct and computed answer are central to the definitions of functionality
and substitutional determinacy, we repeat them here.

Definition Let IT be a program and < W a goal. A correct answer for TTU{+ W} is a substitution
restricted to the variables in T such that YI¥0 is a logical consequence of comp(IT). A computed
answer for TTU {« W} is the composition of substitutions used in an SLDNF-refutation for
TTU {+ W} restricted to the variables in W.

To simplify the paper, all the substitutions are assumed to be idempotent. Moreover, when
defining determinacy in terms of the uniqueness of a correct or a computed answer, we do not wish
to consider irrelevant differences in the names of variables in the range of the substitution.

Definition If 6,6’ are substitutions, then we say 0,60’ are equivalent if there exist substitutions
o,0' such that ¢ = 0o, 6 =0'0’.

In order to correctly model the run-time behaviour of a program (in particular, backtracking)
we adapt the definition of an SLDNF-tree in [30] to include, at each node, edges for both successful
and failed unification tests. Thus we assume that each node, for which the selected node is an
atom, has k children; one for each clause in the definition of the predicate in the atom. Those
children for which the unification test fails, are labelled with failure, while the remaining children
are as 1n the standard definition of an SLDNF-tree. Note that as before, if there are no children,
then the node is also labelled with failure.

Any implementation also has to consider how to search the SLDNF-tree for a solution. In
particular if the determinacy is detected dynamically, then it will depend on the structure of the
unexplored part of the tree. In searching an SLDNF-tree, once a node has been visited, usually a
record 1s kept of any child nodes that have not yet been considered. Provided there is at least one
such child, then the parent node 1s called a choice point.

In making a general study of determinacy it is important to try to separate control issues from
the definitions since in some computational models the selection rule is defined in terms of the



possible deterministic behaviour of the program. For example, in Andorra [25], determinate atoms
are selected in preference to non-determinate ones. On the other hand, the control still needs to
be considered since the order in which literals are selected can affect the determinacy. There are
a number of ways in which the intended selection rules can be specified. In Prolog, the textual
order of the literals determines the precise order of selection. In Godel, control declarations, define
restrictions on the atoms that may be selected from a goal. Thus, for generality, we assume for
each program the existence of a function called a selection rule that maps goals to sets of literals.

Definition A selection rule S for a program II is a function that maps a goal GG for 11 to a subset
of the literals in that goal! such that,

1. if G is of the form « Wy A W, then S(G) C S(+ W) U S(+ Wa);
2. if 6 is any substitution, then S(G)# C S(G0);
3. No non-ground negative literals occur in S(G).

Any literal in §(G) is said to be selectable in G (wrt ). If G is non-empty and no literal is
selectable, then we say that the goal (and the derivation in which it occurs) flounders (wrt S).
The trivial selection rule is one that maps any goal G to the set consisting of all positive literals
and ground negative literals in G.

Condition 1 says that the selection rule must distribute over conjunction. Moreover, if a literal L is
selectable in some goal, then it is selectable in the goal <~ L. Condition 2 ensures that if a literal in
a goal is selectable, then an instance of it will be selectable in any instance of that goal. Condition
3 is required for safe negation and ensures the soundness of the SLDNF-derivation procedure.

A selection rule may force sequentiality by choosing, for each goal, at most one literal. For
example, the left to right rule of Prolog in which only the leftmost literal in the current goal may
be selected is a sequential selection rule. Similarly, the right to left rule where only the rightmost
literal may be selected is another sequential selection rule. A more flexible selection rule may be
defined by mode or control declarations that only restrict the selectable literals. This may leave
some non-determinacy in the choice of the next literal for resolution, allowing for parallel execution
of the selectable literals. For example, in Godel [27], the order of the literals does not affect the
selection rule and the rule only has to observe the control declarations in the program and the
built-in control. Some Prolog systems such as NU-Prolog [48] allow some variation of the left to
right rule, with user-defined control declarations and safe negation partly determining the selection
rule. Most Prolog systems have some control for the built-in predicates, requiring some of their
arguments to be ground. Note that when referring to an SLDNF-tree or a computed answer, unless
otherwise specified, the trivial selection rule is assumed.

It is useful to show that the determinacy definitions given later in this paper are well-behaved
with respect to the selection rules. That is, if a selection rule is replaced by another which allows
less literals to be selected, then any determinacy property should be preserved.

Definition Suppose there are two selection rules § and S8’ for a program II such that for any goal
G for 11,
S(G) € 8'(G)

then we say that S is stronger than S'.

'Tn [30], a computation rule is defined as a function from goals to literals



Given a program and selection rule for that program, there is, for each predicate in the program,
a set of modes specifying the degree to which its arguments and subterms of these arguments are
instantiated when an atom with that predicate is selected. In particular, if an argument (or a
subterm of that argument) of the predicate has to be non-variable before the atom is selectable,
then the mode of the position of that argument (or subterm) is said to be input and the position
is said to be an input position. The modes of the predicates can be partly defined by means of
control declarations (as in Godel) or inferred from the built-in control and underlying selection
rule (as in Prolog) [33].

3 Functionality

In declarative programming, the programmer states the logic of the problem without considering
the method of computation and its implementation. Thus, the declarative form of determinacy,
called here functionality, may only be understood in terms of the uniqueness of logically correct
answers for a query. Functionality, has been shown to be important in database applications [34].

Definition Let TT be a program with selection rule S. Then a goal G is functional if there is (up
to equivalence) at most one correct answer for comp(ITU {G}). A predicate P/n is functional wrt
S if every goal of the form « P(ty,...,1,), where P(t1,...,%,) is selectable wrt S, is functional.

As a consequence, any goal whose literals are either negative or atoms whose predicates are func-
tional, will also be functional.

Example 3.1 Consider the program

P(z,y) + Q(=,y)
Q(A, B)
Q(A, A).

Then, the goal + P(v, A) is functional with correct answer {v = A}. The goal < P(B, A) is also
functional as it has no correct answer. The goal + P(A,v) has two correct answers v = A and
v = B, so that it is not functional. More generally, if the selection rule is trivial, then P/2 is
not functional. However, if P(t1,12) is only selectable when ty is ground, the predicate P/2 will be
functional. ]

The next proposition states some basic properties of functionality.

Proposition 3.1 Let II be a program and S a selection rule for I1. Then,
1. if a predicate is functional wrt S, it is functional wrt any stronger selection rule;
2. if a goal +— W s functional wrt S, the goal < W6 s functional wrt S for any substitution 6;

3. if the goals < W and < W1 are functional wrt S, the goal < W AN W7 s functional wrt S.
U

Proof 1 is obvious. For 2, suppose that < WW# is not functional, then any variant is also not
functional and we can assume that 6 is idempotent. Then there are at least two non-equivalent
correct answers, ¢1 and ¢o for comp(IT) U {« W@}. As ¢1 and ¢y are restricted to variables in



W6, they do not bind variables in the domain of #. Thus 8¢, and 8¢, are non-equivalent correct
answers for comp(IT) U {+ W}.

For 3, suppose that « W AW is not functional and that ¢; and ¢- are non-equivalent correct
answers for comp(IT) U {<— W A Wi }. As there is at least one constant in the language, we can
assume that ¢o is a ground substitution. As the order of the subgoals W, W7 is not significant in
the proof, we can assume that the restriction ¢} and ¢4 of ¢; and ¢2 to the variables in W are
distinct and that as ¢% is a ground substitution, they are not equivalent. Then, as ¢} and ¢}, are
correct answers for comp(IT) U {« W}, « W is not functional.

As functionality expresses a declarative view of determinacy, 1t 1s straightforward for the user
to state which predicates are functional. For example, in [34] (where the program representing the
database is assumed to be function free) the user can include functional dependency statements of
the form:

P(z1,...,2n): ®j,..., 25, — T

p

(where j & {j1,...,jp}). The j’th argument is said to functionally depend on the ji, ..., j, argu-

ments. This means that the correct answers for any two goals «— P(s1,...,s,) and < P(t1,...,t,)
with identical ji’th arguments, 1 < k < p, will agree on the binding for any variables in the j’th
argument. Thus, if, for example, the n’th argument functionally depends on the 1,...,n — 1 ar-

guments and P/n is only selectable when the first n — 1 arguments are constants, P/n will be
functional. The following example taken from [34] illustrates the use of functional dependencies.

Example 3.2 Consider a database of employees defined by predicates BigProject/1, Salary/2, and
Project/3 where the arguments to Project/3 denote, respectively, the project name, the manager of
the project, and an employee in the project. The arguments to Salary/2 denote, respectively, an
employee’s name and salary.

BigProject(p) < Project(p,m,e) A Salary(m,s) A s> 51000

Project(p,m,e): p — m
Project(p,m,e): e = p
Project( Turing, Ric, Steve)
Project( Turing, Ric, Jim)
Salary(Ric, 50000).

Then, assuming that s > 51000 s only selectable when s is bound to a ground term, with the goal
< BigProject( Turing)

calls to Project/3 and Salary/2 will succeed with substitution {m = Ric,e = Steve,s = 50000}.
The goal

< 50000 > 51000

will then fail. However, because of the functional dependencies, there is no need to look for other
managers of the project Turing. A compiler can use the functional dependencies to prevent unnec-
essary backtracking. ]

In Section 6, we show how the functional dependencies may be generalised to allow for functions
and constructed terms in the language.

The definition of functionality implies that, if it exists, the correct answer for a functional goal
must be ground.



Example 3.3 Consider the program
P(z).

Declaratively, YyP(y) is a logical consequence of the program. However, provided the underlying
language has at least one ground term, say constant A, the goal < P(y) has correct answers y =
and y = A so that the goal is not functional. I

To allow for non-ground answers, we need to consider the procedural semantics. Hence, an alter-
native form of determinacy based on computed rather than correct answers is often more useful.
Note that functional computations, as defined in [19], are primarily concerned with the uniqueness
of the computed answer. Determinacy based on the computed answer and thus the definitions
in [19] will be considered later in Section 5.

4 Structural Determinacy

In contrast to the previous approach where the computation was regarded as a black box, in this
and the following section, behaviour is characterised procedurally by SLDNF-trees. This section is
concerned only with the structure of the tree while the next section is concerned with the variable
bindings that label the branches of the tree.

Structural determinacy may be defined locally, that is in relation to a single node or just a
small component of the tree, or globally, where the whole search tree is considered. First, local
determinacy is examined.

Definition Given a program IT with selection rule §, then an atom A is head determinate in 11 if
at most one clause head in IT unifies with A. A goal G for II is head determinate (wrt S) if each
selectable positive literal in G is head determinate in II. A predicate P/n in II is head determinate
(wrt 8) if each goal of the form « P(t1,...,t,) is head determinate.

Example 4.1 This example (which is a simplified form of a program in [38]) checks that the
brackets in a list of brackets are balanced.

Balanced(l) + Balanced(l, stack)

Balanced([],[])

Balanced([” (" |ls], ss) + Balanced(ls,[”(”]|ss])

Balanced(["{”|ls], ss) < Balanced(ls,[”{”|ss])
Balanced([”)” |ls],[” (" |ss]) « Balanced(ls, ss)

Balanced([”}” |ls], ["{”|ss]) < Balanced(ls, ss).

Then provided Balanced(t) is selectable only when t is ground, the predicate Balanced/2 is head
determinate. O

The concept of head determinacy was first defined in [26] and more recently has been described
as the “more basic form of determinacy” [10]. A concept closely related to head determinacy is
ground determinacy; a predicate P/n is ground determinate if every ground atom of the form
P(ty,...,t,) unifies with at most one clause head [32]2. A program is ground determinate if every

?In [32], ground determinacy is called local determinacy. (The name is changed here to avoid confusion with the
concept of local structural determinacy.)



predicate in the program is ground determinate. For example, in Example 4.1, Balanced/2 and,
hence the whole program, is ground determinate. It has been shown that for a program that is either
ground determinate or subsumption equivalent to a program that is ground determinate, finite
failure implies falsity [32]3. In [26], head determinacy is extended to primitive determinacy where
the unification criteria for a head determinate atom or goal is extended to allow for primitives.
These are atoms which are known to be ground before they are selected. In [47], head determinacy
is extended to allow for test unifications which are unifications, generated by solving equations in
the body of a clause, that do not bind variables in the head. Here, we define a test literal, which
is a literal in the body of a clause whose execution does not bind variables in the head. This
generalises both the above concepts of a primitive atom and a test unification.

Definition Let I be a program with selection rule § and C' the clause
A~ Li AN AN L

Then L;, i € {1,...,1}, is a test literal of C' (wrt §) if, for each substitution 0 such that Af is
selectable, L;0 contains no variables in A# and is selectable in « (L10 A --- A L;f). If T'is a
conjunction of test literals for C| then < T is a test goal for C' (wrt S). A test equation for C is a
test literal for C' of the form s = ¢.

Definition Let IT be a program with a selection rule §, A an atom, and Cj,...,Cy clauses in
IT whose heads unify with A with substitutions 61, ..., 0, respectively. Suppose « T1,...,+ Tk
are test goals for C, ..., Ck, respectively. Then A is primitive determinate if at most one of the
formulas V71 6y, ..., VT;0; is a logical consequence of comp(IT). The goal G is primitive determinate
(wrt S) if each selectable positive literal in G is primitive determinate in TI. A predicate P/n is
primitive determinate (wrt S) if each goal of the form + P(¢y,...,%,) is primitive determinate.

The following example illustrates the difference between head and primitive determinacy.

Example 4.2 Consider the following program.

P(z) « Q(z)

P(z) « R(z,y) N Qy)
Q(1)

R(2,1)

Provided the atom P(t) is selectable only when t is ground, Q(z) and R(x,y) are test atoms in the
first clauses and the predicate P/1 will be primitive determinate but not head determinate. I

In general, the property of primitive determinacy is undecidable [26]. The next proposition
states some basic properties of head and primitive determinacy.

Proposition 4.1 Let I1 be a program and S a selection rule for I1. Then,

1. if a goal or predicate is head (resp., primitive) determinate wrt S, it is head (resp., primitive)
determinate wrt any stronger selection rule;

2. if goals «— W and < W, are head (resp., primitive) determinate wrt S, the goal « W AW
is head (resp., primitive) determinate wrt S.

3Definite programs II; and I, are subsumption equivalent if every clause in II; is subsumed by a clause in Il
and vice versa. A definite clauses A; + Bj is subsumed by a definite clause A> < Bs, if A; = A0 and the set of
atoms in the body B8 is a subset of set of atoms in Bj.



O

Proof Part 1 is obvious. For 2, note that by the first condition in the definition of a selection
rule, any selectable atom in the goal + W A W is also selectable in < W or + W;. O

Note that, unlike functionality, with a flexible selection rule a goal <— W may be head determinate
but an instance <~ W8 may not be. The following example illustrates this.

Example 4.3 Consider the program

P(1, A)
P(1,B)
Q(1,4)

where P(s,t) is selectable only when s is ground. Then the goal

— Q(z,y) A P(z,y)

is head determinate, although, as the selection rule allows P(1,y) to be selected before Q(1,y), the
goal

<« Q(l,y) A P(Ly)
15 not head determinate. ]

Costa refines head determinacy to flat determinacy [10]. Flat determinacy is similar to primitive
determinacy except that test goals are restricted to be conjunctions of built-in atomic tests such
as arithmetic comparisons, term comparisons, and built-in type tests.

Example 4.4 Consider the following program for partitioning a list (as used in quicksort).

[1,1])
zs], [x|ys], zs) « x> i A Partition(i,zs,ys, zs)
1, ys, [x]|zs]) « x <i A Partition(i, xs,ys, zs).

Partition(_,[],
Partition(i, [z]
Partition(i, [z|zs

Provided the atom Partition(t1,t2,13,14) is selectable only when t1 is ground and t5 is a list which is
either emply or whose first element is ground, then the predicate Partition/4 will be flat determinate
but not head determinate. O

The concept of head determinacy and its relationship with flat and primitive determinacy are
further illustrated in the following example [10].

Example 4.5 Consider the following program.

([L--10)

P([z|zs],p,y,[z|ny]) « z>p A P(zs,p,y,ny)

P([z|zs],p,y, [z|ny]) « = <p AN Member(z,y) A P(zs,p,y,ny)
P([z|zs],p,y,ny) + x <p A —-Member(z,y) N P(zs,p,y,ny).

8

If the first argument of P/4 is a list of numbers, t; the second argument is a number, p; and the
third is another list of numbers, u; then P s true if the fourth argument corresponds to the list
obtained from t by deleting those elements which are either < p or members of the list u. For any
selection rule, the goal
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< P([],5,12,1)
1s head determinate, and hence both flat and primitive determinate. In the goal

the atom P([7],5,[2],1) unifies with the heads of the last three clauses and hence is not head deter-
minate. The call T < 5, however, will fail so that only the second clause will succeed. Thus this
goal is both flat and primitive determinate. In the goal

« P([5],7,121,1)

the atom P([5],7,[2],1) unifies with the heads of the last three clauses. Moreover, the test 5 < 7
will succeed in both the third and fourth clauses so that the goal is not flat deterministic. However,
the test Member(5,[2]) in the third clause will fail so that only the fourth clause will succeed. Thus
this goal 1s primitive determinate.

This illustrates that, provided atoms of the form P(t1,t2,t3,t4) are selectable only if t1 and t4
are ground, the predicate P/4 is primitive but not flat or head determinate. ]

The test literals Member(x,ls) and = Member(x,ls) occur in different clauses and effectively define
a two way switch. This use of an atom and its negation as test literals in different clauses of a
predicate is relatively common. A number of languages such as Godel and NU-Prolog thus provide
a special If-Then-Else construct to make such a test explicit (see Section 7).

More pragmatic approaches to structural determinacy define determinacy with respect to a
clause [50, 52]. This form of determinacy is really a refinement of primitive determinacy that
assumes a fixed search strategy. In the following definition, it is assumed that there is a ordering
< on the clauses in a definition and that the search strategy respects this order. Thus, if a node
has child nodes n and n’ with clauses C' and C’, respectively, such that C' < C’ then the node n
is visited before n'.

Definition Let IT be a program with selection rule § and C' a clause in Il with test goal + T
Suppose that, for each selectable atom A that unifies with the head of C' with substitution § and
< T6 succeeds, whenever A also unifies with the head of another clause C’ > C' with test goal
« T" with substitution ¢, < T'¢’ fails. Then C is said to be clause determinate®.

Thus the maximal clause in the ordered sequence of clauses defining a predicate is always determi-
nate. In [50], a test in a clause is defined to be a literal in the body of the clause whose execution
will not cause side effects, will not create choice points, only binds variables local to the clause, and
does not create structures on the heap. Although, this definition depends on the compiled form of
the test rather than the test itself, it appears that the intended meaning of a test is close, in spirit,
to the tests allowed in primitive determinacy. In [52], (where a determinate clause is called a cut
clause) a test goal is restricted to one whose body is a conjunction of built-in atomic tests and a
predicate is said to be deterministic if every clause in its definition is a cut clause. The idea of a
determinate clause is illustrated in the following example.

Example 4.6 Consider a program of the form:

4This definition is a modified form of that given in [50] and it does not take into account cuts or side-effect
predicates.

11



P(Ajz) « ...

P(B,z) «+ =(z=F()) A ...
P(B,F(3)) « ...
P(B,F(4)) + ...

Then, assuming atoms of the form P(t1,t2) are selectable when both arguments are non-variables,
the first, second and fourth clauses are determinate, whereas the third clause is not. The first
clause is determinate since any selectable atom that unifies with P(A,z) cannot unify with any
following clauses. The second clause is determinate since the test =(x = F(_)) implies that none
of the following clauses will unify with the atom. The fourth clause is determinate because it is the
last clause. U

Information concerning the determinacy of a clause can be used to remove unnecessary choice points
as early as possible during execution. By exploiting clause determinacy in a special compilation
scheme, speedups of between 30% and 300% were reported for a number of test programs [50].

Global forms of determinacy for which the SLDNF-tree for a program and goal must ap-
proximate to a single branch require the corresponding local form to hold at every node of the
SLDNF-tree.

Definition Given a program Il with selection rule § and a goal G for II. Then an SLDNF-
derivation for TIU{G} is head (resp., primitive) determinate wrt a selection rule S, if the derivation
uses § and each selected atom in the derivation is head (resp., primitive) determinate wrt S. The
goal G is derivation head (resp., primitive) determinate (wrt S) if every SLDNF-derivation of
TTU {G} using S is head (resp., primitive) determinate wrt S.

Thus, if G is derivation head determinate wrt S, then every goal in an SLDNF-tree for IT U {G}
using S will be head determinate wrt S and every SLDNF-tree for IT U {G} using S will have a
single branch.

Example 4.7 Consider again the program for Partition/4 in Example 4.4. Ifty and i5 are ground
terms, then the goal < Partition(t1,1t2,t3,14) is derivation primitive determinate. ]

Proposition 4.2 Let I1 be a program and S a selection rule for I1. Then, if a goal or predicate is
head (resp., primitive) determinate wrt S, it is head (resp., primitive) determinate wrt any stronger
selection rule. U

Proof Obvious. O

Note that unlike head determinacy, goals <~ W and < W; may be derivation head determinate
but the goal <~ W A W; may not be.

Example 4.8 Consider the program

P(1,4)

P(1, B)
Q(z,4) « S(2)
R(1)

S(1)

with selection rule such that P(s,t) is selectable only if the term s is ground. Then the goals
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— Q(z,y) A P(z,y)
— R(z)

are derivation head determinate, while the goal
— R(z) AN Q(z,y) N P(z,y)
1s not deriwation head determinate. I

As computed answers may not be ground, a goal which is derivation primitive determinate
is not necessarily functional. Moreover, a goal may be functional and head determinate but not
derivation head (or primitive) determinate.

Example 4.9 Consider the program

P(x,y) « Q(z,y) A R(z,y)
Q(A, B)
Q(A, A)
R(x,z).

The goal « R(u,v) is trivially derivation head determinate, but not functional. Furthermore,
assuming a left to right selection rule, the goal < P(u,v) is head determinate and functional with
the correct answer w = A,v = A but not derivation head determinate. ]

An alternative notion for global determinacy, presented in [43], defines a deterministic goal to
be such that there is at most one success branch at each node of the SLDNF-tree. Thus there can
still be any number of failing or infinite branches in the tree.

Example 4.10 Thus, according to [43], for the program of Example 4.9, the goal
— P(u,v)
1s determinate. However, it is not derwation primitive determinate. ]

The development of a good search strategy that minimises backtracking requires knowledge
of the structural determinacy for the program and goal. If a goal in a derivation i1s known to be
head determinate then no choice point need be created at the corresponding node in the search
tree. Moreover, if it is known that a goal is derivation head determinate, then no choice points in
its derivation need be created. With primitive determinacy, choice points may still be made and
only after evaluating the test goal for a clause would they be removed. A search procedure that
detects and then removes many choice points where the unexplored branches do not lead to success
is called intelligent [6, 12] or selective backtracking [40]. Detection of unnecessary choice points
is normally performed at run-time during the forward execution [8]. If the detection is based on
compile-time analysis, the backtracking is called semi-intelligent [9]. A hybrid scheme that relies
on both static and run-time analysis that was developed for exploiting parallelisation can also
be used to underpin intelligent backtracking [51]. A more challenging analysis problem is that of
reducing the overheads of dynamic backtracking [23]. Dynamic backtracking, unlike intelligent and
semi-intelligent backtracking, can move backtrack points deep into the search space so as to avoid
redoing useful work.
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5 Substitutional Determinacy

In Section 3, the declarative form of determinacy called functionality was defined. One limitation
of this definition was that, as a functional goal can have at most one correct answer, this answer
had to be ground. To consider non-ground answers, the definition of determinacy needs to be
based on the actual answers that are computed. To distinguish functionality from determinacy
that is based on the computed answer, we call the computational form solution determinacy.

Definition Given a program Il with selection rule S, then a goal G is solution determinate wrt
§ if there is (up to equivalence) at most one computed answer using § for ITU {G}. A predicate
P/n is solution determinate wrt S if every goal of the form « P(#1,...,t,), where P(t1,...,t,) is
selectable wrt &, 1s solution determinate.

The next proposition is similar to Proposition 3.1 and states some basic properties of solution
determinacy.

Proposition 5.1 Let II be a program and S a selection rule for I1. Then,

1. if a goal or predicate is solution determinate wrt S, it is solution determinate wrt any stronger
selection rule;

2. if a goal < W does not flounder for any SLDNF-derivation using S and s solution determi-
nate wrt S, the goal < W8 1is solution determinate wrt S for any substitution 6;

3. if the goals < W and < Wy do not flounder for any SLDNF-derivation using § and are
solution determinate wrt S, the goal < W AN W7 s solution determinate wrt S. 0

Proof 1 is obvious. For 2, suppose ITU {<— W} has computed answer . Let D be a derivation
for TTU {+ W0} with computed answer ¢. If E is the set of equations {x =1t : z/t € 0}, we can
obtain a derivation D’ for «— W A E from D by adding a partial derivation® Dg which solves the
equations in F and ends with a variant of the goal «— W0 to the beginning of D. Then D’ has
the same computed answer ¢. By [30, Theorem 9.2], a computed answer does not depend on the
selected literal at each derivation step. Thus, as no derivation for - W flounders, we can obtain
a derivation D" from D’ with computed answer equivalent to ¢ by first solving < W, selecting
instances of equations in £ only when there are no other literals in the current goal. Thus, as ¢ is
the only computed answer for « W, D" has computed answer mgu(Fo). As D was an arbitrary
derivation for < W, all computed answers for ITU{+ W@} are equivalent to mgu(FEo) and « W6
is solution determinate.

For 3, suppose ITU{+ W} has computed answer . Let D be a derivation for ITTU{« W AT, }
with computed answer ¢. By [30, Theorem 9.2], a computed answer does not depend on the
selected literal at each derivation step. Thus, as no derivation for IT U {<— W} flounders, we can
assume that D consists of a partial derivation ending with a variant of the goal +— Wj o followed by
a derivation for this variant. By Part 2, as < W7 is solution determinate, « Wjo is also solution
determinate and there is a unique computed answer ¢ for ITU {<- Wjo}. Hence D has computed
answer o¢). As D was an arbitrary derivation for <~ W A W; (and the order of the subgoals W, W
is not significant in the above part of the proof), all computed answers for TTU {< W A W, } are
equivalent to ot and < W A Wi 1s solution determinate. O

5A partial derivation may end in a non-empty goal that does not fail or flounder.
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Thus, any goal whose literals are either negative or atoms whose predicates are solution determinate
will also be solution determinate. Note that the floundering condition in Parts 2 and 3 cannot be
dropped or weakened.

Example 5.1 Consider the program
1,A
1, B)
1,A
z,u)
)
(1)

with selection rule such that P(s,t) is selectable only if s is ground. Then the goals

— Q(z,y) A P(z,y)
— R(z)

TOL T

(
(
(
(
(

W

are solution determinate as the branch using the fact Q(z,u) will flounder while the goals

« Q(l,y) A P(1,y)
— R(z) A Qz,y) N P(z,y)

are not solution determinate. ]

As SLDNF-resolution is sound, any predicate that is functional (in the sense of Section 3) is
also solution determinate. However, Example 3.3 shows that the converse does not hold.

If a goal is derivation head (or primitive) determinate, there is at most one branch in any
SLDNF-tree for the goal and hence, at most one computed answer. Thus the goal is also solution
determinate. However, the following example shows that the converse does not hold.

Example 5.2 Consider the following program.

P(z,y) «+ Q)
P(z,y) < R(x)
R(A)
QA).

With the trivial selection rule, the goal < P(u,v) and predicate P/2 are solution determinate but
not head or primitive determinate. Note also, as the goal < P(u,v) has more than one correct
answer, P/2 is not functional. I

A definition similar to that of solution determinacy is given in [19] and it is observed that, in
general, this form of determinacy is undecidable. In [26], it was been noted that if SLD-resolution
is considered as a goal rewriting process, then a goal will be solution determinate if and only if it
is Church-Rosser with respect to the substitutions returned for the variables of the goal.

In the logic programming language Mercury [47], a mode of a predicate is categorised according
to the number of computed answers that are obtained for an atomic query with that predicate and
which satisfy the given mode. In particular, a mode for a predicate P/n is said to be deterministic
if all queries of the form « P(#1,...,t,) such that P(¢1,...,t,) satisfies the mode, have exactly
one computed answer. There are similar definitions for semideterministic, multideterministic, and
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nondeterministic modes. Both the modes and their determinacy category must be declared by the
user. This information together with other declared information is used to produce very efficient
compiled code.

In a parallel computation, a binding may be made and communicated to processes running on
other processors. The computation with this binding might then subsequently fail so that work
done by the other processes would have to be undone. This form of distributed backtracking is
difficult to implement and it is desirable to avoid it.

Definition Let IT be a program with selection rule S. The goal G is binding determinate if TU{G}
has computed answer 6 and, for any SLDNF-tree for IT U {G} using S and any composition ¢ of
substitutions on a branch in the tree, there exists a substitution ¢ such that the restriction of ¢
to the set of variables in GG 1s 6.

The essential idea in binding determinacy is that the bindings for the variables in the goal never
need to be retracted.

Example 5.3 Consider the following program.

P(F(z,y)) < Q(z,y)
P(F(x,y)) < Qy,z) A Q(z,y)

Q(A, B)

and goals

 P(F(A.y)

« P(y)

Then the first but not the second goal 1s binding determinate. ]

Proposition 5.2 Let I1 be a program and S a selection rule for 1. Then, if a goal or predicate is

binding determinate wrt S, it is binding determinate wrt any stronger selection rule. I
Proof Obvious. U

Note that unlike solution determinacy, even if no derivations flounder, goals <— W and < W; may
be binding determinate but the goal «— W A W; may not be.

Example 5.4 Consider again the program in Example 4.8. Then the goals

— Q(z,y) A P(z,y)
— R(z)

are binding determinate while the goal

« R(z) A Qz,y) A P(z,y)

1s not binding determinate. ]
Unlike solution determinacy, a goal may be binding determinate but an instance may not be.

Example 5.5 Consider again the program in Example 4.3. Then the goal

— Q(z,y) A P(z,y)
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1s also binding determinate, although the goal

<« Q(l,y) A P(Ly)
18 not. O

Solution determinacy for a goal is not as dependent as binding determinacy on the computation
rule. The following example illustrates this.

Example 5.6 This program finds the minimum of two numbers.

Min(z,y,m) < z<y A m=ux
Min(z,y,m) <« y<az A m=y.

Then, assuming a right to left selection rule, the goal < Min(2,1,n) is solution determinate (and
functional) but not binding determinate. However, with a selection rule that selects from left to
right, the goal is binding determinate. Note that as x < y and y < x both succeed when x and y
are equal, Min/3 is not primitive determinate. I

If a goal is derivation head (or primitive) determinate, there is at most one branch in any
SLDNF-tree for the goal and thus the goal is also binding and solution determinate. However, the
converse does not hold.

Example 5.7 Consider again the program in Example 5.2. The the goal
— P(u,v)
1s binding determinate but not derivation head or primitive determinate. I

Predicates that are binding deterministic can be executed using dependent and-parallelism with-
out the need for distributed backtracking. This is the rationale behind parallel NU-Prolog [38]. A
variation of binding determinacy is also used in Reform Prolog [4], an implementation of Prolog
that uses recursion parallelism. Recursion parallelism is a special form of dependent and-parallelism
restricted to just the linearly, structurally recursive predicates. The computation for a goal with
recursion depth n is translated into n goal-head unifications proceeded by n body computations.
Reform compilation [35] is thus not unlike loop parallelisation. The recursive predicates for paral-
lelisation are explicitly requested by the programmer while the compiler checks that backtracking is
not distributed between processors. To prevent this, the compiler must ensure that all bindings for
variables which are possibly shared across parallel recursive iterations can be made unconditionally.

Determinacy analysis also underpins the loop parallelisation work in [44] where a series of
(control-flow graph) transforms are proposed to expose loops (recursive predicates) in which each
iteration of the loop can be executed in parallel. Two forms of loop parallelisation are used. The
first parallelisation, unlike Reform, does not require shared variables to be binding determinate.
Although very general, the implementation is complicated because of the way bindings have to be
handled. Therefore a top-down mode analysis is used to recognise (head) determinate predicates
and thus detect cases of binding determinacy. This permits a second, more efficient, Reform type
of parallelisation to be used wherever possible.

One possible application of binding determinacy that has not previously been considered is
in dynamic dependent and-parallelism (DDAS) [45, 46]. This can execute full Prolog programs
using both independent and dependent and-parallelism. The cost of supporting the complexity of
independent and-parallelism, however, is only incurred when the parallelism is actually exploited.
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The fixed left to right selection rule of Prolog forces a fixed order for the unifications occurring in
a derivation. In DDAS this unification order is maintained. To achieve this, variables which are
potentially shared between atoms in the body of a clause and may be non-ground when executed
are labelled as dependent variables. The Prolog unification order is preserved by only allowing
the process executing the leftmost atom that shares a dependent variable (the producer) to bind
that variable. When a process executing another atom (a consumer) attempts to bind the shared
variable to a non-variable term, the process will be suspended until either the variable becomes
bound (by the producer process), or the atom becomes the leftmost atom sharing the variable.
The problem here is that, if the producer process unbinds a dependent variable, the consumer
processors may need to re-do their computation. Currently a simple run-time mechanism is used
in DDAS to keep track of the consumption of bindings to help reduce this wasted work. If,
however, it was known that a subgoal consisting of the producer and some of the consumers was
solution determinate but not binding determinate (with respect to the dependent variable), then
the execution of the remaining consumers could be delayed until this subgoal had successfully
terminated. Although this would reduce the amount of parallelism, it would also reduce wasted
work and hence improve the efficiency of DDAS. To illustrate this, consider the following example.

Example 5.8 The predicate Connected/2 finds the connected nodes in a directed (possibly cyclic)
graph. This is defined using a subsidiary predicate Connect/3 which, to prevent looping, keeps a
record of all the nodes that have been visited and checks that no node 1s visited more than once.

Connected(x,y) + Connect(z,y, [z])

Connect(a, a, .)

Connect(a,b,v) « FEdge(a,n) A ~Member(n,v) A Connect(n,b,[n|v])
Edge(1,1)

Edge(1,2)

The second clause for Connect/3 has three literals in its body which may be executed in parallel.
By considering the variable n in this clause, it can be seen that Edge(a,n) is the producer and
- Member(n, [v]) and Connect(n,b, [n|v]) are consumers. With the goal

+ Connected(1,2)

the second clause for Connect/3 will be chosen with a bound to 1, v to [1], and b to 2. Assuming the
clauses are tried in textual order, n will be bound to 1 by the process for Edge(1,n), the producer
for n. This binding, will enable the consumer processes for n to start up. However, the process
for = Member(1,[1]) will fail and the process for Edge(1,n) will thus search for the alternative
binding n/2. The remaining consumer process for Connect(n,2,[n|1]) will now have to redo its
computation with the new value 2 for n. It 1s thus desirable that the execution of the consumer
Connect(n, 2,[n|1]) should be delayed until + FEdge(1,n) A —-Member(n,[1]) has succeeded. This
will prevent unnecessary work. ]

6 Static Analysis for Determinacy
In this section, we consider a number of published methods for inferring the different forms of
determinacy. The analysis for any form of determinacy may be done entirely at compile time

(static analysis), entirely at run time (dynamic analysis), or at both compile time and run time
(hybrid analysis). Moreover the analysis may be passive, where the selection rule is fixed by the
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program and its programming language or proactive, determining restrictions for any underlying
selection rule so as to ensure certain goals are determinate. In this section, we outline and compare
some of the different static analysis techniques that have been described.

This section is subdivided to correspond with each of the main procedural forms of determi-
nacy; structural, solution, and binding determinacy. We do not consider the declarative concept
of functionality by itself as the analysis methods are all based on the procedural view of logic
programming. Moreover, solution determinacy implies functionality, so that methods that derive
the solution determinacy of a predicate can also infer its functionality. There are many analysis
techniques for inferring modes from known selection rules. These techniques are not considered and
in this section it is assumed that the modes of use of the predicates have already been ascertained
by such techniques.

Structural Determinacy

We describe a method of analysis for head and primitive determinacy which is both static and
passive and based on the method defined in [26].

Inferring head determinacy for a predicate in a program is a simple matter once the modes of
use of the predicate are known. Terms in the heads of clauses defining the predicate that are not
at input positions are first replaced by unique variables and then pairs of these modified clause
heads (standardised apart so that they have no variables in common) are checked that they do not
unify. Note that, to obtain accurate results, this procedure should use, not only the modes of a
predicate’s arguments, but also the modes of argument positions in constructed terms.

Example 6.1 Consider the following program.

Splat([1,[1,1])
Split([h], [h], [
Split([a, b|r], |

If it is only known that the first argument is non-variable and, if we replace all non-input positions
by unique variables, we have the following atoms derived from the clause heads.

Sphit([], x1, y1)
Split([h|w2], 2,y2)
Split([h|w3], 3,y3).

)
al

s], [b]t]) « Split(r, s, t).

Thus, with this selection rule, the predicate Split/3 will not be head determinate. However, if the
selection rule ensured that whenever the list in the first argument was non-empty, the tail of the
list would be a non-variable, then the atoms derived from the clause heads would be

Sphit([], 21, y1)
Spli([i], 29, y2)
Split([a, b|w], £3, y3)

and Split/3 would be head determinate. ]
The next lemma shows that the procedure for head determinacy is safe.

Lemma 6.1 Let 11 be a program with selection rule S, A1 < Bi,..., Ax < By clauses defining
a predicate P, and A}, ..., A}, atoms obtained from A, ..., Ay, respectively, using the technique
described above. Then, if Aj and A}, for all i # j € {1,...,k}, are not unifiable, P is head

determinate wrt S.
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Proof If a selectable atom A unifies with A;, i € {1,...,k}, then it is an instance of A;. Thus,
if for i,j € {1,...,k}, A} and A} are not unifiable, A can unify with at most one of 4;, A;. ]

This algorithm can be extended to allow for some primitive determinacy. First, all pairs of
heads of clauses in the definition of a predicate for which the above unifiability test succeeds (and
hence the determinacy test fails) are found. If there are no such pairs, then the predicate is
primitive determinate. Otherwise, suppose that for each pair {C4,Cs} of clauses for which the
unifiability test succeeds with a substitution, say #, there are test goals « T} and < 75 for C}
and Cjy, respectively, such that ¥=(716 A T0) is a logical consequence of the program, then
the predicate is primitive determinate. Apart from the obvious built-in tests such as arithmetic
comparisons, an atom and its negation are often used as tests for primitive determinacy.

Example 6.2 Consider the following program.

Sort([],[])

Sort([x|xs], ys) + Sort(xs,zs) A Insert(xz,zs,ys)

Insert(z,[], [2])
Insert(z, [ylys], [ylzs]) < x>y A Insert(z,ys,zs)
Insert(z, [ylys], [z, ylzs]) « = <y.

If it is known that the first argument to Sort/2 is always ground and that the selection of atoms
1s left-to-right, it can be inferred that the first two arqguments of Insert will be ground. Thus the
modified clause heads for the head determinacy test are:

Sort([],y1)
Sort([z|xs], y2)
Insert(z,[], 21)
Insert(z, [ylys], 22)
Insert(z, [ylys], 23).

Then all but the last two heads will not unify. However, as © and y will be ground, x > y and
z < y are test atoms in these clauses and V=(x >y A = < y) is a logical consequence of (the
completion of ) the program. (We assume the axioms of arithmetic are included in the completed
program.) Thus, in this case, both Sort/2 and Insert/3 will be found to be primitive determinate.

O

The next lemma shows that the above procedure for primitive determinacy is safe.

Lemma 6.2 Let II be a program with selection rule S, Ay < T1 A By, ..., Ax < Tk A By be clauses
defining a predicate P in II, and AY,... AL, the modified heads as described in the procedure
for head determinacy. Suppose, for each i # j € {1,...,k}, whenever A} and A} are unifiable
with substitution 0; ;, Y= (T;0;; A Tj0;;) is a logical consequence of comp(Il). Then P is primitive
determinate.

Proof If Al and A} are not unifiable, then, as in the proof of Proposition 6.1, a selectable
atom can unify with at most one of A;, A;. If A; and A} are unifiable and a selected atom A
unifies with both A; and Aj;, then it is an instance of Ajf;;. Thus A unifies with A;, A; with
substitutions of the form 0;;¢;,0;;¢;, respectively. By the hypothesis, at most one of the formulas
VT;0;¢:,YT;0;;¢; is a logical consequence of comp(Il). Then, as our choice of selected atom A
and the heads of clauses A;, A; that unify with A were arbitrary, P is primitive determinate.

O
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Clearly, knowledge of the number of success branches for an SLDNF-tree for a program and goal
subsumes knowledge of the derivation determinacy of the goal. Analysis to find an approximation to
this number has been described in [41]. Here the analyser has an abstract domain {0, £, 1,1’,2,2'}.
The number 0 indicates zero, 1 one, and 2 at least 2 success branches. £ indicates that it loops,
1’ one solution and then it loops, and 2’ two solutions and then it loops. The method which is
primarily designed to find where the cut can be safely removed from Prolog programs is intended
for use with a partial evaluator where the cut prevents unfolding.

Solution Determinacy

We describe a method, based on the approach in [20], for detecting solution determinacy that is
both static and passive. To explain this, we will require the concept called functional dependency.
Functional dependencies are well-known in relational database theory [49] and assert constraints on
the possible values for a relation. In most adaptations of this concept for logic programming, the
definition requires atoms to be of the form P(z1, ..., x,) where 21, ..., z, are distinct variables [34].
Below we give a more general definition so that it allows for constructed terms and is applicable
for any control modes that may take these into account.

Definition Let IT be a program, W a conjunction of literals with free variables X, and U and V'
subsets of X. Then U — V s a functional dependency for W and W satisfies U — V if, for any
substitution @ for which U6 is ground, the restrictions of the computed answers for T U {+ W#}
to the set V' are equivalent. If D is a set of functional dependencies that includes all (resp., just)
functional dependencies for W, then D is complete (resp., sound) for W.

Example 6.3 Consider the following program.

TIOLLLD

Then, from the definitions of Q/4 and R/2, it can be seen that the functional dependencies for
Q(z,y,u,v) include {z} — {y}, {y} — {z} and {u} — {v} and a functional dependency for
R(y,u) is {y} — {u}. |

Given a set of functional dependencies for a set of variables, other dependencies will also hold.
Example 6.4 Given the set of functional dependencies

{{e} = {uh AAv} = {=} {u} = {v} {y} = {u}}

it is clear that the dependencies such as {x} = {u} and {x} — {z,u, v} also hold. O
Definition Let D be a set of functional dependencies and U — V' a functional dependency, then D
logically implies U — V if each conjunction of literals that satisfies all the functional dependencies

in D also satisfies /' = V. The set DT of all functional dependencies logically implied by D is
called the closure of D.
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If D is a set of functional dependencies, the closure Dt can be inferred using the following rules
called Armstrong’s axioms [49]. Let Uy, Us, Us be subsets of X.

Reflexivity. If Uy D Us, then Uy — Uy € DT,
Transitivity. If Uy — Uy, Uy — Us € DT then U; — Uz € DT,
Augmentativity. If Uy — Uy € DY, then U1U U3z = Uy UU3 € DT,

Armstrong’s axioms are sound and complete with respect to the logically implies relation defined

above [49].

Example 6.5 Using the dependencies in Example 6.4, the dependency {z} — {u} follows from
the transitivity aziom. The {z} — {x,u,v} dependency can be deduced from the dependencies in
Ezxample 6.4:

~

. {x} = {u} (transitivity applied to given dependencies)
. {x} = {x, u} (augmentativity of 1 by {x})
. {x} = {v} (transitivity applied to 1 and a given dependency)

Az, uy = {x,u,v} (augmentativity of 3 by {x,u})

N T RS

. {x} = {x, u, v} (transitivity applied to 2 and 4) 0

Given a set of functional dependencies for the atoms, functional dependencies for the body of a
clause or goal can be inferred using Armstrong’s axioms. In particular, if D and DF are complete
sets of functional dependencies for atoms A; and A respectively, then (D; U D)% is a complete
set of functional dependencies for A; A As. Negative literals can be ignored, since they must be
ground before they are selected.

Example 6.6 Consider again the program in Example 6.3. Then the complete set of functional
dependencies for Q(xz,y,u,v) and R(y,u) are, respectively,

Ha} = {y} {y} = {z} . {u} = {v}}T and
{{y} = {u}}+.

Thus the complete set of functional dependencies for Q(x,y, u,v) A R(y, u) is:

{z} = {wh i} = {=} {u} = {v} {w} = {u}}T
O

Functional dependencies have been used in work on deductive databases to optimise analysis tech-
niques [31]. For such databases, although bottom-up is the preferred evaluation strategy, in the
presence of non-ground facts this method may not be as efficient as top-down evaluation. The basic
problem is that, to factor out any duplicates, the new facts that are computed at each iteration of
the fixpoint calculation have to be compared with the previously generated facts. For non-ground
facts, this requires a costly subsumption check unless the program has the special subsumption-free
property [31]. Establishing subsumption-freedom requires functional dependencies to be derived
over the relations defined by the program.

Interestingly, the notion of a functional dependency for a literal is analogous to the idea of
functional constraints that have recently been applied in constraint satisfaction problems [13]. In
a binary constraint network (a network in which constraints only relate pairs of variables, say, «
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and y), a constraint is said to be functional if and only if + — y or y — #. Functional constraints
have been used to put better bounds on search complexity and, provided certain conditions hold,
guarantee the existance of solutions [13].

The functional dependencies of a formula provide part of the criteria for a predicate to be
solution determinate. To explain the other part, the concept of solution determinacy needs to be
extended to clauses.

Definition Let IT be program with selection rule S. A clause A < B is solution determinate if|
for every substitution 6 such that an atom A is selectable in some goal for II, the restrictions of
the computed answers for <~ Bf to the variables in Af are all equivalent.

n [20], it is assumed that the functional dependencies of the atoms in the program are already
known. However, as the definition of solution determinacy depends on a selection rule, we require
the dependencies to be consistent with the given selection rule.

Definition Let IT be a program with selection rule . A functional dependency U — V for an
atom A is consistent with S if, whenever A6 1s selectable, U8 is ground.

A criteria for a clause to be solution determinate is as follows [20, Proposition 3.5].

Proposition 6.1 Let A «+ B be a clause in a program 11 with selection rule S, D a set of functional
dependencies for B that are consistent with S, X the set of variables in A, and U the set of variables
in X that are ground whenever an instance of A is selectable in a goal forIl. Then, ifU — X € DT,
A < B is solution determinate. O

Example 6.7 Consider the program.
P($a U) — Q($a Yy, u, U) A R(ya U)

where the definitions of Q/4 and R/2 are as in Example 6.3. Then {x} — {x,v} is in the closure
of the set of the functional dependencies for Q(z,y,u,v) and R(y,u). Assume that P/2 is only
selectable when the first argument s ground. Then, it follows from Proposition 6.1 that the clause
defining P/2 is solution determinate. I

For a predicate to be solution determinate, not only must each clause in its definition be
solution determinate, but also, at most one clause must be applicable in any atomic query with
this predicate.

Definition Two clauses A1 + By and Ay < B> are mutually exclusive if, whenever a selectable
atom A unifies with A; with substitution §; and A, with substitution 65, at most one of the goals
+ Bi16y and < Byf5 succeeds.

Thus, if the predicate in A is determinate (head or primitive) then the clauses in the definition of
the predicate will be mutually exclusive. However the concepts are not the same.

Example 6.8 Consider the following program.

P(z,y) + Q(=,y)
P(z,y) < R(z,y)
Q(1,1)
R(2,2).
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Then with a selection rule that requires the first argument of P/2 to be ground, P/2 is not head or
primitive determinate, but the clauses defining P/2 are mutually exclusive. ]

Certain criteria for the detection of mutual exclusion for a pair of clauses in the definition of a
predicate, say P/n have been proved in [20]. Excluding the use of cuts, there are two. The basic
one corresponds to head determinacy for P/n where P/n is defined by just these two clauses. The
second one is an adaptation of primitive determinacy and is more complicated. We only give a
simplified version of the second criteria [20, Proposition 3.8].

Proposition 6.2 Let I1 be a program with selection rule §. Then two clauses Ay «+ Bi and
As « By are mutually exclusive in T (wrt S) if one of the following hold.

1. No selectable literal will unify with both Ay and A-.

2. The atoms Ay and As are identical and the formulas By and Bs have the form

Bll AN L1 AN BlZ
le AN L2 AN Bzz

where the Bj; (i,j € {1,2}) may be empty formulas; the goals < B11,< Ba1 are solution
determinate; and Ly, Lo are literals with the same predicate such that, whenever a selectable
atom unifies with Ay with substitution 8 and < L10 succeeds with substitution ¢, then < L26¢
also succeeds.

U

An alternative approach to the definition and detection of mutual exclusivenessis described
in [53]. Here clauses C' and C’ in the definition of a predicate P are mutually exclusive if the
subsets of the least Herbrand model that are derived from a bottom-up computation from C and
C" are disjoint on the input arguments for P.

Sufficient conditions for a predicate to be solution determinate are given below [20, Proposi-

tion 3.9].

Proposition 6.3 A predicate P/n in a program will be solution determinate if the clauses in the
definition of P/n are solution determinate and pairwise mutually exclusive. ]

Thus to check the determinacy of a predicate, each pair of clauses in its definition must be
tested, using Proposition 6.2, to see if they are mutually exclusive. Then, if this test succeeds,
each clause in the definition must then be checked, using Proposition 6.1, to see if it is solution
determinate. The procedure has to iterate, as initially only the determinacy of certain system
predicates 1s given. A complete algorithm based on the methodology of abstract interpretation can
now be constructed. The concrete domain is the set of predicates and clauses in the program. The
abstract domain has three values solution determinacy unknown, solution determinate and not
solution determinate. The algorithm presented in [20] is based on such a procedure. An improved
version of the algorithm is described in [53].

We have assumed that the modes of the predicates are already known. However, in practice, it is
desirable that the mode, type and determinacy analysis is combined, not only to avoid having more
than one analyser, but also because, frequently, there can be considerable interraction between the
different abstract domains enabling more accurate results. Such a combined approach is described
in [22]. Here, mode, type and the solution determinacy information for a program is obtained by
means of a bottom-up abstract interpretation framework.

Clearly, knowledge of the cardinality of a success set for a goal subsumes knowledge of the solu-
tion determinacy of a goal. Analysis to find an approximation to the cardinality of a success set has
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been described in [5]. The analysis applies to full Prolog and is based on an abstract interpretation
framework described in [29]. The abstract domain captures not only the cardinality information
but also mode and type information, abstractions of built-in atoms, the cut, and termination.
Experimental results show that this approach is efficient with a high degree of accuracy.

Analysis of programs to find approximations of the success sets of a goal has been described
in [42]. Here an abstract interpretation is performed where the concrete domain is the set of
possible variable bindings and the abstract domain is the depth & abstraction of the terms in these
bindings. More recently, new methods for obtaining approximations to success sets have been
developed [15, 21] and applied to both logic programs and to automated theorem provers. As
the success set for a solution determinate goal has at most one element, an approximation to the
success set may be useful in the determinacy analysis. Work needs to be done to investigate this
and the application of determinacy analysis to automated theorem proving.

A related approach described in [14] performs some analysis that computes, for each predicate,
an approximation to the success set where the approximation may include constraints in addition
to the equalities. These constraints are then added as tests to each clause in the program. Further
analysis 1s then done to see if the revised predicate definition with these additional tests is primitive
determinate.

Binding Determinacy

The only analysis that we are aware of that has been designed explicitly for binding determinacy
is for Reform Prolog [4]. Here, the analysis for parallelisation is hybrid and proactive. At compile-
time, a global analyser uses abstract interpretation techniques to find whether a recursive procedure
may be safely executed in parallel. The analyser uses abstract domains that provide type, mode
and aliasing information concerning the variable bindings and determinacy information indicating
where choice points will not be used in the computation. The analyser will mark variables as
shared, local to a process, or fragile. If the variable is marked as fragile, then further sharing
analysis is performed at run time. Variables that may be shared are analysed to see if they are
binding determinate.

7 Using Determinacy Information

This section is concerned with techniques for exploiting any determinacy information. It is assumed
that this information is either declared or obtained by global analysis at compile time. There have
been several proposals. If the determinacy analyser shows that a predicate is determinate for a
certain selection rule, then, by reordering the literals in the clauses or adding control annotations,
it may be possible to ensure that the implementation respects such a rule. Pruning operators, such
as the cut, or conditionals, such as the If-Then-FElse construct, can be added to the program so
as to avoid searching unwanted branches of the SLDNF-tree. By generalising the WAM indexing
techniques, primitive determinacy can be exploited directly by the compiler. Finally, in parallel
implementations where precise determinacy information is crucial for stream and-parallelisation,
run-time tests are used to check for determinacy and then determinate atoms are preferred by the
selection rule. Each of these approaches is considered in turn.
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Changing the Selection Rule

Adding control declarations to a program or even reordering the literals in the body of Prolog
clauses can be regarded as changing the selection rule.

For instance, the when declarations of NU-Prolog [48] are optional program annotations that
specify delaying conditions for user-defined predicates and alter the Prolog selection rule. The
selection rule of NU-Prolog differs from the left to right selection rule in that it selects the left-
most literal that is not delayed by a when declaration. The when declarations can be automatically
generated and added to a program by the NU-Prolog preprocessor called nac [36]. The main
intention of nac is to improve efficiency and avoid non-termination for recursive predicates. As a
by-product, with the new selection rule, a predicate often becomes head determinate. As explained
in [38], having generated and added when declarations to the program, nac can also detect which
of the predicates are binding determinate.

Example 7.1 Consider Example 4.1. With the trivial selection rule, Balanced/1 is not head
determinate. However, the nac preprocessor would add wait declarations to this program causing
Balanced/2 to be selectable only when the first argument is a non-variable and such that if it is a
non-empty list, then the first argument must also be a non-variable. With any selection rule that
satisfies these wait declaration, Balanced/2 is head determinate and the predicate Balanced/1 is
binding determinate. ]

Predicates that are binding determinate can be executed using dependent and-parallelism with-
out the need for distributed backtracking. This is the rationale behind parallel NU-Prolog [38].
Parallel NU-Prolog is, in fact, an extension to NU-Prolog in which programmers can declare pred-
icates as deterministic with their intended modes by using lazyDet declarations. A preprocessor
similar to nac then appropriately postpones unifications by replacing the lazyDet declarations by
when declarations. It also detects binding determinacy in the resulting code, hence improving the
parallelisation.

Pruning and Conditionals

The automatic insertion of cuts to prevent unnecessary backtracking in deterministic predicates
has been considered by a number of researchers [34, 38]. The Prolog cut relies on the sequential
ordering of the literals in the body of a clause as well as the order of the clauses in a definition.
As we have not assumed the Prolog computation rule or search order in our definitions, in the
following examples the Prolog cut is replaced by the Godel one solution or bar commit [27]. These
pruning operators are defined for any computation rule and search order.

In [34], the insertion of the Prolog cut corresponds to the addition of a one solution commit.
The one solution commit which has the form {1¥} prunes the search tree in such a way as to ensure
(at most) one solution of W is found. Suppose L is a literal in the body of the clause and the
functional dependencies imply that the set of variables in L that are bound whenever an instance
of L is selected, functionally determines the set of all other variables in that instance of L. Then
L is replaced by {L}.

Example 7.2 Consider again the Example 3.2. Then unnecessary backtracking can be avoided if
the preprocessor replaces the definition of BigProject/1 by

BigProject(p) < {Project(p,m,e)} A Salary(m,s) A s> 51000.
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In [38], it is shown how cuts may be added to the program in Example 4.4 to force binding
determinacy. We present the corresponding version using the Godel bar commit in place of the
Prolog cut. The Godel bar commit | is similar to the commit of the concurrent languages and
has the semantics of conjunction. Procedurally, it prunes the search tree so that at most one
solution for the formula to the left of the bar commit is found and also prunes the other clauses
with commits in the same definition. (As Godel does not enforce the order in which clauses are
evaluated, the Godel bar commit is symmetric.)

Example 7.3 Consider the following variation of the program in Example 4.4.

Partition(_,[1,[1,[])
Partition(i, [x|xs],ls, zs) +

z>i | Is=[z|lys] A Partition(i,zs,ys, zs)
Partition(i, [x|zs], ys, ms) +

r<i | ms=/[x|zs] A Partition(i,zs,ys,zs).

Suppose that the selection rule is left to right with the additional constraint that Partition/4
may be selected only when the first and second arqguments are ground. Then a choice point will be
created whenever the second argument of the query is a non-empty list. However, as the inequality
test is the only literal before the commait, this choice-point will be removed before any bindings are

made. ]

An alternative method that forces a program to behave deterministically is by using the If-
Then-FElse constructs of NU-Prolog and Godel. In these languages, a statement of the form

A « If T Then By FElse By
has the same declarative meaning as the pair of clauses

AFT/\Bl
A%_'T/\Bz

Thus, if the predicate in A is primitive determinate and defined as above with test goal < 7', it is
straightforward to transform it to the If-Then-Else form where the test goal is made explicit.

Example 7.4 Consider Example 4.4. Then this could be written using the If-Then-Else construct
as follows.

Partition(_,[1,[1,[])
Partition(i, [x|xs], yls, z1s) +
If ©>1
Then
Partition(i, zs,ys, zs) A yls = [x|ys] A zls = zs
Else
Partition(i, zs,ys, zs) A yls =ys A zls = [z|zs].

Note that the output bindings for the last two arguments of Partition/4 are now defined explicitly
wn the body of the clause. I

As T occurs negatively in the clause

A« =T /\Bz
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every variable in the condition part of an If-Then-Else statement (as defined above) must occur in
its head since the corresponding argument positions in any selectable atom that unifies with the
head must be ground. There is a more general form of the If-Then-Else construct that allows for
variables in the condition part provided they are local to the Then part of the clause. This form
of If-Then-FElse statement has the structure

A« If Some [Z] T Then By FElse By

where T is a sequence of all the variables in 7" not in A. It has the same declarative meaning as
the pair of clauses

A « Some [Z] (T AN By)
A « —Some [Z] T A Bs.

The following example taken from [37] illustrates the use of this construct.
Example 7.5 Consider the program

LookUp(key, v, ls,ls) < Member(Pair(key, v), ls)
LookUp(key, value,ls, [Pair(key, value)|ls]) < —Member(Pair(key, ), ls)

which defines the predicate LookUp for looking up a value in an association list. It 1s assumed that
LookUp(ty1,ta,t3,14) is selectable only when t, and t3 are ground. The definition of LookUp can be
transformed into the statement

LookUp(key, value, ls, newls) +
If Some [v] Member(Pair(key,v), ls)
Then
value = v A newls = s
Else
newls = [Pair(key, value)|ls].

Indexing

Indexing is a compiler optimisation technique introduced in the WAM [1]. If the evaluation of the
clauses in the definition of a predicate was strictly sequential and a choice point created whenever
there was more than one clause, then the implementation would be very inefficient in both space
and time. It has been observed that programmers usually write code in a directed manner where the
first argument in the head of each clause has a distinguishing pattern. The WAM has a technique
called indexing that optimises clause selection using the top level function of the first argument.
There have been a number proposals for extending clause indexing to allow for clause selection
based on arguments other than the first, subterms of the arguments, and test goals [26, 50, 52].
We present here a generic methodology for indexing for predicates that are primitive determinate
and discuss its relationship with these proposals.

The first step is the normalisation of each clause in the definition of a predicate. The head
atom is flattened so that its arguments are distinct variables. To preserve the meaning of the
clause, equations whose terms have maximum depth 1 are added to the body of the clause.

Definition Given an atom or term A, we obtain the flattened form (E, A’) of A as follows.

28



e If A is a variable or constant, then the flattened form of A is ({x = A}, z), where z is a
variable not in A.

o If Ais of the form P(t1,...,%,) and, for each i € {1,...,n}, a flattened form of ¢; is (F;,t}),

then the flattened form of Ais (E1U---UE,U{z1 =1,...,2, =1,}, P(21,...,2,)), where
T1,...,&, are distinct variables that do not occur in A or ¢{,... t/,.

The normalised form of a clause A + B is A’ + E A B where (E, A’) is the flattened form of A.

Example 7.6 Consider Example 4.4. Then the normalised form of the clauses are as follows.

Cy: Partition(ay, as, az, as)
a; = _ A Clz:[] AN Clz:[] AN Clzz[]

Cy: Partition(ay, as, az, as)
a; =i A ay = [z|zs] A az = [z]ys] A ag = zs) A
x> i A Partition(i, zs,ys, zs)

C3: Partition(a1, aq, as, aq) +
a; =i A as = [z|zs] A ag =ys A aqg = [z]|zs]) A
x < i A Partition(i, zs,ys, zs).

O

The second step is the construction of an indexing tree for a predicate using the normalised forms
of the clauses in its definition.

Definition Let IT be a program with selection rule § and predicate P. An indexing tree for P
in IT is defined as follows. Each node of an indexing tree is labelled by a subset of the normalised
forms of the clauses in the definition of P in II, called the candidate clause set for the node. The
edges are labelled by test literals for the normalised clauses.

e The root is labelled by the set of normalised forms of clauses defining P.

e Suppose there is a non-leaf node labelled by {C; : i € I'} with m children. Suppose also that,
for each j € {1,...,m}, the jth child is labelled {C; : i € I;} and the edge leading to the
Jjth child is labelled by a literal L;. Then Iy,..., I, are distinct non-empty subsets of I such
that 1 U---UI, = I, and, for each j € {1,...,m}, L; is a test literal wrt S for all C;, i € I;.

An indexing tree depends, not only on the clauses in the definition, but also on the choice of test
literals used to label the branches. Ideally, these test literals should be chosen so as to minimise
the depth of the tree (or, perhaps, minimise the average cost of selecting a clause in the tree [16]).
For instance, preference could be given to test literals that cause the nodes with the same parent
to have disjoint candidate clause sets. An indexing tree has been defined for any predicate but,
for a primitive determinate predicate, 1t is always possible to extend an indexing tree for it so that
each leaf is a singleton set. We call such a tree a determinate indexing tree. Note that if P is
primitive determinate, once the tests on a branch of a determinate indexing tree have succeeded,
no other branches need be considered. If, for a selected atom A, the tests on all the branches fail,
then the goal + A will fail.

Example 7.7 We ilustrate an indexing tree using the predicate Partition in the Example j.4.
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{C} {C, Cs}

{Cs} {Cs}
]

The selection tree defined in [50], differs from an indexing tree, in a number of ways. First, the
equality tests in a selection tree only consider constants or top level functions in the predicate’s
arguments. Secondly, no selection rule is assumed so that mode tests are included as labels for
the branches. There are two kinds of non-leaf nodes. The switch node does a four-way branch
depending on whether the argument in the selected atom 1s a variable, list, constant or structure and
the hash node does a multiway branch depending on the value of any constant or top-level function
at that position. The selection tree is designed to improve the clause indexing for any predicate,
however, if it is known that the predicate is primitive determinate, then, in the implementation of
this procedure described in [50], choice points are not created.

One of the problems in deciding that a predicate is primitive determinate is that it may be
multi-moded. In [26], mode inferencing techniques are used to determine all the possible modes
for each predicate. The program is then transformed into one which contains a new version of each
predicate definition for each possible mode. These versions are distinguished by adding the mode
as a suffix to their names. Body atoms are renamed according to the mode of their arguments. The
basic indexing technique used in [26] is based on a switching tree which is similar to the indexing
tree defined above.

In [52], a Prolog compiler (TOAM) is described that constructs a matching tree for each pred-
icate. Such a tree is similar in structure to the indexing tree defined above but where tests ensure
that each leaf is labelled by a singleton set. The leaves are also labelled as cut or noncut. A cut leaf
is a leaf such that if the tests on the branches to this leaf have succeeded, then the conjunction of
tests on each of the branches to its right must fail. (It is assumed that the tree is processed from
top to bottom and from left to right.) A choice point is created when the computation reaches a
noncut leaf. For primitive determinate predicates, as all the leaves on the matching tree are cut
leaves, no choice points will be created.

Decision Trees

Most work on exploiting the determinacy in parallel implementations has been for Andorra. The
basic Andorra-T model selects determinate atoms in preference to other atoms (provided that the
behaviour of pruning and built-ins with side-effects is not changed). The determinacy of a predicate
depends on the mode of use. However, where predicates are multi-moded, inferring all possible
modes for each predicate (as in [26]) can lead to slow compilation. The extra copies of the definition

30



of a predicate for each of its modes and for each mode of use of the atoms in the bodies of the
clauses can cause an explosion in the amount of compiled code that is generated. Thus, where
accurate determinacy information is required (as is the case with the Andorra-I model), a hybrid
system is preferred where static global analysis is combined with run-time local analysis. Both
NUA-Prolog [39] and Andorra-I [11] (both of which are languages based on the Andorra model)
have systems that use this hybrid methodology for improving the exploitation of and-parallelism
in a program. The determinacy information obtained from static analysis is used to construct an
indexing tree for each predicate in the program. At run-time, these trees are used in testing the
positive literals in the goal to see if they are flat determinate. Those found to be flat determinate are
then selected in preference to other atoms and can be executed in parallel with other determinate
literals. If these literals were not determinate, distributed backtracking would be required causing
a significant overhead for the parallelisation.

NUA-Prolog [39] is an experimental language using the Andorra model and built on the parallel
NU-Prolog system, that is hybrid and proactive. It is shown in [39] that generating a complete
indexing tree even for head determinacy is NP-hard. To resolve this, assuming the input arguments
for an atom are independent, the tree for a predicate of arity, say n, is replaced by a sequence of
n decision trees, one tree for each of its arguments. The candidate clause set at each root node
is the set of clauses in the definition of the predicate. The edges leading from the ith root are
labelled by the test equations for the ith argument. Tests labelling edges lower in the ¢th tree may
consider equations involving subterms of the ith argument or other built-in tests. At run time,
given a selected atom, for each argument, the tests are evaluated and a set of candidate clauses
at the successful leaf is found. If the intersection of these candidate clause sets is a single clause,
then the atom is flat determinate.

A similar hybrid analysis method for the parallel execution of Andorra-I is described by
Costa [11]. As in the analysis for NUA-Prolog, a decision tree for each predicate is constructed at
compile time. The leaf nodes of the decision tree are labelled commit to a named clause (if the
candidate clause set is a singleton), or wait (if the candidate clause set contains at least two ele-
ments). In the latter case, the other argument trees should also be employed. If all argument trees
have been considered, and the leaves on the successful branches are all labelled wait, then either
the atom being considered is not determinate and has to be executed in a non-determinate mode,
or the selection of the atom is delayed until it is further instantiated. By ordering the predicate’s
arguments, the size of the decision tree can be constrained and duplication of work avoided. The
actual algorithm also considers the arguments to compound terms and handles built-ins similar
to those in the NUA-Prolog algorithm. Note that the decision trees of [11] and [39] were based
on the decision trees defined for FCP using the tests in the guard as conditions for the non-leaf

nodes [28].

8 Discussion

Previously, the study of determinacy and its analysis has been rather ad hoc, primarily depending
on the intended application. In particular, definitions of determinacy have assumed specific com-
putation rules and, in some cases, been tailored to fit the actual analysis method. In this paper,
we have reformulated the definitions to allow for arbitrary computation rules and search strategies
so that the determinacy properties can be inferred using generic analysis techniques such as those
based on abstract interpretation. By providing a common framework, the different approaches can
be integrated to facilitate significant improvements to the run-time performance of logic programs.
Future work will concentrate on producing such an integration and evaluating the performance
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gains.

Here we have been concerned primarily with definitions of determinacy together with methods
for its analysis. In general, we have assumed the programming language to be Prolog or Godel
where determinacy information has to be obtained by analysis. However, if, as in the new logic
programming language Mercury [47], determinacy can be declared, then, to a provide a procedure
that checks the consistency of the declarations, adapted forms of the analysis techniques can still
be utilised.

Languages based on the integration of functional and logic programming paradigms so that
both functions and relations may be defined by the user provide a declarative environment in which
the intended functionality of many logical expressions may be given explicitly. This functionality
information would provide much of the optimising information currently obtained by analysis.
Thus programs written in a logic language that allows both functions and relations can reduce
the number of places where backtracking is expected and hence, have the potential for compiled
code that is more efficient in both space and time than the equivalent program written in a purely
relational language.
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